TUSB1002RGET [TI]

USB3.1 10Gbps 双通道线性转接驱动器 | RGE | 24 | 0 to 70;
TUSB1002RGET
型号: TUSB1002RGET
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

USB3.1 10Gbps 双通道线性转接驱动器 | RGE | 24 | 0 to 70

驱动 接口集成电路 驱动器
文件: 总36页 (文件大小:2886K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TUSB1002  
ZHCSF18E MAY 2016REVISED MAY 2019  
TUSB1002 USB3.1 10Gbps 双通道线性转接驱动器  
1 特性  
3 说明  
1
支持 USB3.1 超高速 (5Gbps) 和超高速+ (10Gbps)  
TUSB1002 是业内首款双通道 USB 3.1 超高速+  
(SSP) 转接驱动器和信号调节器。该器件采用超低功耗  
架构,由 3.3V 电源供电运行时的功耗非常低。它支持  
USB3.1 低功耗模式,可进一步降低空闲状态下的功  
耗。  
支持 PCI Express Gen3SATA Express SATA  
Gen3。  
超低功耗架构  
有源状态:< 340mW  
U2/U3< 8mW  
TUSB1002 实现了一款线性均衡器,最高可容许码间  
串扰 (ISI) 引入 16dB 的损耗。当 USB 信号在印刷电  
路板 (PCB) 或电缆上传输时,其完整性会在通道损耗  
和码间串扰的影响下有所降低。线性均衡器可对通道损  
失进行补偿,进而延长通道传输距离,从而使系统符合  
USB 规范。凭借双通道和小型封装,TUSB1002 可在  
USB3.1 传输路径中灵活放置。  
未连接状态:< 2mW  
可调节电压输出摆幅线性范围高达 1200 mVpp  
无主机/设备端要求  
16 种线性均衡设置,在速率为 10Gbps 时最高为  
16dB  
可调节直流均衡增益  
支持热插拔  
TUSB1002 采用 24 引脚 4mm x 4mm VQFN 封装。  
它还提供商业级 (TUSB1002) 版本。  
LVPE502A LVPE512 USB 3.0 转接驱动器引  
脚兼容  
温度范围:0°C 70°C  
器件信息(1)  
±6kV 人体模型 (HBM) 静电放电 (ESD)  
3.3V 单电源供电。  
器件型号  
TUSB1002  
封装  
VQFN (24)  
封装尺寸(标称值)  
4.00mm x 4.00mm  
采用 4mm x 4mm VQFN 封装  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
2 应用  
笔记本和台式机  
电视  
平板电脑  
手机  
有源电缆  
扩展坞  
空白  
简化原理图  
RXP1  
+
RXN1  
-
TXP1  
TXN1  
+
-
+
-
TUSB1002  
+
USB 3.1  
Host  
TXP2  
TXN2  
RXP2  
RXN2  
+
-
+
-
-
Copyright © 2016, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEU4  
 
 
 
 
 
 
 
TUSB1002  
ZHCSF18E MAY 2016REVISED MAY 2019  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 15  
7.4 Device Functional Modes........................................ 17  
7.5 U0 Mode.................................................................. 17  
7.6 U1 Mode.................................................................. 18  
7.7 U2/U3 Mode............................................................ 18  
Application and Implementation ........................ 19  
8.1 Application Information............................................ 19  
8.2 Typical USB3.1 Application .................................... 19  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics, Power Supply .................. 7  
6.6 Electrical Characteristics........................................... 7  
6.7 Power-Up Requirements........................................... 9  
6.8 Timing Requirements................................................ 9  
6.9 Switching Characteristics.......................................... 9  
6.10 Typical Characteristics.......................................... 11  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 14  
8
9
8.3 Typical SATA, PCIe and SATA Express  
Application................................................................ 22  
Power Supply Recommendations...................... 25  
10 Layout................................................................... 25  
10.1 Layout Guidelines ................................................. 25  
10.2 Layout Example .................................................... 26  
11 器件和文档支持 ..................................................... 27  
11.1 社区资源................................................................ 27  
11.2 ....................................................................... 27  
11.3 静电放电警告......................................................... 27  
11.4 Glossary................................................................ 27  
12 机械、封装和可订购信息....................................... 27  
7
4 修订历史记录  
Changes from Revision D (October 2017) to Revision E  
Page  
特性说明 器件信息 中删除了 TUSB1002I 工业............................................................................................................ 1  
Deleted TUSB1002I Operating free-air temperature from the Recommended Operating Conditions ................................... 6  
Deleted TUSB1002I from the Thermal Information table ....................................................................................................... 6  
Changes from Revision C (August 2017) to Revision D  
Page  
Changed pin 8 From: RXIN To: RX1N in the RGE pin image................................................................................................ 4  
Changes from Revision B (August 2017) to Revision C  
Page  
特性中将“14 种线性均衡设置,在速率为 10Gbps 时最高为 15dB”更改成了“16 种线性均衡设置,在速率为 10Gbps  
时最高为 16 dB”...................................................................................................................................................................... 1  
Deleted the RMQ package option from the Pin Configuration and Functions section .......................................................... 4  
Deleted the RMQ package from the Pin Functions table ...................................................................................................... 4  
Changed the description of pin 7 From: R = Test Mode To: R = PCIe / Test Mode. in the Pin Functions table .................. 5  
Deleted the RMQ column from Thermal Information table .................................................................................................... 6  
Added Differential crosstalk between TX and RX signal pairs. ............................................................................................. 7  
From: EQ(GAIN-10Gbps) 15dB To: EQ(GAIN-10Gbps) 16dB.................................................................................................................. 7  
EQ setting 15 changed from Reserved to 10.4 / 16.0 ......................................................................................................... 16  
EQ setting 16 changed from Reserved to 10.6 / 16.3 ......................................................................................................... 16  
Added the PCIe/SATA/SATA Express Redriver Operation section. ................................................................................... 17  
Added the Typical SATA, PCIe, and SATA Expess Application section ............................................................................. 22  
2
版权 © 2016–2019, Texas Instruments Incorporated  
 
