TUSB1004IRNQT [TI]

10 Gbps USB 3.2 4 通道自适应线性转接驱动器 | RNQ | 40 | -40 to 85;
TUSB1004IRNQT
型号: TUSB1004IRNQT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

10 Gbps USB 3.2 4 通道自适应线性转接驱动器 | RNQ | 40 | -40 to 85

驱动 驱动器
文件: 总53页 (文件大小:2172K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TUSB1004  
ZHCSMM7 APRIL 2022  
TUSB1004 USB 3.2 10 Gbps 四通道自适应线性转接驱动器  
1 特性  
说明  
TUSB1004 是一款 10 Gbps USB 3.2 四通道线性转接  
驱动器适用于 USB Type-A 应用。TUSB1004 用于  
驻留在主机和 USB 插座之间或 USB 器件和 USB 插座  
之间。TUSB1004 支持第 2 USB 3.2 (10 Gbps) 和  
1 USB 3.2 (5 Gbps) 以及 USB 3.2 低功耗状态  
断开、U1U2 U3。  
USB 3.2 5 Gbps 10 Gbps 支持  
– 两个独立USB 3.2 端口  
• 高USB 电源管理  
– 有源550 mW典型值)  
– 断开1.7 mW  
– 已禁(EN = L)0.130 mW  
16 EQ 设置5 GHz 下高12 dB  
• 为面USB 连接器的端口选择自适应或固定接收器  
均衡  
TUSB1004 具有创新的自适应接收器均衡 (AEQ) 功  
能。AEQ 功能将自动确定其认为的 TUSB1004 和插入  
USB 连接器的 USB 器件之间的最优 ISI 补偿设置从  
而提高互操作性。  
• 为面向系统的端口选择线性或限幅转接驱动器  
SSRX 1/2 变送器)  
TUSB1004 3.3V 单电源供电运行并采用 40 引脚  
WQFN 封装。  
• 低1V VTX-CM VRX-CM  
• 通I2C 或引脚搭接进行配置  
1.8V 3.3V I2C 电平之间进行选择  
3.3V 单电源供电运行  
器件信息(1)  
器件型号  
TUSB1004  
封装  
WQFN (40)  
封装尺寸标称值)  
4.00mm × 6.00mm  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
笔记本电脑和台式机  
扩展坞  
数据存储  
空白  
联网外设和打印机  
USB 3.2 Host  
TUSB1004  
TXp  
TXn  
SSTX2P  
SSTX2n  
CTX2p  
CTX2n  
SSTX2p  
SSTX2n  
RXp  
RXn  
SSRX2p  
SSRX2n  
CRX2p  
CRX2n  
SSRX2p  
SSRX2n  
CTX1p  
CTX1n  
TXp  
TXn  
SSTX1p  
SSTX1n  
SSTX1p  
SSTX1n  
CRX1p  
CRX1n  
RXp  
RXn  
SSRX1p  
SSRX1n  
SSRX1p  
SSRX1n  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFL3  
 
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
Table of Contents  
7.6 Register Map.............................................................31  
8 Application and Implementation..................................41  
8.1 Application Information............................................. 41  
9 Typical Application........................................................41  
10 Design Requirements..................................................42  
11 Detailed Design Procedure.........................................42  
11.1 USB SSTX1/2 Receiver Configuration....................44  
11.2 USB CRX1/2 Receiver Configuration......................44  
12 Application Curves......................................................45  
13 Power Supply Recommendations..............................45  
14 Layout...........................................................................45  
14.1 Layout Guidelines................................................... 45  
14.2 Layout Example...................................................... 46  
15 Device and Documentation Support..........................47  
15.1 接收文档更新通知................................................... 47  
15.2 支持资源..................................................................47  
15.3 Trademarks.............................................................47  
15.4 Electrostatic Discharge Caution..............................47  
15.5 术语表..................................................................... 47  
16 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 Revision History.............................................................. 2  
4 Pin Configuration and Functions...................................3  
5 Specifications.................................................................. 6  
5.1 Absolute Maximum Ratings........................................ 6  
5.2 ESD Ratings............................................................... 6  
5.3 Recommended Operating Conditions.........................6  
5.4 Thermal Information....................................................6  
5.5 Power Supply Characteristics.....................................7  
5.6 Control I/O DC Electrical Characteristics....................7  
5.7 USB Electrical Characteristics.................................... 9  
5.8 Timing Requirements................................................ 11  
5.9 Switching Characteristics..........................................12  
5.10 Typical Characteristics............................................13  
6 Parameter Measurement Information..........................15  
7 Detailed Description......................................................18  
7.1 Overview...................................................................18  
7.2 Functional Block Diagram.........................................19  
7.3 Feature Description...................................................20  
7.4 Device Functional Modes..........................................24  
7.5 Programming............................................................ 26  
Information.................................................................... 47  
3 Revision History  
DATE  
REVISION  
NOTES  
April 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TUSB1004  
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
4 Pin Configuration and Functions  
CTX2p  
CTX2n  
9
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
SSTX2p  
SSTX2n  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
CEQ0  
CRX2p  
CRX2n  
SSRX2p  
SSRX2n  
VIO_SEL  
SSTX1p  
SSTX1n  
MODE  
SSEQ0/A0  
CTX1p  
CTX1n  
NC  
Thermal  
pad  
SSRX1p  
SSRX1n  
VCC  
CRX1p  
CRX1n  
CEQ1  
Not to scale  
4-1. TUSB1004 RNQ Package, 40-Pin WQFN (Top View)  
4-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
VCC  
1
P
3.3 V supply  
In I2C mode, this pin along with A0 pin selects the 7-bit I2C target address (refer to 7-7).  
In pin-strap mode, this pin along with SSEQ0 selects the receiver EQ for SSTX1 and/or  
SSTX2 (refer to 7-3).  
4-level I  
(PU/PD)  
SSEQ1/A1  
EQCFG  
2
3
In pin-strap mode, this controls how CEQ[1:0] pins and SSEQ[1:0] are used. Refer to 节  
7.4.2 for details. In I2C mode, this pin is for TI internal test and must be left floating for  
normal operation.  
4-level I  
(PU/PD)  
SLP_S0#  
4
SLP_S0#. This pin will control whether or not Rx.Detect function is enabled. If this pin is  
low and device is in Disconnect state, Rx termination will be disabled. If this pin is low and  
device is U2/U3 state, Rx termination will be enabled.  
1: Rx.Detect Enabled.  
I
(PU)  
0: Rx.Detect Disabled.  
NC  
5
6
7
8
No internal connection.  
VCC  
P
O
O
3.3 V supply  
TESTOUT1  
TESTOUT2  
For internal TI test only. For normal operation this pin should be left unconnected.  
For internal TI test only. For normal operation this pin should be left unconnected.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TUSB1004  
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
4-1. Pin Functions (continued)  
PIN  
NAME  
TYPE(1)  
DESCRIPTION  
NO.  
SSTX2p  
9
Differential positive input for USB port 2. Should be connected to USB 3.2 Host transmit  
port through an external 220 nF AC-coupling capacitor.  
I
I
SSTX2n  
10  
Differential positive input for USB port 2. Should be connected to USB 3.2 Host transmit  
port through an external 220 nF AC-coupling capacitor.  
NC  
11  
12  
No internal connection.  
SSRX2p  
Differential positive output for USB port 2. Should be connected to USB 3.2 Host receiver  
port through an external 220 nF AC-coupling capacitor.  
O
O
SSRX2n  
VIO_SEL  
13  
14  
Differential negative output for USB port 2. Should be connected to USB 3.2 Host receiver  
port through an external 220 nF AC-coupling capacitor.  
Selects the input thresholds for I2C (SDA and SCL).  
"0": I2C 3.3 V  
"R": I2C 1.8 V  
"F": I2C 3.3 V.  
"1": I2C 1.8 V.  
4-level I  
(PU/PD)  
SSTX1p  
SSTX1n  
MODE  
15  
16  
17  
18  
19  
Differential positive input for USB port 1. Should be connected to USB 3.2 Host transmit  
port through an external 220 nF AC-coupling capacitor.  
I
I
Differential negative input for USB port 1. Should be connected to USB 3.2 Host transmit  
port through an external 220 nF AC-coupling capacitor.  
This pin selects whether device is in I2C mode or pin-strap mode. Refer to 7-4 for  
details.  
4-level I  
(PU/PD)  
SSRX1p  
SSRX1n  
Differential positive output for USB port 1. Should be connected to USB 3.2 Host receiver  
port through an external 220 nF AC-coupling capacitor.  
O
Differential negative output for USB port 1. Should be connected to USB 3.2 Host receiver  
port through an external 220 nF AC-coupling capacitor.  
O
P
VCC  
20  
21  
3.3 V supply  
TEST2/SCL  
In I2C mode, this pin functions as I2C clock.  
I
In pin-strap mode, this pin is used for TI internal test and should be pull-down or tied to  
GND for normal operation.  
AEQENZ/SDA  
AEQCFG  
22  
23  
In I2C mode, this pin functions as I2C data. In pin-strap mode, this pin controls whether or  
not AEQ is enabled.  
0: AEQ enabled  
1: AEQ disabled  
I/O  
In pin-strap mode, this pin controls the FULLAEQ_UPPER_EQ limit. In I2C mode, this  
function is controlled by the FULLAEQ_UPPER_EQ register.  
"0": FULLAEQ_UPPER_EQ = Ah  
4-level I  
(PU/PD)  
"R": FULLAEQ_UPPER_EQ = Fh  
"F": FULLAEQ_UPPER_EQ = 8h  
"1": FULLAEQ_UPPER_EQ = Ch  
NC  
NC  
EN  
24  
25  
26  
No internal connection  
No internal connection  
When low, the differential receiver's termination will be disabled and differential drivers will  
be disabled. On rising edge of EN, device will sample four-level inputs and function based  
on the sampled state of the pins. This pin has a internal 500k pull-up to VCC. Please note  
this pin will also reset internal configuration registers.  
I
(PU)  
TEST1  
VCC  
27  
28  
29  
I
TI Test1. Under normal operations this pin shall be connected directly or pulled up to VCC.  
3.3 V supply  
P
CEQ1  
In pin-strap mode, this pin along with CEQ0 selects the receiver EQ for CRX1 and/or  
CRX2 (Refer to 7-2).  
4-level I  
(PU/PD)  
CRX1n  
30  
Differential negative input for USB port 1. Should be connected to SSRXn pin of USB  
connector. Connection can be DC-coupled to USB connector. Optionally, connection can  
be through an external 330 nF AC-coupling capacitor.  
I
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TUSB1004  
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
4-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
CRX1p  
31  
Differential positive input for USB port 1. Should be connected to SSRXp pin of USB  
connector. Connection can be DC-coupled to USB connector. Optionally, connection can  
be through an external 330 nF AC-coupling capacitor.  
I
NC  
32  
33  
No internal connection.  
CTX1n  
Differential negative output for USB port 1. Should be connected to SSTXn pin of USB  
connector through an external 220 nF AC-coupling capacitor.  
O
O
CTX1p  
34  
35  
Differential positive output for USB port 1. Should be connected to SSTXp pin of USB  
connector through an external 220 nF AC-coupling capacitor.  
In I2C mode, this pin along with A1 pin selects the 7-bit I2C target address (refer to 7-7).  
In pin-strap mode, this pin along with SSEQ1 selects the receiver EQ for SSTX1 and/or  
SSTX2 (refer to 7-3).  
SSEQ0/A0  
4-level I  
(PU/PD)  
CRX2n  
CRX2p  
36  
37  
Differential negative input for USB port 2. Should be connected to SSRXn pin of USB  
connector. Connection can be DC-coupled to USB connector. Optionally, connection can  
be through an external 330 nF AC-coupling capacitor.  
I
I
Differential positive input for USB port 2. Should be connected to SSRXp pin of USB  
connector. Connection can be DC-coupled to USB connector. Optionally, connection can  
be through an external 330 nF AC-coupling capacitor.  
CEQ0  
38  
39  
40  
In pin-strap mode, this pin along with CEQ1 selects the receiver EQ for CRX1 and/or  
CRX2 (Refer to 7-2).  
4-level I  
(PU/PD)  
CTX2n  
Differential negative output for USB port 2. Should be connected to SSTXn pin of USB  
connector through an external 220 nF AC-coupling capacitor.  
O
CTX2p  
Differential positive output for USB port 2. Should be connected to SSTXp pin of USB  
connector through an external 220 nF AC-coupling capacitor.  
O
G
Thermal Pad  
Thermal pad. Connect to a solid ground plane.  
(1) I = Input, O = Output, I/O = Input or Output, G = Ground, P = Power, PD = Internal Pull-down, PU = Internal Pull-up.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TUSB1004  
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
5 Specifications  
5.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply Voltage Range  
VCC  
4
V
0.3  
Differential voltage between positive and negative  
inputs  
-2.5  
2.5  
V
Voltage Range at any input or output pin  
Voltage at differential inputs  
CMOS Inputs  
4
4
V
0.5  
0.5  
V
TUSB1004  
105  
125  
150  
°C  
°C  
°C  
Maximum junction temperature, TJ  
Storage temperature, Tstg  
TUSB1004I  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality,  
performance, and shorten the device lifetime.  
5.2 ESD Ratings  
VALUE  
±2000  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safemanufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safemanufacturing with a standard ESD control process.  
5.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.0  
NOM  
MAX  
3.6  
UNIT  
Main power supply  
3.3  
V
VCC  
Main supply ramp requirement  
0.1  
50  
ms  
Supply that external resistors are pulled up to for both SDA and SCL  
pins  
V(I2C)  
1.7  
3.6  
V
V(PSN)  
Supply Noise on VCC pins (less than 4MHz)  
TUSB1004 Operating free-air temperature  
TUSB1004I Operating free-air temperature  
50  
70  
85  
mVpp  
°C  
0
TA  
-40  
°C  
5.4 Thermal Information  
TUSB1004  
THERMAL METRIC(1)  
RNQ (WQFN)  
40 PINS  
31.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
21.8  
Junction-to-board thermal resistance  
12.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJT  
12.2  
ψJB  
RθJC(bot)  
4.3  
(1) For more information about traditional and new thermalmetrics, see the Semiconductor and ICPackage Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TUSB1004  
 
