TSB12LV21APGF [TI]

IEEE 1394-1995 BUS TO PCI BUS INTERFACE; IEEE1394- 1995总线到PCI总线接口
TSB12LV21APGF
型号: TSB12LV21APGF
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

IEEE 1394-1995 BUS TO PCI BUS INTERFACE
IEEE1394- 1995总线到PCI总线接口

微控制器和处理器 串行IO控制器 通信控制器 外围集成电路 数据传输 PC 时钟
文件: 总18页 (文件大小:259K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSB12LV21A  
(PCILynx) IEEE 1394-1995 BUS TO PCI BUS INTERFACE  
SLLS273 – APRIL 1997  
Supports Provisions of IEEE 1394-1995  
Provides PCI Slave Function for Read/Write  
Access of Internal Registers  
(1394) Standard for High-Performance  
Serial Bus  
Supports the Plug-and-Play (PnP)  
Specification  
Performs the Function of a 1394 Cycle  
Master  
Provides an 8-/16-bit Zoom Video (ZV) Port  
for the Transferring of Video Data Directly  
to an External Motion Video Memory Area  
Supports 1394 Transfer Rates of 100, 200  
and 400 Mbit/s  
Provides Three Sizes of Programmable  
FIFOs  
Operates from a 3.3-V Power Supply While  
Maintaining 5-V Tolerant Inputs  
Provides PCI Bus Master Function for  
Supporting DMA Operations  
High-Performance 176-Pin PQFP (PGF)  
Package  
Compliant With PCI Specification 2.1  
description  
The TSB12LV21A (PCILynx) provides a high-performance IEEE 1394-1995 interface with the capability to  
transfer data between the 1394 phy-link interface, the PCI bus interface, and external devices connected to the  
local bus interface. The 1394 phy-link interface provides the connection to the 1394 physical layer device and  
is supported by the on-board link layer controller (LLC). The LLC provides the control for transmitting and  
receiving 1394 packet data between the FIFO and phy-link interface at rates of 100 Mbit/s, 200 Mbit/s, and 400  
Mbit/s. The link layer also provides the capability to receive status from the physical layer device and to access  
the physical layer control and status registers by the application software.  
An internal 1K-byte memory is provided that can be configured as multiple variable-size FIFOs and eliminates  
the need for external FIFOs. Separate FIFOs can be user configured to support 1394 receive, asynchronous  
transmit, and isochronous transmit transfer operations.  
The PCI interface supports 32-bit burst transfers up to 33 MHz and is capable of operating as both master and  
target devices. Configuration registers can be loaded from an external serial EEPROM, allowing board and  
system designers to assign their own unique identification codes. An autoboot mode allows data-moving  
systems (such as docking stations) to be designed to operate on the PCI bus without the need for a host CPU.  
The DMA controller uses packet control list (PCL) data structures to control the transfer of data and allow the  
DMA to operate without host CPU intervention. These PCLs can reside in PCI memory or in memory that is  
connected to the local bus port. The PCLs implement an instruction set that allows linking, conditional  
branching, 1394 data transfer control, auxiliary support commands, and status reporting. Five DMA channels  
are provided to accommodate programmable data types. PCLs can be chained together to form a channel  
control program that can be developed to support each DMA channel. Data can be stored in either big endian  
or little endian format eliminating the need for the host CPU to perform byte swapping. Data can be transferred  
to either 4-byte aligned locations to provide the highest performance or to nonaligned locations to provide the  
best memory use.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