TUSB1002  
www.ti.com.cn  
ZHCSF18E MAY 2016REVISED MAY 2019  
Changes from Revision A (May 2016) to Revision B  
Page  
向简化原理图的 RXP2 RXN2 引脚添加了一个电容器........................................................................................................ 1  
Added a capacitor to the RXP2 and RXN2 pins of Figure 17 .............................................................................................. 19  
Updated the A/C coupling Capacitor section of Table 4 ..................................................................................................... 19  
Changed text in the Detailed Design Procedure From: No A/C coupling capacitors are placed on the RX2P/N. To:  
330nF A/C coupling capacitors along with 220k resistors are placed on the RX2P and RX2N. Inclusion of these  
330nF capacitors and 220k resistors is optional but highly recommended. If not implemented, then RX2P/N should  
be DC-coupled to the USB receptacle. ................................................................................................................................ 20  
Added 330nF AC capacitors (C12 and C13) on RX2P and RX2N in Figure 18 .................................................................. 20  
Changes from Original (May 2016) to Revision A  
Page  
已将器件状态由产品预览改为量产数据.............................................................................................................................. 1  
Copyright © 2016–2019, Texas Instruments Incorporated  
3
TUSB1002  
ZHCSF18E MAY 2016REVISED MAY 2019  
www.ti.com.cn  
5 Pin Configuration and Functions  
RGE Package  
24-Pin VQFN  
Top View  
18  
13  
17 16 15 14  
RX2P  
RX2N  
19  
20  
21  
22  
23  
24  
12  
11  
TX2P  
TX2N  
+
-
GND  
10  
9
GND  
TX1P  
RX1P  
RX1N  
+
-
TX1N  
8
RSVD1  
7
MODE  
1
2
3
4
5
6
Pin Functions  
PIN  
INTERNAL PULLUP  
PULLDOWN  
TYPE  
DESCRIPTION  
NAME  
RGE  
Differential input for SuperSpeed (SS) and SuperSpeedPlus (SSP) positive  
signals for Channel 1  
RX1P  
9
90Differential  
Input  
Differential input for SuperSpeed (SS) and SuperSpeedPlus (SSP) negative  
signals for Channel 1  
RX1N  
RX2P  
RX2N  
TX1P  
TX1N  
TX2P  
TX2N  
8
Differential input for SuperSpeed (SS) and SuperSpeedPlus (SSP) positive  
signals for Channel 2  
19  
20  
22  
23  
12  
11  
90Differential  
Input  
Differential input for SuperSpeed (SS) and SuperSpeedPlus (SSP) negative  
signals for Channel 2.  
Differential output for SuperSpeed (SS) and SuperSpeedPlus (SSP) positive  
signals for Channel 1.  
90Differential  
Output  
Differential output for SuperSpeed (SS) and SuperSpeedPlus (SSP) negative  
signals for Channel 1.  
Differential output for SuperSpeed (SS) and SuperSpeedPlus (SSP) positive  
signals for Channel 2.  
90Differential  
Output  
Differential output for SuperSpeed (SS) and SuperSpeedPlus (SSP) negative  
signals for Channel 2.  
CH1_EQ1. Configuration pin used to control Rx EQ level for RX1P/N. The state  
of this pin is sampled after the rising edge of EN. Refer to Figure 2 for details of  
timing. This pin along with CH1_EQ2 allows for up to 16 equalization settings.  
CH1_EQ1  
CH1_EQ2  
CH2_EQ1  
CH2_EQ2  
2
3
I (4-level)  
I (4-level)  
I (4-level)  
I (4-level)  
CH1_EQ2. Configuration pin used to control Rx EQ level for RX1P/N. The state  
of this pin is sampled after the rising edge of EN. Refer to Figure 2 for details of  
timing. This pin along with CH1_EQ1 allows for up to 16 equalization settings.  
PU (approx 45K)  
PD (approx 95K)  
CH2_EQ1. Configuration pin used to control Rx EQ level for RX2P/N. The state  
of this pin is sampled after the rising edge of EN. Refer to Figure 2 for details of  
timing. This pin along with CH2_EQ2 allows for up to 16 equalization settings.  
16  
17  
CH2_EQ2. Configuration pin used to control Rx EQ level for RX2P/N. The state  
of this pin is sampled after the rising edge of EN. Refer to Figure 2 for details of  
timing. This pin along with CH2_EQ1 allows for up to 16 equalization settings.  
4
Copyright © 2016–2019, Texas Instruments Incorporated  
TUSB1002  
www.ti.com.cn  
ZHCSF18E MAY 2016REVISED MAY 2019  
Pin Functions (continued)  
PIN  
INTERNAL PULLUP  
TYPE  
DESCRIPTION  
PULLDOWN  
NAME  
RGE  
EN. Places TUSB1002 into shutdown mode when asserted low. Normal  
operation when pin is asserted high. When in shutdown, TUSB1002’s receiver  
terminations will be high impedance and tx/rx channels will be disabled.  
EN  
5
I (2-level)  
PU (approx 400 K)  
CFG1. This pin along with CFG2 will select VOD linearity range and DC gain  
for both channels 1 and 2. The state of this pin is sampled after the rising edge  
of EN. Refer to Figure 2 for details of timing. Refer to Table 3 for VOD linearity  
range and DC gain options.  
CFG1  
4
I (4-level)  
I (4-level)  
PU (approx 45K)  
PD (approx 95K)  
CFG2. This pin along with CFG1 will set VOD linearity range and DC gain for  
both channels 1 and 2. The state of this pin is sampled after the rising edge of  
EN. Refer to Figure 2 for details of timing. Refer to Table 3 for VOD linearity  
range and DC gain options.  
CFG2  
15  
MODE. This pin is for selecting different modes of operation. The state of this  
pin is sampled after the rising edge of EN. Refer to Figure 2 for details of  
timing.  
PU (approx 45 K)  
PD (approx 95K)  
MODE  
7
I (4-level)  
0 = Test Mode. TI Internal Use Only.  
R = PCIe / Test Mode. PCIe Mode and TI Internal use only  
F = USB3.1 Dual Channel Operation enabled (TUSB1002 normal mode).  
1 = USB3.1 Single-channel operation.  
RSVD1. Under normal operation, this pin will be driven low by TUSB1002.  
Recommend leaving this pin unconnected on PCB.  
RSVD1  
24  
O
SLP_S0#. This pin when asserted low will disable Receiver Detect functionality.  
While this pin low and TUSB1002 is in U2/U3, TUSB1002 disables LOS and  
LFPS detection circuitry and Rx termination for both channels will remain  
enabled. If this pin is low and TUSB1002 is in Disconnect state, the Rx detect  
functionality is disabled and Rx termination for both channels will be disabled. If  
the system SoC does not support a GPIO that indicates system sleep state,  
then it is recommended to leave this pin unconnected.  
SLP_S0#  
14  
I (2-level)  
PU (approx 400 K)  
0 – Rx Detect disabled  
1 – Rx Detect enabled  
NC  
No Connect. Leave unconnected on PCB.  
3.3 V (±10%) Supply.  
VCC  
1, 13  
Power  
GND  
6, 10, 18,  
21  
GND  
Ground  
Thermal pad  
Thermal pad. Recommend connecting to a solid ground plane.  
Copyright © 2016–2019, Texas Instruments Incorporated  
5
TUSB1002  
ZHCSF18E MAY 2016REVISED MAY 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply Voltage Range(2), VCC  
–0.3  
4
V
Differential Voltage between RX1P/N and  
RX2P/N.  
±2.5  
V
IO Voltage Range  
Voltage at RX1P/N and RX2P/N.  
Voltage on Control IO pins  
–0.5  
–0.5  
VCC + 0.5  
VCC + 0.5  
105  
V
V
Maximum junction temperature, TJ  
Storage temperature, Tstg  
°C  
°C  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the GND terminal.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±6000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101  
or ANSI/ESDA/JEDEC JS-002(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. .  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
3.6  
50  
UNIT  
V
3.3 V Supply Voltage  
3
3.3  
VCC  
Supply Ramp requirement  
Supply Noise on VCC pins  
Operating free-air temperature  
ms  
mV  
°C  
V(PSN)  
TA  
100  
70  
0
6.4 Thermal Information  
TUSB1002  
THERMAL METRIC(1)  
RGE (VQFN)  
24 PINS  
38.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
41.6  
16.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.0  
ψJB  
16.4  
RθJC(bot)  
6.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Copyright © 2016–2019, Texas Instruments Incorporated  
TUSB1002  
www.ti.com.cn  
ZHCSF18E MAY 2016REVISED MAY 2019  
6.5 Electrical Characteristics, Power Supply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TUSB1002 power under normal operation  
in U0 operating a SuperSpeedPlus  
datarate with linear range set to 1200mV.  
At 10 Gbps; VCC supply stable; VCC = 3.3  
V; VOD = 1200 mVpp; Pattern = CP9  
P(U0_SSP_1200mV)  
P(U0_SSP_1000mV)  
P(U0_SSP_900mV)  
340  
mW  
TUSB1002 power under normal operation  
in U0 operating a SuperSpeedPlus  
datarate with linear range set to 1000mV.  
At 10 Gbps; VCC supply stable; VCC = 3.3  
V; VOD = 1000 mVpp; Pattern = CP9  
325  
298  
mW  
mW  
TUSB1002 power under normal operation  
in U0 operating a SuperSpeedPlus  
datarate with linear range set to 900mV.  
At 10 Gbps; VCC supply stable; VCC = 3.3  
V; VOD = 900 mVpp; Pattern = CP9  
TUSB1002 power under normal operation  
in U0 operating a SuperSpeed datarate.  
At 5 Gbps; VCC supply stable; VCC = 3.3 V;  
