TSB12LV21 [TI]

IEEE 1394 LINK LAYER CONTROLLER; IEEE 1394链路层控制器
TSB12LV21
型号: TSB12LV21
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

IEEE 1394 LINK LAYER CONTROLLER
IEEE 1394链路层控制器

控制器
文件: 总22页 (文件大小:300K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSB12LV21B  
(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER  
SLLS306– JULY 1998  
D
D
D
IEEE Standard for a 1394-1995 Compliant  
IEEE Standard for a 1212-1991 Compliant  
D
D
D
Provides 4 General-Purpose Input/Outputs  
Supports Plug-and-Play (PnP) Specification  
Supports IEEE 1394-1995 Link Layer  
Control  
Generates 32-bit CRC for Transmission of  
1394 Packets  
D
D
D
D
D
PCI Local Bus Specification Rev. 2.1  
Compliant  
D
D
D
D
Performs 32-bit CRC Checking on  
Reception of 1394 Packets  
Supports IEEE 1394 Transfer Rates of 100,  
200, and 400 Mb per second  
Provides PCI Bus Master Function for  
Supporting DMA Operations  
3.3-V Core Logic while Maintaining 5-V  
Tolerant Inputs  
Provides PCI Slave Function for Read/Write  
Access of Internal Registers  
Performs the Function of 1394 Cycle  
Master  
Supports Distributed DMA Transfers  
Between 1394 and Local Bus RAM, ROM,  
AUX, or Zoomed Video  
Provides 4K Bytes of Configurable FIFO  
RAM  
D
D
Advanced Submicron, Low-Power CMOS  
Technology  
D
Provides 5 Scatter-Gather DMA Channels  
Packaged in a 176-Pin PQFP (PGF)  
D
Provides Software Control of Interrupt  
Events  
Table of Contents  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Terminal Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . 11  
Signal Name/Terminal Number Sort Tables . . . . . . . . . . . . . . . . . 4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 PCI Interface Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . 13  
System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Parameter Measurement Information . . . . . . . . . . . . . . . . . . . . . . . . 15  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Power Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1998, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21B  
(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER  
SLLS306– JULY 1998  
description  
The TSB12LV21B (PCILynx-2) provides a high-performance IEEE 1394-1995 interface with the capability to  
transfer data between the 1394 PHY-link interface, the PCI bus interface, and external devices connected to  
the local bus interface. The 1394 PHY-link interface provides the connection to the 1394 physical layer device;  
it is supported by the on-board link layer controller (LLC). The LLC provides the control for transmitting and  
receiving 1394 packet data between the FIFO and PHY-link interface at rates of 100 Mbit/s, 200 Mbit/s, and 400  
Mbit/s. The link layer also provides the capability to receive status from the physical layer device and to access  
the physical layer control and status registers by the application software. The PCILynx–2 complies with  
D
D
D
D
PCI Local Bus Specification, Revision 2.1  
IEEE Standard for a 1394-1995 High Performance Serial Bus  
IEEE Standard 1212-1991  
IEEE Standard Control and Status Register (CSR) Architecture for Microcomputer Buses  
An internal 4Kbyte-memory can be configured as multiple variable-size FIFOs, eliminating the need for external  
FIFOs. Separate FIFOs are user configurable to support 1394 receive, asynchronous transmit, and  
isynchronous transmit transfer operations.  
The PCI interface supports 32-bit burst transfers up to 33 MHz and is capable of operating both as a master  
and as a target device. Configuration registers can be loaded from an external serial EEPROM, allowing board  
and system designers to assign their own unique identification codes. An autoboot mode allows data-moving  
systems (such as docking stations) to be designed to operate on the PCI bus without the need for a host CPU.  
The DMA controller uses packet control list (PCL) data structures to control the transfer of data and allow the  
DMA to operate without host CPU intervention. These PCLs can reside in PCI memory or in memory that is  
connected to a local bus port. The PCLs implement an instruction set that allows linking, conditional branching,  
1394 data transfer control, auxiliary support commands, and status reporting. Five DMA channels  
accommodate programmable data types. PCLs can be chained together to form a channel control program that  
can be developed to support each DMA channel. Data can be stored in either big endian or little endian format,  
eliminating the need for the host CPU to perform byte swapping. Data can be transferred either to 4-byte aligned  
locations, to provide the highest performance, or to nonaligned locations, to provide the best memory use.  
The RAM, ROM, AUX, ZV, and general purpose I/O (GPIO) ports collectively make up the local bus interface.  
These ports mapped into the PCI address, can be accessed either through the PCI bus or through internal DMA  
transactions. Internal transactions do not appear on the external PCI bus, thereby conserving PCI bandwidth.  
DMApacket control lists or other data may be stored in external RAM or ROM attached to the local bus interface.  
This further reduces PCI bus use and generally improves performance. The ZV local bus port is designed to  
transfer data from 1394 video devices to an external device connected to the PCILynx-2 ZV port. This interface  