 
 
 
 
 
 
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
5.5 Power Supply Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Link in U0 with GEN2 data transmission;  
EQ control pins = NC; PRBS7 pattern at  
10 Gbps, VID = 1000 mVPP ; Linear redriver  
mode; LINR_L3;  
Average active power  
USB Only for both port1 and port2  
PACTIVE-USB-2Ports  
550  
mW  
EN = H;  
Link in U0 with GEN2 data transmission;  
EQ control pins = NC; PRBS7 pattern at  
10 Gbps, VID = 1000 mVPP ; LINR_L3;  
EN = H;  
Average active power  
USB Only for single port.  
PACTIVE-USB-1Port  
275  
mW  
Average power with no connection  
with SLP_S0#  
No USB3.2 GEN2 device is connected to  
CTX1; EN = H; SLP_S0#;  
PNC-USB-SLP#  
0.13  
1.5  
mW  
mW  
No USB3.2 GEN2 device is connected to  
CTX1;  
PNC-USB-1Port  
Average power with no connection  
EN = H;  
Average power with no connection  
for both ports in disconnecton  
No USB3.2 device is connected to CTX1  
and CTX2;  
PNC-USB-2Ports  
PU2U3-2Ports  
PU2U3-SLP#  
1.7  
2.8  
mW  
mW  
mW  
Average power in U2/U3 for both  
ports  
Link in U2 or U3; EN = H;  
Average power in U2/U3 with  
SLP_S0#  
Link in U2 or U3; EN = H; SLP_S0# = L;  
Link in U2 or U3; EN = H;  
0.24  
PU2U3-1Port  
PDISABLED-I2C  
PDISABLED  
Average power in U2/U3  
1.9  
0.108  
0.130  
mW  
mW  
mW  
Device Disabled power in I2C mode MODE = "F"; EN = H; CTLSEL = 0h;  
Device Disabled power in pin-strap MODE != "F"; EN = L;  
5.6 Control I/O DC Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
4-level Inputs  
4-Level VTH  
4-Level VTH  
4-Level VTH  
Threshold 0 / R  
VCC = 3.3 V  
0.55  
1.65  
2.7  
V
V
V
Threshold R/ Float  
Threshold Float / 1  
VCC = 3.3 V  
VCC33 = 3.3 V  
High level input current with internal  
resistors disabled.  
IIH  
VCC = 3.6 V; VIN = 3.6 V  
VCC = 3.6 V; VIN = 0 V  
VCC = 3.6 V; VIN = 3.6 V  
VCC = 3.6 V; VIN = 0 V  
-5  
-1  
5
1
µA  
µA  
µA  
µA  
Low level input current with internal  
resistors disabled  
IIL  
High level input current with internal  
resistors enabled.  
IIH-REN  
IIL-REN  
20  
60  
-40  
Low level input current with internal  
resistors enabled.  
100  
RPU  
RPD  
Internal pull-up resistance  
48  
98  
kΩ  
kΩ  
Internal pull-down resistance  
2-State CMOS Input (EN, SLP_S0#)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
1.2  
3.6  
0.6  
V
V
-0.3  
Internal pull-up resistance (EN,  
SLP_S0#)  
RPU  
IIH  
250  
-5  
400  
550  
5
kΩ  
µA  
µA  
VIN = 3.6 V; MODE != "F"; VIO_SEL = "0"  
or "R";  
High-level input current (EN, SLP_S0#)  
Low-level input current (EN, SLP_S0#)  
VIN = GND, VCC = 3.6 V; MODE !=  
"F"; VIO_SEL = "0" or "R";  
IIL  
11  
11  
I2C Control Pins (SCL, SDA)  
High-level input voltage when configured  
VIH_1p8V  
MODE = "F"; VIO_SEL = "R" or "1";  
MODE = "F"; VIO_SEL = "R" or "1";  
1.2  
3.6  
0.6  
V
V
for 1.8V I2C level  
Low-level input voltage when configured  
for 1.8V I2C level  
VIL_1p8V  
-0.3  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TUSB1004  
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
5.6 Control I/O DC Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
High-level input voltage when configured  
for 3.3V I2C level  
VIH_3p3V  
VIL_3p3V  
MODE = "F"; VIO_SEL = "0" or "F";  
2.0  
3.6  
V
Low-level input voltage when configured  
for 3.3V I2C level  
MODE = "F"; VIO_SEL = "0" or "F";  
-0.3  
0.8  
0.4  
V
VOL  
Low-level output voltage  
Low-level output current  
Input current  
MODE = "F"; IOL = 6 mA  
0
20  
V
IOL  
MODE = "F"; VOL = 0.4 V  
mA  
µA  
pF  
II(I2C)  
CI(I2C)  
0.1 x V(I2C) < Input voltage < 3.3 V  
1
1  
Input capacitance  
10  
C(I2C_FM+_BUS  
I2C bus capacitance for FM+ (1MHz)  
150  
150  
910  
pF  
pF  
)
C(I2C_FM_BUS) I2C bus capacitance for FM (400kHz)  
External resistors on both SDA and SCL  
R(EXT_I2C_FM+)  
C(I2C_FM+_BUS) = 150 pF  
C(I2C_FM_BUS) = 150 pF  
620  
620  
820  
when operating at FM+ (1MHz)  
External resistors on both SDA and SCL  
R(EXT_I2C_FM)  
1500  
2200  
when operating at FM (400kHz)  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TUSB1004  
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
5.7 USB Electrical Characteristics  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
USB Gen 2 Differential Receiver (CRX1p/n, CRX2p/n, SSTX1p/n, SSTX2p/n)  
AC-coupled differential peak-to-peak  
signal measured post CTLE through a  
reference channel  
Input differential peak-peak voltage  
swing linear dynamic range  
V(RX-DIFF-PP)  
1200  
0
mVpp  
V
Common-mode voltage bias in the  
receiver (DC)  
V(RX-DC-CM)  
Max Instantaneous RX DC common  
mode voltage change under all  
operating conditions (OFF to ON,  
Disabled to USB, etc)  
Measured at non-device side of AC  
coupling capacitor with 200-kload.  
VRX_CM-INST  
-300  
500  
mV  
R(RX-DIFF-DC)  
R(RX-CM-DC)  
Differential input impedance (DC)  
Present after a GEN2 device is detected.  
Present after a GEN2 device is detected.  
72  
18  
90  
120  
30  
Ω
Ω
Receiver DC common mode  
impedance  
Present when no GEN2 device is detected  
on transmitter.  
Measured over the range of 0 500 mV  
with respect to GND.  
Common-mode input impedance with  
termination disabled (DC)  
Z(RX-HIGH-IMP-DC-POS)  
25  
kΩ  
Input differential peak-to-peak signal  
detect assert level  
V(SIGNAL-DET-DIFF-PP)  
V(RX-IDLE-DET-DIFF-PP)  
V(RX-LFPS-DET-DIFF-PP)  
At 10 Gbps, no input loss, PRBS7 pattern  
At 10 Gbps, no input loss, PRBS7 pattern  
Below the minimum is squelched  
75  
55  
mV  
mV  
mV  
Input differential peak-to-peak signal  
detect de-assert Level  
Low frequency periodic signaling  
(LFPS) detect threshold  
100  
300  
V(RX-CM-AC-P)  
C(RX)  
Peak RX AC common-mode voltage  
RX input capacitance to GND  
Measured at package pin  
At 5 GHz;  
150  
1
mV  
pF  
dB  
dB  
dB  
-22  
-20  
-12  
50 MHz 1.25 GHz at 85 Ω;  
5 GHz at 85 Ω;  
RL(RX-DIFF)  
Differential return Loss  
RL(RX-CM)  
EQ_SSTX15  
Common-mode return loss  
50 MHz 5 GHz at 85 Ω;  
SSTX1->CTX1 Receiver equalization SSEQ1_SEL = 15; Gain at 5 GHz minus  
at 5 GHz  
13.6  
12.7  
dB  
dB  
nF  
nF  
Gain at 10 MHz;  
CRX1 -> SSRX1 Receiver  
equalization at 5 GHz  
CEQ1_SEL = 15; Gain at 5 GHz minus  
Gain at 10 MHz;  
EQ_RX15  
CAC-USB1  
CAC-USB2  
Required external AC capacitor on  
SSTX1/2  
75  
265  
363  
Optional external AC capacitor on  
CRX1 and CRX2.  
297  
USB Gen 2 Differential Transmitter (CTX1p/n, CTX2p/n, SSRX1p/n, SSRX2p/n)  
Transmitter dynamic differential  
voltage swing range.  
VTX(DIFF-PP)  
EQ15; VID = 1Vpp; LINR_L3  
1200  
mVpp  
mV  
Amount of voltage change allowed  
during receiver detection  
VTX(RCV-DETECT)  
600  
800  
Max Instantaneous TX DC common  
mode voltage change under operating  
condition: OFF to ON, ON to OFF,  
during Rx.Detect; Disconnect to U0,  
U2/U3 to Disconnect.  
Measured single-ended at non-device side  
of AC coupling capacitor with 200-kΩ  
load.  
VTX-CM-INST-ONOFF  
-500  
mV  
mV  
Transmitter idle common-mode  
voltage change while in U2/U3 and not  
actively transmitting LFPS  
VTX(CM-IDLE-DELTA)  
600  
300  
Common-mode voltage bias in the  
transmitter (DC)  
VTX(DC-CM)  
0.5  
0.76  
1
100  
10  
V
Max mismatch from Txp + Txn for both  
time and amplitude  
VTX(CM-AC-PP-ACTIVE) Tx AC common-mode voltage active  
mVpp  
mV  
AC electrical idle differential peak-to-  
VTX(IDLE-DIFF-AC-PP)  
At package pins  
At package pin  
0
peak output voltage  
VTX(CM-DC-ACTIVE-  
Absolute DC common-mode voltage  
between U1 and U0  
200  
120  
mV  
IDLE-DELTA)  
RTX(DIFF)  
Differential impedance of the driver  
80  
90  
Ω
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TUSB1004  
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
5.7 USB Electrical Characteristics (continued)  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Measured with respect to AC ground over  
0500 mV  
Common-mode impedance of the  
driver  
RTX(CM)  
18  
30  
Ω
SSRX differential peak-to-peak  
VSSRX-LIMITED-VODL0 voltage when configured for limited  
redriver and LINR_L0  
TX_PRESHOOT_EN = 0;  
TX_DEEMPHASIS_EN = 0;  
750  
900  
mVpp  
mVpp  
mVpp  
mVpp  
SSRX differential peak-to-peak  
VSSRX-LIMITED-VODL1 voltage when configured for limited  
redriver and LINR_L1  
TX_PRESHOOT_EN = 0;  
TX_DEEMPHASIS_EN = 0;  
SSRX differential peak-to-peak  
VSSRX-LIMITED-VODL2 voltage when configured for limited  
redriver and LINR_L2  
TX_PRESHOOT_EN = 0;  
TX_DEEMPHASIS_EN = 0;  
1000  
1100  