VOD = 1200 mVpp; Pattern = CP0.  
P(U0_SS_1200mV)  
P(U1)  
340  
340  
8
mW  
mW  
mW  
mW  
mW  
In U1; VCC supply stable; VCC = 3.3 V;  
VOD = 1200 mVpp  
TUSB1002 power when U1.  
Both channels 1 and 2 in U2/U3; VCC  
supply stable; VCC = 3.3 V;  
P(U2U3)  
TUSB1002 power when in U2/U3.  
TUSB1002 power when in U2/U3 and  
SLP_S0# is low.  
Both channels 1 and 2 in U2/U3; VCC  
supply stable; VCC = 3.3 V;  
P(U2U3_SLP)  
0.850  
2
P(DISCONNECT_NON TUSB1002 power when no USB device  
RX1 and RX2 termination disabled; VCC  
supply stable; VCC = 3.3 V  
detected on both TX1P/N or TX2P/N.  
E)  
TUSB1002 power when a USB device  
P(DISCONNECT_ONE  
Either RX1 or RX2 termination enabled  
both not both enabled; VCC supply stable;  
VCC = 3.3 V  
detected on either TX1P/N or TX2P/N but  
5
mW  
)
not both.  
TUSB1002 power when no USB device  
P(DISCONNECT_SLP) detected on either TX1P/N or TX2P/N and  
SLP_S0# is low..  
RX1 and RX2 termination disabled; VCC  
supply stable; VCC = 3.3 V  
0.850  
0.6  
mW  
mW  
TUSB1002 power when EN is asserted  
P(SHUTDOWN)  
VCC supply stable; VCC = 3.3 V, EN = 0  
low.;  
6.6 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
4-Level Inputs (MODE, CFG1, CFG2,CH1_EQ1, CH1_EQ2, CH2_EQ1, CH2_EQ2 )  
IIH  
High level input current  
Low level input current  
Threshold 0 / R  
VCC = 3.6 V; VIN = 3.6 V  
VCC = 3.6 V; VIN = 0 V  
20  
80  
μA  
μA  
V
IIL  
–160  
–40  
VTH  
0.55  
1.65  
2.8  
45  
Threshold R/ Float  
VCC = 3.3 V  
V
Threshold Float / 1  
V
RPU  
Internal pull-up resistance  
Internal pull-down resistance  
kΩ  
kΩ  
RPD  
95  
EN, SLP_S0# Input  
VIH  
VIL  
IIH  
High level input voltage  
Low level input voltage  
High level input current  
Low level input current  
VCC = 3. V  
1.7  
0
VCC  
0.7  
10  
V
VCC = 3.3 V  
V
VCC = 3.6 V, EN = 3.6 V  
VCC = 3.6 V, EN = 0 V  
–10  
–15  
µA  
µA  
kΩ  
IIL  
15  
Internal pull-up resistance for EN and  
SLP_S0#.  
400  
R(EN-PU)  
USB3.1 RECEIVER INTERFACE (RX1P/N AND RX2P/N)  
SDD11 10 MHz at 90 Ω  
SDD11 2 GHz at 90 Ω  
SDD11 5 – 10 GHz at 90 Ω  
0.5 – 5 GHz at 90 Ω  
–19  
–14  
–7  
dB  
dB  
dB  
dB  
RL(RX-DIFF)  
RX Differential return loss  
RL(RX-CM)  
X-TALK  
RX Common mode return loss  
–10  
Differential crosstalk between TX and  
RX signal pairs.  
-50  
dB  
EQ(GAIN-10Gbps)  
EQ(DC0)  
Equalization Gain  
50 mVpp At 5 GHz  
16  
dB  
dB  
500 mVpp VID at 100 MHz; 1200mV  
Linear Range Setting; Refer to Table 3  
-0.15  
DC Equalization Gain at 0dB setting.  
Copyright © 2016–2019, Texas Instruments Incorporated  
7
TUSB1002  
ZHCSF18E MAY 2016REVISED MAY 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
500 mVpp VID at 100 MHz; 1200mV  
Linear Range Setting;  
0.80  
dB  
EQ(DC1)  
EQ(DC2)  
EQ(DC-1)  
EQ(DC-2)  
DC Equalization Gain at +1dB setting.  
500 mVpp VID at 100 MHz; 1000mV  
Linear Range Setting;  
1.5  
–1.1  
dB  
dB  
dB  
DC Equalization Gain at +2dB setting.  
DC Equalization Gain at -1dB setting.  
DC Equalization Gain at -2dB setting.  
500 mVpp VID at 100 MHz; 1200mV  
Linear Range Setting;  
500 mVpp VID at 100 MHz; 1200mV  
Linear Range Setting;  
–2.05  
Input differential peak-peak voltage  
swing range.  
V(DIFF_IN)  
2000  
1.85  
mV  
V
V(RX-DC-CM)  
RX DC common mode voltage  
1.65  
18  
2.0  
30  
Measured at connector. Present when  
R(RX-CM-DC)  
Receiver DC common mode impedance SuperSpeed USB device detected on  
TXP/N  
Measured at connector. Present when  
SuperSpeed USB device detected on  
TXP/N; SLP_S0# = 1;  
R(RX-DIFF-DC)  
Receiver DC differential impedance  
72  
30  
120  
Measured at connector. Present when  
no SuperSpeed USB device detected  
on TXP/N or while VCC is ramping  
Z(RX-HIGH-IMP-DC-  
DC input CM input impedance when  
termination is disabled.  
KΩ  
mV  
POS)  
V(RX-  
Input differential peak-to-peak Signal  
Detect Assert level  
at 10 Gbps. No loss input channel and  
PRBS7 pattern  
92  
62  
SIGNAL_DET_DIFF-  
PP)  
V(RX-IDLE_DET_DIFF- Input differential peak-to-peak Signal  
at 10 Gbps. No loss input channel and  
PRBS7 pattern  
mV  
mV  
Detect De-assert Level  
PP)  
V(RX-LFPS-DET-DIFF- LFPS Detect threshold. Below min is  
Measured at connector. Below min is  
squelched  
100  
300  
noise.  
P-P)  
V(RX-CM-AC-P)  
Peak RX AC common mode voltage  
Rx Input capacitance for return loss  
Measured at package pin  
At package pin  
150  
0.5  
mV  
pF  
C(RX-PARASITIC)  
USB3.1 Transmitter Interface (TX1P/N and TX2P/N)  
SDD22 10MHz – 2 GHz at 90 Ω  
SDD22 5 GHz at 90 Ω  
–15  
–11  
–7  
dB  
dB  
dB  
dB  
RL(TX-DIFF)  
TX Differential return loss  
SDD22 5 - 10 GHz at 90 Ω  
0.05 – 5 GHz at 90 Ω  
RL(TX-CM)  
TX Common Mode return loss  
–9  
CFG1 pin = F or 1; Refer to Table 3  
Measured at -1dB compression point =  
20log (VOD/VOD_linear)  
Differential peak-to-peak TX voltage  
swing linear dynamic range  
V(TX-DIFF-PP_1200)  
1200  
1000  
900  
1450  
mV  
mV  
CFG1 pin = R; Refer to Table 3  
Measured at -1dB compression point =  
20log (VOD/VOD_linear)  
Differential peak-to-peak TX voltage  
swing linear dynamic range  
V(TX-DIFF-PP_1000)  
CFG1 pin = 0; Refer to  
Table 3Measured at -1dB compression  
point = 20log (VOD/VOD_linear)  
Differential peak-to-peak TX voltage  
swing linear dynamic range  
V(TX-DIFF-PP_900)  
mV  
mV  
mV  
The amount of voltage change allowed  
during Receiver Detection.  
V(TX-RCV-DETECT)  
600  
600  
Transmitter idle common-mode voltage  
V(TX-CM-IDLE-DELTA) change while in U2/3 and not actively  
transmitting LFPS.  
–600  
V(TX-DC-CM)  
TX DC common mode voltage  
1200mVpp Linear Range setting.  
At package pin.  
0
0
1.85  
2
V
V(TX-IDLE-DIFF-AC-  
AC Electrical Idle differential peak-to-  
peak output voltage  
10  
mV  
PP)  
DC Electrical Idle differential output  
voltage  
At package pin. After low pass filter to  
remove AC component.  
V(TX-IDLE-DIFF_DC)  
0
14  
80  
mV  
mV  
mV  
1200mVpp linear range; CHx_EQ  
setting matches input channel insertion  
loss;  
Transmitter AC common mode peak-  
peak voltage in U0  
V(TX-CM-AC-PP)  
V(TX-CM-DC-ACTIVE- Absolute DC common mode voltage  
At package pin.  
200  
between U1 and U0.  
IDLE-DELTA)  
I(TX-SHORT)  
R(TX-DC)  
TX short-circuit current limit  
106  
30  
mA  
TX DC common mode impedance  
At package pin  
18  
8
Copyright © 2016–2019, Texas Instruments Incorporated  
TUSB1002  
www.ti.com.cn  
ZHCSF18E MAY 2016REVISED MAY 2019  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
120  
0.7  
UNIT  
R(TX-DIFF-DC)  
TX DC differential impedance  
TX input capacitance for return loss  
72  
90  
C(TX-PARASTIC)  
At package pin  
pF  
External AC Coupling capacitor on  
differential pairs.  
C(AC-COUPLING)  
75  
265  
nF  
6.7 Power-Up Requirements  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
Internal Power Good asserted high when VCC  
is at 2.5 V  
µs  
td_pg  
See Figure 2  
5
tcfg_su  
CFG(1) pins setup before internal Reset(2) high See Figure 2  
0
s
tcfg_hd  
CFG(1) pins hold after internal Reset(2) high  
See Figure 2  
See Figure 2  
500  
µs  
ms  
tVCC_RAMP  
VCC supply ramp requirement  
50  
(1) Following pins comprise CFG pins: MODE, CFG1, CFG2, CH1_EQ1, CH1_EQ2, CH2_EQ1, and CH2_EQ2.  
(2) Internal reset is the AND of EN pin and internal Power Good.  
6.8 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
SuperSpeed (SS) and SuperSpeedPlus(SSP)  
tIDLEEntry  
Delay from U0 to electrical idle.  
See Figure 1  
See Figure 1  
150  
150  
ps  
ps  
U1 exit time: break in electrical idle to the  
transmission of LFPS.  
tIDLEExit_U1  
U2/U3 exit time: break in electrical idle to  
transmission of LFPS  
tIDLEExit_U2U3  
tDIFF-DLY  
See Figure 1  
EN = H  
2.3  
3.75  
150  
7
µs  
ps  
Differential propagation delay  
Time when VCC reach 2.5 V to device  
active and performing Rx.Detect.  
tPWRUPACTIVE  
ms  
6.9 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
USB3.1 Transmitter Interface (TX1P/N, TX2P/N)  
20% to 80% of differential output;  
1200mVpp linear range setting  
tTX-RISE-FALL  
tRF-MISMATCH  
tTX-DJ  
Transmitter rise/fall time  
40  
0.01  
0.08  
ps  
UI  
UI  
20% to 80% of differential output;  
1200mVpp linear range setting;  
1000mVpp VID;  
Transmitter rise/fall mismatch  
Residual deterministic jitter  
@10Gbps; 1200mVpp Linear  
Range Setting  
Copyright © 2016–2019, Texas Instruments Incorporated  
9
TUSB1002  
ZHCSF18E MAY 2016REVISED MAY 2019  
www.ti.com.cn  
SSRXP  
V
V
CM  
RX-LFPS-DET-DiFF-PP  
SSRXN  
T
T
IDLEENTRY  
IDLEEXIT  
SSTXP  
V
CM  
SSTXN  
Figure 1. Idle Entry and Exit Latency  
VCC  
T
d_pg  
Internal Power  
Good  
T
cfg_su  
Internal  
Reset  
EN pin  
T
cfg_hd  
CFG pins  
Figure 2. Power-Up Diagram  
10  
Copyright © 2016–2019, Texas Instruments Incorporated  
TUSB1002  