provides a method for receiving 1394 digital camera packets directly from a ZV-compliant device attached to  
the local bus interface.  
Built-in test registers, a dedicated test output terminal, and four GPIO terminals allow observation of internal  
states and provide a convenient software debug capability. Programmable interrupts are available to inform  
driver software of important events, such as 1394 bus resets and DMA-to-PCL transfer completion.  
The 3.3-V internal operation provides reduced power consumption, while maintaining compatibility with 5-V  
signaling environments. The PCI interface is compatible with both 3-V and 5-V PCI systems.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21B  
(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER  
SLLS306– JULY 1998  
terminal assignment  
PGF QUAD FLATPACK PACKAGE  
TOP VIEW  
seeprom_clk  
seeprom_data  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
aux_data6  
aux_data7  
3.3V V  
CC  
au_data8  
5VV  
CC  
aux_data9  
aux_data10  
aux_data11  
aux_data12  
89  
87  
86  
85  
84  
83  
82  
81  
80  
5V V  
3V V  
CC  
CC  
link_cyclein  
3.3V V  
CC  
link_cycleout  
test_out  
GND  
phy_ctl0  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
GND  
aux_data13  
aux_data14  
aux_data15  
phy_ctl1  
phy_lreq  
3.3V V  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
CC  
phy_data0  
phy_data1  
phy_data2  
phy_data3  
GND  
3.3V V  
CC  
aux_oe  
aux_we0  
GND  
aux_we1  
3.3V V  
CC  
phy_data4  
phy_data5  
phy_data6  
phy_data7  
GND  
aux_cs  
rom_cs  
ram_cs  
aux_rst  
GND  
TSB12LV21B  
phy_clk50  
aux_clk  
3.3V V  
CC  
5V V  
CC  
GND/test_enable  
autoboot  
GND  
aux_rdy  
aux_int  
61  
60  
59  
5V V  
CC  
pci_clk  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
pci_ad0  
pci_ad1  
pci_ad2  
5V V  
CC  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
pci_reset  
pci_gnt  
3.3V V  
CC  
3.3V V  
CC  
pci_ad3  
pci_ad4  
pci_ad5  
pci_ad6  
GND  
pci_inta  
pci_req  
GND  
pci_ad31  
pci_ad30  
pci_ad7  
3.3V V  
pci_ad29  
3.3V V  
CC  
CC  
pci_cbe0  
pci_ad8  
NC  
pci_ad28  
pci_ad27  
GND  
46  
45  
pci_ad26  
GND  
Figure 1. PCILynx-2 Terminal Assignment/Pinout  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21B  
(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER  
SLLS306– JULY 1998  
pin description table  
This sections identifies and classifies the functionality of each pin on the PCILynx–2.  
Table 1. Signals Sorted by Pin Number  
PIN NO.  
1
SIGNAL NAME  
PIN NO.  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
SIGNAL NAME  
3.3V V  
PIN NO.  
83  
SIGNAL NAME  
PIN NO.  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
SIGNAL NAME  
gpio_data1  
gpio_data0  
zp_pix_clk  
zv_vsync  
3.3V V  
NC  
aux_data9  
CC  
CC  
2
pci_ad10  
pci_ad9  
GND  
84  
5.0VV  
CC  
3
pci_ad25  
pci_ad24  
pci_cbe3  
GND  
85  
aux_data8  
3.3V V  
4
86  
CC  
5
NC  
87  
aux_data7  
aux_data6  
GND  
3.3V V  
CC  
6
pci_ad8  
pci_cbe0  
88  
zv_ext_clk  
GND  
7
pci_idsel  
89  
8
3.3V V  
3.3V V  
90  
aux_data5  
aux_data4  
aux_data3  
zv_hsync  
CC  
CC  
9
pci_ad23  
pci_ad22  
pci_ad21  
pci_ad7  
GND  
91  
zv_data_valid  
seeprom_clk  
seeprom_data  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
92  
pci_ad6  
pci_ad5  
pci_ad4  
pci_ad3  
93  
3.3V V  
CC  
5.0V V  
94  
aux_data2  
GND  
5V V  
3V V  
CC  
CC  
CC  
pci_ad20  
GND  
95  
96  
aux_data1  
aux_data0  
aux_adr15  
aux_adr14  
link_cyclein  
3.3VV  
pci_ad19  
pci_ad18  
pci_ad17  
pci_ad16  
3.3V V  
97  
CC  
CC  
pci_ad2  
pci_ad1  
pci_ad0  
98  
link_cylceout  
test_out  
GND  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
3.3V V  
CC  
3.3V V  
5.0V V  
aux_adr13  
GND  
phy_ctl0  
phy_ctl1  
phy_lreq  
CC  
CC  
pci_cbe2  
GND  
aux_int  
aux_rdy  
aux_adr12  
aux_adr11  
aux_adr10  
aux_adr9  
pci_frame  
pci_irdy  
pci_trdy  
pci_devsel  
5.0V V  
3.3V V  
CC  
CC  
aux_clk  
GND  
phy_data0  
phy_data1  
phy_data2  
phy_data3  
GND  
aux_rst  
ram_cs  
rom_cs  
aux_cs  
3.3V V  
CC  
aux_adr8  
5.0V V  
3.3V V  
CC  
pci_stop  
GND  
CC  
aux_adr7  
aux_adr6  
aux_adr5  
aux_adr4  
GND  
phy_data4  
phy_data5  
phy_data6  
phy_data7  
GND  
NC  
3.3V V  
CC  
pci_perr  
pci_serr  
pci_par  
aux_we1  
GND  
aux_we0  
aux_oe  
3.3V V  
aux_adr3  
phy_clk50  
CC  
pci_cbe1  
GND  
3.3V V  
3.3V V  
3.3V V  
CC  
CC  
CC  
aux_data15  
aux_data14  
aux_data13  
GND  
aux_adr2  
aux_adr1  
aux_adr0  
NC  
test_out/GND  
auto_boot  
GND  
pci_ad15  
pci_ad14  
pci_ad13  
pci_ad12  
pci_clk  
aux_data12  
aux_data11  
aux_data10  
GND  
5.0V V  
CC  
5.0V V  
CC  
pci_ad11  
gpio_data3  
gpio_data2  
pci_reset  
pci_gnt  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21B  
(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER  
SLLS306– JULY 1998  
Table 1. Signals Sorted by Pin Number (Continued)  
PIN NO.  
165  
SIGNAL NAME  
3.3V V  
PIN NO.  
168  
SIGNAL NAME  
GND  
PIN NO.  
171  
SIGNAL NAME  
PIN NO.  
174  
SIGNAL NAME  
pci_ad27  
GND  
pci_ad29  
CC  
166  
pci_inta  
pci_req  
169  
pci_ad31  
pci_ad30  
172  
3.3V V  
175  
CC  
167  
170  
173  
pci_ad28  
176  
pci_ad26  
Terminal Functions  
power supply terminals  
TERMINAL  
I/O  
TYPE  
FUNCTION  
NAME  
NO.  
6, 14, 21, 28, 35, 45,  
