TUSB2E111YCGR [TI]

USB 2.0-eUSB2 单端口中继器 | YCG | 15 | -20 to 85;
TUSB2E111YCGR
型号: TUSB2E111YCGR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

USB 2.0-eUSB2 单端口中继器 | YCG | 15 | -20 to 85

中继器
文件: 总56页 (文件大小:2001K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TUSB2E11  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
TUSB2E11 USB 2.0-eUSB2 中继器  
1 特性  
3 说明  
• 兼USB 2.0 eUSB21.2 )  
• 低速、全速、高速信令  
TUSB2E11 是一款支持器件和主机模式的 USB 兼容  
eUSB2 USB 2.0 中继器。  
20ps 卓越高速总抖动  
器件支持 USB 低速 (LS)、全速 (FS) 和高速 (HS) 信  
号。  
• 寄存器访问协议接收器功能  
• 支持主机和器件模式双重角色器件)  
• 自动检I2C 或自举引脚选项  
该器件采用多项专利设计可提供强大的互操作性、性  
能和电源。  
– 用USB 2.0 高速通道补偿设置的三个自举引  
I2C 器件接口支持更多配置  
对于没有 I2C 接口的系统该器件提供 8 个单独的设  
带有三个适用于高达 20ΩUSB 2.0 通道等效串  
联电(ESR) 的自举引脚。器件变体可用于高达 10 英  
寸的不同级别eUSB2 布线长度补偿。  
• 器件变体  
eUSB2 1.0V 1.2V 信令接口  
– 适用于不同产品外形尺寸eUSB2 布线损耗补  
偿水平  
1.2V 1.8V I2C 接口  
I2C 接口可提高灵活性支持微调器件的 RX 均衡性和  
TX 振幅、压摆率和预加重以便通过电气合规性测试  
并补偿通道损耗。  
• 支持可选电池充电和检测  
BC 1.2 CDP DCP 分频器模式广播  
– 数据感USB Type-CBC 1.2 SDP、  
CDP DCP 分频器模式检测  
可通过 3 GPIO 引脚提供各种调试选项这些引脚  
可配置来监控各种 USB 总线状态或中断以及提供  
SoC 调试功能的 CTA-936 UART 模式。GPIO0 和  
GPIO1 可用作通I2C GPIO 桥接器件。  
– 充电器广播或检测之间的双重角色自动切换  
• 支CTA-936 USB Carkit UART  
• 支持自动恢ECR L2 中断恢复模式  
• 可GPIOGPIO2、调试、I2C GPIO0/1  
I2C 可访问调试功能适用于制造测试  
器件信息(1)  
封装尺寸标称值)  
器件型号  
TUSB2E11  
封装  
DSBGA (15)  
1.30 mm × 2.00 mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
笔记本电脑和台式机  
手机  
平板电脑  
可穿戴设备  
便携式电子产品  
Connector  
I2C  
Repeater  
UART  
Target Level shifter Controller/detector  
I2C  
BC 1.2  
GPIO  
Port  
protection  
(optional)  
AP  
USB  
USB  
RESETB  
eUSB2  
eUSB2 œ USB 2.0  
Repeater  
VDD3V3  
VDD1V8  
VSS  
简化版应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFI4  
 
 
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
Table of Contents  
8.6 I2C Target Interface...................................................30  
9 Register Access Protocol (RAP)..................................32  
10 Register Map................................................................33  
10.1 TUSB2E11 Registers..............................................33  
11 Application and Implementation................................ 45  
11.1 Application Information............................................45  
11.2 Typical Application.................................................. 45  
12 Power Supply Recommendations..............................49  
12.1 Power Up Reset......................................................49  
13 Layout...........................................................................49  
13.1 Layout Guidelines................................................... 49  
13.2 Example Layout for Application with 1.8 V I2C  
Variant......................................................................... 50  
14 Device and Documentation Support..........................51  
14.1 Device Support....................................................... 51  
14.2 Documentation Support.......................................... 51  
14.3 接收文档更新通知................................................... 51  
14.4 支持资源..................................................................51  
14.5 Trademarks.............................................................51  
14.6 Electrostatic Discharge Caution..............................51  
14.7 术语表..................................................................... 51  
15 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Version Comparison...........................................3  
5.1 Device Variants...........................................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 9  
7.1 Absolute Maximum Ratings........................................ 9  
7.2 ESD Ratings............................................................... 9  
7.3 Recommended Operating Conditions.........................9  
7.4 Thermal Information..................................................10  
7.5 Electrical Characteristics...........................................10  
7.6 Switching Characteristics..........................................17  
7.7 Timing Requirements................................................19  
7.8 Typical Characteristics..............................................21  
7.9 Parameter Measurement Information....................... 22  
8 Detailed Description......................................................23  
8.1 Overview...................................................................23  
8.2 Functional Block Diagram.........................................23  
8.3 Feature Description...................................................24  
8.4 Device Functional Modes..........................................24  
8.5 Manufacturing Test Modes........................................28  
Information.................................................................... 51  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (November 2021) to Revision A (June 2022)  
Page  
• 首次公开发布数据表........................................................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TUSB2E11  
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
5 Device Version Comparison  
5-1. Device Register Comparison Table  
Register Address  
B0 default  
0x73h  
0x38h  
0x90h  
0x04h  
0x00h  
0x0Bh  
0x40h  
0x02h  
0x02h  
0x00h  
0x00h  
0x00h  
0xC0h  
0x00h  
0x32h  
B1 default  
0x7Ch  
0x3Ch  
0x92h  
0x83h  
0x00h  
0x0Bh  
0x60h  
0x02h  
0x03h  
0x00h  
0x00h  
0x00h  
0xC0h  
0x00h  
0x32h  
0x70h  
0x71h  
0x72h  
0x73h  
0x77h  
0x78h  
0x79h  
0x50h  
0xB0h  
0xB2h  
0xB3h  
0xB4h  
0xB6h  
0x60h  
0xF5h  
10-5  
10-6  
10-7  
10-8  
10-9  
10-10  
10-11  
10-12  
10-13  
10-14  
10-15  
10-16  
10-17  
10-21  
10-22  
5-2. Device Feature Comparison Table  
Features  
B0  
B1  
Low Power Mode (RESETB = low)  
Auto-resume ECR  
not supported  
not supported  
supported (9 µW)  
supported (enabled by default) [see register  
0x78h]  
L2 State Interrupt Resume  
supported  
supported  
5.1 Device Variants  
For more information and availability of device variants such as eUSB2 1.0 signaling interface, 1.2 V I2C  
interface, and 1.2 V GPIO interface please contact support.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TUSB2E11  
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
6 Pin Configuration and Functions  
1
2
3
eDP  
eDN  
VSS  
A
B
C
D
E
GPIO0  
GPIO1  
RESETB  
DP  
VDD3V3  
GPIO2  
VDD1V8  
DN  
SDA  
SCL  
VSS  
VDD1V8  
RESETB  
USB  
eUSB2  
GND  
I/O  
VDD1V8  
VDD3V3  
6-1. TUSB2E11 YCG Package, 15-Pin DSBGA (Top View)  
6-1. Pin Functions  
PIN  
TYPE(2)  
REST  
STATE  
ASSOCIATED ESD  
SUPPLY  
DESCRIPTION  
NAME  
VDD3V3  
VDD1V8  
VSS  
NO.  
B2  
PWR  
PWR  
GND  
N/A  
N/A  
N/A  
N/A  
3.3 V Supply Voltage  
1.8 V Supply Voltage  
GND  
D2, E3  
A3, D3  
N/A  
N/A  
Active Low Reset  
Upon de-assertion of RESETB, repeater will be enabled and be  
in eUSB2 default mode awaiting configuration from eDSPr or  
eUSPr.  
RESETB  
D1  
I
N/A  
VDD1V8  
If RESETB is not actively controlled, a pull-up resistor 100 kΩ  
to VDD1V8 is required.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TUSB2E11  
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
6-1. Pin Functions (continued)  
ASSOCIATED ESD  
SUPPLY  
PIN  
TYPE(2)  
REST  
STATE  
DESCRIPTION  
NAME  
NO.  
Internal  
SCL  
SDA  
Mode  
pulldown 1  
MΩtypical  
(disabled  
Low  
Non-I2C  
USB  
Repeater  
See 6-4 for more  
details  
SCL  
C3  
I
VDD1V8  
VDD1V8  
I2C Clock  
after reset)(1)  
Device  
Mode  
Matrix  
Bidirectional  
12C data  
Open drain  
I/O  
High  
Low  
Non-I2C  
UART  
mode  
SDA  
B3  
I/O  
Hi-Z(1)  
Repeater  
High  
High  
I2C  
Enabled  
In I2C mode GPIO2 will be an open drain active low level  
interrupt output. Connect GPIO2 to input of APU and a pull-up  
resistor to use interrupt features  
Internal  
In non I2C mode GPIO2 defaults to USB configuration input at  
pulldown 1  
MΩtypical  
(disabled  
after reset)  
power up reset.  
GPIO2  
C2  
I/O  
VDD1V8  
When a pull-up resistor is used to set high input, ensure VIH is  
met accounting for internal pull down as small as 500 kΩ  
GPIO2 is an open-drain output after reset and can be left  
floating when not used.  
Defaults to an input mode at power up reset. RESETB assertion  
and de-assertion or soft reset will revert GPIO0 to input mode  
In I2C mode GPIO0 will default to control Carkit UART mode:  
active low to enable Carkit UART mode. Default Carkit UART  
direction is DP eDP (RX) and eDN DN (TX). GPIO0 must  
be pulled up to be in USB repeater mode.  
Internal  
pulldown 1  
MΩtypical  
(disabled  
GPIO0  
B1  
I/O  
VDD1V8  
In non I2C mode GPIO0 defaults to USB configuration input at  
after reset)(1)  
power up reset.  
When a pull-up resistor is used to set high input, ensure VIH is  
met accounting for internal pull down as small as 500 kΩ  
Defaults to an input mode at power up reset. RESETB assertion  
and de-assertion or soft reset will revert GPIO1 to input mode  
Internal  
In I2C mode GPIO1 defaults to debug input  
In non I2C mode GPIO1 defaults to USB Configuration input at  
pulldown 1  
MΩtypical  
(disabled  
GPIO1  
C1  
I/O  
VDD1V8  
power up reset.  
after reset)(1)  
When a pull-up resistor is used to set high input, ensure VIH is  
met accounting for internal pull down as small as 500 kΩ  
eDN  
eDP  
DN  
A2  
A1  
E2  
E1  
I/O  
I/O  
I/O  
I/O  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
VDD1V8  
VDD1V8  
VDD3V3  
VDD3V3  
eUSB2 port D-  
eUSB2 port D+  
USB port D-  
DP  
USB port D+  
(1) When configured as an input but not actively driven, use 1 MΩexternal pull-down to strap low.  
(2) I = input, I/O = input or output, PWR= power, GND = ground  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TUSB2E11  
 
 
TUSB2E11  
www.ti.com.cn  
GPIO2 (C2)  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
6-2. Pin Configuration for Device Mode  
Device Mode  
SCL (C3)  
SDA (B3)  
GPIO0 (B1)  
GPIO1 (C1)  
Default to Input  
Low = UART  
Mode  
Default to Open drain  
output (can be left  
floating when not  
used)  
Function can be  
reconfigured through  
register  
Default to Input  
Function can be  
reconfigured through  
register  
Pull-up  
Input sampled at  
reset  
Pull-up  
Input sampled at  
reset  
High = USB  
repeater mode  
I2C Mode  
Function can be  
reconfigured through  
register  
Default to Input  
Low = UART  
Pull-up  
Input sampled at  
reset  
Pull-down  
Input sampled at  
reset  
transfer enabled  
High-Z (can be left  
floating)  
High-Z (can be left  
floating)  
Non I2C UART mode  
High = UART  
transfer disabled  
Pull-down  
Input sampled at  
reset  
Non I2C USB  
repeater mode  
Default input sampled at reset.  
See 6-4  
See 6-3  
See 6-4  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TUSB2E11  
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
6-3. Pin Configuration for USB PHY Tuning without I2C  
Equivalent  
series  
resistance  
(ESR)  
between  
repeater  
and USB  
connector  
U_HS_TX_ U_HS_TX_ U_SQUELC U_DISCON  
U_EQ_P1 AMPLITUD PRE_EMPH H_THRESH NECT_THR  
HS Term  
setting  
E_P1  
setting  
ASIS_P1  
setting  
OLD_P1  
setting  
ESHOLD_P  
1 setting  
GPIO2  
GPIO1  
GPIO0  
dB  
0.06  
mV  
840  
dB  
0.5  
mV  
104  
mV  
625  
Float  
Float  
Float  
Float  
Float  
Pull-Up  
Float  
2.5  
45  
(3b000)  
0.06  
(4b0101)  
880  
(3b000)  
0.9  
(3b100)  
98  
(4b0101)  
645  
5
45  
45  
(3b000)  
0.58  
(4b0111)  
900  
(3b001)  
0.9  
(3b101)  
98  
(4b0110)  
645  
Float  
Pull-Up  
Pull-Up  
Float  
7.5  
10  
(3b001)  
1.09  
(4b1000)  
920  
(3b001)  
0.9  
(3b101)  
98  
(4b0110)  
685  
Float  
Pull-Up  
Float  
45  
(3b010)  
1.56  
(4b1001)  
940  
(3b001)  
1.2  
(3b101)  
91  
(4b1000)  
685  
Pull-Up  
Pull-Up  
Pull-Up  
Pull-Up  
12.5  
15  
45  
(3b011)  
2.26  
(4b1010)  
980  
(3b010)  
1.2  
(3b110)  
91  
(4b1000)  
685  
Float  
Pull-Up  
Float  
45  
(3b100)  
2.67  
(4b1100)  
1000  
(3b010)  
1.7  
(3b110)  
91  
(4b1000)  
685  
Pull-Up  
Pull-Up  
17.5  
20  
45  
(3b101)  
2.67  
(4b1101)  
1020  
(3b011)  
1.7  
(3b110)  
85  
(4b1000)  
705  
Pull-Up  
42.75  
(3b101)  
(4b1110)  
(3b011)  
(3b111)  
(4b1001)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TUSB2E11  
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
6-4. Pin Configuration for Battery Charging in non I2C Mode  
Charger  
Detection  
Status  
VBUS Control  
Output  
Repeater State  
Device Mode  
Peripheral  
Repeater  
{GPIO2,  
GPIO1}  
SCL (C3)  
SDA (B3)  
Un-configured Host Repeater  
GPIO0  
Input  
2b00: No  
charger  
detected  
2b01:  
CDP or  
DCP  
Pull-down  
resistor to  
ground  
Low = BC When BC 1.2 is  
Non I2C USB  
repeater mode  
enabled,  
charger  
detection  
1.2 disabled  
N/A  
N/A  
High = BC  
0 to 160 Ω  
1.2 enabled  
charger  
detected  
2b10:  
DCP (1.5A)  
or Divider  
Mode  
Input  
VBUS_Valid  
input: use a  
voltage divider VBUS_valid is  
to reduce VBUS  
voltage to  
appropriate VIH  
for 1.8 V or 1.2  
V I/O mode.  
N/A  
When  
Pull-down  
resistor to  
ground  
(2.1A)  
Charger  
detection is  
enabled  
Non I2C USB  
repeater mode  
high enable  
charger  
detection  
N/A  
charger  
detected  
2b11:  
Divider  
1.5 kΩto 2 kΩ  
Mode  
(2.4A)  
charger  
detected  
Input  
Pull-down  
resistor to  
ground  
3.4 kΩto 3.96  
kΩ  
When BC 1.2 is  
enabled,  
advertise  
charging BC 1.2  
DCP  
Low = BC  
1.2 disabled  
High = BC  
1.2 enabled  
Non I2C USB  
repeater mode  
Active High  
Push-Pull  
output for VBUS  
switch Control  
Advertise CDP  
Advertise CDP  
N/A  
N/A  
N/A  
N/A  
High =  
VBUS ON  
Low =  
When BC 1.2 is  
enabled,  
Input  
Pull-down  
resistor to  
ground  
7.5 kΩto 11  
kΩ  
Low = BC  
1.2 disabled  
High = BC  
1.2 enabled  
advertise  
Non I2C USB  
repeater mode  
charging (auto  
cycle between  
BC 1.2 DCP  
and Divider  
mode)  
VBUS OFF  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TUSB2E11  
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply voltage  
VDD3V3  
4.32  
V
0.3  
range  
Analog Supply  
VDD1V8  
2.1  
6
V
V
0.3  
0.3  
voltage range  
DP, DN, (with OVP enabled), 1000 total number of short events  
Voltage range  
and cummulative duration of 1000 hrs.  
Voltage range  
Voltage range  
eDP, eDN  
1.6  
2.1  
V
V
0.3  
0.3  
RESETB, GPIO0, GPIO1, GPIO2, SCL, SDA  
Junction  
temperature  
TJ(max)  
Tstg  
125  
150  
°C  
°C  
Storage  
temperature  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality,  
performance, and shorten the device lifetime.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±1500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JS-002, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.0  
NOM  
3.3  
MAX  
3.6  
UNIT  
VDD3V3  
VDD1V8  
Supply voltage (VDD3V3)  
V
V
V
V
Analog Supply voltage (VDD1V8)  
1.62  
1.08  
1.62  
1.8  
1.98  
1.32  
1.98  
V_I2C_Pullup I2C and GPIO open drain Bus Voltage (1.2 V Variant)  
V_I2C_Pullup I2C and GPIO open drain Bus Voltage (1.8 V Variant)  
1.2  
1.8  
USB  
DP, DN  
Voltage  
0
0
0
0
3.6  
1.32  
1.98  
1.32  
V
V
V
V
eUSB2  
eDP, eDN  
voltage  
Digital  
RESETB, GPIO0, GPIO1, GPIO2, SCL, SDA (1.8 V Variant)  
voltage  
Digital  
RESETB, GPIO0, GPIO1, GPIO2, SCL, SDA (1.2 V Variant)  
voltage  
TA  
Operating free-air temperature  
Junction temperature  
85  
105  
105  
92  
°C  
°C  
°C  
°C  
20  
20  
20  
20  
TJ  
TCASE  
TPCB  
Case temperature  
PCB temperature (1 mm away from the device)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TUSB2E11  
 
