TS3L110RGYR [TI]

QUAD SPDT HIGH BANDWIDTH 10/100 BASE T LAN SWITCH DIFFERENTIAL 8 CHANNEL TO 4 CHANNEL MULTIPLEXER; QUAD SPDT高带宽10/100 BASE T LAN SWITCH差分8通道与4通道多路复用器
TS3L110RGYR
型号: TS3L110RGYR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

QUAD SPDT HIGH BANDWIDTH 10/100 BASE T LAN SWITCH DIFFERENTIAL 8 CHANNEL TO 4 CHANNEL MULTIPLEXER
QUAD SPDT高带宽10/100 BASE T LAN SWITCH差分8通道与4通道多路复用器

复用器 开关 复用器或开关 信号电路 光电二极管 输出元件 局域网 局域网(LAN)标准
文件: 总18页 (文件大小:465K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁ ꢂꢃ ꢄꢄꢅ  
ꢆ ꢇꢈꢉ ꢁꢊ ꢉꢀ ꢋꢌ ꢍꢋ ꢎꢏꢈꢐꢉꢑ ꢌ ꢉꢀ ꢋ ꢄ ꢅ ꢒꢄ ꢅ ꢅ ꢏꢈꢁ ꢓꢎꢀ ꢃ ꢈꢐ ꢁ ꢑꢌ ꢀꢔ ꢋ  
ꢉꢌ ꢕ ꢕꢓ ꢖꢓ ꢐꢀ ꢌ ꢈꢃ ꢗ ꢎꢔꢋ ꢈꢐꢐꢓ ꢃ ꢀ ꢘ ꢙ ꢎꢔꢋꢈ ꢐꢐꢓꢃ ꢚ ꢇꢃꢀ ꢌꢊ ꢃꢓ ꢛꢓꢖꢒ ꢉꢓꢚ ꢇꢃꢀꢌ ꢊ ꢃꢓ ꢛꢓ ꢖ  
SCDS176 − SEPTEMBER 2004  
D
D
D
D
D
D
D
Wide Bandwidth (BW = 500 MHz Typ)  
Low Crosstalk (X = −30 dB Typ)  
D
D
D
Data and Control Inputs Have Undershoot  
Clamp Diodes  
TALK  
Latch-Up Performance Exceeds 100 mA Per  
JESD 78, Class II  
Bidirectional Data Flow, With Near-Zero  
Propagation Delay  
ESD Performance Tested Per JESD 22  
− 2000-V Human-Body Model  
(A114-B, Class II)  
Low and Flat ON-State Resistance  
(r = 4 W Typ, r  
= 1 W)  
on  
on(flat)  
Switching on Data I/O Ports (0 to 5 V)  
− 1000-V Charged-Device Model (C101)  
V
Operating Range From 3 V to 3.6 V  
CC  
D
Suitable for Both 10 Base-T/100 Base-T  
Signaling  
I
Supports Partial-Power-Down Mode  
off  
Operation  
RGY PACKAGE  
(TOP VIEW)  
D, DBQ, DGV, OR PW PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
E
ID  
ID  
YD  
IC  
S
CC  
1
16  
IA  
0
IA  
IA  
15  
14  
13  
12  
11  
10  
2
3
4
5
6
7
E
ID  
ID  
YD  
IC  
0
1
1
0
YA  
IA  
1
0
1
IB  
YA  
0
IB  
1
YB  
IB  
0
0
IC  
1
YC  
IB  
1
YB  
0
GND  
IC  
1
8
9
description/ordering information  
The TI TS3L110 LAN switch is a 4-bit 1-of-2 multiplexer/demultiplexer with a single switch-enable (E) input.  
When E is low, the switch is enabled, and the I port is connected to the Y port. When E is high, the switch is  
disabled, and the high-impedance state exists between the I and Y ports. The select (S) input controls the data  
path of the multiplexer/demultiplexer.  
ORDERING INFORMATION  
ORDERABLE  
PART NUMBER  
TOP-SIDE  
MARKING  
T
A
PACKAGE  
QFN − RGY  
SOIC − D  
Tape and reel  
Tube  
TS3L110RGYR  
TK110  
TS3L110D  
TS3L110  
TK110  
Tape and reel  
TS3L110DR  
TS3L110DBQR  
TS3L110PW  
TS3L110PWR  
TS3L110DGVR  
SSOP (QSOP) − DBQ Tape and reel  
Tube  
−40°C to 85°C  
TSSOP − PW  