51, 65, 72, 79, 89,  
95, 102, 114, 121,  
130, 141, 150, 155,  
160, 168, 175  
GND  
I
Device ground terminals  
1, 8, 19, 26, 33, 42,  
49, 56, 70, 75, 86,  
93, 100, 107, 116,  
128, 136, 138, 145,  
157, 165, 172  
3.3V VCC  
5.0V VCC  
I
I
3.3-V power supply terminal for core logic  
12, 40, 60, 63, 84,  
109, 162  
5-V power rail for 5-V tolerant Input buffers  
PCI system terminals  
TERMINAL  
NAME NO.  
I/O  
TYPE  
FUNCTION  
System PCI bus clock. This signal ranges from 0MHz–-33MHz MHz and provides timing for all transactions  
on the PCI bus. All PCI signals are sampled at the rising edge of PCLK.  
pci_clk  
161  
I
pci_reset. When the PCI bus reset is asserted the pci_reset signal causes the PCILynx-2 to 3-state all  
output buffers and reset all internal registers. When pci_reset is asserted, the device is completely  
nonfunctional. After pci_reset is deasserted, the PCILynx-2 is in its default state.  
pci_reset  
pci_inta  
163  
166  
I
OD  
PCI system interrupt A. This is an open drain signal.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21B  
(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER  
SLLS306– JULY 1998  
Terminal Functions (Continued)  
PCI address and data terminals  
TERMINAL  
NAME  
I/O  
TYPE  
FUNCTION  
NO.  
pci_ad31 – pci_ad29  
pci_ad28  
169 – 171  
173  
pci_ad27  
174  
pci_ad26  
176  
pci_ad25  
3
pci_ad24  
4
pci_ad23 – pci_ad21  
pci_ad20  
pci_ad19 – pci_ad16  
pci_ad15 – pci_ad12  
pci_ad11  
9 – 11  
13  
15 – 18  
36 – 39  
41  
Multiplexed PCI address and data signals. During the address phase of a primary bus PCI  
cycle, pci_ad31:0 contain a 32-bit address or other destination information. During the data  
phase pci_ad31:0 contain data  
I/O  
pci_ad10  
43  
pci_ad9  
44  
pci_ad8  
47  
pci_ad7  
50  
pci_ad6 – pci_ad3  
pci_ad2 – pci_ad0  
52 – 55  
57 – 59  
pci_cbe3  
pci_cbe2  
pci_cbe1  
pci_cbe0  
5
20  
34  
48  
I/O  
I/O  
PCI Command/Byte enables  
PCI bus parity. In all PCI bus read and write cycles the PCILynx–2 calculates even parit-  
across the pci_ad31:0 and pci_cbe3:0 signals. As an initiator during PCI cycles, the  
PCILynx-2 outputs this parity indicator with a one pci_clk delay. As a target during PCI  
cycles, the calculated parity is compared to the initiator’s parity indicator. A miscompare  
can result in the assertion of a parity error (pci_perr).  
pci_par  
32  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21B  
(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER  
SLLS306– JULY 1998  
Terminal Functions (Continued)  
PCI interface control  
TERMINAL  
NAME  
I/O  
TYPE  
FUNCTION  
NO.  
PCI device select. The PCILynx-2 asserts this signal to claim a PCI cycle as the target device. As a PCI  
initiator on the bus, the PCILynx-2 monitors this signal until a target responds. If no target responds before  
time-out occurs, then the PCILynx-2 will terminate the cycle with an initiator abort.  
pci_devsel  
pci_frame  
24  
I/O  
I/O  
PCI cycle frame. This signal is driven by the initiator of a bus cycle. pci_frame is asserted to indicate that a  
bus transaction is beginning, and data transfers continue while this signal is asserted. When pci_frame is  
deasserted the PCI bus transaction is in the final data phase.  
22  
PCI bus grant. This signal is driven by the PCI bus arbiter to grant the PCILynx-2 access to the PCI bus  
after the current data transaction has completed. This signal may or may not follow a PCI bus request  
depending upon the PCI bus parking algorithm.  
pci_gnt  
pci_idsel  
pci_irdy  
164  
7
I
I
Initialization device select. pci_idsel selects the PCILynx-2 during configuration space accesses. pci_idsel  
can be connected to one of the upper 24 PCI address lines on the PCI bus.  
PCI initiator ready. pci_irdy indicates the PCI bus initiator’s ability to complete the current data phase of the  
transaction. A data phase is completed upon a rising edge of pci_clk where both pci_irdy and pci_trdy are  
asserted. Until pci_irdy and pci_trdy are both sampled asserted, wait states are inserted.  
23  
I/O  
PCI parity error indicator. This signal is driven by a PCI device to indicate that calculated parity does not  
match pci_par, when pci_perr is enabled through bit 6 of the command register.  
pci_perr  
pci_req  
30  
I/O  
O
167  
PCI bus request. Asserted by the PCILynx-2 to request access to the PCI bus as an initiator.  
PCI system error. Output that is pulsed from the PCILynx-2 when enabled through the command register,  
indicating a system error has occurred. The PCILynx-2 needs not be the target of the PCI cycle in order to  
assert this signal.  
pci_serr  
pci_stop  
pci_trdy  
31  
27  
24  
OD  
I/O  
I/O  
PCI cycle stop signal. This signal is driven by a PCI target to request the initiator to stop the current PCI  
bus transaction. This signal is used for target disconnects and is commonly asserted by target devices  
which do not support burst data transfers.  
PCI target ready. pci_trdy indicates the primary bus target’s ability to complete the current data phase of  
the transaction. A data phase is completed upon a rising edge of pci_clk where both pci_irdy and pci_trdy  
are asserted. Until both pci_irdy and pci_trdy are asserted, wait states are inserted.  
IEEE 1394 PHY/LINK interface terminals  
TERMINAL  
NAME  