 
 
 
 
 
 
TUSB2E11  
www.ti.com.cn  
UNIT  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
7.4 Thermal Information  
TUSB2E11  
YCG (DSBGA)  
15 PINS  
90.5  
THERMAL METRIC(1)  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
0.6  
22.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.4  
22.9  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER  
I2C interface active, GPIOs in output  
mode, repeater in HS mode with USB  
transmitting, maximum RX EQ, max TX  
VOD and PE settings, maximum  
Absolute worst case peak power  
consumption (VDD1V8 only) for power  
supply budgeting  
PWC_1V8  
280  
mW  
transition density. TA = 20°C to 85°C.  
I2C interface active, GPIOs in output  
mode, repeater in HS mode with USB  
transmitting, maximum RX EQ, max TX  
VOD and PE settings, maximum  
Absolute worst case peak power  
consumption (VDD3V3 only) for power  
supply budgeting  
PWC_3V3  
30  
75  
mW  
mW  
transition density. TA = 20°C to 85°C.  
I2C interface active, GPIOs in output  
mode, repeater in FS mode with USB  
Asynchronous traffic. TA = 20°C to  
85°C.  
Absolute worst case peak power  
consumption (VDD3V3 only) for power  
supply budgeting  
PWCFS_3V3  
Maximum TX Vod/Maximum TX PE for  
both USB and eUSB2. Averaged over 8  
ms and only 1 uFrame with data packet.  
Toff threshold = 1/32. Host Peripheral  
Mode.  
PHS_IOC  
USB Audio ISOC High-speed  
Powered down  
35  
mW  
µW  
µW  
Device powered, RESETB=Low,  
TA=25°C, (DP/DN Voltage VDD3V3).  
PPD  
9
Device powered, I2C/GPIO interfaces  
functional but idle, repeater is disabled  
and put into the lowest power state and  
non-functional. TA=25°C, (DP/DN  
Voltage VDD3V3).  
PDisabled  
Disabled  
43  
43  
95  
I2C/GPIO interfaces idle, repeater is  
connected to a eUSB2 PHY and waiting  
for a USB attach event. TA = 25°C,  
(DP/DN Voltage VDD3V3)  
PDetach  
USB unconnected  
85  
85  
µW  
µW  
I2C/GPIO interfaces idle, USB link is in  
L2, repeater is monitoring for a resume/  
remote wake event. TA = 25°C, (DP/DN  
Voltage VDD3V3). In peripheral mode  
additional current is present due the DP  
pull up.  
PSuspend  
L2 Suspend (host mode)  
45  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TUSB2E11  
 