www.ti.com.cn  
ZHCSF18E MAY 2016REVISED MAY 2019  
6.10 Typical Characteristics  
VCC = 3.3V , 25°C, 200 mVpp VID sine wave, ZO = 100 Ω, RGE package  
20  
15  
10  
5
20  
15  
10  
5
EQ1_DC0_1200mV  
EQ3_DC0_1200mV  
EQ5_DC0_1200mV  
EQ7_DC0_1200mV  
EQ9_DC0_1200mV  
EQ11_DC0_1200mV  
EQ13_DC0_1200mV  
EQ2_DC0_1200mV  
EQ4_DC0_1200mV  
EQ6_DC0_1200mV  
EQ8_DC0_1200mV  
EQ10_DC0_1200mV  
EQ12_DC0_1200mV  
EQ14_DC0_1200mV  
0
0
-5  
-5  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Frequency (GHz)  
Frequency (GHz)  
D001  
D002  
Figure 3. 1200 mV DC0 Gain Odd EQ Settings Curves  
Figure 4. 1200 mV DC0 Even EQ Settings Curves  
20  
15  
10  
5
10  
EQ1_DC0_1000mV  
EQ3_DC0_1000mV  
EQ5_DC0_1000mV  
EQ7_DC0_1000mV  
EQ9_DC0_1000mV  
EQ11_DC0_1000mV  
EQ13_DC0_1000mV  
EQ1_DC0_1200mV  
EQ1_DC1_1200mV  
EQ1_DC-1_1200mV  
EQ1_DC-2_1200mV  
5
0
0
-5  
-5  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Frequency (GHz)  
Frequency (GHz)  
D003  
D004  
Figure 5. 1200 mV DC Gain Adjustments Curves  
Figure 6. 1000 mV DC0 Gain Odd EQ Settings Curves  
20  
15  
10  
5
10  
EQ2_DC0_1000mV  
EQ4_DC0_1000mV  
EQ6_DC0_1000mV  
EQ10_DC0_1000mV  
EQ12_DC0_1000mV  
EQ1_DC0_1000mV  
EQ1_DC2_1000mV  
EQ1_DC-1_1000mV  
5
0
0
-5  
-5  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Frequency (GHz)  
Frequency (GHz)  
D005  
D006  
Figure 7. 1000 mV DC0 Gain Even EQ Settings Curves  
Figure 8. 1000 mV DC Gain Adjustments Curves  
Copyright © 2016–2019, Texas Instruments Incorporated  
11  
TUSB1002  
ZHCSF18E MAY 2016REVISED MAY 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
VCC = 3.3V , 25°C, 200 mVpp VID sine wave, ZO = 100 Ω, RGE package  
20  
15  
10  
5
20  
15  
10  
5
EQ1_DC0_900mV  
EQ3_DC0_900mV  
EQ5_DC0_900mV  
EQ7_DC0_900mV  
EQ9_DC0_900mV  
EQ11_DC0_900mV  
EQ13_DC0_900mV  
EQ2_DC0_900mV  
EQ4_DC0_900mV  
EQ6_DC0_900mV  
EQ8_DC0_900mV  
EQ10_DC0_900mV  
EQ12_DC0_900mV  
EQ14_DC0_900mV  
0
0
-5  
-5  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Frequency (GHz)  
Frequency (GHz)  
D007  
D007  
Figure 9. 900 mV DC0 Gain Odd EQ Settings Curves  
Figure 10. 900 mV DC0 Gain Even EQ Settings Curves  
0
10  
5
EQ1_DC0_900mV  
EQ1_DC1_900mV  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0
-5  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Frequency (GHz)  
Frequency (GHz)  
D009  
D012  
Figure 11. 900 mV DC Gain Adjustment Curves  
Figure 12. SDD11 Return Loss  
0
-5  
1.6  
1.4  
1.2  
1
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0.8  
0.6  
0.4  
0.2  
0
DC0_EQ1_900mV  
DC0_EQ1_1000mV  
DC0_EQ1_1200mV  
0.01  
0.1  
1
10  
0
0.5  
1
1.5  
Frequency (GHz)  
VID (V)  
D013  
D010  
Figure 13. SDD22 Return Loss  
Figure 14. 5-GHz Sine Wave VID vs VOD Linearity Range  
Setting  
12  
Copyright © 2016–2019, Texas Instruments Incorporated  
TUSB1002  
www.ti.com.cn  
ZHCSF18E MAY 2016REVISED MAY 2019  
Typical Characteristics (continued)  
VCC = 3.3V , 25°C, 200 mVpp VID sine wave, ZO = 100 Ω, RGE package  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
DC0_EQ1_900mV  
DC0_EQ1_1000mV  
DC0_EQ1_1200mV  
0
0.5  
1
1.5  
VID (V)  
D011  
Figure 15. 100-MHz Sine Wave VID vs VOD Linearity Range Setting  
Copyright © 2016–2019, Texas Instruments Incorporated  
13  
TUSB1002  
ZHCSF18E MAY 2016REVISED MAY 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TUSB1002 is the industry’s first, dual lane USB 3.1 SuperSpeedPlus redriver. As signals traverse through a  
channel (like FR4 trace) the amplitude of the signal is attenuated. The attenuation varies depending on the  
frequency content of the signal. Depending the length of the channel this attenuation could be large enough  
resulting in signal integrity issues at a USB 3.1 receiver. By placing a TUSB1002 between USB3.1 host and  
device the attenuation effect of the channel can eliminated or minimized. The result is a USB3.1 compatible eye  
at the devices receiver. With up to 16 receiver equalization settings, the TUSB1002 can support many different  
channel loss combinations. The TUSB1002 offers low power consumption on a single 3.3 V supply with its ultra  
low power architecture. It supports the USB3.1 low power modes which further reduces idle power consumption.  
The TUSB1002 settings are configured through pins. In addition to equalization adjustment, the TUSB1002  
provides knobs for adjusting DC gain and voltage output linearity range.  
7.2 Functional Block Diagram  
3.3V (+/-10%)  
2.5V  
VCC  
Power  
Management  
1.2V  
PG  
GND  
VCC  
400K  
EN  
V
term  
50  
50  
VIterm  
RXTERM_EN  
TX1P  
TX1N  
RX1P  
RX1N  
TX  
RX  
TXEN1  
IDLE1  
RXDET1  
LFPS  
LOSZ1  
LFPS1  
Rx  
Detect  
LOS  
LFPS1  
LOSZ1  
MODE  
CFG1  
CFG2  
SLP_S0#  
Digital FSM  
CH1_EQ1  
CH1_EQ2  
RSVD1  
LFPS2  
LOSZ2  
CH2_EQ1  
CH2_EQ2  
V
term  
V
Iterm  
50  
50  
RXTERM_EN  
TX2P  
TX2N  
RX2P  
RX2N  
TX  
RX  
TXEN2  
IDLE2  
RXDET2  
LFPS  
LFPS2  
Rx  
Detect  
LOSZ2  
LOS  
Copyright © 2016, Texas Instruments Incorporated  
14  
Copyright © 2016–2019, Texas Instruments Incorporated  
TUSB1002  
www.ti.com.cn  
ZHCSF18E MAY 2016REVISED MAY 2019  
7.3 Feature Description  
7.3.1 4-Level Control Inputs  
The TUSB1002 has (MODE, CFG1, CFG2, CH1_EQ1, CH1_EQ2, CH2_EQ1, and CH2_EQ2) 4-level inputs pins  
that are used to control the equalization gain and the output voltage swing dynamic range. These 4-level inputs  
use a resistor divider to help set the 4 valid levels and provide a wider range of control settings. There is an  
internal 45 kpull-up and a 95 kpull-down. These resistors, together with the external resistor connection  
combine to achieve the desired voltage level.  
Table 1. 4-Level Control Pin Settings  
LEVEL  
SETTINGS  
Option 1: Tie 1 K5% to GND.  
Option 2: Tie directly to GND.  
0
R
F
Tie 20 K5% to GND.  
Float (leave pin open)  
Option 1: Tie 1 K5% to VCC  
.
1
Option 2: Tie directly to VCC  
.
NOTE  
In order to conserve power, the TUSB1002 disables 4-level input’s internal pull-up/pull-  
down resistors after the state of 4-level pins have been sampled on rising edge of EN. A  
change of state for any four level input pin is not applied to TUSB1002 until after EN pin  
transitions from low to high.  
7.3.2 Linear Equalization  
With a linear equalizer, the TUSB1002 can electrically shorten a particular channel allowing for longer run  
lengths.  
Figure 16. Linear Equalizer  
With a TUSB1002, the 28 in trace can be made to have similar insertion loss as the 12 inch trace.  
The receiver equalization level for each channel is determined by the state of the CHx_EQ1 and CHx_EQ2 pins,  
where x = 1 or 2.  
Copyright © 2016–2019, Texas Instruments Incorporated  
15  
TUSB1002  
ZHCSF18E MAY 2016REVISED MAY 2019  
www.ti.com.cn  
Table 2. EQ Configuration Options for 1200mV Linearity 0 dB DC Gain Setting  
EQ GAIN at 2.5GHz / 5  
GHz (dB)  
EQ SETTING #  
CHx_EQ2 PIN LEVEL  
CHx_EQ1 PIN LEVEL  
1
2
0
0
0
R
F
1
1.9 / 5.5  
2.8 / 7.1  
3
0
3.5 / 8.2  
4
0
4.4 / 9.3  
5
R
R
R
R
F
F
F
F
1
0
5.0 / 10.2  
5.8 / 11.1  
6.4 / 11.8  
7.1 / 12.6  
7.6 / 13.1  
8.2 / 13.8  
8.7 / 14.3  
9.2 / 14.8  
9.6 / 15.2  
10.1 / 15.6  
10.4 / 16.0  
10.6 / 16.3  
6
R
F
1
7
8
9
0
10  
11  
12  
13  
14  
15  
16  
R
F
1
0
1
R
F
1
1
1
7.3.3 Adjustable VOD Linear Range and DC Gain  
The CFG1 and CFG2 pins can be used to adjust the TUSB1002 output voltage swing linear range and receiver  
equalization DC gain. Table 3 details the available options.  
For best performance, the TUSB1002 should be operated within its defined VOD linearity range. The gain of the  
incoming VID should be kept to less than or equal to the TUSB1002 VOD linear range setting. The can be  
determined by Equation 1:  
VID at 5 GHz = VOD x (10 -(Gv/20)  
)
where  
Gv = TUSB1002 Gain and VOD = TUSB100 VOD linearity setting.  
(1)  
For example, for a VOD linearity range setting of 1200 mV, the maximum incoming VID signal at 5 GHz with a  
CHx_EQ[1:0] setting of 1 (5.5 dB) is 1200 x (10 -(5.5/20)) = 637 mVpp. The TUSB1002 can be operated outside its  
VOD linear range but jitter will be higher.  
Table 3. VOD Linear Range and DC Gain  
CH1 VOD LINEAR  
RANGE (mVpp)  
CH2 VOD LINEAR  
RANGE (mVpp)  
SETTING #  
CFG1 PIN LEVEL  
CFG2 PIN LEVEL  
CH1 DC GAIN (dB) CH2 DC GAIN (dB)  
1
2
0
0
0
R
F
1
+1  
0
0
+1  
0
900  
900  
900  
900  
3
0
0
900  
900  
4
0
+1  
0
+1  
0
900  
900  
5
R
R
R
R
F
F
F
F
1
0
1000  
1000  
1000  
1000  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1000  
1000  
1000  
1000  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
6
R
F
1
+1  
0
0
7
-1  
+2  
-1  
-2  
0
8
+2  
-1  
-2  
0
9
0
10  
11  
12  
13  
14  
15  
16  
R
F
1
+1  
-1  
0
+1  
0
0
1
R
F
1
-1  
+1  
0
1
0
1
+1  
16  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
 