TK110  
TK110  
Tape and reel  
TVSOP − DGV  
Tape and reel  
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines  
are available at www.ti.com/sc/package.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢀꢧ  
Copyright 2004, Texas Instruments Incorporated  
ꢣ ꢧ ꢤ ꢣꢜ ꢝꢱ ꢟꢞ ꢢ ꢪꢪ ꢨꢢ ꢠ ꢢ ꢡ ꢧ ꢣ ꢧ ꢠ ꢤ ꢬ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄꢄ ꢅ  
ꢆꢇ ꢈ ꢉ ꢁꢊ ꢉꢀ ꢋ ꢌ ꢍꢋ ꢎꢏꢈꢐ ꢉꢑ ꢌ ꢉꢀ ꢋ ꢄ ꢅ ꢒ ꢄꢅ ꢅ ꢏꢈꢁ ꢓꢎꢀ ꢃ ꢈꢐ ꢁꢑ ꢌ ꢀꢔ ꢋ  
ꢉ ꢌꢕ ꢕ ꢓꢖ ꢓꢐ ꢀ ꢌ ꢈꢃ ꢗ ꢎꢔꢋ ꢈꢐꢐ ꢓ ꢃ ꢀ ꢘ ꢙ ꢎꢔꢋ ꢈꢐ ꢐꢓꢃ ꢚ ꢇꢃꢀ ꢌꢊ ꢃꢓ ꢛꢓꢖꢒ ꢉꢓꢚ ꢇꢃꢀ ꢌꢊ ꢃꢓ ꢛꢓꢖ  
SCDS176 − SEPTEMBER 2004  
description/ordering information (continued)  
This device can be used to replace mechanical relays in LAN applications. This device has low and flat r , wide  
on  
bandwidth, and low crosstalk, making it suitable for 10 Base-T, 100 Base-T, and various other LAN applications.  
The device can be used to route signals from a 10/100 Base-T ethernet transceiver to the RJ-45 LAN connectors  
in laptops or in docking stations. The device is designed for low channel-to-channel skew and low crosstalk.  
This device is fully specified for partial-power-down applications using I . The I feature ensures that  
off  
off  
damaging current will not backflow through the device when it is powered down. The device has isolation during  
power off.  
To ensure the high-impedance state during power up or power down, E should be tied to V  
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.  
through a pullup  
CC  
FUNCTION TABLE  
INPUTS  
INPUT/OUTPUT  
YX  
FUNCTION  
E
S
L
L
L
IX  
IX  
YX = IX  
YX = IX  
0
0
H
X
1
1
H
Z
Disconnect  
PIN DESCRIPTIONS  
PIN NAME  
IAn−IDn  
S
DESCRIPTION  
Data I/Os  
Select input  
Enable input  
Data I/Os  
E
YA−YD  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢄꢅ  
ꢆ ꢇꢈꢉ ꢁꢊ ꢉꢀ ꢋꢌ ꢍꢋ ꢎꢏꢈꢐꢉꢑ ꢌ ꢉꢀ ꢋ ꢄ ꢅ ꢒꢄ ꢅ ꢅ ꢏꢈꢁ ꢓꢎꢀ ꢃ ꢈꢐ ꢁ ꢑꢌ ꢀꢔ ꢋ  
ꢉꢌ ꢕ ꢕꢓ ꢖꢓ ꢐꢀ ꢌ ꢈꢃ ꢗ ꢎꢔꢋ ꢈꢐꢐꢓ ꢃ ꢀ ꢘ ꢙ ꢎꢔꢋꢈ ꢐꢐꢓꢃ ꢚ ꢇꢃꢀ ꢌꢊ ꢃꢓ ꢛꢓꢖꢒ ꢉꢓꢚ ꢇꢃꢀꢌ ꢊ ꢃꢓ ꢛꢓ ꢖ  
SCDS176 − SEPTEMBER 2004  
logic diagram (positive logic)  
4
7
9
2
IA  
IA  
YA  
0
3
1
5
6
YB  
YC  
YD  
IB  
IB  
0
1
11  
10  
IC  
IC  
0
1
12  
14  
13  
ID  
ID  
0
1
1
S
E
Control  
Logic  
15  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄꢄ ꢅ  
ꢆꢇ ꢈ ꢉ ꢁꢊ ꢉꢀ ꢋ ꢌ ꢍꢋ ꢎꢏꢈꢐ ꢉꢑ ꢌ ꢉꢀ ꢋ ꢄ ꢅ ꢒ ꢄꢅ ꢅ ꢏꢈꢁ ꢓꢎꢀ ꢃ ꢈꢐ ꢁꢑ ꢌ ꢀꢔ ꢋ  
ꢉ ꢌꢕ ꢕ ꢓꢖ ꢓꢐ ꢀ ꢌ ꢈꢃ ꢗ ꢎꢔꢋ ꢈꢐꢐ ꢓ ꢃ ꢀ ꢘ ꢙ ꢎꢔꢋ ꢈꢐ ꢐꢓꢃ ꢚ ꢇꢃꢀ ꢌꢊ ꢃꢓ ꢛꢓꢖꢒ ꢉꢓꢚ ꢇꢃꢀ ꢌꢊ ꢃꢓ ꢛꢓꢖ  
SCDS176 − SEPTEMBER 2004  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V  