SSRX differential peak-to-peak  
VSSRX-LIMITED-VODL3 voltage when configured for limited  
redriver and LINR_L3  
TX_PRESHOOT_EN = 0;  
TX_DEEMPHASIS_EN = 0;  
TX_PRESHOOT_EN = 0;  
TX_DEEMPHASIS_EN = 1;  
TX_DEEPHASIS = 2'b00;  
USB_SSRX_VOD = 2'b00 (LINR_L3);  
Refer to 6-7  
SSRX de-emphasis when configured  
for limited redriver and de-emphasis  
enabled.  
VSSRX-DE-RATIO0  
-1.8  
-2.1  
-3.2  
-3.8  
1.6  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
TX_PRESHOOT_EN = 0;  
TX_DEEMPHASIS_EN = 1;  
TX_DEEPHASIS = 2'b01;  
USB_SSRX_VOD = 2'b00  
(LINR_L3); Refer to 6-7  
SSRX de-emphasis when configured  
for limited redriver and de-emphasis  
enabled.  
VSSRX-DE-RATIO1  
TX_PRESHOOT_EN = 0;  
TX_DEEMPHASIS_EN = 1;  
TX_DEEPHASIS = 2'b10;  
USB_SSRX_VOD = 2'b00  
(LINR_L3); Refer to 6-7  
SSRX de-emphasis when configured  
for limited redriver and de-emphasis  
enabled.  
VSSRX-DE-RATIO2  
TX_PRESHOOT_EN = 0;  
TX_DEEMPHASIS_EN = 1;  
TX_DEEPHASIS = 2'b11;  
USB_SSRX_VOD = 2'b00  
(LINR_L3); Refer to 6-7  
SSRX de-emphasis when configured  
for limited redriver and de-emphasis  
enabled.  
VSSRX-DE-RATIO3  
TX_PRESHOOT_EN = 1;  
TX_DEEMPHASIS_EN = 0;  
TX_PRESHOOT = 2'b00;  
USB_SSRX_VOD = 2'b00 (LINR_L3);  
Refer to 6-6  
SSRX pre-shoot level when configured  
for limited redriver and pre-shoot  
enabled.  
VSSRX-PRESH-RATIO0  
VSSRX-PRESH-RATIO1  
VSSRX-PRESH-RATIO2  
VSSRX-PRESH-RATIO3  
TX_PRESHOOT_EN = 1;  
TX_DEEMPHASIS_EN = 0;  
TX_PRESHOOT = 2'b01;  
USB_SSRX_VOD = 2'b00 (LINR_L3);  
Refer to 6-6  
SSRX pre-shoot level when configured  
for limited redriver and pre-shoot  
enabled.  
2.1  
TX_PRESHOOT_EN = 1;  
TX_DEEMPHASIS_EN = 0;  
TX_PRESHOOT = 2'b10;  
USB_SSRX_VOD = 2'b00 (LINR_L3);  
Refer to 6-6  
SSRX pre-shoot level when configured  
for limited redriver and pre-shoot  
enabled.  
2.5  
TX_PRESHOOT_EN = 1;  
TX_DEEMPHASIS_EN = 0;  
TX_PRESHOOT = 2'b11;  
USB_SSRX_VOD = 2'b00 (LINR_L3);  
Refer to 6-6  
SSRX pre-shoot level when configured  
for limited redriver and pre-shoot  
enabled.  
3.0  
ITX(SHORT)  
CTX(PARASITIC)  
RLTX(DIFF)  
RLTX(CM)  
TX short circuit current  
TX± shorted to GND  
60  
mA  
pF  
dB  
dB  
TX input capacitance for return loss  
Differential return loss  
At package pins, at 5 GHz  
50 MHz 1.25 GHz at 85 Ω  
50 MHz 5 GHz at 85 Ω  
1.25  
-28  
-12  
Common-mode return loss  
External required AC coupling  
capacitor  
CTX-AC(COUPLING)  
75  
265  
-40  
nF  
AC Characteristics  
Crosstalk_CRXTX  
Differential crosstalk between CTX1/2  
and CRX1/2 signal pairs  
85 ; At 5 GHz; SSEQ[1:0] = 0; CEQ[1:0]  
= 0;  
dB  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TUSB1004  
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
5.7 USB Electrical Characteristics (continued)  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Low-frequency -1dB compression  
point at LINR_L0 setting.  
20 MHz clock pattern; VID is 200 mV to  
1200 mV in 10 mV steps;  
CPLF-LINRL0  
CPHF-LINRL0  
CPLF-LINRL1  
CPHF-LINRL1  
CPLF-LINRL2  
CPHF-LINRL2  
CPLF-LINRL3  
750  
mVpp  
High-frequency -1dB compression  
point at LINR_L0 setting.  
5 GHz clock pattern; VID is 200mV to  
1200mV in 10mV steps;  
650  
850  
mVpp  
mVpp  
mVpp  
mVpp  
mVpp  
mVpp  
Low-frequency -1dB compression  
point at LINR_L1 setting.  
20 MHz clock pattern; VID is 200 mV to  
1200 mV in 10 mV steps;  
High-frequency -1dB compression  
point at LINR_L1 setting.  
5 GHz clock pattern; VID is 200 mV to  
1200 mV in 10 mV steps;  
750  
Low-frequency -1dB compression  
point at LINR_L2 setting.  
20 MHz clock pattern; VID is 200 mV to  
1200 mV in 10 mV steps;  
950  
High-frequency -1dB compression  
point at LINR_L2 setting.  
5 GHz clock pattern; VID is 200 mV to  
1200 mV in 10 mV steps;  
850  
Low-frequency -1dB compression  
point at LINR_L3 setting.  
20 MHz clock pattern; VID is 200 mV to  
1200 mV in 10mV steps;  
1050  
High-frequency -1dB compression  
point at LINR_L3 setting.  
5 GHz clock pattern; VID is 200 mV to  
1200 mV in 10 mV steps;  
CPHF-LINRL3  
fLF  
tTX_DJ_SSTX2-CTX2  
900  
20  
mVpp  
kHz  
Low frequency cutoff  
200 mVPP< VID < 1200 mVPP  
50  
Optimal EQ setting; 12-in prechannel  
(SDD21 = -11.2 dB); 1.6-in post channel  
(SDD21 = -1.8 dB); PRBS7; 10 Gbps  
TX output deterministic residual jitter  
SSTX2-> CTX2.  
.05  
.05  
UI  
UI  
Optimal EQ setting; 12-in prechannel  
(SDD21 = -11.2 dB); 1.6-in post channel  
(SDD21 = -1.8 dB); PRBS7; 10 Gbps  
TX output deterministic residual jitter  
SSTX1-> CTX1.  
tTX_DJ_SSTX1-CTX1  
5.8 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
USB3.1  
tIDLEEntry  
Delay from U0 to electrical idle  
10  
1
ns  
ns  
Refer to 6-4.  
Refer to 6-4.  
U1 exit time: break in electrical idle to the  
transmission of LFPS  
tIDELExit_U1  
U2/U3 exit time: break in electrical idle to  
transmission of LFPS  
tIDLEExit_U2U3  
10  
10  
µs  
Refer to 6-4.  
tRXDET_INTVL  
tIDLEExit_DISC  
tExit_SHTDN  
RX detect interval while in Disconnect  
Disconnect Exit Time  
12  
ms  
µs  
Shutdown Exit Time  
0.75  
400  
ms  
Maximum time to obtain optimum EQ setting  
when operating in Full AEQ mode.  
tAEQ_FULL_DONE  
µs  
Maximum time to determine appropriate EQ  
setting when operating in Fast AEQ mode.  
tAEQ_FAST_DONE  
tDIFF_DLY  
60  
µs  
ps  
Differential Propagation Delay  
300  
Refer to 6-3.  
20%-80% of differential voltage  
measured 1.7 inch from the  
output pin; Refer to 6-5.  
tR, tF  
Output Rise/Fall time  
30  
ps  
ps  
20%-80% of differential voltage  
measured 1.7 inch from the  
output pin  
tRF_MM  
Output Rise/Fall time mismatch  
2.6  
Power-up  
tEN_LOW  
tCFG_SU  
EN pin held low after supply reaches VCC(min)  
5
250  
500  
ms  
µs  
µs  
Refer to 6-1  
Refer to 6-1  
Refer to 6-1  
CFG(1) high  
CFG(1) high  
tCFG_HD  
(1) Following pins comprise CFG pins: MODE, CEQ[1:0], SSEQ[1:0], EQCFG, AEQCFG  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TUSB1004  
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
5.9 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I2C  
fSCL  
I2C clock frequency  
1
MHz  
µs  
Bus free time between START and  
STOP conditions  
tBUF  
0.5  
Refer to 6-2  
Hold time after repeated START  
condition. After this period, the first  
clock pulse is generated  
tHD_STA  
0.26  
µs  
Refer to 6-2  
tLOW  
tHIGH  
Low period of the I2C clock  
High period of the I2C clock  
0.5  
µs  
µs  
Refer to 6-2  
Refer to 6-2  
0.26  
Setup time for a repeated START  
condition  
tSU_STA  
0.26  
µs  
Refer to 6-2  
tHD_DAT  
tSU_DAT  
Data hold time  
Data setup time  
0
µs  
ns  
Refer to 6-2  
Refer to 6-2  
50  
Rise time of both SDA and SCL  
signals  
tR  
120  
120  
ns  
Refer to 6-2  
tF  
Fall time of both SDA and SCL signals  
Setup time for STOP condition  
20 × (V(I2C)/5.5 V)  
0.26  
ns  
µs  
pF  
Refer to 6-2  
Refer to 6-2  
tSU_STO  
Cb  
Capacitive load for each bus line  
150  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TUSB1004  
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
5.10 Typical Characteristics  
5-1. USB CRX1 EQ Settings Curves  
5-2. USB SSTX1 EQ Settings Curves  
at 85 Ω(from simulation)  
at 85 Ω(from simulation)  
5-3. CRX1 Input Return Loss Performance  
at 85 Ω(from simulation)  
5-4. CTX1 Output Return Loss Performance  
at 85 Ω(from simulation)  
5-5. USB SSRX1 VOD Linearity Settings  
5-6. USB SSRX1 VOD Linearity Settings  
at 20 MHz and EQ = 0  
at 5 GHz and EQ = 0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TUSB1004  
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
5.10 Typical Characteristics (continued)  
5-7. USB CTX1 VOD Linearity Settings  
5-8. USB CTX1 VOD Linearity Settings  
at 20 MHz and EQ = 0  
at 5 GHz and EQ = 0  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TUSB1004  
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
6 Parameter Measurement Information  
VCC (min)  
VCC  
tEN_LOW  
VIH(min)  
EN pin  
VIL(max)  
tCFG_SU  
tCFG_HD  
CFG pins  
6-1. Power-On Timing Requirements  
t
t
r
t
SU_DAT  
f
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
cont.  
t
t
HD_DAT  
VD_DAT  
t
f
t
HIGH  
t
r
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
cont.  
t
HD_STA  
t
LOW  
th  
9
clock  
1 / f  
S
SCL  
st  
1
clock cycle  
t
BUF  
SDA  
SCL  
t
VD_ACK  
t
t
t
t
SU_STO  
SU_STA  
HD_STA  
SP  
70 %  
30 %  
Sr  
P
S
th  
9
clock  
6-2. I2C Timing Diagram Definitions  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TUSB1004  
 