This serial bus implements technology covered by one or more patents of Apple Computer, Incorporated and SGS Thomson, Limited.  
Copyright 1997, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21A  
(PCILynx) IEEE 1394-1995 BUS TO PCI BUS INTERFACE  
SLLS273 – APRIL 1997  
description (continued)  
The RAM, ROM, AUX, ZV, and general purpose I/O (GPIO) ports collectively implement the local bus interface.  
These ports are mapped into the PCI address can be accessed either through the PCI bus or internal DMA  
transactions. Internal transactions do not appear on the external PCI bus, thereby conserving PCI bandwidth.  
DMA packet control lists or other data that may be stored in external RAM or ROM attached to the local bus  
interface. This further reduces PCI use and generally improves performance. The ZV local bus port is designed  
to transfer data from 1394 video devices to an external device connected to the PCILynx ZV port. This interface  
provides a method of receiving 1394 digital camera packets directly to a ZV-compliant device attached to the  
local bus interface.  
Built-in test registers, a dedicated test output terminal, and four GPIO terminals allow observation of internal  
states and provides a convenient software debug capability. Programmable interrupts are available to inform  
driver software of important events such as 1394 bus resets and DMA-to-PCL transfer completion.  
The 3.3-V internal operation provides reduced power consumption while maintaining compatibility with 5-V  
signaling environments. The PCI interface is compatible with both 3-V and 5-V PCI systems.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21A  
(PCILynx) IEEE 1394-1995 BUS TO PCI BUS INTERFACE  
SLLS273 – APRIL 1997  
PGF PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
8
3.3V V  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
zv_data_valid  
zv_hsync  
GND  
CC  
NC  
pci_ad25  
pci_ad24  
pci_cbez3  
GND  
zv_ext_clk  
3.3V V  
CC  
zv_vsync  
zv_pix_clk  
gpio_data0  
gpio_data1  
gpio_data2  
gpio_data3  
GND  
pci_idselz  
3.3V V  
CC  
9
pci_ad23  
pci_ad22  
pci_ad21  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
5V V  
pci_ad20  
GND  
CC  
120  
119  
NC  
aux_adr0  
aux_adr1  
aux_adr2  
pci_ad19  
pci_ad18  
pci_ad17  
pci_ad16  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
3.3V V  
aux_adr3  
GND  
CC  
3.3V V  
pci_cbez2  
GND  
CC  
aux_adr4  
aux_adr5  
aux_adr6  
aux_adr7  
pci_framez  
pci_irdyz  
pci_trdyz  
pci_devselz  
5V V  
aux_adr8  
CC  
3.3V V  
pci_stopz  
GND  
3.3V V  
CC  
CC  
aux_adr9  
aux_adr10  
aux_adr11  
aux_adr12  
NC  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
pci_perrz  
pci_serrz  
pci_par  
102  
101  
100  
99  
98  
97  
96  
95  
94  
GND  
aux_adr13  
3.3V V  
pci_cbez1  
GND  
3.3V V  
CC  
CC  
aux_adr14  
aux_adr15  
aux_data0  
aux_data1  
GND  
pci_ad15  
pci_ad14  
pci_ad13  
pci_ad12  
aux_data2  
40  
41  
42  
43  
93  
92  
91  
90  
5V V  
3.3V V  
CC  
pci_ad11  
3.3V V  
CC  
aux_data3  
aux_data4  
aux_data5  
CC  
pci_ad10  
pci_ad9  
89 GND  
44  
NC – No internal connection  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21A  
(PCILynx) IEEE 1394-1995 BUS TO PCI BUS INTERFACE  
SLLS273 – APRIL 1997  
Terminal Functions  
Terminal  
I/O  
Description  
Name  
3.3V V  
No.  
1,8,19,26,33,42,49  
56,70,75,86,93,100  
107,116,128,136,138,  
145,157,165,172  
I
3.3-V power input  
CC  
5V V  
12,40,60,63  
84,109,135,162  
I
5-V tolerant power input. When interfacing with a 3.3-V parts, these termi-  
nals should be connected to 3.3-V power.  
CC  
autoboot  
159  
I
Autoboot to select autoboot mode  