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
7.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
I2C/GPIO interfaces idle, repeater is  
supporting a USB connection, USB link  
is in L1 (host exists L1 every 1 ms) and  
repeater is monitoring for a L1 exit  
event. TA = 25°C, (DP/DN Voltage ≤  
VDD3V3)  
PSleep  
L1 Sleep  
2.3  
5
mW  
I2C/GPIO interfaces idle, repeater in LS  
PLS_Active  
PFS1_Active  
PFS2_Active  
Low Speed Active  
mode, maximum transition density. TA  
85°C.  
=
7.2  
45  
9
24  
80  
24  
mW  
mW  
mW  
I2C/GPIO interfaces idle, repeater in FS  
mode, maximum transition density. TA  
85°C.  
Full Speed Active (ASYNC Traffic)  
Full Speed Active (ISO Traffic)  
=
I2C/GPIO interfaces idle, repeater in FS  
mode, maximum transition density. TA  
85°C.  
=
PHS_Idle_Host High Speed Idle (Host mode)  
L0.Idle. TA = 85°C. (Typical at 25°C).  
L0.Idle. TA = 85°C. (Typical at 25°C).  
26  
70  
mW  
mW  
PHS_Idle_Periph  
High Speed Idle (Peripheral mode)  
108  
200  
eral  
DIGITAL INPUTS  
VIH  
VIH  
VIL  
VIL  
VIL  
VIH  
High level input voltage  
High level input voltage  
Low-level input voltage  
Low-level input voltage  
Low-level input voltage  
High level input voltage  
GPIO0, GPIO1, GPIO2 (1.2 V Variant)  
GPIO0, GPIO1, GPIO2 (1.8 V Variant)  
GPIO0, GPIO1, GPIO2 (1.2 V Variant  
GPIO0, GPIO1, GPIO2 (1.8 V Variant  
RESETB  
0.702  
1.053  
V
V
V
V
V
V
0.462  
0.693  
0.35  
RESETB  
0.75  
VIH = 1.98 V, VDD3V3=3.0 V or 0 V,  
VDD1V8=1.62 V or 0 V  
RESETB, GPIO0, GPIO1  
IIH  
High level input current  
Low level input current  
0.5  
0.5  
µA  
µA  
VIL = 0 V, VDD3V3=3.0 V or 0 V,  
VDD1V8=1.62 V or 0 V  
IIL  
RESETB, GPIO0, GPIO1  
DIGITAL OUTPUTS  
VOH High level output voltage  
GPIO0, GPIO1, GPIO2, push-pull I/O  
mode (IOH = 20 µA and maximum 3 pF  
Cload) (1.2 V Variant)  
0.81  
1.21  
V
V
GPIO0, GPIO1, GPIO2, push-pull I/O  
mode (IOH = 20 µA and maximum 3 pF  
Cload)(1.8 V Variant)  
VOH  
High level output voltage  
GPIO0, GPIO1, GPIO2, push-pull I/O  
mode (IOL = 1 mA) (1.2 V Variant)  
VOL  
Low level output voltage  
Low level output voltage  
0.25  
0.35  
5.6  
8
V
GPIO0, GPIO1, GPIO2, push-pull I/O  
mode (IOL = 1 mA) (1.8 V Variant)  
VOL  
V
Low level output current in push-pull  
mode  
GPIO0, GPIO1, GPIO2 (1.2 V Variant),  
VOL=0.4 V  
IOL_PP  
IOL_PP  
IOH_PP  
IOH_PP  
2.5  
4
4
6
mA  
mA  
µA  
µA  
Low level output current in push-pull  
mode  
GPIO0, GPIO1, GPIO2 (1.8 V Variant),  
VOL=0.4 V  
High level output current in push-pull  
mode  
GPIO0, GPIO1, GPIO2, push-pull I/O  
mode, VOH=0.9 V (1.2 V Variant)  
22  
50  
High level output current in push-pull  
mode  
GPIO0, GPIO1, GPIO2, push-pull I/O  
mode, VOH=0.9 V (1.8 V Variant)  
I2C (SDA, SCL)  
VIL  
Low level input voltage, 1.2 V variant  
SDA, SCL, V_I2C_Pullup = 1.08 V  
0.387  
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TUSB2E11  
TUSB2E11  
www.ti.com.cn  
MAX UNIT  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
7.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
VIL  
Low level input voltage, 1.8 V variant  
SDA, SCL, V_I2C_Pullup = 1.96 V  
0.588  
V
V
VIH  
VIH  
VHYS  
VHYS  
IIH  
High level output voltage, 1.2 V variant SDA, SCL, V_I2C_Pullup = 1.08 V  
High level output voltage, 1.8 V variant SDA, SCL, V_I2C_Pullup = 1.96 V  
0.833  
1.372  
0.020  
0.098  
V
Input hysteresis, 1.2 V variant  
Input hysteresis, 1.8 V variant  
High level input leakage current  
Low level input leakage current  
V_I2C_Pullup = 1.08 V  
V_I2C_Pullup = 1.96 V  
VIH = 1.98 V  
V
V
0.5  
0.5  
µA  
µA  
IIL  
VIL = 0 V  
Low level output voltage (1 kpull up),  
VOL  
VOL  
IOL = 2.5 mA, V_I2C_Pullup = 1.08 V  
IOL = 2.5 mA, V_I2C_Pullup = 1.96 V  
0.2  
0.3  
V
V
1.2 V variant  
Low level output voltage (1 kpull up),  
1.8V variant  
IOL  
Open drain drive strength, 1.2 V Variant VOL = 0.4 V  
Open drain drive strength, 1.8 V Variant VOL = 0.4 V  
1.6  
8
2.4  
10  
3.0  
mA  
mA  
IOL  
12.6  
UART I/O  
Internal UART output (eDP/eDN) 1.2 V  
signalling  
VOLI  
VOHI  
VILI  
Internal output low  
Internal output high  
Internal input low  
Internal input high  
External output low  
External output high  
External input low  
External input high  
0.1  
1.32  
0.399  
1.386  
0.3  
V
V
V
V
V
V
V
V
Internal UART output (eDP/eDN) 1.2 V  
signalling  
0.918  
0.1  
0.819  
0
Internal UART input (eDP/eDN) 1.2 V  
signalling  
Internal UART input (eDP/eDN) 1.2 V  
signalling  
VIHI  
External UART output (DP/DN) 3.3 V  
signalling  
VOLE  
VOHE  
VILE  
External UART output (DP/DN) 3.3 V  
signalling  
2.8  
3.6  
External UART input (DP/DN) 3.3 V  
signalling  
0.8  
External UART input (DP/DN) 3.3 V  
signalling  
VIHE  
2
USB (DP, DN)  
Zinp_Dx  
Impedance to GND, no pull up or pull  
down  
Vin=3.6 V, VDD3V3=3.0 V, Input  
390  
Characteristics(1)  
kΩ  
pF  
Measured with VNA at 240 MHz, Driver  
Hi-Z  
CIO_Dx  
RPUI  
RPUR  
RPD  
Capacitance to GND  
10  
1.475  
2.99  
Bus pull-up resistor on upstream facing High-speed Device Speed  
port (idle)  
Identification(1)  
0.92  
1.525  
14.35  
1.1  
2.2  
19  
kΩ  
kΩ  
kΩ  
Bus pull-up resistor on upstream facing High-speed Device Speed  
port (receiving)  
Identification(1)  
Bus pull-down resistor on downstream  
facing port  
High-speed Device Speed  
Identification(1)  
24.6  
The output voltage in the high-speed  
idle state, High-speed Input  
Characteristics(1)  
VHSTERM  
Termination voltage in highspeed  
10  
mV  
10  
USB TERMINATION  
Driver Output Resistance (which also  
(VOH= 0 to 600 mV) Full-speed (12  
Mb/s) Driver Characteristics(1), Default,  
U_HS_TERM_Px setting 01  
ZHSTERM_P  
40.6  
40.6  
45  
45  
49.4  
49.4  
Ω
Ω
serves as high speed termination)  
(VOH= 0 to 600 mV) Full-speed (12  
Mb/s) Driver Characteristics(1), Default,  
U_HS_TERM_Px setting 01  
Driver Output Resistance (which also  
serves as high speed termination)  
ZHSTERM_N  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TUSB2E11  
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
7.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2
TYP  
MAX UNIT  
USB INPUT LEVELS LS/FS  
Receiver Characteristics(1) (measured at  
the connector)  
VIH  
High (driven)  
V
Receiver Characteristics(1) (HOST  
downstream port pull-down resistor  
enabled and external device pull up 1.5  
kΩ± 5% to 3.0-3.6 V)  
VIHZ  
High (floating)  
Low  
2.7  
3.6  
V
VIL  
VDI  
Receiver Characteristics(1)  
0.8  
0.2  
V
V
|(D+)-(D-)|; Differential Input Sensitivity  
Range for Low-/full-speed(1); (measured  
at connector) VCM=0.8 V to 2.0 V  
Differential Input Sensitivity (hysteresis  
is off)  
USB OUTPUT LEVELS LS/FS  
USB Driver Characteristics(1), (measured  
at connector with RL of 1.425 kto 3.6  
V. )  
VOL  
Low  
0
0.3  
V
USB Driver Characteristics(1), (measured  
at the connector with RL of 14.25 kto  
GND. )  
USB Driver Characteristics(1), measured  
VOH  
High (Driven)  
2.8  
28  
3.6  
44  
V
ZFSTERM  
Driver Series Output Resistance  
Ω
it during VOL or VOH  
Measured as in Data Signal Rise and  
Fall Time(1), excluding the first transition  
from the Idle state. With external 1.5  
kpull up on DP to 3.0 V  
VCRS2  
Output Signal Crossover Voltage  
1.3  
1.3  
2
2
V
V
Measured as in Data Signal Rise and  
Fall Time(1), excluding the first transition  
from the Idle state  
VCRS  
Output Signal Crossover Voltage  
USB INPUT LEVELS HS  
Full-/High-speed Signaling  
Level(1), specification refers to peak  
differential signal amplitude), measured  
at 240 MHz with increasing amplitude,  
U_SQUELCH_THRESHOLD_Px setting  
011, VCM= -50 mV to 500 mV  
High-speed squelch/no-squelch  
detection threshold  
VHSSQ  
VHSSQ  
VHSDSC  
111  
104  
525  
128  
125  
575  
161  
150  
625  
mV  
mV  
mV  
Full-/High-speed Signaling  
Levels(1), (specification refers to peak  
differential signal amplitude), measured  
at 240 MHz with increasing amplitude,  
U_SQUELCH_THRESHOLD_Px setting  
100, VCM= -50 mV to 500 mV  
High-speed squelch/no-squelch  
detection threshold  
Full-/High-speed Signaling  
Levels(1), (specification refers to  
differential signal amplitude). (HW  
Default),  
High-speed disconnect detection  
threshold  
U_DISCONNECT_THRESHOLD_Px  
setting 0000, VCM=200 mV to 600 mV  
Full-/High-speed Signaling  
Levels(1) (specification refers to  
differential signal amplitude). (+25.6%),  
U_DISCONNECT_THRESHOLD_Px  
setting 1000, VCM=280 mV to 680 mV  
High-speed disconnect detection  
threshold  
VHSDSC  
685  
757  
846  
mV  
dB  
USB high-speed data receiver  
equalization, (measured indirectly  
through jitter)  
EQ_UHS  
240 MHz, U_EQ_Px setting 000  
0.06  
0.57  
0.37  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TUSB2E11  
TUSB2E11  
www.ti.com.cn  
MAX UNIT  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
7.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
USB High-speed data receiver  
equalization, (measured indirectly  
through jitter)  
EQ_UHS  
240 MHz, U_EQ_Px setting 010  
0.62  
1.09  
1.57  
dB  
USB OUTPUT LEVELS HS  
Full-/High-speed Signaling Levels(1),  
measured single-ended peak voltage  
per USB 2.0 test measurement spec,  
U_HS_TX_AMPLITUDE_Px setting  
0011, PE disabled, Test load is an ideal  
45 to GND on DP and DN  
VHSOH  
High-speed data signaling high  
360  
400  
490  
440  
mV  
Full-/High-speed Signaling  
Levels(1), measured single ended peak  
voltage per USB 2.0 test measurement  
spec, U_HS_TX_AMPLITUDE_Px  
setting 1100, PE disabled, Test load is  
an ideal 45 to GND on DP and DN  
VHSOH  
High-speed data signaling high  
441  
720  
539  
880  
mV  
mV  
Measured p-p, 0%,  
U_HS_TX_AMPLITUDE_Px setting  
0011, PE disabled, Test load is an ideal  
45 to GND on DP and DN.  
VHSOD  
High-speed data signaling swing  
High-speed data signaling swing  
800  
980  
Measured p-p, 22.5%,  
U_HS_TX_AMPLITUDE_Px setting  
1100, PE disabled,Test load is an ideal  
45 to GND on DP and DN.  
Full-/High-speed Signaling Levels(1), PE  
disabled, test load is an ideal 45 to  
GND on DP and DN.  
Full-/High-speed Signaling Levels(1), (PE  
is disabled. swing setting has no impact  
but slew rate control has impact), Test  
load is an ideal 1.5 kpull up on DP.  
Full-/High-speed Signaling Levels(1), (PE  
is disabled. swing setting has no impact  
but slew rate control has impact), Test  
load is an ideal 45 to GND on DP and  
DN.  
VHSOD  
VHSOL  
VCHIRPJ  
882  
10  
700  
1078  
10  
mV  
mV  
mV  
High-speed data signaling low, driver is  
off termination is on (measured single  
ended)  
Host or hub chirp J level (differential  
voltage)  
900  
-760  
-700  
1100  
VCHIRPK  
Device chirp K level (differential voltage)  
-900  
-900  
-500  
-500  
mV  
mV  
Full-/High-speed Signaling Levels(1), (PE  
is disabled. swing setting has no impact  
but slew rate control has impact), Test  
load is an ideal 1.5 kpull up on DP.  
Host or hub Chirp K level (differential  
voltage)  
VCHIRPK  
U_HS_TX_PRE_EMPHASIS_Px setting  
000, test load is an ideal 45 to GND  
on DP and DN.  
U2_TXPE  
U2_TXPE  
High-speed TX pre-emphasis  
High-speed TX pre-emphasis  
0.25  
1.7  
0.5  
2.1  
0.75  
2.5  
dB  
dB  
U_HS_TX_PRE_EMPHASIS_Px setting  
100, test load is an ideal 45 to GND  
on DP and DN.  
U_HS_TX_PE_WIDTH_Px setting  
11 (measured with PE=2.5 dB setting of  
101), Test load is an ideal 45 to GND  
on DP and DN.  
U2_TXPE_UI High-speed TX pre-emphasis width  
0.54  
33  
0.65  
40  
0.77  
UI  
eUSB2 TERMINATION  
High-speed transmit source termination  
impedance  
RSRC_HS  
High-Speed Tx Electrical Specification (2)  
High-Speed Tx Electrical Specification (2)  
47  
4
Ω
Ω
High-speed source impedance  
mismatch  
ΔRSRC_HS  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TUSB2E11  
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
7.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
High-speed differential receiver  
termination (repeater)  
RRCV_DIF  
RPD  
High-Speed Rx Electrical Specification (2)  
74  
80  
86  
Ω
Pull-down (2), active during LS, FS and  
HS  
Pull-down resistors on eDP/eDN  
Transmit output impedance  
6
8
10  
59  
kΩ  
Low-Speed /Full-Speed DC  
Specifications for 1.2 V ± 10% (2) , TX  
output impedance  
RSRC_LSFS  
28  
44  
Ω
Measured with VNA at 240 MHz, Driver  
Hi-Z (VCM = 120 mV to 450 mV),  
measured differentially.  
CIO_eDx  
Differential Capacitance  
3.9  
5.2  
pF  
eUSB2 FS/LS INPUT LEVELS  
Low-Speed /Full-Speed DC  
VIL  
Single-ended input low  
0.399  
0.332  
1.386  
1.1  
V
V
Specifications for 1.2 V ± 10% (2)  
0.1  
0.1  
0.819  
0.682  
43.2  
38  
Low-Speed /Full-Speed DC  
VIL  
Single-ended input low  
Specifications for 1.0 V ± 10% (2)  
Low-Speed /Full-Speed DC  
VIH  
Single-ended input high  
V
Specifications for 1.2 V ± 10% (2)  
Low-Speed /Full-Speed DC  
VIH  
Single-ended input high  
V
Specifications for 1.0 V ± 10% (2)  
Low-Speed /Full-Speed DC  
VHYS  
VHYS  
Receive single-ended hysteresis voltage  
Receive single-ended hysteresis voltage  
mV  
mV  
Specifications for 1.2 V ± 10% (2)  
Low-Speed /Full-Speed DC  
Specifications for 1.0 V ± 10% (2)  
eUSB2 FS/LS OUTPUT LEVELS  
Low-Speed /Full-Speed DC  
VOL  
VOL  
VOH  
VOH  
Single-ended output low  
Single-ended output low  
Single-ended output high  
Single-ended output high  
0.1  
0.1  
V
V
V
V
Specifications for 1.2 V ± 10% (2)  
Low-Speed /Full-Speed DC  
Specifications for 1.0 V ± 10% (2)  
Low-Speed /Full-Speed DC  
0.918  
0.765  
1.32  
1.1  
Specifications for 1.2 V ± 10% (2)  
Low-Speed /Full-Speed DC  
Specifications for 1.0 V ± 10% (2)  
eUSB2 HS INPUT LEVELS  
High-Speed Rx Electrical Specification  
VRX_CM  
Receive DC common mode range (low) (2) (normative), low DC common mode  
RX must tolerate  
120  
mV  
mV  
High-Speed Rx Electrical Specification  
Receive DC common mode range (high) (2) (normative), high DC common mode  
RX must tolerate  
VRX_CM  
280  
High-Speed Rx Electrical Specification (2)  
(informative), across the DC common-  
mode range of 120 mV to 280 mV. (RX  
capability tested with intentional TX rise/  
fall time mismatch and prop delay  
mismatch)  
Receiver AC common mode (50 MHz–  
480 MHz)  
VCM_RX_AC  
-60  
15  
60  
60  
50  
97  
mV  
pF  
High-Speed Rx Electrical Specification  
CRX_CM  
Receive center-tapped capacitance  
Squelch/No-squelch detect threshold  
(2) (informative)  
High-Speed Rx Electrical Specification  
(2), (measured as differential peak  
voltage at 240 MHz with increasing  
amplitude)  
VEHSSQ  
81  
mV  
E_SQUELCH_THRESHOLD_Px setting  
100, VCM = 120 mV to 450 mV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TUSB2E11  
TUSB2E11  
www.ti.com.cn  
MAX UNIT  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
7.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
High-Speed Rx Electrical Specification  
(2), (measured as differential peak  
voltage at 240 MHz with increasing  
amplitude)  
E_SQUELCH_THRESHOLD_Px setting  
110, VCM = 120 mV to 450 mV  
VEHSSQ  
Squelch/No-squelch detect threshold  
47  
67  
83  
mV  
dB  
eUSB2 high-speed data receiver  
equalization, (measured indirectly  
through jitter)  
EQ_EHS  
240 MHz E_EQ_P1x setting 0000  
0.34  
420  
0.73  
0.2  
eUSB2 HS OUTPUT LEVELS  
Measured p2p, RL = 80 Ω,  
E_HS_TX_AMPLITUDE_ Px setting  
011, ideal 80 ΩRx differential  
termination load  
VEHSOD  
Transmit differential (terminated)  
378  
462  
0.2  
mV  
dB  
E_HS_TX_PRE_EMPHASIS_Px setting  
000  
E_TXPE  
High-speed TX Pre-emphasis  
0
0.2  
E_TXPE_UI  
VE_TX_CM  
High-speed TX Pre-emphasis width  
Transmit DC common mode  
E_HS_TX_PE_WIDTH_Px setting 00  
High-Speed Tx Electrical Specification (2)  
0.29  
170  
0.40  
0.59  
230  
UI  
mV  
(1) USB 2.0 Promoter Group 2000, USB 2.0 Specification USB 2.0 Promoter Group  
(2) USB Implementers Forum (2018). Embedded USB2 (eUSB2) Physical Layer Supplement to the USB Revision 2.0 Specification, Rev.  
1.2 USB Implementers Forum  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TUSB2E11  
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
7.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
530  
530  
TYP  
625  
625  
MAX  
740  
UNIT  
ps  
USB (DP, DN), HS Driver Switching Characteristics  
Data Signal Rise and Fall, Eye Patterns  
(1), U_HS_TX_SLEW_RATE_Px setting  
11, ideal 45 to GND loads on DP and  
DN, pre-emphasis disabled.  
THSR  
Rise time (10% 90%)  
Fall time (10% 90%)  
Data Signal Rise and Fall, Eye Patterns,  
U_HS_TX_SLEW_RATE_Px setting 11,  
ideal 45 to GND loads on DP and DN,  
pre-emphasis disabled.  
THSF  
740  
ps  
USB (DP, DN), FS Driver Switching Characteristics  
Data Signal Rise and Fall Time and Full-  
speed Load (1)  
TFR  
TFF  
4
4
20  
20  
ns  
ns  
Rise time (10% 90%)  
Fall time (10% 90%)  
Data Signal Rise and Fall Time and Full-  
speed Load (1)  
Data Signal Rise and Fall, Eye Patterns  
(1), excluding the first transition from the  
Idle state  
TFRFM  
(TFR/TFM  
)
90  
111.1  
%
USB (DP, DN), LS Driver Switching Characteristics  
Data Signal Rise and Fall Time and Full-  
speed Load (1)  
TLR  
TLF  
75  
75  
300  
300  
ns  
ns  
Rise time (10% 90%)  
Fall time (10% 90%)  
Data Signal Rise and Fall Time and Full-  
speed Load (1)  
eUSB2 (eDP, eDN), HS Driver Switching Characteristics  
Full-Speed/Low-Speed Electrical  
Specification (2) , ideal 80 ΩRx differential  
termination E_HS_TX_SLEW_RATE_Px  
setting = 01  
TEHSRF  
355  
440  
525  
25  
ps  
%
Rise/fall time (20% 80%)  
Full-Speed/Low-Speed Electrical  
Specification (2)  
,
TEHSRF_M  
rise/fall mismatch = absolute delta of (rise  
fall time) / (average of rise and fall  
time).  
Transmit rise/fall mismatch  
M
eUSB2 (eDP, eDN), LS/FS Driver Switching Characteristics  
Low-Speed /Full-Speed DC Specifications  
TERF  
2
6
ns  
%
for 1.2 V ± 10% (2)  
Rise/fall time (10% 90%)  
Low-Speed /Full-Speed DC Specifications  
for 1.2 V ± 10% (2)  
TERF_MM Transmit rise/fall mismatch  
25  
I2C (SDA)  
Bus Speed = 100 kHz, CL= 200 pF, RPU  
4 k, IOL 1 mA  
=
=
Tr  
Tr  
Tr  
Tr  
Tr  
Tr  
Tf  
Rise time (STD)  
Rise time (FM)  
Rise time (FM+)  
Rise time (STD)  
Rise time (FM)  
Rise time (FM+)  
Fall time (STD)  
600  
180  
72  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Bus Speed = 400 kHz, CL= 200 pF, RPU  
2.2 k, IOL 2 mA  
Bus Speed = 1 MHz, CL= 10 pF, RPU = 1  
k, IOL 4 mA  
Bus Speed = 100 kHz, CL= 200 pF, RPU  
4 k, IOL 2 mA  
=
1000  
300  
Bus Speed = 400 kHz, CL= 200 pF, RPU  
1 k, IOL 8 mA  
=
Bus Speed = 1 MHz, CL= 50 pF, RPU = 1  
k, IOL 4 mA  
120  
Bus Speed = 100 kHz, CL= 200 pF, RPU  
2.2 k, IOL 4 mA  
=
106.5  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TUSB2E11  
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Bus Speed = 400 kHz, CL= 200 pF, RPU  
1 k, IOL 8 mA  
=
Tf  
Tf  
Tf  
Tf  
Tf  
Fall time (FM)  
106.5  
81.5  
ns  
Bus Speed = 1 MHz, CL= 90 pF, RPU = 1  
k, IOL 8 mA  
Fall time (FM+)  
Fall time (STD)  
Fall time (FM)  
Fall time (FM+)  
ns  
ns  
ns  
ns  
Bus Speed = 100 kHz, CL= 10 pF, RPU  
4 k, , IOL 2 mA  
=
=
6.5  
6.5  
6.5  
Bus Speed = 400 kHz, CL= 10 pF, RPU  
2.2 k, IOL 4 mA  
Bus Speed = 1 MHz, CL= 10 pF, RPU = 1  
k, IOL 8 mA  
(1) USB 2.0 Promoter Group 2000, USB 2.0 Specification USB 2.0 Promoter Group  
(2) USB Implementers Forum (2018). Embedded USB2 (eUSB2) Physical Layer Supplement to the USB Revision 2.0 Specification, Rev.  
1.2 USB Implementers Forum  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TUSB2E11  
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
7.7 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
I/O TIMING  
t_GPIO_PW Minimum GPIO pulse width for interrupt event  
8
µs  
RESET TIMING  
t_VDD1V8_RA  
Ramp time for VDD1V8 to reach minimum 1.62 V  
2
2
ms  
MP  
t_VDD3V3_RA  
Ramp time for VDD3V3 to reach minimum 3.0 V  
ms  
us  
MP  
t_aRESETB  
Duration for RESETB to be asserted low to complete reset while powered  
Time for the device to be ready to accept RAP and I2C requests and  
10  
t_RH_READY eUSB2 interface to be ready after RESETB is de-asserted or (VDD1V8 and  
VDD3V3) reach the minimum recommended voltages, whichever is later.  
3
ms  
µs  
Time for the device to be ready to accept RAP and I2C requests and  
t_RS_READY  
350  
eUSB2 interface to be ready after a soft reset through I2C.  
REPEATER TIMING  
Total additive jitter for eUSB2 to USB 2.0 (output jitter input jitter) of the  
TJ1E  
20  
17  
42  
42  
ps  
ps  
repeater.  
Total additive jitter for USB 2.0 to eUSB2 (output jitter input jitter) of the  
repeater.  
TJ1I  
eUSB2 to USB 2.0 repeater FS jitter to next transition (Per Low-Speed /  
Te_to_U_DJ1 Full-Speed DC Specifications for 1.2 V ± 10% (1) condition for supply and  
GND delta).  
+6.0  
+3.0  
+1.5  
+1.5  
ns  
ns  
ns  
ns  
6.0  
3.0  
1.5  
1.5  
USB 2.0 to eUSB2 repeater FS jitter to next transition (Per Low-Speed /  
TU_to_e_DJ1 Full-Speed DC Specifications for 1.2 V ± 10% (1) condition for supply and  
GND delta).  
repeater FS paired transition jitter in eUSB2 to USB 2.0 direction (relaxed  
TDJ2_e2U  
relative to THDJ2 defined by USB 2.0 ± 1 ns). eUSB2 in 1.2 V signaling  
mode.  
repeater FS paired transition jitter in USB 2.0 to eUSB2 direction (relaxed  
relative to THDJ2 defined by USB 2.0 ± 1 ns). eUSB2 in 1.2 V signaling  
mode.  
TDJ2_U2e  
MODE TIMING  
TMODE_SWI Time needed to change mode from UART bypass mode to and from USB  
1
2
µs  
mode  
TCH  
TUART_STAR Time needed to start transmitting UART data, post toggling GPIO0 to '0'  
ms  
when in UART strap mode (SCL=1, SDA=0 at power-up)  
T
I2C (FM+)  
Start setup time, SCL (Tr=72 ns 120 ns), SDA (Tf=6.5 ns 81.5 ns), 1  
MHz FM+  
tSU_STA  
260  
260  
260  
50  
ns  
ns  
ns  
ns  
ns  
ns  
Stop setup time, SCL (Tr=72 ns 120 ns), SDA (Tf=6.5 ns 81.5 ns), 1  
MHz FM+  
tSU_STO  
Start hold time, SCL (Tr=72 ns 120 ns), SDA (Tf=6.5 ns 81.5 ns), 1  
MHz FM+  
tHD_STA  
Data input or false start/stop, setup time, SCL (Tr=72 ns 120 ns), SDA  
(Tf=6.5 ns 81.5 ns), 1 MHz FM+  
tSU_DAT  
Data input or False start/stop, hold time, SCL (Tr=72 ns 120 ns), SDA  
(Tf=6.5 ns 81.5 ns), 1 MHz FM+  
tHD_DAT  
0
tVD_DAT,  
tVD_ACK  
SDA output delay, SCL (Tr=72 ns 120 ns), SDA (Tf=6.5 ns 81.5 ns), 1  
MHz FM+  
20  
450  
91  
tHD_DAT_SL Data hold time when device is transmitting  
6.67  
50  
ns  
ns  
tSP  
Glitch width suppressed  
Bus free time between a STOP and START condition (Master minimum  
spec that device must tolerate)  
tBUF  
0.5  
µs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TUSB2E11  
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
MIN  
0.5  
NOM  
MAX  
UNIT  
µs  
tLOW  
Low period for SCL clock (minimum spec that device must tolerate)  
tHIGH  
HIgh period for SCL clock (minimum spec that device must tolerate)  
0.26  
µs  
I2C (FM)  
Stop setup time, SCL (Tr=180 ns 300 ns), SDA (Tf=6.5 ns 106.5 ns),  
400 kHz FM  
tSU_STO  
tHD_STA  
tSU_STA  
tSU_DAT  
tHD_DAT  
600  
600  
600  
100  
0
ns  
ns  
ns  
ns  
ns  
ns  
Start hold time, SCL (Tr=180 ns 300 ns), SDA (Tf=6.5 ns 106.5 ns),  
400 kHz FM  
Start setup time, SCL (Tr=180 ns 300 ns), SDA (Tf=6.5 ns 106.5 ns),  
400 kHz FM  
Data input or false start/stop, setup time, SCL (Tr=180 ns 300 ns), SDA  
(Tf=6.5 ns 106.5 ns), 400 kHz FM  
Data input or false start/stop, hold time, SCL (Tr=180 ns 300 ns), SDA  
(Tf=6.5 ns 106.5 ns), 400 kHz FM  
tVD_DAT,  
tVD_ACK  
SDA output delay, SCL (Tr=180 ns 300 ns), SDA (Tf=6.5 ns 106.5  
ns), 400 kHz FM  
20  
900  
91  
tHD_DAT_SL Data hold time when device is transmitting  
13.5  
50  
ns  
ns  
tSP  
Glitch width suppressed  
Bus free time between a STOP and START condition (minimum spec that  
device must tolerate)  
tBUF  
1.3  
µs  
tLOW  
Low period for SCL clock (minimum spec that device must tolerate)  
1.3  
0.6  
µs  
µs  
tHIGH  
HIgh period for SCL clock (Master minimum spec that device must tolerate)  
I2C (STD)  
Stop setup time, SCL (Tr=600 ns 1000 ns), SDA (Tf=6.5 ns 106.5 ns),  
100 kHz STD  
tSU_STO  
tHD_STA  
tSU_STA  
tSU_DAT  
tHD_DAT  
4
4
µs  
µs  
µs  
ns  
µs  
µs  
Start hold time, SCL (Tr=600 ns 1000 ns), SDA (Tf=6.5 ns 106.5 ns),  
100 kHz STD  
Start setup time, SCL (Tr=600 ns 1000 ns), SDA (Tf=6.5 ns 106.5 ns),  
100 kHz STD  
4.7  
250  
5
Data input or false start/stop, setup time, SCL (Tr=600 ns 1000 ns), SDA  
(Tf=6.5 ns 106.5 ns), 100 kHz STD  
Data input or false start/stop, hold time, SCL (Tr=600 ns 1000 ns), SDA  
(Tf=6.5 ns 106.5 ns), 100 kHz STD  
tVD_DAT,  
tVD_ACK  
SDA output delay, SCL (Tr=600 ns 1000 ns), SDA (Tf=6.5 ns 106.5  
ns), 100 kHz STD  
3.45  
91  
tHD_DAT_SL Data hold time when device is transmitting  
13.5  
50  
ns  
ns  
tSP  
Glitch width suppressed  
Bus free time between a STOP and START condition (minimum spec that  
device must tolerate)  
tBUF  
4.7  
µs  
tLOW  
tHIGH  
Low period for SCL clock (minimum spec that device must tolerate)  
HIgh period for SCL clock (minimum spec that device must tolerate)  
4.7  
4.0  
µs  
µs  
(1) USB Implementers Forum (2018). Embedded USB2 (eUSB2) Physical Layer Supplement to the USB Revision 2.0 Specification, Rev.  
1.2 USB Implementers Forum  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TUSB2E11  
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
7.8 Typical Characteristics  
TJ1E is for egress direction from eUSB2 to USB and TJ1I is for ingress direction from USB to eUSB2  
7-1. Total Additive Jitter (Typical)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TUSB2E11  
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
7.9 Parameter Measurement Information  
eUSB2  
USB 2.0  
22.1  
15.8  
15.8  
86100  
Scope  
or  
81130A  
Pattern Generator  
or  
Repeater  
Test Channel  
BERT  
Test Channel  
BERT  
22.1  
50  
50  
40  
45  
Vin * 0.76  
Vin scaled for impedance conversion  
Impedance  
conversion  
Impedance  
conversion  
7-2. USB 2.0 TX Output (Egress) Jitter, Eye Mask Test Setup  
eUSB2 USB 2.0  
22.1  
22.1  
15.8  
15.8  
81130A  
Pattern Generator  
or  
86100  
Scope  
or  
Repeater  
Test Channel  
Test Channel  
BERT  
BERT  
50  
50  
40  
45  
USB 2.0 High speed test packets  
Impedance  
conversion  
Impedance  
conversion  
Vin * 0.693  
Vin scaled for impedance conversion  
USB 2.0 TX Vpp * 0.68  
Vout scaled for impedance conversion  
7-3. eUSB2 TX Output (Ingress) Jitter, Eye Mask Test Setup  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TUSB2E11  
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
8 Detailed Description  
8.1 Overview  
The TUSB2E11 is an eUSB2 to USB 2.0 repeater that resides between the SoC with an eUSB2 port and an  
external connector that supports USB 2.0. It can be configured by the register access protocol (RAP) or through  
the I2C. The repeater is configurable as either a host or device repeater (DRD repeater).  
I2C port supports up to 1 MHz (fast mode plus) for internal register access. A subset of internal registers can be  
accessed through the register access protocol. Simultaneous register access using RAP and through the I2C is  
supported with RAP having priority over I2C.  
To power up in I2C mode, both SDA and SCL should have pull-up resistors to appropriate I2C bus voltage.  
GPIO2 output pin can be configured to provide an active low open drain or selectable active low or active high  
push-pull level sensitive interrupt output to the SoC.  
8.2 Functional Block Diagram  
VDD3V3 VDD1V8  
Common Module  
Power System  
LDOs  
Clock & Reset  
Reference System  
Internal  
Oscillator  
Bandgap  
IREF  
PoR  
USB/eUSB2 Translator &  
State Machine  
eDN  
eDP  
DN  
DP  
eUSB  
USB  
Battery Charging Advertising  
and Detection Controller  
Carkit Debug mode support  
control  
OTP  
Con g & Control  
Registers (I2C)  
GPIO  
RESETB  
GND  
GPIO2  
SCL  
SDA  
GPIO0  
GPIO1  
8-1. Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TUSB2E11  
 