TUSB1002  
www.ti.com.cn  
ZHCSF18E MAY 2016REVISED MAY 2019  
7.3.4 Receiver Detect Control  
The SLP_S0# pin offers system designers the ability to control the TUSB1002 Rx.Detect functionality during  
Disconnect and U2/U3 states and therefore achieving lower consumption in these states. When the system is in  
a low power state (Sx where x = 1, 2, 3, 4, or 5), system can assert SLP_S0# low to disable TUSB1002 receiver  
detect functionality. While SLP_S0# is asserted low and USB 3.1 interface is in U3, the TUSB1002 keeps  
receiver termination active. The TUSB1002 will not respond to any LFPS signaling while in this state. This means  
that system wake from U3 is not supported while SLP_S0# is asserted low. If the TUSB1002 is in Disconnect  
state when SLP_S0# is asserted low, then TUSB1002 disables both channels receiver termination. When  
SLP_S0# is asserted high, the TUSB1002 resumes normal operation of performing far-end receiver termination  
detection.  
7.3.5 USB3.1 Dual Channel Operation (MODE = “F”)  
The TUSB1002 in dual-channel operation waits for far-end terminations on both channels 1 and 2 before  
transitioning to fully active state (U0 mode). This mode of operation, defined as MODE pin = ‘F’, is the most  
common configuration for USB3.1 Source (DFP) and Sink (UFP) applications.  
7.3.6 USB3.1 Single Channel Operation (MODE = “1”)  
In some applications, like Type-C USB3.1 active cables, only one of the two channels may be active. For this  
application, setting MODE pin = ‘1’, enables single-channel operation. In this mode of operation, the TUSB1002  
attempts far-end termination on both channels 1 and 2. The channel which has a far-end termination detected  
will be enabled while the remaining channel will be disabled. If far-end termination is detected on both channels,  
then TUSB1002 behaves in dual channel operation (both channels enabled).  
7.3.7 PCIe/SATA/SATA Express Redriver Operation (MODE = “R”; CFG1 = "0"; CFG2 = "0" )  
The TUSB1002 can be used as a PCI Express (PCIe) Gen3, SATA Gen3, or SATA Express redriver. When  
TUSB1002's MODE pin = “R”, CFG1 pin = "0", and CFG2 pin = "0", the TUSB1002 will enable both channels  
(upstream and downstream) receiver and transmitter paths upon detecting far-end termination on both TX1 and  
TX2. Both upstream and downstream paths will remain enabled until EN pin is de-asserted low. All USB3.1  
power management functionality is disabled in this mode. In this mode the TUSB1002 is transparent to PCIe link  
power management (L0s, L1) and SATA interface power states. Once far-end termination is detected on both  
TX1 and TX2, the TUSB1002 power will be at P(U0_SSP_1200mV) regardless of the PCIe or SATA power state. To  
save power during system S3/S4/S5 states it is suggested to de-assert the EN pin to conserve power.  
7.4 Device Functional Modes  
7.4.1 Shutdown Mode  
The Shutdown mode is entered when EN pin is low and VCC is active and stable. This mode is the lowest power  
state of the TUSB1002. While in this mode, the TUSB1002 receiver terminations is disabled.  
7.4.2 Disconnect Mode  
Next to Shutdown Mode, the Disconnect mode is the lowest power state of the TUSB1002. The TUSB1002  
enters this mode when exiting Shutdown mode. In this state, the TUSB1002 periodically checks for far-end  
receiver termination on both SSTX1 and SSTX2. Upon detection of the far-end receiver’s termination on both  
ports, the TUSB1002 transitions to a fully active mode called U0 mode.  
When SLP_S0# is asserted low and the TUSB1002 is in Disconnect mode, the TUSB1002 remains in  
Disconnect mode and never perform far-end receiver detection. This allows even lower TUSB1002 power  
consumption while in the Disconnect mode. Once SLP_S0# is asserted high, the TUSB1002 again starts  
performing far-end receiver detection so it can know when to exit the Disconnect mode.  
7.5 U0 Mode  
The U0 mode is the highest power state of the TUSB1002. Anytime high-speed traffic (SuperSpeed or  
SuperSpeedPlus) is being received, the TUSB1002 remains in this mode. The TUSB1002 only exits this mode if  
electrical idle is detected on both SSRX1 and SSRX2. While in this mode, the TUSB1002 hs speed receivers  
and transmitters are powered and active.  
Copyright © 2016–2019, Texas Instruments Incorporated  
17  
TUSB1002  
ZHCSF18E MAY 2016REVISED MAY 2019  
www.ti.com.cn  
7.6 U1 Mode  
The U1 mode is the intermediate mode between U0 mode and U2/U3 mode. In U1 mode, the TUSB1002’s  
receiver termination remains enabled and the TXP/N DC common mode is maintained.  
7.7 U2/U3 Mode  
Next to the disconnect mode, the U2/U3 mode is next lowest power state. While in this mode, the TUSB1002  
periodically performs far-end receiver detection. Anytime the far-end receiver termination is not detected on  
either CH1 or CH2, the TUSB1002 leaves the U2/U3 mode and transition to the Disconnect mode. It also  
monitors the SSRX1 and SSRX2 for a valid LFPS. Upon detection of a valid LFPS, the TUSB1002 immediately  
transitions to the U0 mode.  
When SLP_S0# is asserted low and the TUSB1002 is in U2/U3 mode, the TUSB1002 remains in U2/U3 state  
and never perform far-end receiver detection. While in this state, the TUSB1002 ignores LFPS signaling. This  
allows even lower TUSB1002 power consumption while in the U2/U3 mode. Once SLP_S0# is asserted high, the  
TUSB1002 again starts performing far-end receive as well as monitor LFPS so it can know when to exit the  
U2/U3 mode.  
18  
Copyright © 2016–2019, Texas Instruments Incorporated  
TUSB1002  
www.ti.com.cn  
ZHCSF18E MAY 2016REVISED MAY 2019  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TUSB1002 is a linear redriver designed specifically to compensation for ISI jitter caused by attenuation  
through a passive medium like traces and cables. Because the TUSB1002 has two independent channels, it can  
be optimized to correct ISI in both the upstream and downstream direction through 16 different equalization  
choices. Placing the TUSB1002 between a USB3.1 Host/device controller and a USB3.1 receptacle can correct  
signal integrity issues resulting in a more robust system.  
8.2 Typical USB3.1 Application  
Downstream  
B
A
C
D
FR4 Trace  
of Length Y  
FR4 Trace  
of Length X  
C
C
C
C
RXP1  
TXP1  
TXN1  
+
-
+
-
+
RXN1  
-
TUSB1002  
USB 3.1  
Host  
C
C
C
C
TXP2  
TXN2  
RXP2  
RXN2  
+
-
+
-
+
-
Upstream  
Copyright © 2016, Texas Instruments Incorporated  
Figure 17. TUSB1002 in USB3.1 Host Application  
8.2.1 Design Requirements  
For this design example, use the parameters shown in Table 4.  
Table 4. Design Parameters  
PARAMETER  
VALUE  
VCC supply (3 V to 3.6 V)  
3.3 V  
MODE = F (Floating) for USB3.1 Dual Channel  
100 nF  
Mode of Operation (Dual or Half Channel)  
TX1, TX2, RX1 A/C coupling Capacitor (75 nF to 265 nF)  
RX2 A/C coupling Capacitor (297 nF to 363 nF)  
Suggest 330 nF ±10%  
RX2 pull-down resistors on USB receptacle side of AC capacitor  
(200K to 242K ohms)  
220k  
A to B FR4 Length (inches)  
A to B FR4 Trace Width (mils)  
8
4
C to D FR4 length (inches)  
2
C to D FR4 Trace Width (mils)  
USB3.1 Host Sleep GPIO Support  
DC Gain (-2, -1, 0, +1, +2)  
4
No (SLP_S0# pin floating)  
0 dB (CFG[2:1] pins floating)  
1200 mV (CFG[2:1] pins floating)  
Linear Range (900 mV, 1000 mV, or 1200 mV)  
Copyright © 2016–2019, Texas Instruments Incorporated  
19  
 