Auxiliary port address lines  
aux_adr15–0  
98,99,101,103–106  
108,110–113,115  
117–119  
O
aux_clk  
64  
69  
O
O
Auxiliary port clock out (output at frequency of PCI clock)  
Auxiliary port chip select  
aux_csz  
aux_data15–0  
76–78,80–83,85,87  
88,90–92,94,96,97  
I/O Auxiliary port bidirectional data bus to external logic  
aux_intz  
aux_oez  
aux_rdy  
aux_rstz  
aux_wez1–0  
GND  
61  
I
O
I
Auxiliary port interrupt  
74  
Auxiliary port output enable  
Auxiliary port ready indication (from external logic)  
Auxiliary port reset out  
62  
66  
O
O
I
71,73  
Auxiliary port write strobes (to external logic)  
Ground  
6,14,21,28,35,45  
51,65,72,79,89,95  
102,114,121,130,141  
150,155,158,160,168  
175  
gpio_data3–0  
link_cyclein  
link_cycleout  
N/C  
122–125  
137  
I/O Auxiliary port general purpose programmable I/O signals  
I
Optional external 8-kHz clock  
Cycle timer 8-kHz cycle clock out  
Not connected  
139  
O
2,29,46,120  
pci_ad31–0  
169–171,173,174,176 I/O PCI multiplexed address/data bus signals  
3,4,9–11,13,15–18  
36–39,41,43,44,47,50  
52–55,57–59  
pci_cbez3–0  
pci_clk  
5,20,34,48  
I/O PCI multiplexed command/byte enable signals  
PCI system clock  
161  
25  
I
pci_devselz  
pci_framez  
I/O PCI device select  
I/O PCI frame signal  
22  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21A  
(PCILynx) IEEE 1394-1995 BUS TO PCI BUS INTERFACE  
SLLS273 – APRIL 1997  
Terminal Functions (continued)  
Terminal  
I/O  
Description  
Name  
pci_gntz  
No.  
164  
7
I
PCI bus grant signal (from PCI bus arbiter)  
pci_idselz  
pci_intaz  
I/O PCI initialization device select  
OD PCI system interrupt A. This is an open drain signal.  
I/O PCI initiator-ready signal  
166  
23  
pci_irdyz  
pci_par  
32  
I/O PCI parity signal  
pci_perrz  
pci_reqz  
30  
I/O PCI data-parity-error signal  
167  
163  
31  
O
I
PCI master bus request (to PCI bus arbiter)  
PCI system reset  
pci_resetz  
pci_serrz  
pci_stopz  
pci_trdyz  
OD PCI system-error signal. This is an open drain signal.  
I/O PCI stop signal  
27  
24  
I/O PCI target-ready signal  
phy_clk50  
phy_ctl0 –1  
phy_data0–7  
phy_lreq  
156  
I
50-MHz system clock (from PHY chip)  
142,143  
I/O Phy-link bidirectional control lines  
I/O Phy-link bidirectional data lines  
146–149,151–154  
144  
67  
O
O
O
Phy-link request signal  
External RAM chip select  
External ROM chip select  
ram_csz  
rom_csz  
68  
seeprom_clk  
seeprom_data  
test_out  
133  
134  
140  
132  
129  
131  
126  
127  
I/O External serial EEPROM data clock  
I/O External serial EEPROM read/write data line  
O
O
I
Test MUX out  
zv_data_valid  
zv_ext_clk  
zv_hsync  
zv_pix_clk  
zv_vsync  
Zoom port data-valid signal  
Zoom port external clock input  
Zoom port horizontal-sync output  
Zoom port pixel clock  
O
O
O
Zoom port vertical-sync output  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21A  
(PCILynx) IEEE 1394-1995 BUS TO PCI BUS INTERFACE  
SLLS273 – APRIL 1997  
system block diagram  
1394 Peripheral Devices  
Personal Computer  
1394  
CD ROM  
Serial EEPROM  
1394  
Laser  
Printer  
PCILynx-to-Phy  
1394  
3 Port  
Interface  
1394  
Desktop  
Camera  
PCILynx  
(TSB12LV21A)  
Physical  
Layer  
Interface  
1394  
Digital  
VCR  
AUX Port Local Bus  
DMA  
User  
Defined  
Function  
(AUX)  
Flash  
PROM  
(RPL ROM)  
ZV  
Port  
(Video)  
Channel  
Control  
(SRAM)  
1394  
Video  
Cable  
Set-Top  
Box  
Host Local Bus  
PCI Host  
Bridge  
Host  
CPU  
Local  
Memory  
PCI  
Agent  
PCI  
Agent  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21A  