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
IN  
T
T
DIFF_DLY  
DIFF_DLY  
OUT  
6-3. USB Propagation Delay  
IN+  
V
Vcm  
RX-LFPS-DET-DIFF-PP  
IN-  
T
T
IDLEEntry  
IDLEExit  
OUT+  
Vcm  
OUT-  
6-4. Electrical Idle Exit and Entry Delay  
80%  
20%  
t
r
t
f
6-5. Output Rise and Fall Times  
VSSRX-LIMITED-VODL3  
TX_PRESHOOT_EN = 0; TX_DEEMPHASIS_EN = 0;  
TX_PRESHOOT_EN = 1; TX_DEEMPHASIS_EN = 0; TX_PRESHOOT = 0;  
TX_PRESHOOT_EN = 1; TX_DEEMPHASIS_EN = 0; TX_PRESHOOT = 1;  
TX_PRESHOOT_EN = 1; TX_DEEMPHASIS_EN = 0; TX_PRESHOOT = 2;  
TX_PRESHOOT_EN = 1; TX_DEEMPHASIS_EN = 0; TX_PRESHOOT = 3;  
6-6. SSRX Limited Pre-Shoot only  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TUSB1004  
 
 
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
VSSRX-LIMITED-VODL3  
TX_PRESHOOT_EN = 0; TX_DEEMPHASIS_EN = 0;  
TX_PRESHOOT_EN = 0; TX_DEEMPHASIS_EN = 1; TX_DEEMPHASIS = 0;  
TX_PRESHOOT_EN = 0; TX_DEEMPHASIS_EN = 1; TX_DEEMPHASIS = 1;  
TX_PRESHOOT_EN = 0; TX_DEEMPHASIS_EN = 1; TX_DEEMPHASIS = 2;  
TX_PRESHOOT_EN = 0; TX_DEEMPHASIS_EN = 1; TX_DEEMPHASIS = 3;  
6-7. SSRX Limited De-Emphasis Only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TUSB1004  
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TUSB1004 is a 10 Gbps USB 3.2 quad channel linear redriver for USB Type-A applications. The TUSB1004  
is intended to reside between a Host and a USB receptacle or between a USB device and a USB receptacle.  
The TUSB1004 supports both USB 3.2 Gen2 (10 Gbps) and Gen1 (5 Gbps) as well as USB 3.2 low power  
states (Disconnect, U1, U2, and U3).  
The TUSB1004 supports up to 16 receiver equalization settings controlled by either pin-strap pins or through I2C  
registers. The USB connector facing receivers (CRX1 and CRX2) support three equalization modes: Fixed EQ,  
Fast AEQ, and Full AEQ. Selection between these modes is done through either pin-strap pins or through I2C  
regisrers. The other receivers (SSTX1/2) only support Fixed EQ.  
The TUSB1004 operates as a linear redriver for signals traversing from the SSTX1/2 receivers towards CTX1/2  
transmitters. It can operate as either a linear redriver or limited redriver for signals traversing from CRX1/2  
receivers towards SSRX1/2 transmitters. TUSB1004 defaults to linear redriver but can be enabled for limited  
redriver by I2C register. When enabled for limited redriver, the SSRX1/2 transmitter support four levels of pre-  
shoot and four-levels of de-emphasis.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TUSB1004  
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
7.2 Functional Block Diagram  
GND  
VIterm  
SSRXTERM_EN2  
SSTX2P  
CTX2P  
CTX2N  
TX  
RX  
Channel A  
SSTX2N  
CTXEN2  
CIDLE2  
LFPS  
SSLOSZ2  
SSLFPS2  
Rx  
Detect  
CRXDET2  
LOS  
GND  
LANE 2  
VIterm  
CRXTERM_EN2  
SSRX2P  
SSRX2N  
CRX2P  
CRX2N  
TX  
RX  
Channel B  
Channel C  
SSTXEN2  
SSIDLE2  
LFPS  
LOS  
CLFPS2  
CLOSZ2  
Rx  
Detect  
SSRXDET2  
GND  
VIterm  
SSRXTERM_EN1  
SSTX1P  
SSTX1N  
CTX1P  
CTX1N  
TX  
RX  
CTXEN1  
CIDLE1  
LFPS  
SSLOSZ1  
SSLFPS1  
Rx  
CRXDET1  
Detect  
LOS  
LANE 1  
GND  
VIterm  
CRXTERM_EN1  
SSRX1P  
SSRX1N  
CRX1P  
CRX1N  
TX  
RX  
Channel D  
SSRXEN1  
SSIDLE1  
LFPS  
LOS  
CLFPS1  
CLOSZ1  
Rx  
Detect  
SSRXDET1  
SSEQ0/A0  
SSEQ1/A1  
TEST1  
CEQ0  
CEQ1  
MODE  
Control &  
Status  
Registers  
AEQENZ/SDA  
TEST2/SCL  
VIO_SEL  
AEQCFG  
EQCFG  
I2C  
Target  
VCC  
500k  
POR  
EN  
TESTOUT1  
TESTOUT2  
SLP_S0#  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TUSB1004  
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 4-Level Inputs  
The TUSB1004 has 4-level inputs pins that are used to control the receiver equalization gain, transmitter voltage  
swing, and place TUSB1004 into different modes of operation. These 4-level inputs utilize a resistor divider to  
help set the 4 valid levels and provide a wider range of control settings. There are internal pull-up and pull-down  
resistors. These resistors, together with the external resistor connection combine to achieve the desired voltage  
level.  
7-1. 4-Level Control Pin Settings  
LEVEL  
SETTINGS  
0
R
F
1
Tie 1-k5% to GND.  
Tie 20-k5% to GND.  
Float (leave pin open)  
Tie 1-k5% to VCC  
.
备注  
All 4-level inputs are latched after the rising edge of EN pin. After these pins are sampled, the internal  
pull-up and pull-down resistors will be isolated in order to save power.  
7.3.2 USB Receiver Linear Equalization  
The purpose of receiver equalization is to compensate for channel insertion loss and inter-symbol interference in  
the system before the input of the TUSB1004. The receiver overcomes these losses by attenuating the low  
frequency components of the signals with respect to the high frequency components. The proper gain setting  
should be selected to match the channel insertion loss before the input of the TUSB1004 receivers. Two 4-level  
inputs pins enable up to 16 possible equalization settings when in pin-strap mode. The TUSB1004's USB 3.2  
host, hub, and device receivers (SSTX1/2) and USB 3.2 USB connector receivers (CRX1/2) each have their own  
two 4-level inputs. The TUSB1004 also provides the flexibility of adjusting settings through I2C registers.  
The TUSB1004's USB host, hub, and device facing port receiver (SSTX1/2) only support Fixed EQ (FEQ). The  
TUSB1004 implements three different equalizer features for the USB connector facing port receivers (CRX1 and  
CRX2): Fixed EQ (FEQ), Fast Adaptive EQ (Fast AEQ), and Full Adaptive EQ (Full AEQ). In Fixed EQ  
operation, a single setting is used for all possible devices (with and without cable) inserted into the USB  
receptacle. The Fast AEQ feature will distinguish between a short channel and a long channel. A short channel  
represents a low loss use case of a USB 3.2 device plugged directly into USB receptacle without a cable. A long  
channel represents the high loss use case of the USB 3.2 device plugged into the receptacle through a USB  
cable. In Fast AEQ mode, TUSB1004 will select between two pre-determined settings based on whether or not  
channel is short or long. When TUSB1004 is configured for Full AEQ, the TUSB1004 will automatically  
determine what it believes is the best equalization setting each time a USB device is inserted into the USB  
receptacle. In Full AEQ mode, the TUSB1004 will attempt to determine the best settings regardless if the  
channel is short, long, or somewhere in between.  
备注  
Adaptive EQ is only supported on CRX1 and CRX2. Adaptive EQ must only be used when CRX1 and  
CRX2 is connected to a USB receptacle. If CRX1 and CRX2 is connected directly (not through a USB  
receptacle) to a USB Host, USB Hub or USB Device, then adaptive EQ must be disabled. AEQ should  
never be enabled in a active cable application. If daisy chaining multiple TUSB1004, AEQ should only  
be enabled on the TUSB1004 that is near the USB receptacle.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TUSB1004  
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
7.3.2.1 Linear EQ Configuration  
Each of the TUSB1004 receiver lanes have individual controls for receiver equalization. The receiver  
equalization gain value can be controlled either through I2C registers or through pin-straps. 7-2 and 7-3  
details the gain value for each available combination when TUSB1004 is in pin-strap mode. These same options  
are also available in I2C mode by updating registers CEQ1_SEL, CEQ2_SEL, SSEQ2_SEL, and SSEQ1_SEL.  
7-2. USB Connector Facing Port Receiver (CRX1 and CRX2 pins) Equalization Control  
Register(s): CEQ1_SEL or  
CEQ2_SEL  
Equalization Setting #  
EQ Gain at 5 GHz minus Gain  
CEQ1 PIN Level  
CEQ0 PIN Level  
at 100 MHz  
(dB)  
0
1
0
0
0
R
F
1
-0.4  
1.9  
2
0
3.5  
3
0
5.0  
4
R
R
R
R
F
F
F
F
1
0
6.1  
5
R
F
1
7.2  
6
8.0  
7
8.8  
8
0
9.6  
9
R
F
1
10.2  
10.7  
11.2  
11.6  
12.0  
12.4  
12.7  
10  
11  
12  
13  
14  
15  
0
1
R
F
1
1
1
7-3. USB Host Facing Port Receiver (SSTX1 and SSTX2 pins) Equalization Control  
EQ Gain at 5 GHz minus  
Register(s): SSEQ1_SEL or SSEQ2_SEL  
Equalization Setting #  
SSEQ1 PIN LEVEL  
SSEQ0 PIN LEVEL  
Gain at 100 MHz  
(dB)  
0
1
0
0
0
R
F
1
0.6  
2.8  
2
0
4.5  
3
0
6.0  
4
R
R
R
R
F
F
F
F
1
0
7.0  
5
R
F
1
8.0  
6
9.0  
7
10.0  
10.6  
11.2  
11.7  
12.2  
12.5  
13.0  
13.3  
13.6  
8
0
9
R
F
1
10  
11  
12  
13  
14  
15  
0
1
R
F
1
1
1
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TUSB1004  
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
7.3.2.2 Full Adaptive Equalization  
The Full AEQ mode attempts to find what it believes is the best equalization value for CRX1 and CRX2 receivers  
by starting at the lowest EQ value and sweeping through all EQ combinations up to the value programmed into  
FULLAEQ_UPPER_EQ field. The default is to sweep through nine EQ values (zero to eight). The number of EQ  
combinations can be adjusted by programming FULLAEQ_UPPER_EQ register. The TUSB1004 also provides  
the ability to add or subtract some over/under equalization to compensate for channel in front of TUSB1004 by  
programming OVER_EQ_CTRL field to a non-zero value. If OVER_EQ_SIGN = 0, the TUSB1004 will add the  
value programmed into OVER_EQ_CTRL to the EQ value determined by the full adaptation. If OVER_EQ_SIGN  
= 1, the TUSB1004 will subtract the value programmed into OVER_EQ_CTRL from the EQ value determined by  
the full adaptation. For example, if full adaptation determines the best equalization value to be 4 and  
OVER_EQ_CTRL is 2 and OVER_EQ_SIGN = 0, the EQ setting used by TUSB1004 will be 6. The TUSB1004  
hardware will always limit the sum of OVER_EQ_CTRL and the determined optimal EQ from full adaptation to be  
less than or equal to 15.  
备注  
Full AEQ is supported in both pin-strap and I2C mode. In pin-strap mode, enable or disable of Full  
AEQ is determined by the state of AEQENZ pin.  
7.3.2.3 Fast Adaptive Equalization  
The Fast AEQ mode is used to distinguish two channels (short channel and a long channel) and choose the  
appropriate receiver equalization setting for that channel. Because Fast AEQ only distinguishes between two  
choices, the AEQ time is a lot shorter than Full AEQ mode which minimizes impact to USB link training.  
When Fast AEQ is enabled and channel is determined to be short, the TUSB1004 will use the value  
programmed into the CEQx_SEL, where x = 1 or 2. If the TUSB1004 determines channel is not short, the  
TUSB1004 will switch to EQ value programmed into LONG_EQx register, where x = 1 or 2. During initial system  
evaluation, it is recommended to perform both short and long channel USB 3.1 RX JTOL Gen2 testing and  
program CEQx_SEL and LONG_EQx to the value which produced the best results for each channel  
configuration.  
The TUSB1004 will determine short and long based on the estimate eye height. The value programmed into  
FASTAEQ_LIMITS register will determine the eye height limits. Software can change the defaults of this register  
to lower or raise the limits.  
备注  
Fast AEQ is only supported in I2C mode.  
EQ_OVERRIDE field must be set for values programmed into CEQx_SEL and LONG_EQx to be  
used.  
7.3.3 USB Transmitter  
7.3.3.1 Linearity VOD  
Linearity VOD defines the linearity range of the TUSB1004. When TUSB1004 is in linear VOD mode, the output  
VOD is a linear function of the input VID. For example, if the signal at TUSB1004's input (VID) is at 600 mVpp  
then the TUSB1004's output VOD will be around 600 mVpp. Linearity VOD mode is the default operation of the  
TUSB1004. Linear VOD mode is supported on SSRX1/2 and CTX1/2 transmitters.  
The TUSB1004 provides four different linearity VOD settings. All four settings are available in I2C mode through  
register control. In pin-strap mode, the linearity is fixed at the highest setting.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TUSB1004  
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
7.3.3.2 Limited VOD  
Limited VOD mode is used to set the actual VOD level and is used when TUSB1004 is configured in limited  
redriver mode. In this mode the VOD is no longer a linear function of the input VID. For example, if the signal at  
TUSB1004's input (VID) is at 600 mVpp then the TUSB1004's output VOD will be around 1000 mVpp (assuming  
LINR_L3 is selected). The limited redriver mode is only supported on the SSRX1/2 transmitter. The TUSB1004  
provides four different limited VOD settings. All four settings are available through register control.  
备注  
Limited redriver mode is disabled by default and can only be enabled by setting the  
SSRX_LIMIT_ENABLE register. Once enabled, the VOD level for SSRX1/2 transmitters is controlled  
by the USB_SSRX12_VOD register  
7.3.3.3 Transmit Equalization (Limited Redriver Mode Only)  
The TUSB1004 in limited redriver mode offers pre-shoot and de-emphasis controls for SSRX1/2 transmitter. The  
TUSB1004 offers four pre-shoot levels and four de-emphasis levels. These levels can be changed by modifying  
I2C registers.  
SSRX1 transmitter equalization is controlled by TX1_PRESHOOT and TX1_DEEMPHASIS fields. When  
SSRX_LIMIT_ENABLE = 1 and TX1_PRESHOOT_EN = 1, the TX1_PRESHOOT field selects between four  
different pre-shoot levels. When SSRX_LIMIT_ENABLE = 1 and TX1_DEEMPHASIS_EN = 1, the  
TX1_DEEMPHASIS field selects between four different de-emphasis levels.  
SSRX2 transmitter equalization is controlled by TX2_PRESHOOT and TX2_DEEMPHASIS fields. When  
SSRX_LIMIT_ENABLE = 1 and TX2_PRESHOOT_EN = 1, the TX2_PRESHOOT field selects between four  
different pre-shoot levels. When SSRX_LIMIT_ENABLE = 1 and TX2_DEEMPHASIS_EN = 1, the  
TX2_DEEMPHASIS field selects between four different de-emphasis levels.  
备注  
Transmitter equalization control is not supported in pin-strap mode.  
7.3.4 USB 3.1 x2 Description  
The TUSB1004 will operate as two independent USB state machines. The TUSB1004 is intended to be used in  
applications that support USB stacked standard A connectors or two standard-A connectors that are in close  
proximity to each other.  
In pin-strap mode the TUSB1004 will enable both lanes for USB operation immediately following EN pin high. In  
I2C mode, software must program register offset 0xD to a 0x03 and it also must program CTLSEL field (located  
in offset 0xA) to a 1 for both lanes to be enabled for USB operation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TUSB1004  
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
7.3.5 USB Polarity Inversion  
The USB 3.2 standard requires all host, hubs, and devices support USB polarity inversion detection and  
correction. For this reason, polarity between TUSB1004 and USB connector as well as between USB Host/  
Device and TUSB1004 does not have to be maintained. Not maintaining polarity will simplify layout by  
eliminating the need to swap P and N in the layout. The 7-1 shows example in which polarity between USB  
host and redriver is not maintained.  
USB 3.2  
redriver  
Host/Device  
TXp  
TXn  
SSTXn  
SSTXp  
CTXp  
CTXn  
SSTXp  
SSTXn  
RXp  
RXn  
SSRXn  
SSRXp  
CRXp  
CRXn  
SSRXp  
SSRXn  
Polarity inverted  
7-1. Polarity Inversion Example  
7.3.6 Receiver Detect Control  
The SLP_S0# pin offers system designers the ability to control the TUSB1004 Rx.Detect functionality during  
Disconnect and U2/U3 states and therefore achieving lower consumption in these states. When the system is in  
a low power state (Sx where x = 1, 2, 3, 4, or 5), system can assert SLP_S0# low to disable TUSB1004 receiver  
detect functionality. While SLP_S0# is asserted low and USB 3.2 interface is in U3, the TUSB1004 keeps  
receiver termination active. The TUSB1004 will not respond to any LFPS signaling while in this state. This  
means that system wake from U3 is not supported while SLP_S0# is asserted low. If the TUSB1004 is in  
Disconnect state when SLP_S0# is asserted low, then TUSB1004 disables all channels receiver termination and  
disables receiver detect functionality. When SLP_S0# is asserted high, the TUSB1004 resumes normal  
operation of performing far-end receiver termination detection.  
备注  
As there is a single SLP_S0# pin, this pin when asserted low impact both port 1 (CRX1, CTX1,  
SSRX1, SSTX1) and port 2 (CRX2, CTX2, SSRX2, SSTX2).  
7.4 Device Functional Modes  
7.4.1 MODE Pin  
The MODE pin selects between between I2C mode and pin-strap mode. Refer to 7-4 for details.  
In I2C mode, the TUSB1004 supports either 1.8-V LVCMOS or 3.3-V LVCMOS signalling based on the sampled  
state of VIO_SEL pin.  
7-4. MODE pin Function  
MODE pin level  
Description  
Pin-strap mode.  
Reserved  
0
R
F
1
I2C Mode  
Reserved.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TUSB1004  
 