TUSB1002  
ZHCSF18E MAY 2016REVISED MAY 2019  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
The TUSB1002 differential receivers and transmitters have internal BIAS and termination. For this reason, the  
TUSB1002 must be connected to the USB3.1 host and receptacle through external A/C coupling capacitors. In  
this example as depicted in Table 4, 100 nF capacitors are placed on TX2P and TX2N, RX1P and RX1N, and  
TX1P and TX1N. 330 nF A/C coupling capacitors along with 220k resistors are placed on the RX2P and RX2N.  
Inclusion of these 330nF capacitors and 220k resistors is optional but highly recommended. If not implemented,  
then RX2P/N should be DC-coupled to the USB receptacle.  
CH2_EQ2  
CH2_EQ1  
USB_VBUS  
CFG2  
J1  
VCC_3P3V  
1
VBUS  
2
DM  
HOST_DM  
HOST_DP  
3
4
U1  
DP  
GND  
C12  
C13  
TX2P  
RX2P  
C1  
C2  
19  
20  
21  
12  
11  
SSRXN  
HOST_RXP  
HOST_RXN  
330nF  
330nF  
100nF  
100nF  
CONNECT TO  
USB3.1 HOST  
RX2N  
GND  
6
7
8
9
TX2N  
GND  
SSRXP  
GND  
10  
9
C3  
C5  
C4  
C6  
TUSB1002  
24-PIN RGE  
HOST_TXP  
HOST_TXN  
SSTXN  
22  
23  
TX1P  
TX1N  
RX1P  
RX1N  
100nF  
100nF  
100nF  
100nF  
5
SSTXP  
8
10  
11  
SHIELD0  
SHIELD1  
24  
25  
MODE  
7
RSVD1  
GND  
R16  
220k  
R15  
220k  
VCC_3P3V  
VCC_3P3V  
1
2
3
4
5
6
USB3_TYPEA_CONNECTER  
R2  
DNI  
C7  
100nF  
VCC_3P3V  
C8  
0.001uF  
C11  
100nF  
R1  
1M  
C10  
C9  
10uF  
100nF  
CFG1  
CH1_EQ2  
CH1_EQ1  
Copyright © 2016, Texas Instruments Incorporated  
Figure 18. Host Implementation Schematic  
The USB3.1 Dual channel operation is used in this example. Mode pin should be left floating (unconnected)  
when using this mode.  
In this example, the USB3.1 Host does not support a GPIO for indicating system Sx state or low power states  
and therefore the SLP_S0# pin can be left floating.  
The TUSB1002 compensates for channel loss in both the upstream (D to C) and downstream direction (A to B).  
This is done by configuring the CH1_EQ[2:1] and CH2_EQ[2:1] pins to the equalization setting that matches as  
close possible to the channel insertion loss. In this particular example, CH1_EQ[2:1] is for path A to B which is  
the channel between USB3.1 host and the TUSB1002, and CH2_EQ[2:1] is for path C to D which is the channel  
between TUSB1002 and the USB3.1 receptacle.  
The TUSB1002 supports 5 levels of DC gain that are selected by the CFG[2:1] pins. Typically, the DC gain  
should be set to 0 dB but may need to be adjusted to correct any one of the following conditions:  
1. Input VID too high resulting in VOD being greater than USB 3.1 defined swing. For this case, a negative DC  
gain should be used.  
2. Input VID too low resulting in VOD being less than USB 3.1 defined swing. For this case, a positive DC gain  
should be used.  
3. Low frequency discontinuities in the channel resulting in DC component of the signal clipping the vertical eye  
mask. For this case, a positive DC gain should be used.  
It is assumed in this example the incoming VID is at the nominal defined USB3.1 range and the channel is linear  
across frequency. The CFG1 and CFG2 pins can both be left floating if these assumptions are true.  
20  
Copyright © 2016–2019, Texas Instruments Incorporated  
TUSB1002  
www.ti.com.cn  
ZHCSF18E MAY 2016REVISED MAY 2019  
In this particular example, the channel A-B has a trace length of 8 inches with a 4 mil trace width. This particular  
channel has about 0.83 dB per inch of insertion loss at 5 GHz. This equates to approximately 6.7 dB of loss for  
the entire 8 inches of trace. An additional 1.5 dB of loss is added due to package of the USB3.1 Host,  
TUSB1002, and the A/C coupling capacitor. This brings the entire channel loss at 5 GHz to 6.7 dB + 1.5 dB = 8.2  
dB. A typical USB 3.1 host/device will have around 3 dB of transmitter de-emphasis. Transmitter de-emphasis  
pre-compensates for the loss of the output channel. With 3 dB of de-emphasis, the total equalization required by  
the TUSB1002 is in the 5.2 dB (8.2 dB - 3 dB) range. The channel A-B for this example is connected to  
TUSB1002's RX1P/N input and therefore CH1_EQ[2:1] pins are used for adjusting TUSB1002 RX1P/N  
equalization settings. The CH1_EQ[2:1] pins should be set such that TUSB1002 equalization is between 5dB  
and 8dB.  
The channel C-D has a trace length of 4 inches with a 4mil trace width. Assuming 0.83 dB per inch of insertion  
loss, the 4 inch trace will equate to about 3.32 dB of loss at 5 GHz. An additional 2dB of loss needs to be added  
due to package, A/C coupling capacitor, and the USB 3.1 receptacle. The total loss is around 5.32 dB. Because  
channel C-D includes a USB 3.1 receptacle, the actual total loss could be much greater than 5.32dB due to the  
fact that devices plugged into the receptacle will also have loss. The device plugged into receptacle will have  
either a short or long channel. USB3.1 standard defines total loss limit of 23dB that is distributed as 8.5 dB for  
Host, 8.5dB for device, and 6.0dB for cable. With variable channel of devices plugged into the USB3.1  
receptacle, configuring TUSB1002's RX2P/N equalization settings is not as straight forward as Channel A-B.  
Engineer can not set TUSB1002 CH2_EQ[2:1] pins to the largest equalization setting to accommodate the  
largest allowed USB3.1 device/cable loss of 14.5 dB. Doing so will result in TUSB1002 operating outside its  
linear range when a device with short channel is plugged into the receptacle. For this reason, it is recommended  
to configure TUSB1002 CH2_EQ[2:1] pins to equalize a shorter device channel. This will result in requiring  
USB3.1 host to compensate for remaining channel loss for the worse case USB3.1 channel of 14.5 dB. The  
definition of a short device channel is not specified in USB 3.1 specification. Therefore, an engineer must make  
their own loss estimate of what constitutes a short device channel. For particular example, we will assume the  
short channel is around 3 to 5 dB. The device's channel loss will need to be added to estimated Channel C-D  
loss minus the typical 3db of de-emphasis. This means CH2_EQ[2:1] pins should be configured to handle a loss  
of 5 to 7 db.  
8.2.3 Application Curves  
0
-5  
-10  
-15  
-20  
-25  
-30  
0
2
4
6
8
10  
12  
14  
16  
18 20  
Frequency (GHz)  
D100  
Freq = 5 GHz  
dB(SDD21) = –6.666  
Figure 19. Insertion Loss for 8inch 4 mil FR4 Trace  
Copyright © 2016–2019, Texas Instruments Incorporated  
21  
 