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
8.3 Feature Description  
TUSB2E11 is an USB compliant eUSB2 to USB 2.0 repeater supporting both device and host modes. Both USB  
and eUSB2 offer fully tunable TX and RX through I2C. Additionally, USB TX and RX can be tuned when I2C is  
not used.  
8.4 Device Functional Modes  
8.4.1 Repeater Mode  
Upon de-assertion of RESETB or software reset and after t_RH_READY or t_RS_READY, TUSB2E11 will enable and  
enter the default state and be ready to accept eUSB2 packets, RAP, and I2C requests. The repeater will either  
be in host repeater mode or peripheral repeater mode depending on the receipt of either host mode enable or  
peripheral mode enable.  
When TUSB2E11 is repeating high-speed packets, either from eUSB2 to USB 2.0 or from USB 2.0 to eUSB2, up  
to 4UI (may include partial UI) of HS SOP could be truncated. This is the same as a standard USB 2.0 HUB  
operating in high speed mode which could truncate up to 4UI.  
When TUSB2E11 is repeating high-speed packets from eUSB2 to USB 2.0, up to 1.6UI of random dribble bits  
(may include partial UI) could be introduced after HS EOP. This is the less than a standard USB 2.0 HUB  
operating in high speed mode which could have up to 4UI of random dribble bits.  
When TUSB2E11 is repeating high-speed packets from USB 2.0 to eUSB2, up to 5UI of random dribble bits  
(may include partial UI) could be introduced after HS EOP. This is more than a standard USB 2.0 HUB operating  
in high speed mode which could have up to 4UI of random dribble bits. eDSPr/eUSPr receiving eUSB2 high-  
speed packets should ignore 5UI of dribble bits after detecting no stuffed bit insertion indicating HS EOP.  
8-1. Number of Hubs Supported with Host and Peripheral Repeater  
Number of eUSB2  
Repeaters  
Number of Hubs  
Operating at HS  
Number of Hubs  
Operating at FS  
1
2
0
4
3
5
2
1
5
Number of hubs operating at FS is reduced due to  
Te_to_U_DJ1 and TRJR1  
Number of hubs operating at HS is reduced due to 2 3  
1 SOP truncation and EOP dribble  
.
non-eUSB2 system for reference  
8.4.2 Power Down Mode  
RESETB could be used as a power down pin when asserted low. Power down mode will put TUSB2E11 in  
lowest power mode.  
8.4.3 Disabled Mode  
The repeater could be disabled by setting DISABLE bit through the I2C.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TUSB2E11  
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
8.4.4 UART Mode  
In I2C mode GPIO0 will default to being an enable control for Carkit UART mode. GPIO0 is an active low signal  
to enable Carkit UART mode. GPIO0 is intended to be controlled through APU or SoC. When APU or SoC is not  
powered on or the firmware has not been loaded, the GPIO0 will be low, enabling the UART mode to allow APU  
or SoC debug interface to be accessed through the USB port.  
Default Carkit UART direction is DP eDP (RX) and eDN DN (TX).  
On the rising edge of GPIO0, followed by TMODE_SWITCH, TUSB2E11 will enable and enter default state and be  
ready to accept eUSB2 port reset, configuration or RAP. The repeater mode will be configured as host or  
peripheral depending on the eUSB2-defined configuration received from eUSBr and acknowledged by the  
repeater.  
UART mode enable is controlled through GPIO0 after power up. This can be changed through  
UART_use_bit1_P1 bit in UART-PORT1 register, so UART mode enable could be controlled through a register  
instead of GPIO0.  
8.4.5 Auto-Resume ECR  
Optional host repeater auto-resume is supported by TUSB2E11 in L1/L2 by driving Resume K at D+/D- until  
SOResume is received from eDSPr. In addition, TUSB2E11 eUSPh will hold Remote Wake line state until  
SORresume is received from eDSPr.  
This auto-resume feature provides host controller extra time to exit low power state and issue SOResume while  
TUSB2E11 UDSP drives resume within 1 ms (TURSM) hub resume timing requirement. To take advantage of  
this low power feature, host controller shall implement low power mechanism to detect wake on eDSPr lines  
while host controller is in low power state.  
This auto-resume is not needed if host controller is capable of initiating SOResume within 1 ms of detecting  
Remote Wake on eDSPr.  
This auto-resume is enabled by default but can be disabled via bit 6 of register 0x78. This auto-resume ECR  
mode is disabled when L2 interrupt mode is enabled. When L2 interrupt mode is enabled, resume K at D+/D- is  
still driven when Remote wake is detected on UDSP but eUSPh will be held at SE0 instead of in Remote Wake  
state. See the L2 State Interrupt Modes section for more details.  
8-2. Timing Diagram for Auto-Resume for HS/FS  
8.4.6 L2 State Interrupt Modes  
To prevent signaling on eUSB2 while the eDSP is powered off, both L2 remote wake interrupt and disconnect  
event interrupt modes should be enabled. The special remote wake sequence when L2 remote wake interrupt  
mode is enabled.  
System enables interrupt USB_REMOTE_WAKE_P1.  
Repeater is in host mode and has received a CM.L2.  
Repeater detects wake on USB 2.0  
Repeater asserts interrupt.  
Repeater reflects resume on USB 2.0, but does not signal wake on eUSB2.  
Repeater waits for eDSPr to signal start of resume with no intervening configuration, connect, or reset  
sequence.  
Repeater and eDSP follow normal eUSB2 protocol to signal resume starting and ending in L0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TUSB2E11  
 