CC  
Control input voltage range, V (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V  
Switch I/O voltage range, V (see Notes 1, 2, and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V  
Control input clamp current, I (V < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA  
IN  
I/O  
IK IN  
I/O port clamp current, I  
(V < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA  
I/OK I/O  
ON-state switch current, I (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA  
Continuous current through V  
I/O  
or GND terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA  
CC  
Package thermal impedance, θ (see Note 5): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73°C/W  
JA  
(see Note 5): DBQ package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90°C/W  
(see Note 5): DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120°C/W  
(see Note 5): PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108°C/W  
(see Note 6): RGY package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39°C/W  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltages are with respect to ground, unless otherwise specified.  
2. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.  
3. V and V are used to denote specific conditions for V  
I/O  
.
I
O
4. I and I are used to denote specific conditions for I .  
I
O
I/O  
5. The package thermal impedance is calculated in accordance with JESD 51-7.  
6. The package thermal impedance is calculated in accordance with JESD 51-5.  
recommended operating conditions (see Note 7)  
MIN  
3
MAX  
3.6  
5.5  
0.8  
5.5  
85  
UNIT  
V
V
V
V
V
Supply voltage  
CC  
High-level control input voltage (E, S)  
Low-level control input voltage (E, S)  
Input/output voltage  
2
V
IH  
0
V
IL  
0
V
I/O  
T
A
Operating free-air temperature  
−40  
°C  
NOTE 7: All unused control inputs of the device must be held at V  
or GND to ensure proper device operation. Refer to the TI application report,  
CC  
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢄꢅ  
ꢆ ꢇꢈꢉ ꢁꢊ ꢉꢀ ꢋꢌ ꢍꢋ ꢎꢏꢈꢐꢉꢑ ꢌ ꢉꢀ ꢋ ꢄ ꢅ ꢒꢄ ꢅ ꢅ ꢏꢈꢁ ꢓꢎꢀ ꢃ ꢈꢐ ꢁ ꢑꢌ ꢀꢔ ꢋ  
ꢉꢌ ꢕ ꢕꢓ ꢖꢓ ꢐꢀ ꢌ ꢈꢃ ꢗ ꢎꢔꢋ ꢈꢐꢐꢓ ꢃ ꢀ ꢘ ꢙ ꢎꢔꢋꢈ ꢐꢐꢓꢃ ꢚ ꢇꢃꢀ ꢌꢊ ꢃꢓ ꢛꢓꢖꢒ ꢉꢓꢚ ꢇꢃꢀꢌ ꢊ ꢃꢓ ꢛꢓ ꢖ  
SCDS176 − SEPTEMBER 2004  
electrical characteristics over recommended operating free-air temperature range,  
= 3.3 V + 0.3 V (unless otherwise noted)  
V
CC  
PARAMETER  
E, S  
TEST CONDITIONS  
= −18 mA  
MIN TYP  
MAX  
−1.8  
1
UNIT  
V
V