I/O  
TYPE  
FUNCTION  
NO.  
143  
phy_ctl1  
phy_ctl0  
I/O  
I/O  
PHY-link bidirectional control lines  
142  
phy_data7 – phy_data4  
phy_data3 – phy_data0  
154 – 151  
149 – 146  
PHY-link bidirectional data lines  
phy_clk50  
phy_lreq  
156  
144  
I
50MHz-System clock from PHY chip  
O
PHY-link request signal generated by the PCILynx-2 controller  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21B  
(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER  
SLLS306– JULY 1998  
Terminal Functions (Continued)  
auxiliary/zoom video port terminals  
TERMINAL  
NAME  
I/O  
TYPE  
FUNCTION  
NO.  
64  
aux_clk  
aux_rst  
aux_int  
O
O
I
Auxiliary port clock out. This signal is output at the frequency of the PCI clock.  
Auxiliary port reset out  
66  
61  
Auxiliary port interrupt input  
aux_adr15 – aux_adr14  
aux_adr13  
98 – 99  
101  
aux_adr12 –aux_adr9  
aux_adr8  
103 – 106  
108  
O
Auxiliary port address lines output to external logic  
aux_adr7 –aux_adr4  
aux_adr3  
110 – 113  
115  
aux_adr2 – aux_adr0  
117 – 119  
aux_data15 – aux_data13  
aux_data12 – aux_data9  
aux_data8  
76 – 78  
80 – 83  
85  
aux_data7 – aux_data6  
aux_data5 – aux_data3  
aux_data2  
87 – 88  
90 – 92  
94  
I/O  
Auxiliary port bidirectional data bus to external logic  
aux_data1 – aux_data0  
96 – 97  
aux_cs  
aux_oe  
aux_rdy  
69  
74  
62  
O
O
I
Auxiliary port chip select to external logic  
Auxiliary port output enable to enable external logic data onto the auxiliary data bus  
Auxiliary port ready indication from external logic  
aux_we1  
aux_we0  
71  
73  
O
Auxiliary port write strobes to external logic  
ram_cs  
67  
O
O
O
I
External RAM chip select  
rom_cs  
68  
External ROM chip select  
zv_data_valid  
zv_ext_clk  
zv_hsync  
zv_pix_clk  
zv_vsync  
132  
129  
131  
126  
127  
Zoom video port data valid signal  
Zoom video port external clock input  
Zoom video port horizontal sync signal  
Zoom video port pixel clock for zoomed video data  
Zoom video port vertical sync signal  
O
I/O  
O
miscellaneous  
TERMINAL  
NAME  
I/O  
TYPE  
FUNCTION  
NO.  
Autoboot. Selects autoboot mode. When this terminal is tied high, autoboot mode is  
selected.  
autoboot  
159  
I
gpio_data3 – gpio_data2  
link_cyclein  
122 – 125  
137  
I/O  
I
Auxiliary port general-purpose programmable I/O signals  
Optional 8kHz clock for use as the cycle clock  
Cycle timer 8kHz clock output  
link_cycleout  
140  
O
seeprom_clk  
133  
I/O  
I/O  
External serial EEPROM data clock  
seeprom_data  
134  
External serial EEPROM read/write data line  
Enables TEST_OUT for AND tree testing. This pin should be tied to GND if AND tree  
testing is not used.  
test_enable/GND  
test_out  
158  
140  
I
O
Output for AND tree testing  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21B  
(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER  
SLLS306– JULY 1998  
system block diagram  
The following figure illustrates a typical system implementation of the PCILynx-2.  
Personal Computer  
Host  
CPU  
PCI  
Host  
Bridge  
1394 Peripheral Devices  
Local  
Memory  
1394  
CD ROM  
PCI Bus  
1394  
Laser  
Printer  
IDE  
Controller  
Video  
Controller  
1394  
3 Port  
Physical  
Layer  
1394  
Desktop  
Camera  
PCILynx-2  
TSB12LV21B  
1394  
Digital  
VCR  
Local Bus  
DMA  
User  
Defined  
Function  
(AUX)  
ZV  
Port  
(Video)  
PCI  
Expansion  
ROM  
1394  
Video Cable  
Set Top Box  
Channel  
Control  
(SRAM)  
Figure 2. System Block Diagram  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21B  
(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER  
SLLS306– JULY 1998  
functional block diagram  
seeprom_data  
aux_clk  
aux_rst  
aux_int  
Serial EPROM  
seeprom_clk  
Interface  
32  
pci_ad31 – pci_ad0  
/
4
4
gpio_data3 – gpio_data0  
aux_adr15 – aux_adr0  
/
pci_cbe3 – pci_cbe0  
/
16  
PCI Master  
PCI Slave  
pci_par  
pci_frame  
pci_irdy  
pci_trdy  
pci_devsel  
pci_stop  
pci_idsel  
pci_perr  
pci_serr  
pci_req  
/
Local Bus  
Interface  
Logic  
16  
aux_data15 – aux_data0  
aux_oe  
/
RAM  
ROM  
AUX  
ZV  
2
aux_we1 – aux_we0  
aux_rdy  
/
3
zv_hsync, zv_vsync, zv_pix_clk  
zv_data_valid  
/
3
PCI Configuration Control  
and Status Registers  
aux_cs, rom_cs, ram_cs  
zv_ext_clk  
/
pci_gnt  
pci_clk  
pci_reset  
pci_inta  
PCI Bus Logic  
DMA Control  
and  
DMA Engine  
Status Registers  
DMA Logic  
General  
Receiver  
FIFO  
Asynchronous  
Transmit  
FIFO  
Isosynchronous  
Pointer  
Address  
Mapping Logic  
FIFO Control  
and Status  
Registers  
Transmit  
FIFO  
FIFO Logic  
2
1394 Link Layer Control (LLC) Logic  
phy_ctl0 – phy_ctl1  
/
8
1394 Packet  
Transmit  
Timer  
Cycle  
phy_data0 – phy_data7  
/
1394 LLC  
Control and  
Status Reg-  
isters  
Phy-Link  
Interface  
Logic  
Control Logic  
phy_clk50  
phy_lreq  
link_cyclein  
link_cycleout  
CRC Logic  
Parallel-to-Serial  
Serial-to-Parallel  
1394 Packet  
Cycle  
Receive  
Monitor  
Control Logic  
Figure 3. Functional Block Diagram  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21B  
(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER  
SLLS306– JULY 1998  
absolute maximum ratings over operating temperature ranges (unless otherwise noted)  
Supply voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 6 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 6 V  