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
8-3. Timing Diagram for Wake Interrupt for HS/FS  
The special wake on disconnect sequence when disconnect event interrupt mode is enabled  
System enables interrupt USB_DISCONNECT_P1.  
Repeater is in host mode and has received a CM.L2.  
Repeater detects SE0 for disconnect on USB 2.0.  
Repeater asserts interrupt.  
Interrupt must be cleared prior to eDSPr reinitializing TUSB2E11 as a host.  
Repeater does not signal or report USB 2.0 SE0 on eUSB2.  
Repeater waits for eDSPr to power up, which starts with port reset announcement.  
Repeater and eDSP follow normal eUSB2 protocol, ending in unconnected state of host mode.  
8-4. Timing Diagram for Disconnect Interrupt for HS/FS  
8.4.7 Attach Detect Interrupt Mode  
When attach event detect is enabled TUSB2E11 will issue an interrupt event instead of signaling attach on  
eUSB2.  
System enables interrupt USB_DETECT_ATTACH_P1. Interrupt has to be enabled prior to any connect  
event.  
Repeater is in host mode.  
Repeater detects attach on USB 2.0.  
Repeater debounces attach for 60 µs and asserts interrupt instead of signaling attach on eUSB2.  
Interrupt must be disbled prior to eDSPr reinitializing as a host to process attach through normal mechanism.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TUSB2E11  
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
8-5. Timing Diagram for Attach Detect Interrupt for HS/FS  
8.4.8 GPIO Mode  
GPIO0  
GPIO0 pin will be in input mode at power up, will be sampled during reset.  
GPIO0 defaults to active low UART mode (bypass mode) enable control after power up. This can be changed  
through the UART_use_bit1_P1 bit in UART-PORT1 register, so GPIO0 can be repurposed. Refer to UART  
Mode.  
GPIO0 pin can be configured to be input or output mode through the I2C register write. Output event is selected  
through the I2C register. Refer to GPIO0_CONFIG register for more information.  
GPIO0 input status change can be reported through the GPIO2 as an interrupt if enabled through the I2C. Status  
change trigger can be programmed to be edge trigger or level trigger through the I2C.  
GPIO0 pin in output mode will default to open drain output but can be configured to be push-pull output. GPIO0  
pin can drive up to 3 pF loads when in push-pull mode.  
GPIO0 pin will revert back to input upon RESETB assert, de-assert, or soft reset.  
In non I2C mode, GPIO0 is used for USB PHY tuning.  
GPIO1  
GPIO1 pin will be in input mode at power up, will be sampled during reset.  
GPIO1 will be configured as an enable control for battery charger detection in repeater default state if  
DEFAULT_STATE_BC_P1 is set to 0x01 through the BC_CONTROL register.  
GPIO1 pin can be configured to be input or output mode through the I2C register write. Output event is selected  
through the I2C register. Refer to GPIO1_CONFIG register.  
GPIO1 input status change can be reported through the GPIO2 as an interrupt if enabled through the I2C. Status  
change trigger can be programmed to be edge trigger or level trigger through the I2C.  
GPIO1 pin in output mode will default to open drain output but can be configured to be push-pull output. GPIO1  
pin can drive up to 3 pF loads when in push-pull mode.  
GPIO1 pin will revert back to input upon RESETB assert, de-assert, or soft reset.  
In non I2C mode, GPIO1 is used for USB PHY tuning.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TUSB2E11  
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
GPIO2  
GPIO2 pin will default to open drain interrupt (INT) active low output at power up but can be programmed  
through the I2C to be a push-pull output. In push-pull mode, it can be programmed to be either active high or  
active low. Interrupt output will be level sensitive interrupt. Trigger events can be selected through the I2C.  
Connect GPIO2 to APU to use interrupt functions and a pull-up resistor (open drain mode).  
GPIO2 interrupt output can be configured through the INT_ENABLE and INT_STATUS registers.  
GPIO2 can be configured as battery charger detect indicator instead of the interrupt output through the  
BC_CONTROL register.  
In non I2C mode, GPIO2 is used for USB PHY tuning.  
8.4.9 USB 2.0 High-Speed HOST Disconnect Detection  
USB 2.0 specification does not specify high-speed output differential swing VOD during disconnect without  
external load. Only chirp level and HS host disconnect threshold are specified. Specification implicitly assumes  
high-speed output differential swing VOD will double during disconnect. However, the high-speed output  
differential swing during disconnect depends on the USB 2.0 TX output swing and pre-emphasis setting as the  
common mode voltage increase will saturate the output swing level and might not double.  
HS host disconnect threshold shall be adjusted to provide the most margin to avoid false disconnect as well as  
failure to detect a disconnect. See 8-2.  
8-2. Recommended USB 2.0 High-speed HOST Disconnect Thresholds per USB HSTX Amplitude and  
Pre-Emphasis  
USB HS TX Pre-Emphasis  
USB HS TX  
0.5 dB (0h)  
0.9 dB (1h)  
1.2 dB (2h)  
1.7 dB (3h)  
2.1 dB (4h)  
2.5 dB (5h)  
Amplitude (Vp-p)  
740 mV (0h )  
760 mV (1h )  
780 mV (2h )  
800 mV (3h )  
820 mV (4h )  
840 mV (5h )  
860 mV (6h )  
880 mV (7h )  
900 mV (8h )  
920 mV (9h )  
940 mV (Ah )  
960 mV (Bh )  
980 mV (Ch )  
1000 mV (Dh )  
1020 mV (Eh )  
1040 mV (Fh )  
545 mV (1h)  
565 mV (2h)  
585 mV (3h)  
585 mV (3h)  
605 mV (4h)  
625 mV (5h)  
645 mV (6h)  
645 mV (6h)  
665 mV (7h)  
685 mV (8h)  
685 mV (8h)  
705 mV (9h)  
725 mV (Ah)  
725 mV (Ah)  
725 mV (Ah)  
745 mV (Bh)  
545 mV (1h)  
565 mV (2h)  
585 mV (3h)  
585 mV (3h)  
605 mV (4h)  
625 mV (5h)  
645 mV (6h)  
645 mV (6h)  
665 mV (7h)  
685 mV (8h)  
685 mV (8h)  
705 mV (9h)  
705 mV (9h)  
725 mV (Ah)  
725 mV (Ah)  
725 mV (Ah)  
545 mV (1h)  
565 mV (2h)  
585 mV (3h)  
585 mV (3h)  
605 mV (4h)  
625 mV (5h)  
645 mV (6h)  
645 mV (6h)  
665 mV (7h)  
685 mV (8h)  
685 mV (8h)  
705 mV (9h)  
705 mV (9h)  
705 mV (9h)  
725 mV (Ah)  
725 mV (Ah)  
545 mV (1h)  
565 mV (2h)  
585 mV (3h)  
585 mV (3h)  
605 mV (4h)  
625 mV (5h)  
645 mV (6h)  
645 mV (6h)  
665 mV (7h)  
665 mV (7h)  
685 mV (8h)  
685 mV (8h)  
705 mV (9h)  
705 mV (9h)  
705 mV (9h)  
705 mV (9h)  
545 mV (1h)  
565 mV (2h)  
585 mV (3h)  
585 mV (3h)  
605 mV (4h)  
625 mV (5h)  
625 mV (5h)  
645 mV (6h)  
665 mV (7h)  
665 mV (7h)  
665 mV (7h)  
685 mV (8h)  
685 mV (8h)  
685 mV (8h)  
705 mV (9h)  
705 mV (9h)  
545 mV (1h)  
565 mV (2h)  
585 mV (3h)  
585 mV (3h)  
605 mV (4h)  
625 mV (5h)  
625 mV (5h)  
645 mV (6h)  
645 mV (6h)  
665 mV (7h)  
665 mV (7h)  
665 mV (7h)  
685 mV (8h)  
685 mV (8h)  
685 mV (8h)  
685 mV (8h)  
8.5 Manufacturing Test Modes  
Below test procedures show how to use I2C to enter test modes to perform continuity test of DP/DM during  
manufacturing or debug. During this mode the TUSB2E11 will not operate as a repeater.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TUSB2E11  
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
8.5.1 USB DP Test Procedure  
I2C Commands to use DP pull-up to test DP/DM continuity:  
Enable GPIOs and DP Pull-up:  
h00, hA0 <-set gpio0 to push-pull output mode  
h40, hA0 <-set gpio1 to push-pull output mode  
hD5, h28  
hD6, h04  
hD7, h10 <-DP pull-up is now on  
hCE, h18  
hDC, h15 <-muxes DP / DM status onto GPIO lines  
Status Readback Check:  
h00 = hA0 <-DM status on bit 4 (normal, DM low)  
h40 = hB0 <-DP status on bit 4 (normal, DP high)  
h00 = hB0 <-DM status on bit 4 (DP + DM shorted together)  
h40 = hA0 <-DP status on bit 4 (DP shorted to ground)  
Exit Test Mode:  
hB2, h80 <-soft reset (end test)  
8.5.2 USB DM Test Procedure  
I2C Commands to use DM pull-up to test DP/DM continuity:  
Enable GPIOs and DM Pull-up:  
h00, hA0 <-set gpio0 to push-pull output mode  
h40, hA0 <-set gpio1 to push-pull output mode  
hD5, h28  
hD6, h04  
hD7, h08 <-DM pull-up is now on  
hCE, h18  
hDC, h15 <-mux DP / DM status onto GPIO lines  
Status Readback Check:  
h00 = hB0 <-DM status on bit 4 (normal, DM high)  
h40 = hA0 <-DP status on bit 4 (normal, DP low)  
h40 = hB0 <-DP status on bit 4 (DP + DM shorted together)  
h00 = hA0 <-DM status on bit 4 (DM shorted to ground)  
Exit Test Mode:  
hB2, h80 <-soft reset (end test)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TUSB2E11  
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
8.6 I2C Target Interface  
I2C target interface enables access to internal registers by the system application processor. The primary  
function of the interface is to enable configuring various PHY parameters, controlling the GPIO pins, and  
enabling USB-BC functions. TUSB2E11 repeater functions will operate upon power up without requiring I2C  
configuration.  
TUSB2E11 has I2C 7-bit target address of 0x3E. 8-bit address of Write: 0x7C and Read: 0x7D.  
I2C default target address could be changed at the factory through one time programming.  
I2C drive strength could be changed through the I2C.  
8-3. Recommended I2C Drive Strength for I2C Bus Speed, Bus Pull Up and Bus Capacitance  
I2C FM+ (1 MHz Max)  
I2C drive strength (IOL) selection  
I2C bus pull up RPU  
C(bus) pF  
10-50  
1 kΩ  
8 mA  
8 mA  
N/A  
2.2 kΩ  
4 mA  
N/A  
4 kΩ  
N/A  
N/A  
N/A  
N/A  
7 kΩ  
N/A  
N/A  
N/A  
N/A  
10-90  
10-150  
10-200  
N/A  
N/A  
N/A  
I2C FM (400kHz Max)  
I2C drive strength (IOL) selection  
I2C bus pull up RPU  
C(bus) pF  
10-50  
1 kΩ  
8 mA  
8 mA  
8 mA  
8 mA  
2.2 kΩ  
4 mA  
4 mA  
8 mA  
N/A  
4 kΩ  
2 mA  
N/A  
7 kΩ  
N/A  
N/A  
N/A  
N/A  
10-90  
10-150  
10-200  
N/A  
N/A  
I2C STD (100 kHz Max)  
I2C drive strength (IOL) selection  
I2C bus pull up RPU  
C(bus) pF  
10-50  
1 kΩ  
8 mA  
8 mA  
8 mA  
8 mA  
2.2 kΩ  
4 mA  
4 mA  
4 mA  
4 mA  
4 kΩ  
2 mA  
2 mA  
2 mA  
2 mA  
7 kΩ  
1 mA  
1 mA  
2 mA  
2 mA  
10-90  
10-150  
10-200  
8-6. I2C Write with Data  
The following procedure should be followed to write data to TUSB2E11 I2C registers (refer to 8-6):  
1. The host initiates a write operation by generating a start condition (S), followed by the TUSB2E11 7-bit  
address and a zero-value W/Rbit to indicate a write cycle.  
2. The TUSB2E11 acknowledges the address cycle.  
3. The host presents the register offset within TUSB2E11 to be written, consisting of one byte of data, MSB-  
first.  
4. The TUSB2E11 acknowledges the sub-address cycle.  
5. The host presents the first byte of data to be written to the I2C register.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TUSB2E11  
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
6. The TUSB2E11 acknowledges the byte transfer.  
7. The host may continue presenting additional bytes of data to be written, with each byte transfer completing  
with an acknowledge from the TUSB2E11.  
8. The host terminates the write operation by generating a stop condition (P).  
8-7. I2C Read Without Repeated Start  
The following procedure should be followed to read the TUSB2E11 I2C registers without a repeated Start (refer  
8-7).  
1. The host initiates a read operation by generating a start condition (S), followed by the TUSB2E11 7-bit  
address and a zero-value W/Rbit to indicate a read cycle.  
2. The TUSB2E11 acknowledges the 7-bit address cycle.  
3. Following the acknowledge the host continues sending clock.  
4. The TUSB2E11 transmit the contents of the memory registers MSB-first starting at register 00h or last read  
register offset+1. If a write to the I2C register occurred prior to the read, then the TUSB2E11 shall start at the  
register offset specified in the write.  
5. The TUSB2E11 waits for either an acknowledge (ACK) or a not-acknowledge (NACK) from the host after  
each byte transfer; the I2C host acknowledges reception of each data byte transfer.  
6. If an ACK is received, the TUSB2E11 transmits the next byte of data as long as host provides the clock. If a  
NAK is received, the TUSB2E11 stops providing data and waits for a stop condition (P).  
7. The host terminates the write operation by generating a stop condition (P).  
8-8. I2C Read with Repeated Start  
The following procedure should be followed to read the TUSB2E11 I2C registers with a repeated Start (refer 图  
8-8).  
1. The host initiates a read operation by generating a start condition (S), followed by the TUSB2E11 7-bit  
address and a zero-value W/Rbit to indicate a write cycle.  
2. The TUSB2E11 acknowledges the 7-bit address cycle.  
3. The host presents the register offset within TUSB2E11 to be written, consisting of one byte of data, MSB-  
first.  
4. The TUSB2E11 acknowledges the register offset cycle.  
5. The host presents a repeated start condition (Sr).  
6. The host initiates a read operation by generating a start condition (S), followed by the TUSB2E11 7-bit  
address and a one-value W/Rbit to indicate a read cycle.  
7. The TUSB2E11 acknowledges the 7-bit address cycle.  
8. The TUSB2E11 transmit the contents of the memory registers MSB-first starting at the register offset.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TUSB2E11  
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
9. The TUSB2E11 shall wait for either an acknowledge (ACK) or a not-acknowledge (NACK) from the host after  
each byte transfer; the I2C host acknowledges reception of each data byte transfer.  
10. If an ACK is received, the TUSB2E11 transmits the next byte of data as long as host provides the clock. If a  
NAK is received, the TUSB2E11 stops providing data and waits for a stop condition (P).  
11. The host terminates the read operation by generating a stop condition (P).  
8-9. I2C Write Without Data  
The following procedure should be followed for setting a starting sub-address for I2C reads (refer to 8-9).  
1. The host initiates a write operation by generating a start condition (S), followed by the TUSB2E11 7-bit  
address and a zero-value W/Rbit to indicate a write cycle.  
2. The TUSB2E11 acknowledges the address cycle.  
3. The host presents the register offset within TUSB2E11 to be written, consisting of one byte of data, MSB-  
first.  
4. The TUSB2E11 acknowledges the register offset cycle.  
5. The host terminates the write operation by generating a stop condition (P).  
备注  
After initial power-up, if no register offset is included for the read procedure (refer to 8-7), then  
reads start at register offset 00h and continue byte by byte through the registers until the I2C host  
terminates the read operation. During a read operation, the TUSB2E11 auto-increments the I2C  
internal register address of the last byte transferred independent of whether or not an ACK was  
received from the I2C host.  
70%  
SDA  
30%  
t
t
R
t
F
HDSTA  
tHIGH  
t
t
LOW  
BUF  
70%  
30%  
SCL  
S
P
P
S
t
t
SUSTO  
t
t
SUDAT  
HDDAT  
HDSTA  
t
SUSTA  
8-10. I2C Timing Diagram  
9 Register Access Protocol (RAP)  
The repeater in TUSB2E11 supports the register access protocol (RAP) over eUSB2 to allow access to its  
related registers.  
RAP accessible registers are indicated with corresponding RAP addresses in the register map. Default value of  
a subset of the registers are factory programmable and are indicated in register map.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TUSB2E11  
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
10 Register Map  
10.1 TUSB2E11 Registers  
10-1 lists the TUSB2E11 registers. All register offset addresses not listed in 10-1 should be considered as  
reserved locations and the register contents should not be modified.  
10-1. TUSB2E11 Registers  
Offset  
70h  
71h  
72h  
73h  
77h  
78h  
79h  
0h  
Acronym  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
U_TX_ADJUST_PORT1  
U_HS_TX_PRE_EMPHASIS_P1  
U_RX_ADJUST_PORT1  
U_DISCONNECT_SQUELCH_PORT1  
E_HS_TX_PRE_EMPHASIS_P1  
E_TX_ADJUST_PORT1  
E_RX_ADJUST_PORT1  
GPIO0_CONFIG  
RAP Register for Port 1 (0h), Default through OTP  
RAP Register for Port 1 (1h), Default through OTP  
RAP Register for Port 1 (2h), Default through OTP  
RAP Register for Port 1 (3h), Default through OTP  
RAP Register for Port 1 (7h), Default through OTP  
RAP Register for Port 1 (8h), Default through OTP  
RAP Register for Port 1 (9h), Default through OTP  
40h  
50h  
B0h  
B2h  
B3h  
B4h  
B6h  
B7h  
A3h  
A4h  
60h  
F5h  
GPIO1_CONFIG  
UART_PORT1  
RAP Register for Port 1 (20h)  
REV_ID  
GLOBAL_CONFIG  
INT_ENABLE_1  
INT_ENABLE_2  
BC_CONTROL  
BC_STATUS_1  
INT_STATUS_1  
INT_STATUS_2  
CONFIG_PORT1  
TEST_MODE1  
Complex bit access types are encoded to fit into small table cells. 10-2 shows the codes that are used for  
access types in this section.  
10-2. TUSB2E11 Access Type Codes  
Access Type  
Code  
Description  
Read Type  
H
H
R
Set or cleared by hardware  
Read  
R
RH  
R
H
Read  
Set or cleared by hardware  
Write Type  
W
W
Write  
W1C  
W
Write  
1C  
1 to clear  
WtoP  
W
Write  
Reset or Default Value  
- n  
Value after reset or the default value  
10.1.1 GPIO0_CONFIG Register (Offset = 00h) [Reset = 00h]  
GPIO0_CONFIG is shown in GPIO0_CONFIG Register Field Descriptions.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TUSB2E11  
 