IK  
V
V
V
V
V
= 3.6 V,  
= 3.6 V,  
= 3.6 V,  
= 0,  
I
IN  
CC  
CC  
CC  
CC  
CC  
I
I
I
I
E, S  
V
V
V
= 5.5 V  
= GND  
= 0 to 5.5 V ,  
= 0,  
µA  
µA  
µA  
mA  
pF  
IH  
IN  
IN  
E, S  
1
IL  
V = 0  
I
1
off  
CC  
O
= 3.6 V,  
I
Switch ON or OFF  
0.7  
2.5  
1.5  
3.5  
I/O  
C
E, S  
f = 1 MHz,  
V
= 0  
in  
IN  
f = 1 MHz,  
Outputs open,  
I port  
V = 0,  
Switch OFF  
Switch OFF  
Switch ON  
3.5  
5.5  
5
7
I
C
pF  
io(OFF)  
io(ON)  
f = 1 MHz,  
Outputs open,  
Y port  
V = 0,  
I
f = 1 MHz,  
Outputs open,  
C
I or Y port  
V = 0,  
I
10.5  
13  
8
pF  
V
CC  
V
CC  
V
CC  
= 3 V  
1.25 V V V  
,
I = −10 mA to −30 mA  
I
4
1
r
r
I
CC  
on  
on(flat)  
= 3 V  
= 3 V,  
V = 1.25 V and V  
I
,
I = −10 mA to −30 mA  
I
CC  
§
1.25 V V V  
,
I = −10 mA to −30 mA  
I
0.9  
2
r  
I
CC  
on  
V , V , I , and I refer to I/O pins. V refers to the control inputs.  
I
O
I
O
IN  
= 3.3 V (unless otherwise noted), T = 25°C.  
on  
§
All typical values are at V  
CC  
A
r
is the difference of r in a given channel at specified voltages.  
on(flat)  
r is the difference of r in a given device.  
on on  
switching characteristics over recommended operating free-air temperature range,  
V
= 3.3 V + 0.3 V, R = 200 , C = 10 pF (unless otherwise noted) (see Figures 5 and 6)  
CC  
L
L
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
MIN TYP  
MAX  
UNIT  
t
Y or I  
I or Y  
I or Y  
Y or I  
0.25  
ns  
ns  
ns  
ns  
I or Y  
E or S  
E or S  
I or Y  
pd  
t
t
t
, t  
0.5  
0.5  
7
5
PZH PZL  
, t  
PHZ PLZ  
#
0.1  
0.2  
sk(p)  
All typical values are at V  
= 3.3 V (unless otherwise noted), T = 25°C.  
A
CC  
The propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance when  
driven by an ideal voltage source (zero output impedance).  
Skew between opposite transitions of the same output |t |. This parameter is not production tested.  
#
− t  
PHL PLH  
dynamic characteristics over recommended operating free-air temperature range,  
= 3.3 V + 0.3 V (unless otherwise noted)  
V
CC  
PARAMETER  
TEST CONDITIONS  
f = 250 MHz, see Figure 7  
f = 250 MHz, see Figure 8  
MIN TYP  
MAX  
UNIT  
dB  
X
R
R
R
= 100 ,  
−26  
−28  
500  
TALK  
L
L
L
O
= 100 ,  
dB  
IRR  
BW  
= 100 , see Figure 6  
MHz  
All typical values are at V  
CC  
= 3.3 V (unless otherwise noted), T = 25°C.  
A
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄꢄ ꢅ  
ꢆꢇ ꢈ ꢉ ꢁꢊ ꢉꢀ ꢋ ꢌ ꢍꢋ ꢎꢏꢈꢐ ꢉꢑ ꢌ ꢉꢀ ꢋ ꢄ ꢅ ꢒ ꢄꢅ ꢅ ꢏꢈꢁ ꢓꢎꢀ ꢃ ꢈꢐ ꢁꢑ ꢌ ꢀꢔ ꢋ  