CC  
V
V
CCP  
CC5V  
Input voltage range for Universal PCI, V : PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
Input voltage range for 5-V tolerant TTL/LVCMOS, V : . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
Output voltage range for Universal PCI, V  
Output voltage range for 5-V tolerant TTL/LVCMOS, V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
I
CCP  
CC5V  
CCP  
I
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
O
. . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
CC5V  
O
Input clamp current, I (V < 0 or V > V ) (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 mA  
IK  
I
I
CC  
Output clamp current, I  
(V < 0 or V > V ) (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 mA  
OK  
O O CC  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. Applies to external input and bidirectional buffers. For 5-V tolerant buffers, use V > V  
. For Universal PCI, use V > V  
I
CC5V  
I
CCP.  
For Universal PCI, use V > V  
CCP.  
2. Applies to external output and bidirectional buffers. For 5-V tolerant buffers, use V > V  
O
CC5V.  
O
recommended operating conditions (see Note 3)  
OPERATION  
MIN NOM  
MAX  
3.6  
UNIT  
Core voltage, V  
Commercial  
Commercial  
Commercial  
3.3  
5
3
3
3
3.3  
5
V
V
V
V
CC  
I/O voltage, V  
I/O voltage, V  
5.5  
CCP  
5
5
5.5  
CC5V  
High-level Input voltage, V  
2
IH  
Low-level Input voltage, V  
0.8  
V
V
IL  
Universal PCI  
5-V tolerant  
0
0
0
0
0
0
V
CCP  
Input voltage, V  
I
V
CC5V  
Output voltage, V  
V
V
O
CC  
6
Input transition times (t and t ), t  
t
ns  
°C  
°C  
r
f
Operating ambient temperature range, T  
25  
25  
70  
A
§
Virtual junction temperature, T  
115  
J
§
Applies for external input and bidirectional buffers without hysteresis.  
Applies for external output buffers.  
These junction temperatures reflect simulation conditions. Customer is responsible for verifying junction temperature.  
NOTE 3: Unused or floating pins (input or I/O) must be held high or low.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21B  
(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER  
SLLS306– JULY 1998  
electrical characteristics over recommended operating conditions (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
OPERATION  
MIN  
MAX  
UNIT  
3.3 V  
5 V  
I
I
I
I
I
I
I
I
= –0.5 mA  
= –2 mA  
= –18 mA  
= –14 mA  
= 1.5 mA  
= 6 mA  
0.9 V  
OH  
OH  
OH  
OH  
OL  
OL  
OL  
OL  
CC  
2.4  
PCI  
High-level output voltage  
(see Note 4)  
V
V
OH  
OL  
TTL/LVCMOS  
2.4  
2.4  
TTL/LVCMOS  
3.3 V  
5 V  
0.1 V  
CC  
0.5  
PCI  
V
Low-level output voltage  
V
TTL/LVCMOS  
= 18 mA  
= 14 mA  
0.5  
0.5  
20  
TTL/LVCMOS  
Bushold  
Others  
V = 0.8 V  
I
Input pins  
I/O pins  
V = GND  
–1  
I
I
I
Low-level input current  
High-level input current  
µA  
µA  
IL  
Bushold  
Others  
V = 0.8 V  
400  
–20  
–20  
20  
I
V = GND  
I
Bushold  
Others  
V = 2 V  
I
Input pins  
I/O pins  
V = 5.5 V  
I
IH  
Bushold  
Others  
V = 2 V  
–20  
20  
I
V = 5.5 V  
I
All PHY-link pins, aux_clk(64), aux_we1(71), and aux_we0(73).  
All other TTL/LVCMOS pins  
NOTE 4:  
V
is not tested on pci_serr(31) or pci_inta(166) due to open-drain output.  
OH  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21B  
(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER  
SLLS306– JULY 1998  
PCI interface switching characteristics, see Figure 4  
TEST  
CONDITION  
PARAMETER  
MEASURED  
40% to 40%  
40% to 40%  
MIN  
7
TYP  
MAX  
UNIT  
ns  
t
t
Setup time, pci_xx low or high to pci_clk high  
su1  
Hold time, pci_clk high to pci_xx low or high , pci_gnt low or  
high  
0
ns  
h1  
t
t
t
Delay time, pci_clk high to pci_xx low or high  
40% to 40%  
40% to 40%  
40% to 40%  
2
10  
2
11  
13  
ns  
ns  
ns  
d1  
Setup time, pci_gnt low or high to pci_clk high  
Delay time, pci_clk high to pci_inta low or high  
su2  
d2  
Inthiscase, pci_xxreferstothefollowingsignals;pci_ad31–0, pci_cbe3–0, pci_par, pci_frame, pci_irdy, pci_trdy, pci_devsel, pci_stop, pci_idsel,  
pci_perr, pci_serr, pci_req.  
phy-link interface switching characteristics, see Figure 5  
TEST  
CONDITION  
PARAMETER  
MEASURED  
MIN  
TYP  
MAX  
UNIT  
t
t
t
t
t
Setup time, phy_xx low or high to phy_clk high  
1.3 V to 1.3 V  
1.3 V to 1.3 V  
1.3 V to 1.3 V  
1.3 V to 1.3 V  
1.3 V to 1.3 V  
4
1
3
5
3
ns  
ns  
ns  
ns  
ns  
su3  
Hold time, phy_clk high to phy_xx, link_cyclein low or high  
h2  
Delay time, phy_clk high to phy_xx, phy_lreq low or high  
Setup time, phy_clk high to link_cyclein low or high  
Delay time, phy_clk high to link_cycleout low or high  
11  
13  
d3  
su4  
d4  
In this case, phy_xx refers to the following bidirectional signals; phy_ctl1–0, phy_data7–0.  
local bus switching characteristics, see Figure 6  
TEST  
CONDITION  
PARAMETER  
MEASURED  
MIN  
TYP  
MAX  
UNIT  
Delay time, aux_clk high to aux_adr, aux_data15–0 (write),  
aux_oe valid  
t
t
t
t
t
t
1.3 V to 1.3 V  
1.3 V to 1.3 V  
1.3 V to 1.3 V  
1.3 V to 1.3 V  
1.3 V to 1.3 V  
1.3 V to 1.3 V  
0
0
15  
20  
ns  
ns  
ns  
ns  
ns  
ns  
d5  
d6  
d7  
d8  
d9  
d10  
Delay time, aux_clk high to rom_cs, ram_cs, aux_cs valid  
Delay time, aux_we0, aux_we1 high (deasserted) to aux_adr,  
aux_data15–0 (write), aux_oe, rom_cs, ram_cs, aux_cs valid  
0.5  
0
Delay time, aux_clk low to aux_we0, aux_we1 low (asserted)  