TUSB1002  
ZHCSF18E MAY 2016REVISED MAY 2019  
www.ti.com.cn  
8.3 Typical SATA, PCIe and SATA Express Application  
Downstream  
A
B
C
D
FR4 trace  
FR4 trace  
of length X  
of length Y  
RXP2  
TXP2  
+
-
+
-
+
-
+
-
TXN2  
RXN2  
SATA/PCIe/  
SATA Express  
Host  
SATA/PCIe/  
SATA Express  
Device  
TUSB1002  
RXP1  
RXN1  
TXP1  
TXN1  
+
-
+
-
+
-
+
-
Upstream  
Copyright © 2017, Texas Instruments Incorporated  
Figure 20. SATA/PCIe/SATA Express Typical Application  
8.3.1 Design Requirements  
Table 5. Design Parameters  
PARAMETER  
VALUE  
3.3 V  
Yes  
VCC supply (3 V to 3.6 V)  
PCIe Support Required (Yes/No)  
SATA Express Support Required (Yes/No)  
Yes  
Yes, then ferrite beads (FB1 and FB2) and 49.9-ohm required.  
No, then ferrite bead (FB1 and FB2) and 49.9-ohm not required.  
SATA Support Required (Yes/No)  
TX1, TX2, RX2 A/C coupling Capacitor (176 nF to 265 nF)  
RX1 A/C coupling Capacitor (297 nF to 363 nF)  
A to B FR4 Length (inches)  
220 nF ±10%  
Optional. But if implemented suggest 330 nF ±10%  
8
4
2
4
A to B FR4 Trace Width (mils)  
C to D FR4 length (inches)  
C to D FR4 Trace Width (mils)  
This feature not supported when MODE = "R", CFG1 = "0", and  
CFG2 = "0".  
USB3.1 Host Sleep GPIO Support  
DC Gain (-2, -1, 0, +1, +2)  
Not configurable when MODE = "R", CFG1 = "0", and CFG2 = "0".  
Will always default to 0 dB  
Not configurable when MODE = "R", CFG1 = "0", and CFG2 = "0".  
Will always default to 1200mV  
Linear Range (900 mV, 1000 mV, or 1200 mV)  
8.3.2 Detailed Design Procedure  
The MODE pin = "R", CFG1 = "0", and CFG2 = "0" will place the TUSB1002 into PCIe mode. In this mode, the  
TUSB1002 will have its DC gain fixed at 0dB and its linearity range fixed at 1200mV. The TUSB1002 will perform  
far-end receiver termination detection and enable both upstream and downstream paths when far-end  
termination is detected on both TX1 and TX2.  
The AC coupling capacitor range defined for a SATA device is a lot smaller than the AC-coupling capacitor range  
defined for SATA Express and PCI Express (PCIe) as indicated by Figure 21. The AC-coupling capacitor range  
defined for SATA Express and PCI Express is within the same range as the AC-coupling capacitor range defined  
by USB 3.1. The TUSB1002 will be able to detect PCIe and SATA Express device's receiver termination. But the  
SATA's 12nF (max) AC-coupling capacitor will prevent TUSB1002 from detecting the SATA device's receiver  
termination. To correct this problem, a ferrite bead along with 49.9 ohm resistor must be placed between CTX2  
and miniCard/mSATA socket. These components can be isolated from the high-speed channel when PCIe or  
22  
Copyright © 2016–2019, Texas Instruments Incorporated  
TUSB1002  
www.ti.com.cn  
ZHCSF18E MAY 2016REVISED MAY 2019  
SATA Express is active by using an NFET as shown in Figure 22. The NFET should be enabled whenever a  
SATA device is present. The ferrite bead chosen must present at least 600 ohms impedance at 100MHz so as to  
not impact high-speed signalling. It is recommended to use Murata BLM03AG601SN1 or BLM03HD601SN1D or  
a ferrite bead with similar characteristics from a different vendor. For applications which only require support for  
PCIe and SATA Express and do not need to support SATA, the ferrite beads and 49.9 ohm resistors are not  
needed.  
12nF (max)  
176nF t 265nF  
+
-
+
-
+
-
SATA  
Express  
Device  
SATA  
Device  
PCIe  
Device  
+
-
+
-
+
-
75nF t 265nF  
Copyright © 2017, Texas Instruments Incorporated  
Figure 21. AC-Coupling capacitor Implementation for SATA, SATA Express, and PCIe Devices  
The TUSB1002's power will be at P(U0_SSP_1200mV) when both its upstream and downstream paths are enabled. In  
order to save system power in system S3/S4/S5 states, it is suggested to control TUSB1002's EN pin. Anytime  
the system enters a low power state (S3, S4, or S5), it is suggested to de-assert the EN pin. While EN pin is de-  
asserted, the TUSB1002 will consume P(SHUTDOWN). Assertion of this pin is necessary anytime the system exits a  
lower power state.  
The TUSB1002 compensates for channel loss in both the upstream (C to D) and downstream direction (A to B).  
This is done by configuring the CH1_EQ[2:1] and CH2_EQ[2:1] pins to the equalization setting that matches as  
close possible to the channel insertion loss. In this particular example, CH2_EQ[2:1] is for path A to B which is  
the channel between PCIe/SATA/SATA Express host and the TUSB1002, and CH1_EQ[2:1] is for path C to D  
which is the channel between TUSB1002 and the miniCard/mSATA socket.  
In this particular example, the channel A-B has a trace length of 8 inches with a 4 mil trace width. This particular  
channel has about 0.83 dB per inch of insertion loss at 5 GHz. This equates to approximately 6.7 dB of loss for  
the entire 8 inches of trace as depicted in Figure 19. An additional 1.5 dB of loss is added due to package of the  
PCIe/SATA/SATA Express Host, TUSB1002, and the A/C coupling capacitor. This brings the entire channel loss  
at 5 GHz to 6.7 dB + 1.5 dB = 8.2 dB. The channel A-B for this example is connected to TUSB1002 RX2P/N  
input and therefore CH2_EQ[2:1] pins are used for adjusting TUSB1002 RX2P/N equalization settings. The  
CH2_EQ[2:1] pins should be set such that TUSB1002 equalization is between 5dB and 8dB. A value closer to 5  
dB maybe best if Host has transmitter de-emphasis.  
A similar method should be used for the upstream path (C to D). In this particular example, C to D has a trace  
length of 2 inches with a 4-mil trace width. This equates to approximately 1.5 dB at 5 GHz. The SATA/SATA  
Express/PCIe device will have its own channel loss. This loss can be added to the C to D channel loss. For this  
example, we will assume a value of 5dB is acceptable to compensate for C to D channel loss as well as loss  
associated with the SATA/SATA Express/PCIe device. The CH1_EQ[2:1] pins should be set such that  
TUSB1002 equalization is 5dB.  
Copyright © 2016–2019, Texas Instruments Incorporated  
23  
TUSB1002  
ZHCSF18E MAY 2016REVISED MAY 2019  
www.ti.com.cn  
VCC (3.3V)  
VCC (3.3V)  
REQ2A  
REQ2B  
100nF  
10 µF  
100nF  
VCC (3.3V)  
REQ2C  
REQ2D  
SATA_EN  
10YQ  
49.9Q  
49.9Q  
FB2  
FB1  
CRX2  
CTX2  
TX2P  
TX2N  
GND  
RX1P  
RX1N  
MODE  
RX2P  
RX2N  
GND  
TX1P  
TX1N  
RSVD1  
+
-
SATA/PCIe/  
SATA Express  
Host  
TUSB1002  
+
-
CRX1  
CTX1  
20YQ  
VCC (3.3V)  
0-Q  
GPIO (S3/S3/S5 indicator)  
REQ1A  
REQ1B  
VCC (3.3V)  
REQ1C  
REQ1D  
Copyright © 2017, Texas Instruments Incorporated  
Figure 22. Example SATA/PCIe/SATA Express Schematic  
24  
Copyright © 2016–2019, Texas Instruments Incorporated  
TUSB1002  
www.ti.com.cn  
ZHCSF18E MAY 2016REVISED MAY 2019  
8.3.3 Application Curves  
Figure 23. PCIe Gen1 TX Eye Diagram  
Figure 24. PCIe Gen 3 TX Eye Diagram  
9 Power Supply Recommendations  
The TUSB1002 has two VCC supply pins. It is recommended to place a 100 nF de-coupling capacitor near each  
of the VCC pins. It is also recommended to have at least one bulk capacitor of at least 10 µF on the VCC plane  
near the TUSB1002.  
10 Layout  
10.1 Layout Guidelines  
RXP/N and TXP/N pairs should be routed with controlled 90-Ω differential impedance (±15%).  
Keep away from other high speed signals.  
Intra-pair routing should be kept to within 2 mils.  
Length matching should be near the location of mismatch  
Each pair should be separated at least by 3 times the signal trace width.  
The use of bends in differential traces should be kept to a minimum. When bends are used, the number of left  
and right bends should be as equal as possible and the angle of the bend should be 135 degrees. This  
minimizes any length mismatch causes by the bends; ad therefore, minimize the impact bends have on EMI.  
Route all differential pairs on the same of layer.  
The number of VIAS should be kept to a minimum. It is recommended to keep the VIAS count to 2 or less.  
Keep traces on layers adjacent to ground plane.  
Do NOT route differential pairs over any plane split.  
Adding Test points causes impedance discontinuity; and therefore, negatively impact signal performance. If  
test points are used, they should be placed in series and symmetrically. They must not be placed in a manner  
that causes a stub on the differential pair.  
Copyright © 2016–2019, Texas Instruments Incorporated  
25  
TUSB1002  
ZHCSF18E MAY 2016REVISED MAY 2019  
www.ti.com.cn  
10.2 Layout Example  
Example 4 layer PCB Stackup  
Top Layer 1 (Signal)  
Inner Layer 2 (GND)  
Inner Layer 3 (VCC)  
Bottom Layer 4 (Signal)  
Place near TUSB1002.  
Via to layer 2 (GND)  
Via to layer 3 (VCC)  
Place near TUSB1002  
or USB 3.1 receptacle  
18  
13  
19  
12  
24  
7
Place near TUSB1002  
or USB 3.1 receptacle  
1
6
Place near TUSB1002.  
Figure 25. Example Layout  
26  
版权 © 2016–2019, Texas Instruments Incorporated  
TUSB1002  
www.ti.com.cn  
ZHCSF18E MAY 2016REVISED MAY 2019  
11 器件和文档支持  
11.1 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.2 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016–2019, Texas Instruments Incorporated  
27  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TUSB1002RGER  
TUSB1002RGET  
ACTIVE  
VQFN  
VQFN  
RGE  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
0 to 70  
0 to 70  
TUSB  
1002  
ACTIVE  
RGE  
NIPDAU  
TUSB  
1002  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-May-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TUSB1002RGER  
TUSB1002RGET  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-May-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TUSB1002RGER  
TUSB1002RGET  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGE 24  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4204104/H  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
A
4.1  
3.9  
B
4.1  
3.9  
PIN 1 INDEX AREA  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
ꢀꢀꢀꢀꢁꢂꢃ“ꢄꢂꢅ  
(0.2) TYP  
2X 2.5  
12  
7
20X 0.5  
6
13  
25  
2X  
SYMM  
2.5  
1
18  
0.30  
PIN 1 ID  
(OPTIONAL)  
24X  
0.18  
24  
19  
0.1  
0.05  
C A B  
C
SYMM  
0.48  
0.28  
24X  
4219016 / A 08/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
2.7)  
(
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
25  
SYMM  
(3.825)  
2X  
(1.1)  
ꢆ‘ꢄꢂꢁꢇꢀ9,$  
TYP  
6
13  
(R0.05)  
7
12  
2X(1.1)  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219016 / A 08/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
4X ( 1.188)  
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
SYMM  
(3.825)  
(0.694)  
TYP  
6
13  
25  
(R0.05) TYP  
METAL  
TYP  
7
12  
(0.694)  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
78% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4219016 / A 08/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TUSB1002RMQR