ꢉ ꢌꢕ ꢕ ꢓꢖ ꢓꢐ ꢀ ꢌ ꢈꢃ ꢗ ꢎꢔꢋ ꢈꢐꢐ ꢓ ꢃ ꢀ ꢘ ꢙ ꢎꢔꢋ ꢈꢐ ꢐꢓꢃ ꢚ ꢇꢃꢀ ꢌꢊ ꢃꢓ ꢛꢓꢖꢒ ꢉꢓꢚ ꢇꢃꢀ ꢌꢊ ꢃꢓ ꢛꢓꢖ  
SCDS176 − SEPTEMBER 2004  
OPERATING CHARACTERISTICS  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
0
Phase  
−10  
−20  
−30  
Gain  
J
Y
−40  
−50  
−60  
−70  
1
10  
100  
700  
Frequency (MHz)  
J
Phase at 627 MHz, −36 Degrees  
Gain −3 dB at 627 MHz  
Y
Figure 1. Gain/Phase vs Frequency  
20  
0
120  
100  
80  
60  
40  
20  
0
Phase  
J
Y
−20  
−40  
−60  
−80  
−100  
Gain  
1
10  
100  
700  
Frequency (MHz)  
J
Y
Phase at 250 MHz, 88.2 Degrees  
Gain −28.5 dB at 250 MHz  
Figure 2. OFF Isolation vs Frequency  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢄꢅ  
ꢆ ꢇꢈꢉ ꢁꢊ ꢉꢀ ꢋꢌ ꢍꢋ ꢎꢏꢈꢐꢉꢑ ꢌ ꢉꢀ ꢋ ꢄ ꢅ ꢒꢄ ꢅ ꢅ ꢏꢈꢁ ꢓꢎꢀ ꢃ ꢈꢐ ꢁ ꢑꢌ ꢀꢔ ꢋ  
ꢉꢌ  
ꢕꢓ  
ꢖꢓ  
ꢈꢃ  
ꢎꢔ  
ꢈꢐ  
ꢐꢓ  
ꢀ ꢘ  
ꢎꢔ  
ꢋꢈ  
ꢐꢐ  
ꢓꢃ  
SCDS176 − SEPTEMBER 2004  
OPERATING CHARACTERISTICS  
0
180  
160  
140  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
J
Y
120  
100  
80  
Phase  
Gain  
60  
40  
20  
0
1
10  
100  
700  
Frequency (MHz)  
J
Phase at 250 MHz, 137.92 Degrees  
Gain −26 dB at 250 MHz  
Y
Figure 3. Crosstalk vs Frequency  
5
4
3
2
1
0
20  
16  
12  
8
V
O
r
ON  
4
0
0
1
2
3
4
5
Input Voltage (V)  
Figure 4. Output Voltage/ON-State Resistance vs Input Voltage  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄꢄ ꢅ  
ꢆꢇ ꢈ ꢉ ꢁꢊ ꢉꢀ ꢋ ꢌ ꢍꢋ ꢎꢏꢈꢐ ꢉꢑ ꢌ ꢉꢀ ꢋ ꢄ ꢅ ꢒ ꢄꢅ ꢅ ꢏꢈꢁ ꢓꢎꢀ ꢃ ꢈꢐ ꢁꢑ ꢌ ꢀꢔ ꢋ  
ꢎꢔ  
ꢈꢐ  
ꢀ ꢘ  
ꢎꢔ  
ꢈꢐ  
ꢐꢓ  
ꢇꢃꢀ  
ꢌꢊ  
ꢛꢓ  
ꢖꢒ  
ꢉꢓ  
ꢇꢃꢀ  
SCDS176 − SEPTEMBER 2004  
PARAMETER MEASUREMENT INFORMATION  
FOR ENABLE AND DISABLE TIMES  
V
CC  
Input Generator  
V
IN  
50 Ω  
50 Ω  
V
G1  
TEST CIRCUIT  
DUT  
2 × V  
CC  
Open  
Input Generator  
50 Ω  
S1  
R
V
V
O
L
I
GND  
50 Ω  
V
G2  
C
R
L
L
(see Note A)  
S1  
V
I
V
C
R
V
TEST  
/t  
L
L
CC  
t
3.3 V 0.3 V  
3.3 V 0.3 V  
2 × V  
200 Ω  
200 Ω  
GND  
10 pF  
10 pF  
0.3 V  
0.3 V  
PLZ PZL  
CC  
t
/t  
GND  
V
PHZ PZH  
CC  
Output Control  
2.5 V  
(V  
IN  
)
1.25 V  
1.25 V  
Output  
0 V  
Waveform 1  
t
t
PLZ  
PZL  
S1 at 2 y V  
CC  
V
OH  
(see Note B)  
V
/2  
CC  
V
V
+0.3 V  
OL  
V
OL  
t
t
PZH  
PHZ  
Output  
Waveform 2  
S1 at GND  
V
OH  
−0.3 V  
OH  
V
CC  
/2  
V
OL  
(see Note B)  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
NOTES: A.  
C includes probe and jig capacitance.  
L
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.  
C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50 , t 2.5 ns, t 2.5 ns.  