10  
10  
15  
Delay time, aux_clk high to aux_we0, aux_we1 high  
(deasserted)  
0
Delay time, aux_clk high to gpio_data3–0 valid  
2
Setup time, aux_adr, adr_data15–0 (write), aux_oe, rom_cs,  
ram_cs, aux_cs valid before aux_we0, aux_we1 low  
(asserted)  
t
1.3 V to 1.3 V  
5
ns  
su5  
Setup time, aux_data15–0 (read), aux_rdy, gpio_data3–0 valid  
before aux_clk high  
t
t
1.3 V to 1.3 V  
1.3 V to 1.3 V  
10  
0
ns  
ns  
su6  
Hold time, aux_data15–0 (read), aux_rdy, gpio_data3–1  
invalid after aux_clk high  
h3  
These signals are asserted asynchronously when a ZOOM port transfer imediately preceeds the local bus transfer. In all cases, the setup time  
to aux_we1 and aux_we0 and the number of waitstates remain the same.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21B  
(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER  
SLLS306– JULY 1998  
zoom video port switching characteristics, source clock = 30 ns with a 50% duty cycle  
TEST  
CONDITION  
PARAMETER  
MEASURED  
MIN  
12  
TYP  
MAX  
UNIT  
ns  
Setup time, zv_hsync low, zv_vsync, zv_data_valid high before  
zv_pix_clk high  
t
t
1.3 V to 1.3 V See Figure 4  
1.3 V to 1.3 V See Figure 4  
su7  
Hold time, zv_hsync high, zv_vsync, zv_data_valid low after  
zv_pix_clk low  
14  
ns  
h4  
t
t
Setup time, aux_data7–0 valid before zv_pix_clk high or low  
Hold time, aux_data7–0 valid after zv_pix_clk high or low  
1.3 V to 1.3 V See Figure 4  
1.3 V to 1.3 V See Figure 4  
10  
14  
ns  
ns  
su8  
h5  
Delay time, zv_hsync low, zv_vsync, zv_data_valid high after  
zv_pix_clk low  
t
1.3 V to 1.3 V See Figure 5  
–1  
3
5
ns  
d11  
t
t
t
t
Delay time, aux_data7–0 invalid after zv_pix_clk low  
Setup time, zv_hsync low before zv_pix_clk high  
Hold time, zv_hsync high after zv_pix_clk high  
Setup time, zv_vsync high before zv_pix_clk high  
1.3 V to 1.3 V See Figure 5  
1.3 V to 1.3 V See Figure 6  
1.3 V to 1.3 V See Figure 6  
1.3 V to 1.3 V See Figure 6  
–1  
25  
14  
10  
ns  
ns  
ns  
ns  
d12  
su9  
h6  
su10  
Setup time, aux_data7–0 valid, zv_data_valid high before  
zv_pix_clk high  
t
1.3 V to 1.3 V See Figure 6  
1.3 V to 1.3 V See Figure 6  
25  
14  
ns  
ns  
su11  
h7  
Hold time, aux_data7–0 valid, zv_data-valid low after  
zv_pix_clk high  
t
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21B  
(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER  
SLLS306– JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
pci_clk  
t
d1  
t
t
su1  
h1  
pci_xx  
(Bidirectional  
see Note A)  
t
d2  
pci_inta  
t
t
h1  
su2  
pci_gnt  
NOTE A: In this case, pci_xx refers to the following bidirectional signals; pci_ad31–0, pci_cbe3–0, pci_par, pci_frame, pci_irdy,  
pci_trdy, pci_devsel, pci_stop, pci_idsel, pci_perr, pci_serr, pci_req.  
Figure 4. PCI Interface Timing Waveforms  
phy_clk  
t
d3  
t
t
su3  
h2  
phy_xx  
(Bidirectional  
see Note A)  
t
d3  
phy_lreq  
t
d4  
link_cycleout  
t
t
h2  
su4  
link_cyclein  
NOTE A: In this case, phy_xx refers to the following bidirectional signals; phy_ctl1–0, phy_data7–0.  
Figure 5. Phy-Link Interface Timing Waveforms  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21B  
(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER  
SLLS306– JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
OUTPUTS  
aux_clk  
t
d5  
aux_adr15–0  
aux_data15–0 (write)  
aux_oe  
DATA VALID  
DATA VALID  
(see Note A)  
t
t
d7  
d6  
rom_cs  
ram_cs  
aux_cs  
t
su5  
t
t
t
d9  
d8  
d9  
aux_we0  
aux_we1  
t
d10  
Wait States = 0  
Wait States > 0  
gpio_data7–0  
DATA VALID  
t
su6  
INPUTS  
t
h3  
DATA  
VALID  
aux_data  
aux_rdy  
DATA  
VALID  
DATA  
VALID  
gpio_data7–0  
NOTE A: These signals are asserted asynchronously when a ZOOM port transfer immediately preceeds the local bus transfer. In all cases,  
the setup time to aux_we and the number of wait states remains valid.  
Figure 6. Local Bus Timing Waveforms  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21B  
(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER  
SLLS306– JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
15 ns  
15 ns  
Internal  
Clock Source  
internal  
zv_pix_clk  
zv_pix_clk  
(gated, 8 bit)  
t
t
h4  
su7  
zv_hsync  
zv_vsync  
zv_data_valid  
t
t
t
t
h5  
su8  
h5  
su8  
aux_data15–0  
(Write)  
8-BIT DATA VALID  
8-BIT DATA VALID  
NOTES: A. The data is in 8-bit mode and zv_pix_clk is in divide-by-2 mode.  
B. The timing for these waveforms is for write access to zoom address space.  
C. The aux_datax signal meets timing while the zv_data_valid signal is asserted. The aux_datax signal can be asynchronous to  
zv_pix_clk at other times.  
D. The polarity of zv_pix_clk depends on the setting of the invert_zv_clk register bit. The polarity shown in this figure is with  
invert_zv_clk = 0.  
E. The timing of these waveforms is with a 30-ns source clock and a 50/50 duty cycle.  
Figure 7. Zoom Video IF Timing Waveforms (8 Bit, Divide-By-2 Mode)  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21B  
(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER  
SLLS306– JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
Internal  
zv_pix_clk  
zv_pix_clk  
(gated, 16 bit)  
t
t
d11  
d11  
zv_hsync  
zv_vsync  
zv_data_valid  
t
t
d12  
d12  
aux_data15–0  
(16 bit only)  
16-BIT DATA VALID  