 
 
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
Return to the Summary Table.  
10-3. GPIO0_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO0_OD_PP  
R/W  
0h  
GPIO0 output type  
0h = open drain output  
1h = push pull ouput  
6
5
Reserved  
R
0h  
0h  
Reserved  
GPIO0_DIRECTION  
R/W  
GPIO0 direction  
0h = input  
1h = output  
4
GPIO0_INPUT_STATUS RH  
0h  
0h  
Logical value of GPIO0 pin input  
(0=Low, 1=High)  
0h = input is low  
1h = input is high  
3-0  
GPIO0_OUTPUT_SELEC R/W  
T
Dh = HIGH_OUTPUT output is forced static high  
Eh = LOW_OUTPUT output is forced static low  
10.1.2 GPIO1_CONFIG Register (Offset = 40h) [Reset = 00h]  
GPIO1_CONFIG is shown in GPIO1_CONFIG Register Field Descriptions.  
Return to the Summary Table.  
10-4. GPIO1_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO1_OD_PP  
R/W  
0h  
GPIO1 output type selection  
0h = open drain output  
1h = push pull ouput  
6
5
4
GPIO1_IN_TRIGGER_TY R/W  
PE  
0h  
0h  
0h  
GPIO1 input trigger type selection for interrupt  
0h = edge trigger input  
1h = level trigger input (GPIO2 output will reflect the input level state)  
GPIO1_DIRECTION  
R/W  
GPIO1 direction selection  
0h = input  
1h = output  
GPIO1_INPUT_STATUS RH  
Logical value of GPIO1 pin input status  
(0=Low, 1=High)  
0h = input is low  
1h = input is high  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TUSB2E11  
 
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
10-4. GPIO1_CONFIG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
GPIO1_OUTPUT_SELEC R/W  
T
0h  
GPIO1 output selection  
0h = Remote wakeup host repeater is receiving remote wake but  
has not seen start of resume  
1h = USB disconnect host repeater is actively forwarding LS/FS  
disconnect.  
2h = USB_HS_Unsquelched host repeater in L0 seeing USB HS  
or in reset seeing Chirp  
3h = PVTB HOST repeater is actively transmitting ESE1 due to  
HS disconnect.  
4h = DEFAULT waiting to be configured host/peripheral  
5h = HOST in host repeater mode  
6h = PERIPHERAL in peripheral repeater mode  
7h = CONNECTED repeater is connected, connection seen  
acknowledged by start of reset  
8h = RESET reset in progress, reset is detected is high, L0 is low  
9h = L0 fully configured and repeating data, keep-alive and reset/  
disconnect  
Ah = L1 device has received CM.FS/CM.L1,has stopped  
repeating and is waiting for wake or resume  
Bh = L2 device has received CM.L2, has stopped repeating and is  
waiting for wake or resume.  
Ch = GPIO1_HS_TEST in host repeater in L0 mode, received  
CM.TEST  
Dh = HIGH_OUTPUT output is forced static high  
Eh = LOW_OUTPUT output is forced static low  
Fh = OVP over voltage (DP/DN voltage > VOVP_TH) detected on  
the USB DP/DN  
10.1.3 U_TX_ADJUST_PORT1 Register (Offset = 70h) [Reset = 7Ch]  
U_TX_ADJUST_PORT1 is shown in 10-5.  
Return to the Summary Table.  
Hardware default value can be overridden through factory programmable OTP for this register.  
10-5. U_TX_ADJUST_PORT1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
U_HS_TERM_P1  
RH/W  
1h  
0h = 42.75 Ω(typical)  
1h = 45 Ω(typical) (default)  
2h = 47.25 Ω(typical)  
3h = 49.5 Ω(typical)  
5-4  
U_HS_TX_SLEW_RATE_ RH/W  
P1  
3h  
0h = 425 ps (typical)  
1h = 465 ps (typical)  
2h = 510 ps (typical)  
3h = 625 ps (typical) (OTP default)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TUSB2E11  
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
10-5. U_TX_ADJUST_PORT1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
U_HS_TX_AMPLITUDE_ RH/W  
P1  
Ch  
0h = 800 mV 7.5%, 740 mV (typical)  
1h = 800 mV 5.0%, 760 mV (typical)  
2h = 800 mV 2.5%, 780 mV (typical)  
3h = 800 mV (USB 2.0 spec nominal), 800 mV (typical) (B0 OTP  
default)  
4h = 800 mV + 2.5%, 820 mV (typical)  
5h = 800 mV + 5.0%, 840 mV (typical)  
6h = 800 mV + 7.5%, 860 mV (typical)  
7h = 800 mV + 10%, 880 mV (typical)  
8h = 800 mV + 12.5%, 900 mV (typical)  
9h = 800 mV + 15%, 920 mV (typical)  
Ah = 800 mV + 17.5%, 940 mV (typical)  
Bh = 800 mV + 20%, 960 mV (typical)  
Ch = 800 mV + 22.5%, 980 mV (typical) (B1 OTP default)  
Dh = 800 mV + 25%, 1000 mV (typical)  
Eh = 800 mV + 27.5%, 1020 mV (typical)  
Fh = 800 mV + 30%, 1040 mV (typical)  
10.1.4 U_HS_TX_PRE_EMPHASIS_P1 Register (Offset = 71h) [Reset =3Ch]  
U_HS_TX_PRE_EMPHASIS_P1 is shown in 10-6.  
Return to the Summary Table.  
Hardware default value can be overridden through factory programmable OTP for this register.  
10-6. U_HS_TX_PRE_EMPHASIS_P1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CDP_2_EN_P1  
RH/W  
0h  
0h = CDP advertising disabled  
1h = CDP advertising enabled  
6
Reserved  
RH/W  
0h  
3h  
Reserved  
5-4  
U_HS_TX_PE_WIDTH_P RH/W  
1
0h = 0.35 UI (typical)  
1h = 0.45 UI (typical)  
2h = 0.55 UI (typical)  
3h = 0.65 UI (typical) (OTP default)  
3
U_HS_TX_PE_ENABLE_ RH/W  
P1  
1h  
4h  
USB HS TX pre-emphasis enable  
Default through OTP  
PE is disabled during chirp J (VCHIRPJ) or chirp K (VCHIRPK)  
0h = Disabled  
1h = Enabled (OTP default)  
2-0  
U_HS_TX_PRE_EMPHAS RH/W  
IS_P1  
0h = 0.5 dB (typical) (B0 OTP default)  
1h = 0.9 dB (typical)  
2h = 1.2 dB (typical)  
3h = 1.7 dB (typical)  
4h = 2.1 dB (typical) (B1 OTP default)  
5h = 2.5 dB (typical)  
6h = not recommended  
7h = not recommended  
10.1.5 U_RX_ADJUST_PORT1 Register (Offset = 72h) [Reset = 92h]  
U_RX_ADJUST_PORT1 is shown in 10-7.  
Return to the Summary Table.  
Hardware default value can be overridden through factory programmable OTP for this register.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TUSB2E11  
 
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
10-7. U_RX_ADJUST_PORT1 Register Field Descriptions  
Bit  
7-4  
3
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
U_EQ_P1  
RH/W  
RH/W  
RH/W  
9h  
0h  
2-0  
2h  
0h = 0.06 dB (typical) (B0 OTP default)  
1h = 0.58 dB (typical)  
2h = 1.09 dB (typical) (B1 OTP default)  
3h = 1.56 dB (typical)  
4h = 2.26 dB (typical)  
5h = 2.67 dB (typical)  
6h = 3.03 dB (typical)  
7h = 3.35 dB (typical)  
10.1.6 U_DISCONNECT_SQUELCH_PORT1 Register (Offset = 73h) [Reset = 83h]  
U_DISCONNECT_SQUELCH_PORT1 is shown in 10-8.  
Return to the Summary Table.  
Hardware default value can be overridden through factory programmable OTP for this register.  
10-8. U_DISCONNECT_SQUELCH_PORT1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
U_DISCONNECT_THRES RH/W  
HOLD_P1  
8h  
0h = 525 mV (minimum), 0% (B0 OTP default)  
1h = 545 mV (minimum), +4%  
2h = 565 mV (minimum), +8%  
3h = 585 mV (minimum), +11%  
4h = 605 mV (minimum), +15%  
5h = 625 mV (minimum), +19%  
6h = 645 mV (minimum), +23%  
7h = 665 mV (minimum), +27%  
8h = 685 mV (minimum) (B1 OTP default), +31%  
9h = 705 mV (minimum), +34%  
Ah = 725 mV (minimum), +38%  
Bh = 745 mV (minimum), +42%  
Ch = 765 mV (minimum), +46%  
Dh = 785 mV (minimum), +50%  
Eh = 805 mV (minimum), +53%  
Fh = 825 mV (minimum), +57%  
3
Reserved  
RH/W  
0h  
3h  
Reserved  
2-0  
U_SQUELCH_THRESHO RH/W  
LD_P1  
0h = 130 mV (minimum), +30%  
1h = 124 mV (minimum), +24%  
2h = 117 mV (minimum), +17%  
3h = 111 mV (minimum), +11% (B1 OTP default)  
4h = 104 mV (minimum), +4% (B0 OTP default)  
5h = 98 mV (minimum), 2%  
6h = 91 mV (minimum), 9%  
7h = 85 mV (minimum), 15%  
10.1.7 E_HS_TX_PRE_EMPHASIS_P1 Register (Offset = 77h) [Reset = 0h]  
E_HS_TX_PRE_EMPHASIS_P1 is shown in 10-9.  
Return to the Summary Table.  
Hardware default value can be overridden through factory programmable OTP for this register.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TUSB2E11  
 
 
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
10-9. E_HS_TX_PRE_EMPHASIS_P1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
E_HS_TX_PRE_EMPHAS RH/W  
IS_P1  
0h  
0h = 0 dB (typical) (default)  
1h = 0.67 dB (typical)  
2h = 1.29 dB (typical)  
3h = 1.87 dB (typical)  
4h = 2.41 dB (typical)  
5h = 2.92 dB (typical)  
6h = 3.41 dB (typical)  
7h = 3.86 dB (typical)  
4-3  
E_HS_TX_PE_WIDTH_P RH/W  
1
0h  
0h = 0.40 UI (typical) (default)  
1h = 0.5 UI (typical)  
2h = 0.55 UI (typical)  
3h = 0.65 UI (typical)  
2-1  
0
Reserved  
RH/W  
0h  
0h  
Reserved  
BC_DETECTION_ENABL RH/W  
E_P1  
Enables battery charger (BC) detection during peripheral repeater  
mode. BC detection is disabled if the corresponding register is  
written low.  
Detection enable is further gated with connect announcement by  
SoC. After detection attempt completes, repeater will enable the pull  
up.  
0h = detection disabled.  
1h = detection enabled  
10.1.8 E_TX_ADJUST_PORT1 Register (Offset = 78h) [Reset = 0Bh]  
E_TX_ADJUST_PORT1 is shown in 10-10.  
Return to the Summary Table.  
Hardware default value can be overridden through factory programmable OTP for this register.  
10-10. E_TX_ADJUST_PORT1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
0h  
Description  
Reserved  
RH/W  
RH/W  
Reserved  
6
Autoresume Disable  
0h  
Added in B1  
0h = autoresume enabled  
1h = autoresume disabled  
5
Reserved  
RH/W  
0h  
1h  
Reserved  
4-3  
E_HS_TX_SLEW_RATE_ RH/W  
P1  
0h = 390 ps (typical)  
1h = 440 ps (typical) (default)  
2h = 460 ps (typical)  
3h = 490 ps (typical)  
2-0  
E_HS_TX_AMPLITUDE_ RH/W  
P1  
3h  
0h = 360 mV (typical)  
1h = 380 mV (typical)  
2h = 400 mV (typical)  
3h = 420 mV (typical) (default)  
4h = 440 mV (typical)  
5h = 460 mV (typical)  
6h = 480 mV (typical)  
7h = 500 mV (typical)  
10.1.9 E_RX_ADJUST_PORT1 Register (Offset = 79h) [Reset = 60h]  
E_RX_ADJUST_PORT1 is shown in 10-11.  
Return to the Summary Table.  
Hardware default value can be overridden through factory programmable OTP for this register.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TUSB2E11  
 