(PCILynx) IEEE 1394-1995 BUS TO PCI BUS INTERFACE  
SLLS273 – APRIL 1997  
functional block diagram  
seeprom_data  
aux_clk  
Serial EPROM  
Interface  
aux_rstz  
seeprom_clk  
32  
aux_intz  
4
pci_ad31 – pci_ad0  
/
4
gpio_data3 – gpio_data0  
/
pci_cbez3 – pci_cbez0  
/
16  
PCI Master  
PCI Slave  
aux_adr15 – aux_adr0  
pci_par  
pci_framez  
pci_irdyz  
pci_trdyz  
pci_devselz  
pci_stopz  
pci_idselz  
pci_perrz  
pci_serrz  
pci_reqz  
/
Local Bus  
Interface  
Logic  
16  
aux_data15 – aux_data0  
aux_oez  
/
RAM  
ROM  
AUX  
ZV  
2
aux_wez1 – aux_wez0  
aux_rdy  
/
3
zv_hsync, zv_vsync, zv_pix_clk  
zv_data_valid  
/
3
PCI Configuration Control  
and Status Registers  
aux_csz, rom_csz, ram_csz  
zv_ext_clk  
/
pci_gntz  
pci_clk  
pci_resetz  
pci_intaz  
PCI Bus Logic  
DMA Control  
and  
DMA Engine  
Status Registers  
DMA Logic  
General  
Receiver  
FIFO  
Asynchronous  
Transmit  
FIFO  
Isosynchronous  
Pointer  
Address  
Mapping Logic  
FIFO Control  
and Status  
Registers  
Transmit  
FIFO  
FIFO Logic  
2
1394 Link Layer Control (LLC) Logic  
phy_ctl0 – phy_ctl1  
/
8
1394 Packet  
Transmit  
Timer  
Cycle  
phy_data0 – phy_data7  
/
1394 LLC  
Control and  
Status Reg-  
isters  
Phy-Link  
Interface  
Logic  
Control Logic  
phy_clk50  
phy_lreq  
link_cyclein  
link_cycleout  
CRC Logic  
Parallel-to-Serial  
Serial-to-Parallel  
1394 Packet  
Cycle  
Receive  
Monitor  
Control Logic  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21A  
(PCILynx) IEEE 1394-1995 BUS TO PCI BUS INTERFACE  
SLLS273 – APRIL 1997  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
Supply voltage range, V  
(V  
= 3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 4.0 V  
= 5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 5.5 V  
CC(3V) CC  
(V  
CC(5V) CC  
Input voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
+0.5 V  
+ 0.5 V  
I
CC(5v)  
CC(5v)  
Output voltage range at any output, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
O
Input clamp current, I (V < 0 or V > V 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 mA  
IK  
I
I
CC  
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
recommended operating conditions  
MIN  
3
NOM  
3.3  
5
MAX  
3.6  
UNIT  
V
V
= 3 V  
= 5 V  
CC  
Supply voltage, V  
V
CC  
4.5  
0
5.5  
CC  
Input voltage, V  
V
V
V
I
CC(5v)  
Output voltage, V  
0
V
O
CC(3V)  
0.475 ×  
CC(3V)  
2
PCI terminals  
V
High-level input voltage,  
CC(5V)  
CC(5V)  
V
V
V
IH  
All other terminals  
PCI terminals  
V
0.325 V  
Low-level input voltage,  
CC(3V)  
0.8  
V
V
IL  
All other terminals  
PCI terminals  
6
6
Rise time, input,t  
ns  
r
All other terminals  
PCI terminals  
6
Fall time, input,t  
ns  
f
All other terminals  
6
Junction temperature, T  
0
115  
°C  
J
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21A  
(PCILynx) IEEE 1394-1995 BUS TO PCI BUS INTERFACE  
SLLS273 – APRIL 1997  
PCI interface switching characteristics, see Figure 1  
TEST  
CONDITION  
PARAMETER  
MEASURED  
40% to 40%  
40% to 40%  
MIN  
7
TYP  
MAX  
UNIT  
ns  
t
t
Setup time, pci_xx low or high to pci_clk high  
su1  
Hold time, pci_clk high to pci_xx low or high , pci_gntz low or  
high  
0
ns  
h1  
t
t
t
Delay time, pci_clk high to pci_xx low or high  
40% to 40%  
40% to 40%  
40% to 40%  
2
10  
2
11  
13  
ns  
ns  
ns  
d1  
Setup time, pci_gntz low or high to pci_clk high  
Delay time, pci_clk high to pci_intaz low or high  
su2  
d2  
In this case, pci_xx refers to the following signals; pci_ad31–0, pci_cbez3–0, pci_par, pci_framez, pci_irdyz, pci_trdyz, pci_devselz, pci_stopz,  