NOTES: A. The data is in 16-bit mode and zv_pix_clk is in divide-by-1 mode.  
B. The timing for these waveforms is for write access to zoom address space.  
C. The aux_datax signal meets timing while the zv_data_valid signal is asserted. The aux_datax signal can be asynchronous to  
zv_pix_clk at other times.  
D. The polarity of zv_pix_clk depends on the setting of the invert_zv_clk register bit. The polarity shown in this figure is with  
invert_zv_clk = 0.  
Figure 8. Zoom Video IF Timing Waveforms (16 Bit, Divide-By-1 Mode)  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21B  
(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER  
SLLS306– JULY 1998  
PARAMETER MEASUREMENT INFORMATION  
15 ns  
15 ns  
Internal  
Clock Source  
Internal  
zv_pix_clk  
(see Note A)  
zv_pix_clk  
(gated, 16 bit)  
t
t
h6  
su9  
zv_hsync  
t
su10  
zv_vsync  
zv_data_valid  
t
t
h7  
su9  
aux_data15–0  
(Write)  
16-BIT DATA VALID  
NOTES: A. The data is in 16-bit mode and zv_pix_clk is in divide-by-2 mode.  
B. The timing for these waveforms is for write access to zoom address space.  
C. The aux_datax signal meets timing while the zv_data_valid signal is asserted. The aux_datax signal can be asynchronous to  
zv_pix_clk at other times.  
D. The polarity of zv_pix_clk depends on the setting of the invert_zv_clk terminal. The polarity shown in this figure is with  
invert_zv_clk = 0.  
E. The timing of these waveforms is with a 30-ns source clock and a 50/50 duty cycle.  
Figure 9. Zoom Video IF Timing Waveforms (16 Bit, Divide-By-2 Mode)  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21B  
(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER  
SLLS306– JULY 1998  
APPLICATION INFORMATION  
power supply sequencing  
Turning power supplies on and off within a mixed 5-V/3.3-V system is an important consideration. A few basic  
rules need to be observed to avoid damaging PCILynx-2 devices. Check with the manufacturers of all  
components used in the 3.3-V to 5-V interface to ensure that no unique device characteristics exist that would  
lead to more restrictive rules.  
D
When the 3.3-V supply is turned on before turning on the 5-V supply, PCILynx-2 output buffers in a logic  
1statecansupplylargeamountsofcurrentthroughtheirclampdiodestothe5-Vsupplyterminals(5VV ).  
CC  
This can lead to excessive power dissipation and violation of current density limits. However, if the 5-V  
supply is turned on before the 3.3-V supply, the maximum drain-to-gate voltage of the n-channel transistors  
in the 5-V tolerant buffers exceeds the recommended value and the effects of channel-hot carries can be  
accelerated.  
D
D
D
D
When turning on the power supply, all 3.3-V and 5-V supplies should start ramping up from 0 V and reach  
95% of their end-point values within a 25-ms time window. All bus contention between the PCILynx-2 and  
external devices is eliminated by the end of the 25-ms time window. The preferred order of supply ramping  
is to ramp the 3.3-V supply followed by the 5-V supply. This order is not mandatory, but it allows a larger  
cumulative number of power supply events than the reverse order.  
When turning off the power supply, all 3.3-V and 5-V supplies should start ramping down from steady state  
values and reach 5% of these values within a 25-ms window. All bus contention between the PCILynx–2  
and external devices is eliminated by the end of the 25-ms time window. The preferred order of supply  
ramping is to ramp down the 5-V supply followed by the 3.3-V supply. This order is not mandatory, but it  
allows a larger cumulative number of power-supply off events than the reverse order.  
A cumulative total of 250 seconds of power supply turnon and turnoff events is allowed during the operating  
lifetime of the PCILynx-2 under worst-case conditions. Worst-case conditions are where the 5-V supply is  
ramped up before the 3.3-V supply and the 3.3-V supply is ramped down before the 5-V supply. If the  
maximum time window of the 25 ms is used, a total of 10,000 power supply on or off events can occur as  
long as the 25-ms time window is observed.  
An additional precaution must be observed when the PCILynx–2 is connected to a 5-V IEEE 1394  
physical-layer device that is powered from the 1394 cable. In this case, it is possible for the physical-layer  
device to have power while the PCILynx–2 does not. It is essential that the physical-layer device must not  
supply a high signal on any terminal that connects to the PCILynx–2 while the PCILynx-2 power is off. This  
is normally achieved through the use of the link-power status terminal on the physical-layer device.  
If any of these precautions and guidelines are not followed, the PCILynx-2 device can experience possible  
failures related to overheating, accumulation of channel-hot carriers, and/or metal migration due to excessive  
current density.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TSB12LV21B  
(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER  
SLLS306– JULY 1998  
MECHANICAL INFORMATION  
PGF (S-PQFP-G176)  
PLASTIC QUAD FLATPACK  
132  
89  
133  
88  
0,27  
0,17  
M
0,08  
0,50  
0,13 NOM  
176  
45  
1
44  
Gage Plane  
21,50 SQ  
24,20  
SQ  
23,80  
26,20  
25,80  
0,25  
0,05 MIN  
0°ā7°  
SQ  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040134/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