O
r
f
D. The outputs are measured one at a time, with one transition per measurement.  
E.  
F.  
t
t
and t  
and t  
are the same as t  
.
dis  
PLZ  
PZL  
PHZ  
PZH  
are the same as t  
.
en  
Figure 5. Test Circuit and Voltage Waveforms  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢄꢅ  
ꢆ ꢇꢈꢉ ꢁꢊ ꢉꢀ ꢋꢌ ꢍꢋ ꢎꢏꢈꢐꢉꢑ ꢌ ꢉꢀ ꢋ ꢄ ꢅ ꢒꢄ ꢅ ꢅ ꢏꢈꢁ ꢓꢎꢀ ꢃ ꢈꢐ ꢁ ꢑꢌ ꢀꢔ ꢋ  
ꢉꢌ ꢕ ꢕꢓ ꢖꢓ ꢐꢀ ꢌ ꢈꢃ ꢗ ꢎꢔꢋ ꢈꢐꢐꢓ ꢃ ꢀ ꢘ ꢙ ꢎꢔꢋꢈ ꢐꢐꢓꢃ ꢚ ꢇꢃꢀ ꢌꢊ ꢃꢓ ꢛꢓꢖꢒ ꢉꢓꢚ ꢇꢃꢀꢌ ꢊ ꢃꢓ ꢛꢓ ꢖ  
SCDS176 − SEPTEMBER 2004  
PARAMETER MEASUREMENT INFORMATION  
FOR SKEW  
V
CC  
Input Generator  
V
IN  
50 Ω  
50 Ω  
V
G1  
TEST CIRCUIT  
DUT  
2 × V  
CC  
Open  
Input Generator  
50 Ω  
S1  
R
V
V
O
L
I
GND  
50 Ω  
V
G2  
C
R
L
L
(see Note A)  
V
IN  
(see Note B)  
S1  
GND  
C
R
V
CC  
TEST  
L
L
t
3.3 V 0.3 V  
200 Ω  
V
CC  
or GND  
10 pF  
sk(p)  
3.5 V  
2.5 V  
1.5 V  
Data Input  
t
t
PHL  
PLH  
V
OH  
0.5 V (V  
Data Output  
− V  
)
OH  
OL  
V
OL  
tsk(p) = |t  
− t  
PHL PLH  
|
VOLTAGE WAVEFORMS  
PULSE SKEW (t  
)
sk(p)  
NOTES: A.  
C includes probe and jig capacitance.  
L
B. Switch is ON during the measurement of t  
, i.e., voltage at E = 0 and S = V  
CC  
or GND  
sk(p)  
Figure 6. Test Circuit and Voltage Waveforms  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄꢄ ꢅ  
ꢆꢇ ꢈ ꢉ ꢁꢊ ꢉꢀ ꢋ ꢌ ꢍꢋ ꢎꢏꢈꢐ ꢉꢑ ꢌ ꢉꢀ ꢋ ꢄ ꢅ ꢒ ꢄꢅ ꢅ ꢏꢈꢁ ꢓꢎꢀ ꢃ ꢈꢐ ꢁꢑ ꢌ ꢀꢔ ꢋ  
ꢉ ꢌꢕ ꢕ ꢓꢖ ꢓꢐ ꢀ ꢌ ꢈꢃ ꢗ ꢎꢔꢋ ꢈꢐꢐ ꢓ ꢃ ꢀ ꢘ ꢙ ꢎꢔꢋ ꢈꢐ ꢐꢓꢃ ꢚ ꢇꢃꢀ ꢌꢊ ꢃꢓ ꢛꢓꢖꢒ ꢉꢓꢚ ꢇꢃꢀ ꢌꢊ ꢃꢓ ꢛꢓꢖ  
SCDS176 − SEPTEMBER 2004  
PARAMETER MEASUREMENT INFORMATION  
EXT TRIGGER  
BIAS  
Network Analyzer  
BIAS  
V
(HP8753ES)  
P1  
P2  
V
CC  
YA  
S
IA  
0
C
= 10 pF  
R = 100 Ω  
L
L
(see Note A)  
DUT  
V
V
S
E
E
NOTE A: C includes probe and jig capacitance.  
L
Figure 7. Test Circuit for Frequency Response (BW)  
Frequency response is measured at the output of the ON channel. For example, when V = 0, V = 0, and YA is the  
S
E
input, the output is measured at IA . All unused analog I/O ports are left open.  
0
HP8753ES setup  
Average = 4  
RBW = 3 kHz  
V
= 0.35 V  
BIAS  
ST = 2 s  
P1 = 0 dBm  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢄꢅ  
ꢆ ꢇꢈꢉ ꢁꢊ ꢉꢀ ꢋꢌ ꢍꢋ ꢎꢏꢈꢐꢉꢑ ꢌ ꢉꢀ ꢋ ꢄ ꢅ ꢒꢄ ꢅ ꢅ ꢏꢈꢁ ꢓꢎꢀ ꢃ ꢈꢐ ꢁ ꢑꢌ ꢀꢔ ꢋ  
ꢌ ꢕ ꢕꢓ ꢖꢓ ꢐꢀ ꢌ ꢈꢃ ꢗ ꢎꢔꢋ ꢈꢐꢐꢓ ꢃ ꢀ ꢘ ꢙ ꢎꢔꢋꢈ ꢐꢐꢓꢃ ꢚ ꢇꢃꢀ ꢌꢊ ꢃꢓ ꢛꢓꢖꢒ ꢉꢓꢚ ꢇꢃꢀꢌ ꢊ ꢃꢓ ꢛꢓ ꢖ  
SCDS176 − SEPTEMBER 2004  
PARAMETER MEASUREMENT INFORMATION  
EXT TRIGGER  
BIAS  
Network Analyzer  
(HP8753ES)  
V
BIAS  
P1  
P2  
V
CC  
YA  
S
IA  
0
R
= 100 Ω  