pci_idselz, pci_perrz, pci_serrz, pci_reqz.  
phy-link interface switching characteristics, see Figure 2  
TEST  
CONDITION  
PARAMETER  
MEASURED  
MIN  
TYP  
MAX  
UNIT  
t
t
t
t
t
Setup time, phy_xx low or high to phy_clk high  
1.3 V to 1.3 V  
1.3 V to 1.3 V  
1.3 V to 1.3 V  
1.3 V to 1.3 V  
1.3 V to 1.3 V  
4
1
3
5
3
ns  
ns  
ns  
ns  
ns  
su3  
Hold time, phy_clk high to phy_xx, link_cyclein low or high  
h2  
Delay time, phy_clk high to phy_xx, phy_lreq low or high  
Setup time, phy_clk high to link_cyclein low or high  
Delay time, phy_clk high to lynk_cycleout low or high  
11  
13  
d3  
su4  
d4  
In this case, phy_xx refers to the following bidirectional signals; phy_ctl1–0, phy_data7–0.  
local bus switching characteristics, see Figure 3  
TEST  
CONDITION  
PARAMETER  
MEASURED  
MIN  
TYP  
MAX  
UNIT  
Delay time, aux_clk high to aux_adr, aux_data15–0 (write),  
aux_oez valid  
t
t
1.3 V to 1.3 V  
1.3 V to 1.3 V  
0
0
15  
20  
ns  
ns  
d5  
Delay time, aux_clk high to rom_csz, ram_csz, aux_csz valid  
d6  
Delay time, aux_wez0, aux_wez1 high (deasserted) to  
aux_adr, aux_data15–0 (write), aux_oez, rom_csz, ram_csz,  
aux_csz valid  
t
t
1.3 V to 1.3 V  
1.3 V to 1.3 V  
0.5  
0
ns  
ns  
d7  
Delay time, aux_clk low to aux_wez0, aux_wez1 low  
(asserted)  
10  
d8  
Delay time, aux_clk high to aux_wez0, aux_wez1 high  
(deasserted)  
t
t
1.3 V to 1.3 V  
1.3 V to 1.3 V  
0
2
10  
15  
ns  
ns  
d9  
Delay time, aux_clk high to gpio_data3–0 valid  
d10  
Setup time, aux_adr, adr_data15–0 (write), auxoez, rom_csz,  
ram_csz, aux_csz valid before aux_wez0, aux_wez1 low  
(asserted)  
t
1.3 V to 1.3 V  
5
ns  
su5  
Setup time, aux_data15–0 (read), aux_rdyz, gpio_data3–0  
valid before aux_clk high  
t
t
1.3 V to 1.3 V  
1.3 V to 1.3 V  
10  
0
ns  
ns  
su6  
Hold time, aux_data15–0 (read), auxrdyz, gpio_data3–1  
invalid after aux_clk high  
h3  
These signals are asserted asynchronously when a ZOOM port transfer imediately preceeds the local bus transfer. In all cases, the setup time  
to aux_wez and the number of waitstates remain the same.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21A  
(PCILynx) IEEE 1394-1995 BUS TO PCI BUS INTERFACE  
SLLS273 – APRIL 1997  
zoom video port switching characteristics, source clock = 30 ns with a 50% duty cycle  
TEST  
CONDITION  
PARAMETER  
MEASURED  
MIN  
12  
TYP  
MAX  
UNIT  
ns  
Setup time, zv_hsync low, zv_vsync, zv_data_valid high before  
zv_pix_clk high  
t
t
1.3 V to 1.3 V See Figure 4  
1.3 V to 1.3 V See Figure 4  
su7  
Hold time, zv_hsync high, zv_vsync, zv_data_valid low after  
zv_pix_clk low  
14  
ns  
h4  
t
t
Setup time, aux_data7–0 valid before zv_pix_clk high or low  
Hold time, aux_data7–0 valid after zv_pix_clk high or low  
1.3 V to 1.3 V See Figure 4  
1.3 V to 1.3 V See Figure 4  
10  
14  
ns  
ns  
su8  
h5  
Delay time, zv_hsync low, zv_vsync, zv_data_valid high after  
zv_pix_clk low  
t
1.3 V to 1.3 V See Figure 5  
–1  
3
5
ns  
d11  
t
t
t
t
Delay time, aux_data7–0 invalid after zv_pix_clk low  
Setup time, zv_hsync low before zv_pix_clk high  
Hold time, zv_hsync high after zv_pix_clk high  
Setup time, zv_vsync high before zv_pix_clk high  
1.3 V to 1.3 V See Figure 5  
1.3 V to 1.3 V See Figure 6  
1.3 V to 1.3 V See Figure 6  
1.3 V to 1.3 V See Figure 6  
–1  
25  
14  
10  
ns  
ns  
ns  
ns  
d12  
su9  
h6  
su10  
Setup time, aux_data7–0 valid, zv_data_valid high before  
zv_pix_clk high  
t
1.3 V to 1.3 V See Figure 6  
1.3 V to 1.3 V See Figure 6  
25  
14  
ns  
ns  
su11  
h7  
Hold time, aux_data7–0 valid, zv_data-valid low after  
zv_pix_clk high  
t