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
7.4.2 Rx EQ Configuration in Pin-Strap Mode  
The TUSB1004 configured in pin-strap mode uses the follow pins to control the EQ setting for each of its  
receivers: EQCFG pin, SSEQ[1:0] pins, CEQ[1:0] pins.  
7-5. Pin-strap: SSTX1 and SSTX2 Receiver EQ Configuration  
SSTX Receiver  
SSEQ[1:0] pin level  
Gain at 5 GHz  
EQCFG pin level  
SSEQ0 = "0"  
3 dB  
"1" or "R"  
SSEQ0 = "R"  
SSEQ0 = "F"  
6 dB  
"1" or "R"  
9 dB  
"1" or "R"  
SSTX1  
SSEQ0 = "1"  
12 dB  
"1" or "R"  
16 possible settings based on  
SSEQ0 and SSEQ1  
"0" or "F"  
Refer to 7-3.  
SSEQ1 = "0"  
SSEQ1 = "R"  
SSEQ1 = "F"  
SSEQ1 = "1"  
3 dB  
"1" or "R"  
"1" or "R"  
"1" or "R"  
"1" or "R"  
"0" or "F"  
6 dB  
9 dB  
SSTX2  
12 dB  
16 possible settings based on  
SSEQ0 and SSEQ1  
Refer to 7-3.  
The following table describes receiver equalization controls for the receivers facing the USB connector.  
7-6. Pin Strap: CRX1 and CRX2 EQ Configuration with AEQ Disabled  
CRX Receiver  
CEQ[1:0] pin level  
Gain at 5 GHz  
EQCFG pin level  
CEQ0 = "0"  
3 dB  
"0" or "R"  
CEQ0 = "R"  
6 dB  
"0" or "R"  
CEQ0 = "F"  
9 dB  
"0" or "R"  
CRX1  
CEQ0 = "1"  
12 dB  
"0" or "R"  
16 possible settings based on  
CEQ0 and CEQ1  
"F" or "1"  
Refer to 7-2.  
CEQ1 = "0"  
CEQ1 = "R"  
CEQ1 = "F"  
CEQ1 = "1"  
3 dB  
"0" or "R"  
"0" or "R"  
"0" or "R"  
"0" or "R"  
"F" or "1"  
6 dB  
9 dB  
CRX2  
12 dB  
16 possible settings based on  
CEQ0 and CEQ1  
Refer to 7-2.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TUSB1004  
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
7.4.3 USB 3.2 Power States  
The TUSB1004 monitors the physical layer conditions like receiver termination, electrical idle, LFPS, and  
SuperSpeed signaling rate to determine the state of the USB 3.1 interface. Depending on the state of the USB  
3.2 interface, the TUSB1004 can be in one of four primary modes of operation when USB 3.1 is enabled:  
Disconnect, U2/U3, U1, and U0 (Active).  
The Disconnect state is the state in which TUSB1004 has not detected far-end termination on both upstream  
facing port (UFP) or downstream facing port (DFP). The disconnect mode is the lowest power mode of each of  
the four states. The TUSB1004 remains in this state until far-end receiver termination has been detected on both  
UFP (SSRX) and DFP (CTX). The TUSB1004 immediately exits this mode and enters U0 once far-end  
termination is detected.  
Once in U0 state, the TUSB1004 will redrive all traffic received on the port in both directions. U0 is the highest  
power mode of all USB 3.2 power states. The TUSB1004 remains in U0 state until electrical idle occurs on both  
UFP and DFP. Upon detecting electrical idle, the TUSB1004 immediately transitions to U1.  
The U1 state is the intermediate mode between U0 mode and U2/U3 mode. In U1 mode, the TUSB1004 UFP  
and DFP receiver termination remains enabled. The UFP and DFP transmitter DC common mode is maintained.  
The power consumption in U1 is similar to power consumption of U0.  
Next to the disconnect state, the U2/U3 state is next lowest power state. While in this state, the TUSB1004  
periodically performs far-end receiver detection. Anytime the far-end receiver termination is not detected on  
either UFP or DFP, the TUSB1004 leaves the U2/U3 state and transitions to the Disconnect state. It also  
monitors for a valid LFPS. Upon detection of a valid LFPS, the TUSB1004 immediately transitions to the U0  
state. In U2/U3 state, the TUSB1004 receiver terminations remain enabled but the TX DC common mode  
voltage is not maintained.  
7.4.4 Disabling U1 and U2  
In systems which have U1 and U2 disabled, it may be necessary to disable U1 and U2 in TUSB1004. In I2C  
mode this can be accomplished by setting the USB3_U1_DISABLE field. In pin-strap mode U1 and U2 is  
enabled by default and can't be disabled.  
7.5 Programming  
7.5.1 Pseudocode Examples  
7.5.1.1 Fixed EQ with Linear Redriver Mode  
// (address, data)  
// Initial power-on configuration.  
(0x0D, 0x03), // Enable both lanes 1 and 2.  
(0x0A, 0x11), // Linear redriver, EQ_OVERRIDE and USB 3.2  
(0x1C, 0x80), // Disable AEQ enable.  
(0x32, 0xC0), // VOD control  
(0x20, 0x44), // USB connector CRx1/CRx2 EQ setting  
(0x21, 0x55), // SSTX1 and SSTX2 receiver EQ  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TUSB1004  
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
7.5.1.2 Fixed EQ with Limited Redriver Mode  
// (address, data)  
// Initial power-on configuration.  
(0x0D, 0x03), // Enable both lanes 1 and 2.  
(0x0A, 0x91), // Limited redriver, EQ_OVERRIDE and USB 3.2  
(0x0B, 0x6F), // SSRX1 limited. Preshoot and de-emphasis.  
(0x0C, 0x6C), // SSRX2 limited. Preshoot and de-emphasis.  
(0x1C, 0x80), // Disable AEQ enable.  
(0x32, 0xC0), // VOD control  
(0x20, 0x44), // USB connector CRx1/CRx2 EQ setting  
(0x21, 0x55), // SSTX1 and SSTX2 receiver EQ  
7.5.1.3 Fast AEQ with Linear Redriver Mode  
// (address, data)  
// Initial power-on configuration.  
(0x0D, 0x03), // Enable both lanes 1 and 2.  
(0x0A, 0x11), // Linear redriver, EQ_OVERRIDE and USB 3.2  
(0x1C, 0x81), // Fast AEQ enable.  
(0x32, 0xC0), // VOD control  
(0x1D, 0x10), // Over EQ adjustment  
(0x1E, 0x77), // USB connector CRx1/CRx2 long channel EQ setting  
(0x20, 0x11), // USB connector CRx1/CRx2 short channel EQ setting  
(0x21, 0x55), // SSTX1 and SSTX2 receiver EQ  
7.5.1.4 Fast AEQ with Limited Redriver Mode  
// (address, data)  
// Initial power-on configuration.  
(0x0D, 0x03), // Enable both lanes 1 and 2.  
(0x0A, 0x91), // Limited redriver, EQ_OVERRIDE and USB 3.2  
(0x0B, 0x6F), // SSRX1 limited. Preshoot and de-emphasis.  
(0x0C, 0x6C), // SSRX2 limited. Preshoot and de-emphasis.  
(0x32, 0xC0), // VOD control  
(0x1C, 0x81), // Fast AEQ enable.  
(0x1D, 0x10), // Over EQ adjustment  
(0x1E, 0x77), // USB connector CRx1/CRx2 long channel EQ setting  
(0x20, 0x11), // USB connector CRx1/CRx2 short channel EQ setting  
(0x21, 0x55), // SSTX1 and SSTX2 receiver EQ  
7.5.1.5 Full AEQ with Linear Redriver Mode  
// (address, data)  
// Initial power-on configuration.  
(0x0D, 0x03), // Enable both lanes 1 and 2.  
(0x0A, 0x11), // Linear redriver, EQ_OVERRIDE and USB 3.2  
(0x32, 0xC0), // VOD control  
(0x1C, 0x85), // Full AEQ enable. Set upper EQ limit to 0x8.  
(0x1D, 0x10), // Over EQ adjustment  
(0x20, 0x11), // USB connector CRx1/CRx2 EQ. Not used in Full AEQ.  
(0x21, 0x55), // SSTX1 and SSTX2 receiver EQ  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TUSB1004  
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
7.5.1.6 Full AEQ with Limited Redriver Mode  
// (address, data)  
// Initial power-on configuration.  
(0x0D, 0x03), // Enable both lanes 1 and 2.  
(0x0A, 0x91), // Limited redriver, EQ_OVERRIDE and USB 3.2  
(0x0B, 0x6F), // SSRX1 limited. Preshoot and de-emphasis.  
(0x0C, 0x6C), // SSRX2 limited. Preshoot and de-emphasis.  
(0x32, 0xC0), // VOD control  
(0x1C, 0x85), // Full AEQ enable.  
(0x1D, 0x10), // Over EQ adjustment  
(0x20, 0x11), // USB connector CRx1/CRx2 short channel EQ setting. Not used for Full AEQ.  
(0x21, 0x55), // SSTX1 and SSTX2 receiver EQ  
7.5.2 TUSB1004 I2C Address Options  
For further programmability, the TUSB1004 can be controlled using I2C. The SCL and SDA pins are used for I2C  
clock and I2C data respectively.  
7-7. TUSB1004 I2C Target Address  
SSEQ1/A1  
PIN LEVEL  
SSEQ0/A0  
PIN LEVEL  
Bit 0  
(W/R)  
7-bit Address  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0
0
0
R
F
1
44h  
45h  
46h  
47h  
20h  
21h  
22h  
23h  
10h  
11h  
12h  
13h  
Ch  
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0
0
R
R
R
R
F
F
F
F
1
0
R
F
1
0
R
F
1
0
1
R
F
1
Dh  
1
Eh  
1
Fh  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TUSB1004  
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
7.5.3 TUSB1004 I2C Target Behavior  
Register O set  
Target Address  
Data wri en  
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
A
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
Start  
Ack  
Write  
7-2. I2C Write with Data  
The following procedure should be followed to write data to TUSB1004 I2C registers (refer to 7-2):  
1. The controller initiates a write operation by generating a start condition (S), followed by the TUSB1004 7-bit  
address and a zero-value W/Rbit to indicate a write cycle.  
2. The TUSB1004 acknowledges the address cycle.  
3. The controller presents the register offset within TUSB1004 to be written, consisting of one byte of data,  
MSB-first.  
4. The TUSB1004 acknowledges the sub-address cycle.  
5. The controller presents the first byte of data to be written to the I2C register.  
6. The TUSB1004 acknowledges the byte transfer.  
7. The controller may continue presenting additional bytes of data to be written, with each byte transfer  
completing with an acknowledge from the TUSB1004.  
8. The controller terminates the write operation by generating a stop condition (P).  
Data from o set 0x00  
or  
Target Address  
last read address + 1  
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
1
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
P
Start  
Stop  
Ack  
Read  
7-3. I2C Read Without Repeated Start  
The following procedure should be followed to read the TUSB1004 I2C registers without a repeated Start (refer  
7-3).  
1. The controller initiates a read operation by generating a start condition (S), followed by the TUSB1004 7-bit  
address and a zero-value W/Rbit to indicate a read cycle.  
2. The TUSB1004 acknowledges the 7-bit address cycle.  
3. Following the acknowledge the controller continues sending clock.  
4. The TUSB1004 transmit the contents of the memory registers MSB-first starting at register 00h or last read  
register offset+1. If a write to the I2C register occurred prior to the read, then the TUSB1004 shall start at the  
register offset specified in the write.  
5. The TUSB1004 waits for either an acknowledge (ACK) or a not-acknowledge (NACK) from the controller  
after each byte transfer; the I2C controller acknowledges reception of each data byte transfer.  
6. If an ACK is received, the TUSB1004 transmits the next byte of data as long as controller provides the clock.  
If a NAK is received, the TUSB1004 stops providing data and waits for a stop condition (P).  
7. The controller terminates the write operation by generating a stop condition (P).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TUSB1004  
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
Register O set Xh  
Target Address  
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
A
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
A
Sr  
Start  
Ack  
Write  
Repeated Start  
Data from Register Xh  
Target Address  
Data from Register Xh + 1  
P
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
1
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
Stop  
Read  
7-4. I2C Read with Repeated Start  
The following procedure should be followed to read the TUSB1004 I2C registers with a repeated Start (refer 图  
7-4).  
1. The controller initiates a read operation by generating a start condition (S), followed by the TUSB1004 7-bit  
address and a zero-value W/Rbit to indicate a write cycle.  
2. The TUSB1004 acknowledges the 7-bit address cycle.  
3. The controller presents the register offset within TUSB1004 to be written, consisting of one byte of data,  
MSB-first.  
4. The TUSB1004 acknowledges the register offset cycle.  
5. The controller presents a repeated start condition (Sr).  
6. The controller initiates a read operation by generating a start condition (S), followed by the TUSB1004 7-bit  
address and a one-value W/Rbit to indicate a read cycle.  
7. The TUSB1004 acknowledges the 7-bit address cycle.  
8. The TUSB1004 transmit the contents of the memory registers MSB-first starting at the register offset.  
9. The TUSB1004 shall wait for either an acknowledge (ACK) or a not-acknowledge (NACK) from the controller  
after each byte transfer; the I2C controller acknowledges reception of each data byte transfer.  
10. If an ACK is received, the TUSB1004 transmits the next byte of data as long as controller provides the clock.  
If a NAK is received, the TUSB1004 stops providing data and waits for a stop condition (P).  
11. The controller terminates the read operation by generating a stop condition (P).  
Register O set  
Target Address  
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
A
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
A
P
Start  
Ack  
Write  
Stop  
7-5. I2C Write Without Data  
The following procedure should be followed for setting a starting sub-address for I2C reads (refer to 7-5).  
1. The controller initiates a write operation by generating a start condition (S), followed by the TUSB1004 7-bit  
address and a zero-value W/Rbit to indicate a write cycle.  
2. The TUSB1004 acknowledges the address cycle.  
3. The controller presents the register offset within TUSB1004 to be written, consisting of one byte of data,  
MSB-first.  
4. The TUSB1004 acknowledges the register offset cycle.  
5. The controller terminates the write operation by generating a stop condition (P).  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TUSB1004  
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
备注  
After initial power-up, if no register offset is included for the read procedure (refer to 7-3), then  
reads start at register offset 00h and continue byte by byte through the registers until the I2C controller  
terminates the read operation. During a read operation, the TUSB1004 auto-increments the I2C  
internal register address of the last byte transferred independent of whether or not an ACK was  
received from the I2C controller.  
7.6 Register Map  
7.6.1 TUSB1004 Registers  
7-8 lists the memory-mapped registers for the TUSB1004 registers. All register offset addresses not listed in  
7-8 should be considered as reserved locations and the register contents should not be modified.  
7-8. TUSB1004 Registers  
Offset Acronym  
Register Name  
Section  
7.6.1.1  
7.6.1.2  
7.6.1.3  
7.6.1.4  
7.6.1.5  
7.6.1.6  
7.6.1.7  
7.6.1.8  
7.6.1.9  
7.6.1.10  
7.6.1.11  
7.6.1.12  
7.6.1.13  
7.6.1.14  
7.6.1.15  
7.6.1.16  
7.6.1.17  
7.6.1.18  
7.6.1.19  
8h  
Ah  
Rev_ID  
Revision ID Register  
General_1  
General Register  
Bh  
TX1EQ_CTRL  
TX2EQ_CTRL  
USB_MODE  
TX1 EQ Control  
Ch  
TX2 EQ Control  
Dh  
USB Mode control  
1Ch  
1Dh  
1Eh  
20h  
21h  
22h  
24h  
25h  
32h  
3Bh  
3Ch  
50h  
51h  
52h  
AEQ_CONTROL1  
AEQ_CONTROL2  
AEQ_LONG  
AEQ Controls  
AEQ Controls  
AEQ setting for Long channel  
EQ control for CRX1 and CRX2 receivers  
EQ Control for SSTX1 and SSTX2 receiver  
Misc USB3 Controls  
USBC_EQ  
SS_EQ  
USB3_MISC  
USB1_STATUS  
USB2_STATUS  
VOD_CTRL  
USB1 state machine status  
USB2 state machine status  
VOD Linearity and AEQ Controls  
Full and Fast AEQ status  
Full and Fast AEQ status  
AEQ1_STATUS  
AEQ2_STATUS  
AEQ_CONTROL_AUX1  
AEQ_CONTROL_AUX2  
AEQ_CONTROL_AUX3  
Complex bit access types are encoded to fit into small table cells. 7-9 shows the codes that are used for  
access types in this section.  
7-9. TUSB1004 Access Type Codes  
Access Type  
Code  
Description  
Read Type  
H
H
R
Set or cleared by hardware  
Read  
R
RH  
R
H
Read  
Set or cleared by hardware  
Write Type  
W
W
Write  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TUSB1004  
 