TSB12LV21A

IEEE 1394-1995 BUS TO PCI BUS INTERFACE
TI

TSB12LV21AIPGF

PCILynx - PCI to 1394 3.3V Link Layer with 32-bit PCI I/F, 1K FIFOs 176-LQFP -40 to 85
TI

TSB12LV21AMPGF

PCILynx - PCI to 1394 3.3V Link Layer with 32-bit PCI I/F, 1K FIFOs 176-LQFP -55 to 125
TI

TSB12LV21APGF

IEEE 1394-1995 BUS TO PCI BUS INTERFACE
TI

TSB12LV21B

IEEE 1394 LINK LAYER CONTROLLER
TI

TSB12LV21B-EP

(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER
TI

TSB12LV21BMPGF

暂无描述
TI

TSB12LV21BMPGFEP

(PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER
TI

TSB12LV21BPGF

IEEE 1394 LINK LAYER CONTROLLER
TI

TSB12LV21BPGFG4

PCILynx - PCI to 1394 3.3V Link Layer with 32-bit PCI I/F, 4K FIFOs 176-LQFP
TI

TSB12LV21PGF

PCILynx - 1394 to PCI Link Layer Controller 176-LQFP
TI

TSB12LV22

OHCI-Lynx PCI-BASED IEEE 1394 HOST CONTROLLER
TI