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21A  
(PCILynx) IEEE 1394-1995 BUS TO PCI BUS INTERFACE  
SLLS273 – APRIL 1997  
PARAMETER MEASUREMENT INFORMATION  
pci_clk  
t
d1  
t
su1  
t
h1  
pci_xx  
(Bidirectional  
(see Note A)  
t
d2  
pci_intaz  
t
su2  
t
h1  
pci_gntz  
NOTE A: In this case, pci_xx refers to the following bidirectional signals; pci_ad31–0, pci_cbez3–0, pci_par, pci_framez,  
pci_irdyz, pci_trdyz, pci_devselz, pci_stopz, pci_idselz, pci_perrz, pci_serrz, pci_reqz.  
Figure 1. PCI Interface Timing Waveforms  
phy_clk  
t
d3  
t
t
h2  
su3  
phy_xx  
(Bidirectional  
(see Note A)  
t
d3  
phy_lreq  
t
d4  
link_cycleout  
t
t
h2  
su4  
link_cyclein  
NOTE A: In this case, phy_xx refers to the following bidirectional signals; phy_ctl1–0, phy_data7–0.  
Figure 2. Phy-Link Interface Timing Waveforms  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21A  
(PCILynx) IEEE 1394-1995 BUS TO PCI BUS INTERFACE  
SLLS273 – APRIL 1997  
PARAMETER MEASUREMENT INFORMATION  
OUTPUTS  
aux_clk  
t
d5  
aux_adr15–0  
aux_data15–0 (write)  
aux_oez  
DATA VALID  
DATA VALID  
(see Note A)  
t
d6  
t
d7  
rom_csz  
ram_csz  
aux_csz  
t
su5  
t
d8  
t
d9  
t
d9  
aux_wez0  
aux_wez1  
t
d10  
Wait States = 0  
Wait States > 0  
gpio_data7–0  
INPUTS  
DATA VALID  
t
su6  
t
h3  
DATA  
VALID  
aux_data  
aux_rdyz  
DATA  
VALID  
DATA  
VALID  
gpio_data7–0  
NOTE A: These signals are asserted asynchronlusly when a ZOOM port transfer immediately preceeds the local bus transfer. In all cases,  
the setup time to aux_wez and the number of waitstates reamins valid.  
Figure 3. Local Bus Timing Waveforms  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21A  
(PCILynx) IEEE 1394-1995 BUS TO PCI BUS INTERFACE  
SLLS273 – APRIL 1997  
PARAMETER MEASUREMENT INFORMATION  
15 ns  
15 ns  
Internal  
Clock Source  
internal  
zv_pix_clk  
zv_pix_clk  
(gated, 8 bit)  
t
su7  
t
h4  
zv_hsync  
zv_vsync  
zv_data_valid  
t
su8  
t
h5  
t
t
h5  
su8  
aux_data15–0  
(Write)  
8-BIT DATA VALID  
8-BIT DATA VALID  
NOTES: A. The data is in 8-bit mode and zv_pix_clk is in divide-by-2 mode.  
B. The timing for these waveforms is for write access to zoom address space.  
C. The aux_datax signal meets timing while the zv_data_valid signal is asserted. The aux_datax signal can be asynchronous to  
zv_pix_clk at other times.  
D. The polarity of zv_pix_clk depends on the setting of the invert_zv_clk register bit. The polarity shown in this figure is with  
invert_zv_clk = 0.  
E. The timing of these waveforms is with a 30-ns source clock and a 50/50 duty cycle.  
Figure 4. Zoom Video IF Timing Waveforms (8 Bit, Divide-By-2 Mode)  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21A  
(PCILynx) IEEE 1394-1995 BUS TO PCI BUS INTERFACE  
SLLS273 – APRIL 1997  
PARAMETER MEASUREMENT INFORMATION  
Internal  
zv_pix_clk  
zv_pix_clk  
(gated, 16 bit)  
t
t
d11  
d11  
zv_hsync  
zv_vsync  
zv_data_valid  
t
t
d12  
d12  
aux_data15–0  
(16 bit only)  
16-BIT DATA VALID  
NOTES: A. The data is in 16-bit mode and zv_pix_clk is in divide-by-1 mode.  
B. The timing for these waveforms is for write access to zoom address space.  
C. The aux_datax signal meets timing while the zv_data_valid signal is asserted. The aux_datax signal can be asynchronous to  
zv_pix_clk at other times.  
D. The polarity of zv_pix_clk depends on the setting of the invert_zv_clk register bit. The polarity shown in this figure is with  
invert_zv_clk = 0.  
Figure 5. Zoom Video IF Timing Waveforms (16 Bit, Divide-By-1 Mode)  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21A  