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
7-9. TUSB1004 Access Type Codes (continued)  
Access Type  
Code  
Description  
W1C  
W
Write  
1C  
1 to clear  
W1S  
W
Write  
1S  
1 to set  
WtoP  
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
7.6.1.1 Rev_ID Register (Offset = 8h) [Reset = 01h]  
Rev_ID is shown in 7-10.  
Return to the 7-8.  
7-10. Rev_ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
REVISION_ID  
RH  
1h  
Device Revision  
7.6.1.2 General_1 Register (Offset = Ah) [Reset = 00h]  
General_1 is shown in 7-11.  
Return to the 7-8.  
This register is used to enable USB. Software should set EQ_OVERRIDE bit in order for EQ registers to be used  
instead of pins.  
7-11. General_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SSRX_LIMIT_ENABLE  
R/W  
0h  
Limited redriver mode enable for SSRX transmitter.  
0h = Linear Redriver  
1h = Limited Redriver  
6
5
4
RESERVED  
R
0h  
0h  
0h  
Reserved  
Reserved  
RESERVED  
R
EQ_OVERRIDE  
R/W  
Setting this field will allow software to use EQ settings from registers  
instead of value sampled from pins.  
0h = EQ settings based on sampled state of EQ pins.  
1h = EQ settings based on programmed value of each of the EQ  
registers.  
3
2
RESERVED  
RESERVED  
CTLSEL  
R
0h  
0h  
0h  
Reserved  
Reserved  
R/W  
R/W  
1-0  
Controls whether USB is enabled or not. Program USB_MODE field  
before enabling USB operation.  
0h = Disabled  
1h = USB enabled.  
2h = Disabled  
3h = USB enabled  
7.6.1.3 TX1EQ_CTRL Register (Offset = Bh) [Reset = 6Fh]  
TX1EQ_CTRL is shown in 7-12.  
Return to the 7-8.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TUSB1004  
 
 
 
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
This register controls the pre-shoot and de-emphasis levels for SSRX1 when limited redriver mode is enabled.  
7-12. TX1EQ_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
SSRX1_PRESHOOT  
R/W  
1h  
SSRX1 TX preshoot level (pre-cursor).  
0h = 1.5 dB  
1h = 2 dB  
2h = 2.3 dB  
3h = 2.8 dB  
5
SSRX1_PRESHOOT_EN R/W  
1h  
1h  
SSRX1 TX preshoot (pre-cursor) enabled. Valid only when  
SSRX_LIMIT_ENABLE = 1.  
0h = Disabled (0 dB)  
1h = Enabled  
4-3  
SSRX1_DEEMPHASIS  
R/W  
SSRX1 TX de-emphasis level (post-cursor)  
0h = -1.5 dB  
1h = -2.1 dB  
2h = -3.2 dB  
3h = -3.8 dB  
2
SSRX1_DEEMPHASIS_E R/W  
N
1h  
3h  
SSRX1 TX de-emphasis (post-cursor) enable. Valid only when  
SSRX_LIMIT_ENABLE = 1.  
0h = Disabled (0 dB)  
1h = Enabled  
1-0  
RESERVED  
R/W  
Reserved  
7.6.1.4 TX2EQ_CTRL Register (Offset = Ch) [Reset = 6Ch]  
TX2EQ_CTRL is shown in 7-13.  
Return to the 7-8.  
This register controls the pre-shoot and de-emphasis levels for SSRX2 when limited redriver mode is enabled.  
7-13. TX2EQ_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
SSRX2_PRESHOOT  
R/W  
1h  
SSRX2 TX preshoot level (pre-cursor).  
0h = 1.5 dB  
1h = 2 dB  
2h = 2.3 dB  
3h = 2.8 dB  
5
SSRX2_PRESHOOT_EN R/W  
1h  
1h  
SSRX2 TX preshoot (pre-cursor) enabled. Valid only when  
SSRX_LIMIT_ENABLE = 1.  
0h = Disabled (0 dB)  
1h = Enabled  
4-3  
SSRX2_DEEMPHASIS  
R/W  
SSRX2 TX de-emphasis level (post-cursor)  
0h = -1.5 dB  
1h = -2.1 dB  
2h = -3.2 dB  
3h = -3.8 dB  
2
SSRX2_DEEMPHASIS_E R/W  
N
1h  
0h  
SSRX2 TX de-emphasis (post-cursor) enable. Valid only when  
SSRX_LIMIT_ENABLE = 1.  
0h = Disabled (0 dB)  
1h = Enabled  
1-0  
RESERVED  
R
Reserved  
7.6.1.5 USB_MODE Register (Offset = Dh) [Reset = 02h]  
USB_MODE is shown in 7-14.  
Return to the 7-8.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TUSB1004  
 
 
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
Selects the USB mode of operation  
7-14. USB_MODE Register Field Descriptions  
Bit  
7-3  
2
Field  
Type  
Reset  
Description  
RESERVED  
PCIE_EN  
R
0h  
Reserved  
R/W  
0h  
Controls whether or not PCIE is enabled.  
0h = PCIe Disabled.  
1h = PCIe Eabled.  
1
0
RESERVED  
USB_MODE  
RH/W  
R/W  
1h  
0h  
Reserved  
During initalization, software must program this field to 1 to enable  
both lanes 1 and 2 for USB operation.  
7.6.1.6 AEQ_CONTROL1 Register (Offset = 1Ch) [Reset = 85h]  
AEQ_CONTROL1 is shown in 7-15.  
Return to the 7-8.  
This register is used to enable adaptive EQ and select between Fast and Full adaptive EQ.  
7-15. AEQ_CONTROL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
FULLAEQ_UPPER_EQ  
R/W  
8h  
This field sets the maximum EQ value to check for full AEQ mode  
when in I2C mode.  
3
USB3_U1_DISABLE  
AEQ_MODE  
R/W  
R/W  
0h  
2h  
This field when set will cause entry to U3 instead of U1 when  
electrical idle is detected.  
0h = U1 entry after electrical idle.  
1h = U3 entry after electrical idle.  
2-1  
Selects Adaption mode (Fast, or one of three Full modes).  
0h = Fast AEQ.  
1h = Full AEQ, with hits counted at mideye for every EQ iteration  
(using current EQ setting).  
2h = Full AEQ, algorithm II.  
3h = Full AEQ, with hits counted at mideye only for first EQ iteration  
(using EQ set to the MID_HC_EQ value).  
0
AEQ_EN  
R/W  
1h  
Controls whether or not adaptive EQ for USB downstream facing  
port is enabled.  
0h = AEQ disabled  
1h = AEQ enabled  
7.6.1.7 AEQ_CONTROL2 Register (Offset = 1Dh) [Reset = 10h]  
AEQ_CONTROL2 is shown in 7-16.  
Return to the 7-8.  
This register allows for controls for the Fast AEQ limits as well as adding or reducing final EQ value used by the  
Full AEQ function.  
7-16. AEQ_CONTROL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
OVER_EQ_SIGN  
R/W  
0h  
Selects the sign for OVER_EQ_CTRL field.  
0h = positive  
1h = negative  
6
RESERVED  
R
0h  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TUSB1004  
 
 
 
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
7-16. AEQ_CONTROL2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5-3  
FASTAEQ_LIMITS  
R/W  
2h  
Selects the upper/lower limits of DAC for determining short vs long  
channel.  
0h = ± 0 mV  
1h = ± 40 mV  
2h = ± 80 mV  
3h = ± 120 mV  
4h = ± 160 mV  
5h = ± 200 mV  
6h = ± 240 mV  
7h = ± 280 mV  
2-0  
OVER_EQ_CTRL  
R/W  
0h  
This field will increase or decrease the AEQ by value programmed  
into this field. For example, full AEQ value is 6 and this field is  
programmed to 2 and OVER_EQ_SIGN = 0, then EQ value used will  
be 8. This field is only used in Full AEQ mode.  
0h = 0 or -8  
1h = 1 or -7  
2h = 2 or -6  
3h = 3 or -5  
4h = 4 or -4  
5h = 5 or -3  
6h = 6 or -2  
7h = 7 or -1  
7.6.1.8 AEQ_LONG Register (Offset = 1Eh) [Reset = 77h]  
AEQ_LONG is shown in 7-17.  
Return to the 7-8.  
This register is used to program the EQ used for long channel setting when Fast AEQ is enabled.  
7-17. AEQ_LONG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LONG_CEQ2  
R/W  
7h  
When AEQ_EN = 1 and AEQ_MODE = x0 (i.e., Fast), selects EQ  
setting for USB connector port2 (CRX2) when long channel is  
detected. The user should program this field with the value that  
provides the best Rx JTOL results for a long channel configuration.  
3-0  
LONG_CEQ1  
R/W  
7h  
When AEQ_EN = 1 and AEQ_MODE = x0, selects EQ setting for  
USB connector port1 (CRX1) when long channel is detected. The  
user should program this field with the value that provides the best  
Rx JTOL results for a long channel configuration.  
7.6.1.9 USBC_EQ Register (Offset = 20h) [Reset = 00h]  
USBC_EQ is shown in 7-18.  
Return to the 7-8.  
This register controls the receiver equalization setting for the connector receiver (CRX1 and CRX2).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TUSB1004  
 