C
= 10 pF  
L
50 Ω  
(see Note B)  
L
(see Note A)  
V
V
S
DUT  
E
E
YB  
IB  
0
R
= 100 Ω  
C = 10 pF  
L
(see Note A)  
L
NOTES: A.  
C includes probe and jig capacitance.  
L
B. A 50-termination resistor is needed to match the loading of the network analyzer.  
Figure 8. Test Circuit for Crosstalk (X  
)
TALK  
Crosstalk is measured at the output of the nonadjacent ON channel. For example, when V = 0,  
S
V = 0, and YA is the input, the output is measured at IB . All unused analog input (Y) ports are connected to GND,  
E
0
and output (I) ports are connected to GND through 50-pulldown resistors.  
HP8753ES setup  
Average = 4  
RBW = 3 kHz  
V
= 0.35 V  
BIAS  
ST = 2 s  
P1 = 0 dBm  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄꢄ ꢅ  
ꢆꢇ ꢈ ꢉ ꢁꢊ ꢉꢀ ꢋ ꢌ ꢍꢋ ꢎꢏꢈꢐ ꢉꢑ ꢌ ꢉꢀ ꢋ ꢄ ꢅ ꢒ ꢄꢅ ꢅ ꢏꢈꢁ ꢓꢎꢀ ꢃ ꢈꢐ ꢁꢑ ꢌ ꢀꢔ ꢋ  
ꢎꢔ  
ꢈꢐ  
ꢀ ꢘ  
ꢎꢔ  
ꢈꢐ  
ꢐꢓ  
ꢇꢃꢀ  
ꢌꢊ  
ꢃꢓ  
ꢛꢓ  
ꢖꢒ  
ꢉꢓ  
ꢇꢃꢀ  
ꢃꢓ  
ꢛꢓ  
SCDS176 − SEPTEMBER 2004  
PARAMETER MEASUREMENT INFORMATION  
EXT TRIGGER  
BIAS  
Network Analyzer  
(HP8753ES)  
V
BIAS  
P1  
P2  
V
CC  
YA  
S
IA  
0
R
R
= 100 Ω  
= 100 Ω  
C = 10 pF  
L
L
(see Note A)  
DUT  
V
V
S
IA  
1
E
C
= 10 pF  
50 Ω  
(see Note B)  
L
L
(see Note A)  
E
NOTES: A.  
C includes probe and jig capacitance.  
L
B. A 50-termination resistor is needed to match the loading of the network analyzer.  
Figure 9. Test Circuit for OFF Isolation (O  
)
IRR  
OFF isolation is measured at the output of the OFF channel. For example, when V = V , V = 0, and YA is the input,  
S
CC  
E
the output is measured at IA . All unused analog input (Y) ports are left open, and output (I) ports are connected to  
0
GND through 50-pulldown resistors.  
HP8753ES setup  
Average = 4  
RBW = 3 kHz  
V
= 0.35 V  
BIAS  
ST = 2 s  
P1 = 0 dBm  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000  
DGV (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE  
24 PINS SHOWN  
0,23  
0,13  
M
0,07  
0,40  
24  
13  
0,16 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
0°ā8°  
0,75  
1
12  
0,50  
A
Seating Plane  
0,08  
0,15  
0,05  
1,20 MAX  
PINS **  
14  
16  
20  
24  
38  
48  
56  
DIM  
A MAX  
A MIN  
3,70  
3,50  
3,70  
3,50  
5,10  
4,90  
5,10  
4,90  
7,90  
7,70  
9,80  
9,60  
11,40  
11,20  
4073251/E 08/00  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.  
D. Falls within JEDEC: 24/48 Pins – MO-153  
14/16/20/56 Pins – MO-194  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