(PCILynx) IEEE 1394-1995 BUS TO PCI BUS INTERFACE  
SLLS273 – APRIL 1997  
PARAMETER MEASUREMENT INFORMATION  
15 ns  
15 ns  
Internal  
Clock Source  
Internal  
zv_pix_clk  
(see Note A)  
zv_pix_clk  
(gated, 16 bit)  
t
t
h6  
su9  
zv_hsync  
t
su10  
zv_vsync  
zv_data_valid  
t
t
h7  
su9  
aux_data15–0  
(Write)  
16-BIT DATA VALID  
NOTES: A. The data is in 16-bit mode and zv_pix_clk is in divide-by-2 mode.  
B. The timing for these waveforms is for write access to zoom address space.  
C. The aux_datax signal meets timing while the zv_data_valid signal is asserted. The aux_datax signal can be asynchronous to  
zv_pix_clk at other times.  
D. The polarity of zv_pix_clk depends on the setting of the invert_zv_clk terminal. The polarity shown in this figure is with  
invert_zv_clk = 0.  
E. The timing of these waveforms is with a 30-ns source clock and a 50/50 duty cycle.  
Figure 6. Zoom Video IF Timing Waveforms (16 Bit, Divide-By-2 Mode)  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21A  
(PCILynx) IEEE 1394-1995 BUS TO PCI BUS INTERFACE  
SLLS273 – APRIL 1997  
APPLICATION INFORMATION  
power supply sequencing  
Turning power supplies on and off within a mixed 5-V/3.3-V system is an important consideration. A few basic  
rulesneedtobeobservedtoavoiddamagingPCILynxdevices. Checkwiththemanufacturersofallcomponents  
used in the 3.3-V to 5-V interface to ensure that no unique device characteristics exist that would lead to more  
restrictive rules.  
When the 3.3-V supply is turned on before turning on the 5-V supply. PCILynx output buffers in a logic 1  
state can supply large amounts of current through their clamp diodes to the 5-V supply terminals (5V V ).  
CC  
This can lead to excessive power dissipation and violation of current density limits. However, if the 5-V  
supply is turned on before the 3.3-V supply, the maximum drain-to-gate voltage of the n-channel transistors  
in the 5-V tolerant buffers exceeds the recommended value and the effects of channel-hot carries can be  
accelerated.  
When turning on the power supply, all 3.3-V and 5-V supplies should start ramping up from 0 V and reach  
95% of their end-point values within a 25-ms time window. All bus contention between the PCILynx and  
external devices is eliminated by the end of the 25-ms time window. The preferred order of supply ramping  
is to ramp the 3.3-V supply followed by the 5-V supply. This order is not mandatory, but it allows a larger  
cumulative number of power-supply events than the reverse order.  
When turning off the power supply, all 3.3-V and 5-V supplies should start ramping down from steady state  
values and reach 5% of these values within a 25-ms window. All bus contention between the PCILynx and  
external devices is eliminated by the end of the 25-ms time window. The preferred order of supply ramping  
is to ramp down the 5-V supply followed by the 3.3-V supply. This order is not mandatory, but it allows a  
larger cumulative number of power-supply off events than the reverse order.  
A cumulative total of 250 seconds of power supply turn-on and turn-off events is allowed during the  
operating lifetime of the PCILynx under worst-case conditions. Worst-case conditions are where the 5-V  
supply is ramped up before the 3.3-V supply and the 3.3-V supply is ramped down before the 5-V supply.  
If the maximum time window of the 25 ms is used, a total of 10,000 power supply on or off events can occur  
as long as the 25-ms time window is observed.  
An additional precaution must be observed when the PCILynx is connected to a 5-V IEEE 1394  