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
7-18. USBC_EQ Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
CEQ2_SEL  
RH/W  
0h  
If AEQ_EN = 0, this field selects EQ for USB CRX2 receiver which  
faces the USB-Creceptacle. When EQ_OVERRIDE = 0b, this field  
reflects the sampled state of CEQ[1:0] pins. When EQ_OVERRIDE =  
1b, software can change the EQ setting for CRX2p/n pins based on  
value written to this field. When AEQ_EN = 1 and AEQ_MODE = x0,  
selects EQ setting for USB connector port2 (CRX2) when short  
channel is detected. The user should program this field with the  
value that provides the best Rx JTOL results for a short channel  
configuration.  
3-0  
CEQ1_SEL  
RH/W  
0h  
If AEQ_EN = 0, this field selects EQ for USB CRX1 receiver which  
faces the USB-C receptacle. When EQ_OVERRIDE = 0b, this field  
reflects the sampled state of CEQ[1:0] pins. When EQ_OVERRIDE =  
1b, software can change the EQ setting for CRX1p/n pins based on  
value written to this field. When AEQ_EN = 1 and AEQ_MODE = x0,  
selects EQ setting for USB connector port1 (CRX1) when short  
channel is detected. The user should program this field with the  
value that provides the best Rx JTOL results for a short channel  
configuration.  
7.6.1.10 SS_EQ Register (Offset = 21h) [Reset = 00h]  
SS_EQ is shown in 7-19.  
Return to the 7-8.  
This register controls the receiver equalization setting for the SSTX1 and SSTX2.  
7-19. SS_EQ Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
SSEQ2_SEL  
RH/W  
0h  
This field selects EQ for USB3 SSTX2 receiver which faces the USB  
host. When EQ_OVERRIDE = 0b, this field reflects the sampled  
state of SSEQ[1:0] pins. When EQ_OVERRIDE = 1b, software can  
change the EQ setting for SSTX2p/n pins based on value written to  
this field.  
3-0  
SSEQ1_SEL  
RH/W  
0h  
This field selects EQ for USB SSTX1 receiver which faces the USB  
host. When EQ_OVERRIDE = 0b, this field reflects the sampled  
state of SSEQ[1:0] pins. When EQ_OVERRIDE = 1b, software can  
change the EQ setting for SSTX1p/n pins based on value written to  
this field.  
7.6.1.11 USB3_MISC Register (Offset = 22h) [Reset = 04h]  
USB3_MISC is shown in 7-20.  
Return to the 7-8.  
7-20. USB3_MISC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RXD_START_TERM  
R/W  
0h  
Termination setting at start of RX detection following warm reset and  
at entry to SS.Inactive.  
0h = Maintain termination.  
1h = Turn off termination. Avoid compliance failures due to race  
between local and remote rxd in case of disconnect. If connection  
remains next state was polling regardless.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TUSB1004  
 
 
 
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
7-20. USB3_MISC Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6-5  
U23_RXDET_INTERVAL R/W  
0h  
This field controls the Rx.Detect interval for the downstream facing  
port (CTX1P/N and CTX2P/N) when in U2/U3.  
0h = 48 ms  
1h = 84 ms  
2h = 120 ms  
3h = 156 ms  
4
DISABLE_U2U3_RXDET R/W  
DFP_RXDET_INTERVAL R/W  
0h  
1h  
Controls whether or not Rx.Detect is performed in U2/U3 state.  
0h = Rx.Detect in U2/U3 enabled.  
1h = Rx.Detect in U2/U3 disabled.  
3-2  
This field controls the Rx.Detect interval for the downstream facing  
port (CTX1P/N and CTX2P/N).  
0h = 4 ms  
1h = 6 ms  
2h = 36 ms  
3h = 84 ms  
1
0
DIS_WARM_RESET_RXD R/W  
0h  
0h  
Disables receiver detection following warm reset if device starts  
polling during warm reset.  
0h = whether receiver detection is done following warm reset  
depends on other settings.  
1h = if USB FSM detects that device started polling during warm  
reset, it will not do receiver detection.  
USB_COMPLIANCE_CTR R/W  
L
Controls whether compliance mode detection is determined by FSM  
or disabled  
0h = Compliance mode determined by FSM.  
1h = Compliance mode disabled.  
7.6.1.12 USB1_STATUS Register (Offset = 24h) [Reset = 01h]  
USB1_STATUS is shown in 7-21.  
Return to the 7-8.  
7-21. USB1_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
USB1_FASTAEQ_STAT  
RH  
0h  
When AEQ_EN = 1 and AEQ_MODE = x0, this status field indicates  
whether short or long EQ setting is used. When AEQ_EN = 0, this  
field will always default to 0h.  
0h = Short channel EQ used.  
1h = Long channel EQ used.  
6
5
4
3
RESERVED  
RESERVED  
RESERVED  
CM_ACTIVE1  
RH/W1C  
RH  
0h  
0h  
0h  
0h  
Reserved  
Reserved  
Reserved  
RH  
RH  
Compliance mode status.  
0h = Not in USB3.1 compliance mode.  
1h = In USB3.1 compliance mode.  
2
1
0
U0_STAT1  
RH  
RH  
RH  
0h  
0h  
1h  
U0 Status. Set if enters U0 state.  
U2U3_STAT1  
DISC_STAT1  
U2/U3 Status. Set if enters U2/U3 state.  
Disconnect Status. Set if enters Disconnect state.  
7.6.1.13 USB2_STATUS Register (Offset = 25h) [Reset = 01h]  
USB2_STATUS is shown in 7-22.  
Return to the 7-8.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TUSB1004  
 
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
7-22. USB2_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
USB2_FASTAEQ_STAT  
RH  
0h  
When AEQ_EN = 1 and AEQ_MODE = x0, this status field indicates  
whether short or long EQ setting is used. When AEQ_EN = 0, this  
field will always default to 0h.  
0h = Short channel EQ used.  
1h = Long channel EQ used.  
6
5
4
3
RESERVED  
RESERVED  
RESERVED  
CM_ACTIVE2  
RH/W1C  
RH  
0h  
0h  
0h  
0h  
Reserved  
Reserved  
Reserved  
RH  
RH  
Compliance mode status.  
0h = Not in USB3.1 compliance mode.  
1h = In USB3.1 compliance mode.  
2
1
0
U0_STAT2  
RH  
RH  
RH  
0h  
0h  
1h  
U0 Status. Set if enters U0 state.  
U2U3_STAT2  
DISC_STAT2  
U2/U3 Status. Set if enters U2/U3 state.  
Disconnect Status. Set if enters Disconnect state.  
7.6.1.14 VOD_CTRL Register (Offset = 32h) [Reset = C0h]  
VOD_CTRL is shown in 7-23.  
Return to the 7-8.  
This register controls the transmitters output linearity range for both UFP and DFP. When device is configured for  
limited redriver (SSRX_LIMIT_ENABLE field is set), USB_SSRX_VOD controls the VOD level for SSRX limited  
driver.  
7-23. VOD_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
LFPS_VOD  
R/W  
3h  
VOD linearity control for SSRX1, SSRX2, CTX1, and CTX2 when  
LFPS is being transmitted.  
0h = LINR_L3 (highest)  
1h = LINR_L2  
2h = LINR_L1  
3h = LINR_L0 (lowest)  
5-4  
3-2  
RESERVED  
R
0h  
0h  
Reserved  
USB_CTX12_VOD  
R/W  
VOD linearity control for USB connector facing ports (CTX1 and  
CTX2).  
0h = LINR_L3 (highest)  
1h = LINR_L2  
2h = LINR_L1  
3h = LINR_L0 (lowest)  
1-0  
USB_SSRX12_VOD  
R/W  
0h  
VOD linearity control for USB upstream facing port (SSRX1/2). When  
SSRX_LIMIT_ENABLE = 1, then this field controls the limited VOD  
for SSRX.  
0h = LINR_L3 (highest)  
1h = LINR_L2  
2h = LINR_L1  
3h = LINR_L0 (lowest)  
7.6.1.15 AEQ1_STATUS Register (Offset = 3Bh) [Reset = 00h]  
AEQ1_STATUS is shown in 7-24.  
Return to the 7-8.  
This register provides the status of AEQ function.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TUSB1004  
 
 
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
7-24. AEQ1_STATUS Register Field Descriptions  
Bit  
7-5  
4
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
RESERVED  
R
0h  
RESERVED  
RH  
RH  
0h  
3-0  
AEQ1_EQ_STAT  
0h  
Optimal EQ determined by FSM after the completion of Full AEQ.  
This field will also indicate EQ used for Fast AEQ. This field will  
include the value programmed into OVER_EQ_CTRL field.  
7.6.1.16 AEQ2_STATUS Register (Offset = 3Ch) [Reset = 00h]  
AEQ2_STATUS is shown in 7-25.  
Return to the 7-8.  
This register provides the status of AEQ function.  
7-25. AEQ2_STATUS Register Field Descriptions  
Bit  
7-5  
4
Field  
Type  
Reset  
Description  
RESERVED  
RESERVED  
AEQ2_EQ_STAT  
R
0h  
Reserved  
RH  
RH  
0h  
0h  
Reserved  
3-0  
Optimal EQ determined by FSM after the completion of Full AEQ.  
This field will also indicate EQ used for Fast AEQ. This field will  
include the value programmed into OVER_EQ_CTRL field.  
7.6.1.17 AEQ_CONTROL_AUX1 Register (Offset = 50h) [Reset = 00h]  
AEQ_CONTROL_AUX1 is shown in 7-26.  
Return to the 7-8.  
7-26. AEQ_CONTROL_AUX1 Register Field Descriptions  
Bit  
7-6  
5-2  
1-0  
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
Reserved  
RESERVED  
RESERVED  
RESERVED  
R
0h  
R
0h  
R
0h  
7.6.1.18 AEQ_CONTROL_AUX2 Register (Offset = 51h) [Reset = 07h]  
AEQ_CONTROL_AUX2 is shown in 7-27.  
Return to the 7-8.  
7-27. AEQ_CONTROL_AUX2 Register Field Descriptions  
Bit  
7-5  
4
Field  
Type  
Reset  
Description  
RESERVED  
EQ_MERGE  
R
0h  
Reserved  
R/W  
0h  
Initial EQ result merge control. This field controls how the EQ results  
from the positive and negative VOD offsets steps are merged to  
produce the initial EQ value. This field is applicable only when the  
AEQ_MODE field is set to 2'b10.  
0h = Use max of pos/neg VOD EQs  
1h = Use min of pos/neg VOD EQs  
3-0  
MID_HC_EQ  
R/W  
7h  
Sets EQ value during the mid-eye hit-count capture step. This field is  
applicable only when the AEQ_MODE field is set to 2'b10 or 2'b11.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TUSB1004  
 
 
 
 
 
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
7.6.1.19 AEQ_CONTROL_AUX3 Register (Offset = 52h) [Reset = 86h]  
AEQ_CONTROL_AUX3 is shown in 7-28.  
Return to the 7-8.  
7-28. AEQ_CONTROL_AUX3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
HC_EQ_THR  
R/W  
4h  
Sets the hit-count threshold during the EQ search steps. The  
algorithm will find the minimum EQ setting such that the hit-count is  
at or above value N_eq, where: N_eq = HC_me * (128-  
HC_EQ_THR)/128 and HC_me is the mid-eye hit-count. This field is  
applicable only when the AEQ_MODE field is set to 2'b10.  
4
RESERVED  
R
0h  
6h  
Reserved  
3-0  
HC_VOD_THR  
R/W  
Sets the hit-count threshold during the VOD search steps. The  
algorithm will find the maximum DAC VOD setting such that the hit-  
count is at or above the threshold value N_vod, where: N_vod =  
HC_me * HC_VOD_THR/128 and HC_me is the mid-eye hit-count.  
This field is applicable only when the AEQ_MODE field is set to  
2'b10.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TUSB1004  
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The TUSB1004 is a linear redriver designed specifically to compensate for intersymbol interference (ISI) jitter  
causes by signal attenuation through a passive medium like PCB traces or cables. Placing the TUSB1004  
between the USB connector and a USB 3.2 host, hub, and device can correct signal integrity issues resulting in  
a more robust system.  
9 Typical Application  
A
B
C
D
PCB Trace of Length XAB  
PCB Trace of Length XCD  
CAC-USB1  
SSTX2P  
SSTX2N  
SSRX2P  
CAC-USB1  
RESD  
CTX2P  
SSRX2N  
CTX2N  
CRX2P  
CRX2N  
Optional  
CAC-USB2  
LAC-CAP  
USB3.2  
Host  
LESD  
TUSB1004  
LAC-CAP  
CAC-USB1  
SSTX1N  
CAC-USB1  
SSTX1P  
SSRX1N  
SSRX1P  
RESD  
CTX1N  
CTX1P  
CRX1N  
CRX1P  
Optional  
CAC-USB2  
LR_ESD  
PCB Trace of Length XCE  
C
E
9-1. Typical USB Host Application  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TUSB1004  
 