 
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
10-11. E_RX_ADJUST_PORT1 Register Field Descriptions  
Bit  
7
Field  
Reserved  
Type  
Reset  
Description  
RH/W  
0h  
Reserved  
6-4  
E_SQUELCH_THRESHO RH/W  
LD_P1  
6h  
0h = 104 mV (typical)  
1h = 101 mV (typical)  
2h = 98 mV (typical)  
3h = 90 mV (typical)  
4h = 81 mV (typical) (B0 OTP default)  
5h = 73 mV (typical)  
6h = 67 mV (typical) (B1 OTP default)  
7h = 60 mV (typical)  
3-0  
E_EQ_P1  
RH/W  
0h  
0h = 0.34 dB (typical) (default)  
1h = 0.71 dB (typical)  
2h = 1.02 dB (typical)  
3h = 1.36 dB (typical)  
4h = 1.64 dB (typical)  
5h = 1.94 dB (typical)  
6h = 2.19 dB (typical)  
7h = 2.45 dB (typical)  
8h = 2.69 dB (typical)  
9h = 2.93 dB (typical)  
Ah = 3.13 dB (typical)  
Bh = 3.35 dB (typical)  
Ch = 3.53 dB (typical)  
Dh = 3.72 dB (typical)  
Eh = 3.89 dB (typical)  
Fh = 4.07 dB (typical)  
10.1.10 UART_PORT1 Register (Offset = 50h) [Reset = 02h]  
UART_PORT1 is shown in 10-12.  
Return to the Summary Table.  
10-12. UART_PORT1 Register Field Descriptions  
Bit  
7-6  
4
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
uart_cross_P1  
0h  
Reserved  
0h  
Select whether plus and minus pins are crossed between USB 2.0  
and eUSB2 during UART mode  
0h = if UART mode is enabled, pair eD+ with D+ and eD- with D-  
1h = if UART mode is enabled, pair eD+ with D- and eD- with D+  
3
2
UART_use_bit1_P1  
R/W  
0h  
0h  
Select whether UART enable select is set by register bit 1 or not  
0h = bit 1 ignored. UART mode enabled by GPIO0  
1h = bit 1 (UART_en_by_reg_not_pin_P1) enabled  
UART_dir_not_Carkit_P1 R/W  
Set UART mode, direction, low for Carkit and high for opposite  
0h = UART mode uses Carkit directions, D+ to eUSB2 and eD- to  
USB 2.0  
1h = UART mode directions are opposite of Carkit, D- to eUSB2 and  
eD+ to USB 2.0  
1
0
UART_en_by_reg_not_pin R/W  
_P1  
1h  
0h  
Select whether Carkit UART mode is enabled by register or by  
GPIO0 pin  
0h = select GPIO0 pin to enable UART mode  
1h = select UART_mode_en_P1 register to enable UART mode  
UART_mode_en_P1  
R/W  
If GPIO0 is not selected to enable Carkit UART mode, this register  
will enable it.  
0h = disable UART mode between eUSB2 and USB 2.0 pins  
1h = enable UART mode between eUSB2 and USB 2.0 pins  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TUSB2E11  
 
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
10.1.11 REV_ID Register (Offset = B0h) [Reset = 02h]  
REV_ID is shown in 10-13.  
Return to the Summary Table.  
10-13. REV_ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
REV_ID  
RH  
02h  
Device revision.  
01h = A0  
02h = B0  
03h = B1  
10.1.12 GLOBAL_CONFIG Register (Offset = B2h) [Reset = 0h]  
GLOBAL_CONFIG is shown in 10-14.  
Return to the Summary Table.  
10-14. GLOBAL_CONFIG Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
SOFT_RST  
DISABLE_P1  
HWtoP  
0h  
Writing a 1 to this field is equivalent to pulsing RESETB low  
6
R/W  
0h  
Disabled Mode Repeater 1 (I2C will remain Active)  
(If port is not disconnected, wait until disconnect event to disable the  
repeater)  
0h = repeater enabled  
1h = repeater disabled  
5
4
Reserved  
R
0h  
0h  
Reserved  
GPIO2_OUT_TYPE  
R/W  
GPIO2 output type  
0h = open drain  
1h = push-pull  
3
GPIO2_POLARITY  
Reserved  
R/W  
R
0h  
0h  
GPIO2 pin polarity in push-pull mode only (open drain mode will  
always be active low)  
0h = active high  
1h = active low  
2-0  
Reserved  
10.1.13 INT_ENABLE_1 Register (Offset = B3h) [Reset = 00h]  
INT_ENABLE_1 is shown in INT_ENABLE_1 Register Field Descriptions.  
Return to the Summary Table.  
10-15. INT_ENABLE_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO1_RISING_EDGE  
R/W  
0h  
INT_GPIO1_RISING_EDGE enable.  
When GPIO1_IN_TRIGGER_TYPE = 0 (Edge), this enables interrupt  
on Rising Edge of GPIO1.  
When GPIO1_IN_TRIGGER_TYPE = 1 (Level), this enables  
interrupt when GPIO1 = High.  
0h = not enabled  
1h = enabled  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TUSB2E11  
 
 
 
 
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
10-15. INT_ENABLE_1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6
GPIO1_FALLING_EDGE R/W  
0h  
INT_GPIO1_FALLING_EDGE enable.  
When GPIO1_IN_TRIGGER_TYPE = 0 (Edge), this enables interrupt  
on Falling Edge of GPIO1.  
When GPIO1_IN_TRIGGER_TYPE = 1 (Level), this enables  
interrupt when GPIO1 = Low.  
0h = not enabled  
1h = enabled  
5
4
3
Reserved  
Reserved  
R
R
0h  
0h  
0h  
Reserved  
Reserved  
USB_REMOTE_WAKE_P R/W  
1
INT_USB_REMOTE_WAKE_P1 enable.  
See L2 State Interrupt Modes  
0h = not enabled  
1h = enabled  
2
USB_DISCONNECT_P1 R/W  
0h  
INT_USB_DISCONNECT_P1 enable.  
See L2 State Interrupt Modes  
0h = not enabled  
1h = enabled  
1
0
Reserved  
Reserved  
R
R
0h  
0h  
Reserved  
Reserved  
10.1.14 INT_ENABLE_2 Register (Offset = B4h) [Reset = 00h]  
INT_ENABLE_2 is shown in INT_ENABLE_2 Register Field Descriptions.  
Return to the Summary Table.  
10-16. INT_ENABLE_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_OVERRIDE_EN  
R/W  
0h  
Override GPIO2 INT output  
0h = not enabled  
1h = enabled  
See INT_VALUE  
6
INT_VALUE  
R/W  
0h  
Value to drive on GPIO2 when INT_OVERRIDE_EN=1  
GPIO2 output pin will indicate the interrupt assertion. It will follow the  
GPIO2 pin configuration.  
In open drain mode it will be active low to indicate interrupt assertion  
and in push-pull mode it will follow active low/high configuration to  
indicate GPIO2 assertion.  
0h = output: interrupt not asserted  
1h = output: interrupt asserted  
5
BC_CHG_DET_P1  
Reserved  
R/W  
R
0h  
INT_BC_CHG_DET_P1 enable.  
0h = not enabled  
1h = enabled  
4
3
0h  
0h  
Reserved  
USB_DETECT_ATTACH_ R/W  
P1  
INT_USB_DET_ATTACH_P1 enable.  
Enable device attach detection while eDSP is powered down  
See Attach Detect Interrupt Mode  
0h = not enabled  
1h = enabled  
2
1
Reserved  
R
0h  
0h  
Reserved  
USB_OVP_P1  
R/W  
Over Voltage Port 1 interrupt enable  
0h = not enabled  
1h = enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TUSB2E11  
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
10-16. INT_ENABLE_2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
Reserved  
R
0h  
Reserved  
10.1.15 BC_CONTROL Register (Offset = B6h) [Reset = C0]  
BC_CONTROL is shown in BC_CONTROL Register Field Descriptions.  
Return to the Summary Table.  
10-17. BC_CONTROL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
i2c_ds_config  
RH/W  
3h  
I2C open drain output drive strength selection  
This is intended to be set through I2C.  
0h 1 mA (typical)  
1h 2 mA (typical)  
2h 4 mA (typical)  
3h 8 mA (typical) (default)  
5-4  
DEFAULT_STATE_BC_P1 RH/W  
0h  
Battery charger advertisement or detection selected for default state  
of eUSB2 repeater  
0h = neither detect nor advertise charger  
1h = detect charger starting when GPIO1 goes high.  
2h = advertise short mode DCP. DCP is 1.2 V if 1P2V_MODE is '1'  
else pure BC 1.2 DCP  
3h = auto-cycle ACP3 to short mode DCP. Short mode will pass  
through 1.2V DCP for 12 seconds prior to pure BC 1.2 DCP if  
1P2V_MODE is '1'  
3
2
VBUS_CONTROL_POLA RH/W  
RITY  
0h  
0h  
Select polarity of VBUS control output pin  
0h = active high  
1h = active low  
1P2V_MODE_DIS  
RH/W  
Disable advertising 1.2 V mode in default state whether enabled to  
auto-cycle or not  
0h = 1.2 V mode enabled  
1h = 1.2 V mode disabled  
1
0
INT_PIN_FUNCTION  
CHG_DET_POLARITY  
RH/W  
RH/W  
0h  
0h  
Select function of GPIO2 pin in I2C mode  
0h = INT (interrupt)  
1h = CHG_DET (Charger Detected)  
Select polarity of CHG_DET I2C mode status output pin  
0h = active low  
1h = active high  
10.1.16 BC_STATUS_1 Register (Offset = B7h) [Reset = 00h]  
BC_STATUS_1 is shown in BC_STATUS_1 Register Field Descriptions.  
Return to the Summary Table.  
10-18. BC_STATUS_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
Reserverd  
RH  
0h  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TUSB2E11  
 
 
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
10-18. BC_STATUS_1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6-4  
CHARGER_TYPE_DET_ RH  
0h  
Type of battery charger detected on Port 1  
P1  
0h = SDP 500 mA  
1h = divider 0 500 mA  
2h = divider 1 1 A  
3h = CDP 1.5 A  
4h = BC 1.2 DCP 1.5 A  
5h = 1.2 V pullup and short 2 A  
6h = divider 2 2.1 A  
7h = divider 3 2.4 A  
3
Reserverd  
RH  
RH  
0h  
0h  
Reserved  
2-0  
Auto_DCP_STATE_P1  
State of auto-DCP sequence on Port 1  
0h = no advertisement  
5h = divider 3 (2.4 A)  
6h = 1.2 V pullup and short  
7h = BC 1.2 DCP  
10.1.17 INT_STATUS_1 Register (Offset = A3h) [Reset = 00h]  
INT_STATUS_1 is shown in INT_STATUS_1 Register Field Descriptions.  
Return to the Summary Table.  
10-19. INT_STATUS_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_GPIO1_RISING_ED R/W1C  
GE  
0h  
GPIO1 Rising Edge enable  
0h = no interrupt  
1h = interrupt  
6
INT_GPIO1_FALLING_ED R/W1C  
GE  
0h  
GPIO1 Falling Edge enable  
0h = no interrupt  
1h = interrupt  
5
4
3
Reserved  
Reserved  
R
R
0h  
0h  
0h  
Reserved  
Reserved  
INT_USB_REMOTE_WAK R/W1C  
E_P1  
Remote Wake Event Detect on USB Port 1  
See L2 State Interrupt Modes  
0h = no interrupt  
1h = interrupt  
2
INT_USB_DISCONNECT R/W1C  
_P1  
0h  
0h  
Disconnect event has occurred on Port 1  
See L2 State Interrupt Modes  
0h = no interrupt  
1h = interrupt  
1-0  
Reserved  
R
Reserved  
10.1.18 INT_STATUS_2 Register (Offset = A4h) [Reset = 00h]  
INT_STATUS_2 is shown in INT_STATUS_2 Register Field Descriptions.  
Return to the Summary Table.  
10-20. INT_STATUS_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
Reserved  
R
0h  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TUSB2E11  
 
 
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
10-20. INT_STATUS_2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
INT_BC_CHG_DET_P1  
R/W1C  
0h  
Detected battery charger on Port 1  
0h = no interrupt  
1h = interrupt  
4
3
Reserved  
R
0h  
0h  
Reserved  
INT_USB_DET_ATTACH_ R/W1C  
P1  
Device Attach event has occurred on Port 1 See Attach Detect  
Interrupt Mode  
0h = no interrupt  
1h = interrupt  
2
1
Reserved  
R
0h  
0h  
Reserved  
INT_USB_OVP_P1  
R/W1C  
Over voltage condition has occurred (DP/DN)  
0h = no interrupt  
1h = interrupt  
0
Reserved  
R
0h  
Reserved  
10.1.19 CONFIG_PORT1 Register (Offset = 60h) [Reset = 00h]  
CONFIG_PORT1 is shown in CONFIG_PORT1 Register Field Descriptions.  
Return to the Summary Table.  
10-21. CONFIG_PORT1 Register Field Descriptions  
Bit  
7-5  
4-3  
Field  
Type  
Reset  
Description  
Reserved  
R
0h  
Reserved  
HOST_DEVICE_P1  
RH  
0h  
Port1 is configured as a Host repeater or a Device repeater  
0h = not configured  
1h = host repeater  
2h = device repeater  
3h = reserved  
2-1  
0
Reserved  
R
0h  
0h  
Reserved  
CDP_2_STATUS_P1  
RH  
Primary detection detected on port1 if CDP_2_EN_P1=1  
0h = CDP primary detection detected  
1h = CDP primary detection not detected  
10.1.20 TEST_MODE1 Register (Offset = F5h) [Reset = 32h]  
TEST_MODE1 is shown in TEST_MODE1 Register Field Descriptions.  
Return to the Summary Table.  
10-22. TEST_MODE1 Register Field Descriptions  
Bit  
7-4  
3
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
FORCE_HS_L0  
0h  
Reserved, make sure to rewrite what was read  
0h  
Force repeater into high-speed L0 state for test purposes only.  
0h = normal repeater mode (setting this bit to 0 will not return the  
device to normal repeater mode, the device needs to be hard reset,  
soft reset or power cycled)  
1h = forced high-speed L0 mode  
2-0  
Reserved  
R/W  
2h  
Reserved, make sure to rewrite what was read  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TUSB2E11  
 