physical-layer device that is powered from the 1394 cable. In this case, it is possible for the physical-layer  
device to have power while the PCILynx does not. It is essential that the physical-layer device must not  
supply a high signal on any terminal that connects to the PCILynx while the PCILynx power is off. This is  
normally achieved through the use of the link-power status terminal on the physical-layer device.  
If any of these precautions and guidelines are not followed, the PCILynx device can experience possible failures  
related to overheating, accumulation of channel-hot carriers, and/or metal migration due to excessive current  
density.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21A  
(PCILynx) IEEE 1394-1995 BUS TO PCI BUS INTERFACE  
SLLS273 – APRIL 1997  
MECHANICAL INFORMATION  
PLASTIC QUAD FLATPACK  
PGF (S-PQFP-G176)  
132  
89  
133  
88  
0,27  
M
0,08  
0,17  
0,50  
0,13 NOM  
176  
45  
1
44  
Gage Plane  
21,50 SQ  
24,20  
SQ  
23,80  
26,20  
25,80  
0,25  
0,05 MIN  
0°7°  
SQ  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040134/B 03/95  
NOTES: F. All linear dimensions are in millimeters.  
G. This drawing is subject to change without notice.  
H. Falls within JEDEC MO-136  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor  
product or service without notice, and advises its customers to obtain the latest version of relevant information  
to verify, before placing orders, that the information being relied on is current and complete.  
TI warrants performance of its semiconductor products and related software to the specifications applicable at  
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are  
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each  
device is not necessarily performed, except those mandated by government requirements.  
Certain applications using semiconductor products may involve potential risks of death, personal injury, or  
severe property or environmental damage (“Critical Applications”).  
TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED  
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS.  
Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI  
products in such applications requires the written approval of an appropriate TI officer. Questions concerning  
potential risk applications should be directed to TI through a local SC sales office.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards should be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance, customer product design, software performance, or  
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either  
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property  
right of TI covering or relating to any combination, machine, or process in which such semiconductor products  
or services might be or are used.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TSB12LV21B

IEEE 1394 LINK LAYER CONTROLLER
TI

TSB12LV21B-EP

(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER
TI

TSB12LV21BMPGF

暂无描述
TI

TSB12LV21BMPGFEP

(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER
TI

TSB12LV21BPGF

IEEE 1394 LINK LAYER CONTROLLER
TI

TSB12LV21BPGFG4

PCILynx - PCI to 1394 3.3V Link Layer with 32-bit PCI I/F, 4K FIFOs 176-LQFP
TI

TSB12LV21PGF

PCILynx - 1394 to PCI Link Layer Controller 176-LQFP
TI

TSB12LV22

OHCI-Lynx PCI-BASED IEEE 1394 HOST CONTROLLER
TI

TSB12LV22PZP

OHCI-Lynx PCI-BASED IEEE 1394 HOST CONTROLLER
TI

TSB12LV23

TSB12LV23 OHCI-Lynx PCI-Based IEEE 1394 Host Controller
TI

TSB12LV23A

IC,BUS CONTROLLER,CMOS,QFP,100PIN
TI

TSB12LV23APZT

IEEE 1394-1995, 1394a Serial Link Layer Controller 100-TQFP 0 to 70
TI