USB3.1 10Gbps Dual Channel Linear Redriver 24-WQFN 0 to 70
TI

TUSB1004

10 Gbps USB 3.2 4 通道自适应线性转接驱动器
TI

TUSB1004IRNQR

10 Gbps USB 3.2 4 通道自适应线性转接驱动器 | RNQ | 40 | -40 to 85
TI

TUSB1004IRNQT

10 Gbps USB 3.2 4 通道自适应线性转接驱动器 | RNQ | 40 | -40 to 85
TI

TUSB1004RNQR

10 Gbps USB 3.2 4 通道自适应线性转接驱动器 | RNQ | 40 | 0 to 70
TI

TUSB1004RNQT

10 Gbps USB 3.2 4 通道自适应线性转接驱动器 | RNQ | 40 | 0 to 70
TI

TUSB1042I

10Gbps USB Type-C 2:1 线性转接驱动器开关
TI

TUSB1042IRNQR

10Gbps USB Type-C 2:1 线性转接驱动器开关 | RNQ | 40 | -40 to 85
TI

TUSB1042IRNQT

10Gbps USB Type-C 2:1 线性转接驱动器开关 | RNQ | 40 | -40 to 85
TI

TUSB1044

USB TYPE-C™ 10Gbps 多协议双向线性转接驱动器
TI

TUSB1044IRNQR

USB TYPE-C™ 10Gbps 多协议双向线性转接驱动器 | RNQ | 40 | -40 to 85
TI

TUSB1044IRNQT

USB TYPE-C™ 10Gbps 多协议双向线性转接驱动器 | RNQ | 40 | -40 to 85
TI