 
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
10 Design Requirements  
For this design example, use the parameters shown in 10-1.  
10-1. Design Parameters  
PARAMETER  
VALUE  
10 Gbps USB 3.2 pre-channel A to B PCB trace length, XAB  
.
2 inches <= XAB <= 12 inches -  
MAX(XCD or XCE  
)
Refer to 9-1.  
10 Gbps USB post-channel C to D PCB trace length, XCD and  
up to 4 inches  
XCE. Refer to 9-1.  
Minimum distance of the AC capacitors from TUSB1004, LAC-  
0.4 inches  
1.0 inches  
0.25 inches  
CAP  
Maximum distance of ESD component from the USB  
receptacle, LESD  
Maximum distance of series resistor (RESD) from ESD  
component, LR_ESD  
.
CAC-USB1 AC-coupling capacitor (75 nF to 265 nF)  
CAC-USB2 AC-coupling capacitor (297 nF to 363 nF)  
220 nF  
Options:  
RX1 and RX2 are DC-coupled to  
USB receptacle  
330 nF AC-couple with RRX resistor  
No used  
Optional RRX resistor (220-kΩ± 5%)  
RESD (0-to 2.2-)  
1-Ω  
VCC supply (3-V to 3.6-V)  
I2C Mode or Pin-strap Mode  
1.8-V or 3.3-V I2C Interface  
3.3-V  
Pin-strap mode (MODE = "0")  
3.3-V I2C. VIO_SEL pin to Float "F".  
11 Detailed Design Procedure  
A typical usage of the TUSB1004 device is shown in 11-1. The device can be configured either through its  
GPIO pins (SSEQ[1:0] and CEQ[1:0] pins) or through its I2C interface. In the example shown below, the  
TUSB1004 is configured in pin-strap mode with adaptive EQ (AEQ) enabled. The MODE pin is pull-down to  
GND through a 1-kΩ resistor. The AEQENZ is pull-down to GND which will enable AEQ for CRX1 and CRX2  
receivers. Because AEQ is enabled, CEQ[1:0] pins can be left floating. The SSEQ[1:0] in this example is also  
floating but they need to configured to match the loss of the pre-channel (XAB).  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TUSB1004  
 
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
3.3V  
100nF  
100nF  
100nF  
10mF  
100nF  
USB 3.2 Host  
9
SSTXP  
CAC-USB1  
CAC-USB1  
8
RESD  
SSTXN  
CTX2P  
SSTX2P  
SSTX2N  
SSTX2P  
SSTX2N  
7
GND  
CTX2N  
6
SSRXP  
RESD  
5
SSRX2P  
SSRX2N  
CRX2P  
CRX2N  
SSRX2P  
SSRX2N  
SSRXN  
4
GND  
CAC-USB2  
3
CAC-USB1  
RRX  
DP  
SSTX1P  
SSTX1N  
SSTX1P  
SSTX1N  
2
DM  
Optional  
1
VBUS  
Optional  
SSRX1P  
SSRX1N  
SSRX1P  
SSRX1N  
GPIO0  
9
SLP_S0#  
SSTXP  
CAC-USB1  
RESD  
8
TESTOUT1  
TESTOUT2  
CTX1P  
CTX1N  
SSTXN  
7
GND  
RESD  
6
SSRXP  
CRX1P  
CRX1N  
5
SSRXN  
CAC-USB2  
4
3.3V  
DNI  
1-kQ  
GND  
RRX  
Optional  
3
MODE  
DP  
MODE  
MODE  
SSEQ0  
2
SSEQ0  
SSEQ1  
DM  
SSEQ0/A0  
SSEQ1/A1  
CEQ0  
Optional  
1
VBUS  
3.3V  
3.3V  
CEQ0  
CEQ1  
DNI  
DNI  
DNI  
DNI  
TEST2/SCL  
AEQENZ/SDA  
EN  
SSEQ1  
CEQ1  
AEQENZ  
AEQCFG  
EQCFG  
AEQCFG  
EQCFG  
VIO_SEL  
TEST1  
CEN  
3.3V  
3.3V  
VIO_SEL  
TEST1  
DNI  
DNI  
DNI  
DNI  
CEQ0  
CEQ1  
TP  
TUSB1004  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
10-kQ  
DNI  
DNI  
DNI  
DNI  
DNI  
DNI  
DNI  
AEQENZ  
AEQCFG  
EQCFG  
VIO_SEL  
TEST1  
DNI = DO NOT INSTALL  
1-kQ  
11-1. Application Circuit  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TUSB1004  
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
11.1 USB SSTX1/2 Receiver Configuration  
Configuring the TUSB1004 involves understanding the insertion loss (SDD21) of the pre-channel (XAB). The  
TUSB1004's SSEQ[1:0] pins if pin-strap mode, or if I2C mode, SSEQ2_SEL and SSEQ1_SEL registers should  
be set to the level of the pre-channel insertion loss at 5 GHz. A good rule for FR4 trace insertion loss at 5 GHz is  
-1 dB per inch. Using this rule, if the pre-channel for USB (XAB) is 8-inches, the TUSB1004 SSEQ should be  
programmed to -8 dB.  
11.2 USB CRX1/2 Receiver Configuration  
11.2.1 Fixed Equalization  
In Fixed EQ operation, a single EQ setting is used for all possible devices inserted into the USB receptacle (with  
or without an USB cable). It is recommended to set TUSB1004 CEQ[1:0] pins if pin-strap mode, or CEQ1_SEL  
and CEQ2_SEL if I2C mode to about 4 db to 5 dB greater than loss of the post channel (XCD). For example, if  
post channel is 0.5 inches, then assuming -1 dB per inch at 5 GHz, CEQ1_SEL and CEQ2_SEL should be  
programmed to 4.5 to 5.5 dB. It is recommended to perform USB 3.1 Rx JTOL long and short channel tests to  
optimize the setting. Depending of the USB 3.2 Host, a single EQ setting which satisfies both the long and short  
channel tests may not be possible. If this is the case, then it is recommended to use AEQ mode.  
11.2.2 Full Adaptive Equalization  
In Full AEQ mode, the TUSB1004 will determine the best settings regardless if the channel is short, long or  
somewhere in between. In pin-strap mode, the Full AEQ is enabled based on the state of AEQENZ pin. In I2C  
mode, the Full AEQ feature is enabled by default. Full AEQ is enabled when AEQ_MODE = 1, 2, or 3, and  
AEQ_EN = 0x1.  
11.2.3 Fast Adaptive Equalization  
Fast Adaptive EQ will distinguish between a short and long channel and select a pre-determined EQ setting  
based on which channel is detected. Fast AEQ is available only I2C mode. Fast AEQ is enabled when  
AEQ_MODE = 0 and AEQ_EN = 1.  
The EQ setting used for short channel should be programmed into CEQ1_SEL and CEQ2_SEL registers. It is  
recommended to program these registers about 1 dB to 2 dB more than the loss of post channel (XCD). For  
example, if post channel is 0.5 inches, then assuming -1dB insertion loss per inch at 5 GHz, CEQ1_SEL and  
CEQ2_SEL should be programmed to 1.5 to 2.5 dB. It is recommended to perform USB 3.2 Rx JTOL Short  
channel test to find the optimal short channel setting.  
The EQ setting used for long channel should be programmed into LONG_CEQ1 and LONG_CEQ2. It is  
recommended to program these registers about 4 to 5 dB more than the loss of post channel (XCD). For  
example, if post channel is 0.5 inches, then assuming -1 dB per inch at 5 GHz, LONG_CEQ1 and LONG_CEQ2  
should be programmed to 4.5 to 5.5 dB. It is recommended to perform USB 3.2 Rx JTOL Long channel test to  
find the optimal long channel setting.  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TUSB1004  
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
12 Application Curves  
12-1. 10 Gbps Input Eye At SSTX1  
After 12.5 dB at 5 GHz Pre-channel  
12-2. 10 Gbps Output Eye at CTX1  
After 1.2 dB at 5 GHz Post-Channel  
13 Power Supply Recommendations  
The TUSB1004 is designed to operate with a 3.3 V power supply. Levels above those listed in the Absolute  
Maximum Ratings table should not be used. If using a higher voltage system power supply, a voltage regulator  
can be used to step down to 3.3 V. Decoupling capacitors should be used to reduce noise and improve power  
supply integrity. A 0.1 μF de-coupling capacitor should be used on each power pin. The de-coupling capacitor  
should be placed close as possible to the power pin. It is also recommended to have a single bulk capacitor of 1  
μF to 10 μF.  
14 Layout  
14.1 Layout Guidelines  
1. SSTX1P/N, SSRX1P/N, SSTX2P/N, SSRX2P/N, CRX1P/N, CRX2PN, CTX1P/N, and CTX2P/N pairs should  
be routed with controlled 90-Ωdifferential impedance (±10%).  
2. There is no inter-pair length match requirement.  
3. Keep away from other high speed signals.  
4. Intra-pair routing (between P and N) should be kept to less than 5 mils.  
5. Length matching should be near the location of mismatch.  
6. Each pair should be separated at least by 3 times the signal trace width.  
7. The use of bends in differential traces should be kept to a minimum. When bends are used, the number of  
left and right bends should be as equal as possible and the angle of the bend should be 135 degrees.  
This will minimize any length mismatch caused by the bends and therefore minimize the impact bends have  
on EMI.  
8. Route all differential pairs on the same of layer.  
9. The number of vias should be kept to a minimum. It is recommended to keep the vias count to 2 or less.  
10. Keep traces on layers adjacent to ground plane.  
11. Do not route differential pairs over any plane split.  
12. Adding test points will cause impedance discontinuity, and therefore, negatively impact signal performance.  
If test points are used, they should be placed in series and symmetrically. They must not be placed in a  
manner that causes a stub on the differential pair.  
13. Highly recommended to have reference plane void under USB-C receptacle's super speed pins to minimize  
the capacitance effect of the receptacle.  
14. Highly recommended to have reference plane void under the AC-coupling capacitances.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TUSB1004  
 
 
 
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
14.2 Layout Example  
GND  
1
9
40  
CTX2p/n  
SSTX2p/n  
SSRX2p/n  
CEQ0  
CRX2p/n  
CTX1n/p  
VIO_SEL  
SSEQ0/A0  
GND  
SSTX1p/n  
SSRX1p/n  
MODE  
CRX1n/p  
GND  
CEQ1  
20  
29  
VCC  
GND  
14-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TUSB1004  
 
TUSB1004  
ZHCSMM7 APRIL 2022  
www.ti.com.cn  
15 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed below.  
15.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
15.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
15.3 Trademarks  
USB-Cis a trademark of Universal Serial Bus Implementers Forum.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
15.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
15.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
16 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TUSB1004  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TUSB1004IRNQR  
TUSB1004IRNQT  
TUSB1004RNQR  
TUSB1004RNQT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
0 to 70  
TSB04  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
TSB04  
TSB04  
TSB04  
0 to 70  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
RNQ0040A  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
4.7±0.1  
2X 4.4  
(0.2) TYP  
9
20  
EXPOSED  
THERMAL PAD  
36X 0.4  
8
21  
2X  
2.8  
2.7±0.1  
1
28  
0.25  
40X  
0.15  
29  
40  
PIN 1 ID  
0.1  
C A  
B
0.5  
0.3  
(OPTIONAL)  
40X  
0.05  
4222125/B 01/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNQ0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(4.7)  
2X (2.1)  
6X (0.75)  
40  
29  
40X (0.6)  
1
28  
40X (0.2)  
SYMM  
4X  
(1.1)  
(3.8)  
(2.7)  
36X (0.4)  
8
21  
(R0.05) TYP  
9
20  
SYMM  
(5.8)  
(
0.2) TYP  
VIA  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222125/B 01/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNQ0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
4X (1.5)  
40  
29  
40X (0.6)  
1
28  
40X (0.2)  
SYMM  
6X  
(0.695)  
(3.8)  
6X  
(1.19)  
36X (0.4)  
8
21  
(R0.05) TYP  
METAL  
TYP  
9
20  
6X (1.3)  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
73% PRINTED SOLDER COVERAGE BY AREA  
SCALE:18X  
4222125/B 01/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TUSB1004RNQR

10 Gbps USB 3.2 4 通道自适应线性转接驱动器 | RNQ | 40 | 0 to 70
TI

TUSB1004RNQT

10 Gbps USB 3.2 4 通道自适应线性转接驱动器 | RNQ | 40 | 0 to 70
TI

TUSB1042I

10Gbps USB Type-C 2:1 线性转接驱动器开关
TI

TUSB1042IRNQR

10Gbps USB Type-C 2:1 线性转接驱动器开关 | RNQ | 40 | -40 to 85
TI

TUSB1042IRNQT

10Gbps USB Type-C 2:1 线性转接驱动器开关 | RNQ | 40 | -40 to 85
TI

TUSB1044

USB TYPE-C™ 10Gbps 多协议双向线性转接驱动器
TI

TUSB1044IRNQR

USB TYPE-C™ 10Gbps 多协议双向线性转接驱动器 | RNQ | 40 | -40 to 85
TI

TUSB1044IRNQT

USB TYPE-C™ 10Gbps 多协议双向线性转接驱动器 | RNQ | 40 | -40 to 85
TI

TUSB1044RNQR

USB TYPE-C™ 10Gbps 多协议双向线性转接驱动器 | RNQ | 40 | 0 to 70
TI

TUSB1044RNQT

USB TYPE-C™ 10Gbps 多协议双向线性转接驱动器 | RNQ | 40 | 0 to 70
TI

TUSB1046-DCI

USB Type-C DP 交替模式 10Gbps 线性转接驱动器交叉点开关
TI

TUSB1046-DCIRNQR

USB Type-C DP 交替模式 10Gbps 线性转接驱动器交叉点开关 | RNQ | 40 | 0 to 70
TI