 
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
11 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
11.1 Application Information  
TUSB2E11 can be used in either HOST or Peripheral implementation. The mode is configured by the eUSB2  
SoC.  
11.2 Typical Application  
VDD18  
VDD12  
0.1  
F
VDD18  
VDD33  
1 k  
1 k  
0.1  
F
APU  
SCL  
SDA  
VDD1V8  
VDD1V8  
VDD3V3  
SCL  
SDA  
Connector  
DP  
DN  
eDP  
eDN  
DP  
DN  
Repeater  
VBUS  
VDD18  
VSS GPIO0 GPIO1 RESETB  
GPIO2  
*
*
20 k  
20 k  
GND  
GPIO2  
GPIO0  
GPIO1  
RESETB  
1 M  
GND  
11-1. Typical System Implementation Using 1.8 V I2C Variant  
The 0.1 µF recommendation per supply pin is based on capacitor placement of 2 mm or less trace length away.  
If the placement of capacitor is further away, the value of the capacitor needs to be redetermined to account for  
the additional trace inductance and maintain resonance around 12 MHz. Additionally, system power design  
should have adequate bulk capacitance to account for maximum transient current expected by the device when  
transitioning from low power mode to active mode. GPIO2 can be optionally used as interrupt output. Note that  
the pull-up resistor on GPIO[0:2] should be adjusted based on leakage of the APU I/O to ensure VIH and VIL of  
GPIO0 are met.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TUSB2E11  
 
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
VDD18  
VDD12  
0.1  
F
VBUS_5V  
324 k  
SDA  
VDD33  
100 kΩ  
GND  
0.1  
F
APU  
SCL  
VDD1V8  
VDD1V8  
VDD3V3  
1.65 k  
SCL  
SDA  
Connector  
GND  
DP  
DN  
eDP  
eDN  
DP  
DN  
Repeater  
VBUS_5V  
VDD18  
VDD18  
VSS GPIO0 GPIO1 RESETB  
GPIO2  
*
*
20 k  
20 k  
GND  
*
GPIO0  
GPIO2  
20 k  
20 k  
100 k  
RESETB  
GPIO1  
*
*
*
20 k  
20 k  
GND  
GND  
Charger Detection Status  
11-2. Typical System Implementation Using 1.8 V Variant without I2C (Configured for Charger  
Detection)  
The 0.1 µF recommendation per supply pin is based on capacitor placement of 2 mm or less trace length away.  
If the placement of the capacitor is further away, then the value of the capacitor needs to be redetermined to  
account for the additional trace inductance and maintain resonance around 12 MHz. Additionally, system power  
design should have adequate bulk capacitance to account for maximum transient current expected by the device  
when transitioning from low power mode to active mode. GPIO2 can be optionally used as interrupt output. Note  
that the pull-up and pull-down resistors on GPIO[0:2] should be selected based on USB PHY tuning needs. SDA  
should be used for Vbus_valid detection with a voltage divider. GPIO1 and GPIO2 can be routed as needed for  
charger detection status. Pull-down resistor value on SCL determines the battery charging mode.  
11.2.1 Design Requirements  
TUSB2E11 requires a valid reset signal as described in the Power Supply Recommendations section.  
For design examples, use the parameters shown in 11-1, 11-2, and 11-3.  
11-1. Design Parameters for High Loss USB 2.0 System Using I2C  
PARAMETER  
VALUE(1)  
3.3 V ±10%  
1.8 V ±5%  
Yes  
VDD3V3  
VDD1V8  
I2C support required in system (Yes or No)  
Parameter  
Register  
Setting  
Value  
U_TX_ADJUST_PORT1  
(Offset = 70h)  
USB 2.0 TX Swing (peak to peak)  
7Ch  
980 mVp-p  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TUSB2E11  
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
11-1. Design Parameters for High Loss USB 2.0 System Using I2C (continued)  
PARAMETER  
VALUE(1)  
U_HS_TX_PRE_EMPHASIS_P1  
(Offset = 71h)  
USB 2.0 TX Pre-emphasis  
USB 2.0 RX Equalization  
3Ch  
92h  
83h  
83h  
2.1 dB  
U_RX_ADJUST_PORT1  
(Offset = 72h)  
1.09 dB  
685 mV  
111 mV  
U_DISCONNECT_SQUELCH_PORT1  
(Offset = 73h)  
USB 2.0 HS host disconnect threshold (peak differential)  
U_DISCONNECT_SQUELCH_PORT1  
(Offset = 73h)  
USB 2.0 HS squelch/RX sensitivity threshold (peak differential)  
11-2. Design Parameters for Medium Loss USB 2.0 System Using I2C  
PARAMETER  
VALUE(1)  
3.3 V ±10%  
1.8 V ±5%  
Yes  
VDD3V3  
VDD1V8  
I2C support required in system (Yes or No)  
Parameter  
Register  
Setting  
Value  
U_TX_ADJUST_PORT1  
(Offset = 70h)  
USB 2.0 TX Swing (peak to peak)  
79h  
920 mVp-p  
0.9 dB  
U_HS_TX_PRE_EMPHASIS_P1  
(Offset = 71h)  
USB 2.0 TX Pre-emphasis  
39h  
92h  
83h  
83h  
U_RX_ADJUST_PORT1  
(Offset = 72h)  
USB 2.0 RX Equalization  
1.09 dB  
685 mV  
111 mV  
U_DISCONNECT_SQUELCH_PORT1  
(Offset = 73h)  
USB 2.0 HS host disconnect threshold (peak differential)  
USB 2.0 HS squelch/RX sensitivity threshold (peak differential)  
U_DISCONNECT_SQUELCH_PORT1  
(Offset = 73h)  
(1) These parameters are starting values for a high loss system. Further tuning might be required based on specific loss profile and  
measurements.  
11-3. Design Parameters for Medium Loss USB 2.0 System without I2C and Configured for Charger  
Detection  
PARAMETER  
VALUE(1)  
3.3 V ±10%  
1.8 V ±5%  
No  
VDD3V3  
VDD1V8  
I2C support required in system (Yes or No)  
SCL (pull-down resistor to ground)  
SDA (pull-down resistor to ground)  
SDA (pull-up resistor to VBUS5V)  
Parameter  
1.65 kΩ  
100 kΩ  
324 kΩ  
Value  
GPIO0 GPIO1 GPIO2  
USB 2.0 TX Swing (peak to peak)  
USB 2.0 TX Pre-emphasis  
USB 2.0 RX Equalization  
Float  
Float  
Float  
Float  
Float  
Pull-up Pull-up 920 mVp-p  
Pull-up Pull-up  
Pull-up Pull-up  
Pull-up Pull-up  
Pull-up Pull-up  
0.9 dB  
1.09 dB  
685 mV  
98 mV  
USB 2.0 HS host disconnect threshold (peak differential)  
USB 2.0 HS squelch/RX sensitivity threshold (peak differential)  
(1) These parameters are starting values for a medium loss system. Further tuning might be required based on specific loss profile and  
measurements.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TUSB2E11  
 
 
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
11.2.2 Detailed Design Procedure  
The ideal PHY setting is dependent upon the signal chain loss characteristics of the target platform. The  
recommendation is to start with lowest level of compensation for TX swing and pre-emphasis, and then  
increment until optimal eye diagram margin is achieved. Same applies to the RX sensitivity or squelch threshold  
setting where it is recommended to adjust from low threshold until optimum RX sensitivity and squelch margins  
are achieved.  
To optimize the TUSB2E11 RX equalization, monitor the corresponding TX eye digram to achieve best RX EQ  
setting. In other words, to optimize eUSB2 RX equlization, monitor USB 2.0 TX eye and monitor eUSB2.0 TX  
eye to optimize USB RX equalization.  
HS host disconnect threshold shall be adjusted to provide the most margin to avoid false disconnect as well as  
failure to detect a disconnect. See 8-2.  
备注  
The TUSB2E11 compensates for extra attenuation in the signal path according to the configuration of  
the TX and RX settings. General recommendation is to use just enough pre-emphasis and  
equalization to achieve eye margin and not over-equalize to avoid excessive jitter. Maximum PE width  
and slew rates are recommended.  
11.2.3 Application Curves  
U_HS_TX_AMPLITUDE_P1 = 3h  
E_HS_TX_AMPLITUDE_P1 = 3h  
11-3. USB 2.0 TX Eye Diagram with Near-End  
11-4. eUSB2 TX Eye Diagram with eTP1  
Mask  
(Terminated) Mask  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TUSB2E11  
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
12 Power Supply Recommendations  
12.1 Power Up Reset  
RESETB pin is active low reset pin and can also be used as a power down pin.  
TUSB2E11 does not have power supply sequence requirements between VDD3V3 and VDD1V8.  
Maximum VDD3V3 and VDD1V8 ramp time to reach minimum supply voltages should be 2 ms.  
Digital and analog inputs may be applied when VDD3V3 and VDD1V8 are in unpowered state.  
Internal power on reset circuit along with the external RESETB input pin ensures proper initialization when  
RESETB is de-asserted high prior to the power rails being valid. If RESETB de-assert high before the power  
supplies are stable, internal power on reset circuit will hold off internal reset until the supplies are stable.  
I2C/RAP and eUSB2 interfaces will be ready after t_RH_READY upon de-assertion of RESETB or power up.  
I2C/RAP and eUSB2 interfaces will be ready after t_RH_READY upon soft reset through the I2C.  
Upon de-assertion of RESETB (after t_RH_READY) or software reset (after t_RH_READY), TUSB2E11 will enable and  
enter default state and be ready to accept eUSB2 packets, RAP and I2C requests. The repeater will either be in  
host repeater mode or device repeater mode depending on the receipt of either host mode enable or peripheral  
mode enable.  
13 Layout  
13.1 Layout Guidelines  
1. Place supply bypass capacitors as close to VDD1V8 and VDD3V3 pins as possible and avoid placing the  
bypass caps near the eDP/eDN and DP/DN traces.  
2. Route the high-speed USB signals using a minimum of vias and corners which reduces signal reflections  
and impedance changes. When a via must be used, increase the clearance size around it to minimize its  
capacitance. Each via introduces discontinuities in the signals transmission line and increases the chance  
of picking up interference from the other layers of the board. Be careful when designing test points on  
twisted pair lines; through-hole pins are not recommended.  
3. When it becomes necessary to turn 90°, use two 45° turns or an arc instead of making a single 90° turn. This  
reduces reflections on the signal traces by minimizing impedance discontinuities.  
4. Do not route USB traces under or near crystals, oscillators, clock signal generators, switching regulators,  
mounting holes, magnetic devices or ICs that use or duplicate clock signals.  
5. Avoid stubs on the high-speed USB signals due to signal reflections. If a stub is unavoidable, then the stub  
must be less than 200 mil.  
6. Route all high-speed USB signal traces over continuous GND planes, with no interruptions.  
7. Avoid crossing over anti-etch, commonly found with plane splits.  
8. Due to high frequencies associated with the USB, a printed circuit board with at least four layers is  
recommended; two signal layers separated by a ground and power layer as shown in 13-1.  
Signal 1  
GND Plane  
Power Plane  
Signal 2  
13-1. Four-Layer Board Stack-Up  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TUSB2E11  
 
 
 
 
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
13.2 Example Layout for Application with 1.8 V I2C Variant  
13-2 shows how GPIO2 can be optionally used as an open drain interrupt output with a pull-up resistor to  
VDD18.  
VDD18  
VDD18  
Via to  
VDD33  
Plane  
Via to  
VDD18  
Plane  
Via to  
GND  
Plane  
1k  
1k  
VDD33  
VDD18  
GND  
GND  
GND  
GND  
SDA  
SCL  
VDD18  
GND  
0.1  
F
VDD18  
VDD33  
GPIO2  
eDN  
DN  
eDN  
eDP  
DN  
DP  
SoC  
eUSB2  
USB 2.0  
connector  
eDP  
GPIO0  
GPIO1  
RESETB  
DP  
VDD18  
20 k  
Reset  
control  
from  
1 M  
SoC  
GND  
13-2. Example Layout for Application with 1.8 V I2C Variant  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TUSB2E11  
 
 
TUSB2E11  
www.ti.com.cn  
ZHCSQH7A NOVEMBER 2021 REVISED JUNE 2022  
14 Device and Documentation Support  
14.1 Device Support  
14.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
14.2 Documentation Support  
14.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, High-Speed Interface Layout Guidelines application note  
USB 2.0 Promoter Group (2000). USB 2.0 Specification USB 2.0 Promoter Group  
USB Implementers Forum (2018). Embedded USB2 (eUSB2) Physical Layer Supplement to the USB  
Revision 2.0 Specification, Rev. 1.2 USB Implementers Forum  
14.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
14.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
14.5 Trademarks  
USB Type-Cis a trademark of USB Implementers Forum.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
14.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
14.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
15 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TUSB2E11  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TUSB2E111YCGR  
ACTIVE  
DSBGA  
YCG  
15  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-20 to 85  
T2E111A  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
YCG0015  
DSBGA - 0.5 mm max height  
SCALE 9.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
C
0.5 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.16  
0.10  
0.7 TYP  
SYMM  
E
D
C
1.4  
TYP  
SYMM  
D: Max = 2.034 mm, Min =1.973 mm  
E: Max = 1.333 mm, Min =1.273 mm  
B
A
0.35  
TYP  
2
3
0.225  
0.185  
C A B  
15X  
0.015  
0.35 TYP  
4224261/C 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YCG0015  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
15X ( 0.2)  
3
1
2
A
(0.35) TYP  
B
C
SYMM  
D
E
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 40X  
0.0325 MIN  
0.0325 MAX  
METAL UNDER  
SOLDER MASK  
(
0.2)  
METAL  
EXPOSED  
METAL  
(
0.2)  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
(PREFERRED)  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4224261/C 12/2021  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YCG0015  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
(R0.05) TYP  
15X ( 0.21)  
1
2
3
A
(0.35) TYP  
B
C
SYMM  
METAL  
TYP  
D
E
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 mm THICK STENCIL  
SCALE: 40X  
4224261/C 12/2021  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TUSB2E22

USB 2.0-eUSB2 双路中继器
TI

TUSB2E22YCGR

USB 2.0-eUSB2 双路中继器 | YCG | 25 | -20 to 85
TI

TUSB2E22YCGT

USB 2.0-eUSB2 双路中继器 | YCG | 25 | -20 to 85
TI

TUSB319-Q1

汽车类 USB Type-C DFP 端口控制器
TI

TUSB319IDRFRQ1

汽车类 USB Type-C DFP 端口控制器 | DRF | 8 | -40 to 85
TI

TUSB320

USB Type-C 配置通道逻辑和端口控制
TI

TUSB3200

USB Streaming Controller STC
TI

TUSB3200A

USB STREAMING CONTROLLER (STC)
TI

TUSB3200AC97

USB Streaming Controller STC
TI

TUSB3200ACPAH

USB Streaming Controller STC
TI

TUSB3200ACPAHG4

USB Streaming Controller 52-TQFP 0 to 70
TI

TUSB3200ACPAHR

USB Streaming Controller STC
TI