TS3L110RGYRG4

QUAD SPDT HIGH-BANDWIDTH 10/100 BASE-T LAN SWITCH DIFFERENTIAL 8-CHANNEL TO 4-CHANNEL MULTIPLEXER/DEMULTIPLEXER
TI

TS3L110_10

QUAD SPDT HIGH-BANDWIDTH 10/100 BASE-T LAN SWITCH DIFFERENTIAL 8-CHANNEL TO 4-CHANNEL MULTIPLEXER/DEMULTIPLEXER
TI

TS3L301

16 BIT TO 8 BIT SPDT GIGABIT LAN SWITCH WITH LOW AND FLAT ON STATE RESISTANCE
TI

TS3L301DGG

16-BIT TO 8-BIT SPDT GIGABIT LAN SWITCH WITH LOW AND FLAT ON-STATE RESISTANCE
TI

TS3L301DGGE4

16-BIT TO 8-BIT SPDT GIGABIT LAN SWITCH WITH LOW AND FLAT ON-STATE RESISTANCE
TI

TS3L301DGGG4

16-BIT TO 8-BIT SPDT GIGABIT LAN SWITCH WITH LOW AND FLAT ON-STATE RESISTANCE
TI

TS3L301DGGR

16 BIT TO 8 BIT SPDT GIGABIT LAN SWITCH WITH LOW AND FLAT ON STATE RESISTANCE
TI

TS3L301DGGRE4

16-BIT TO 8-BIT SPDT GIGABIT LAN SWITCH WITH LOW AND FLAT ON-STATE RESISTANCE
TI

TS3L301DGGRG4

16-BIT TO 8-BIT SPDT GIGABIT LAN SWITCH WITH LOW AND FLAT ON-STATE RESISTANCE
TI

TS3L301DGVR

16 BIT TO 8 BIT SPDT GIGABIT LAN SWITCH WITH LOW AND FLAT ON STATE RESISTANCE
TI

TS3L301DGVRE4

16-BIT TO 8-BIT SPDT GIGABIT LAN SWITCH WITH LOW AND FLAT ON-STATE RESISTANCE
TI

TS3L301DGVRG4

16-BIT TO 8-BIT SPDT GIGABIT LAN SWITCH WITH LOW AND FLAT ON-STATE RESISTANCE
TI