TUSB321 [TI]

支持 VCONN 的 USB Type-C 配置通道逻辑和端口控制;
TUSB321
型号: TUSB321
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

支持 VCONN 的 USB Type-C 配置通道逻辑和端口控制

文件: 总26页 (文件大小:1549K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TUSB321  
ZHCSDT2C JUNE 2015REVISED AUGUST 2018  
具有 VCONN TUSB321 USB Type-C™ 配置通道逻辑和端口控件  
1 特性  
3 说明  
1
USB Type-C™规范 1.1  
TUSB321 器件可在 USB Type-C 端口上实现 Type-C  
生态系统所需的配置通道 (CC) 逻辑。TUSB321 器件  
使用 CC 引脚来确定端口连接和分离、电缆方向、角  
色检测以及对 Type-C 电流模式的端口控制。  
TUSB321 器件可配置为下行端口 (DFP)、上行端口  
(UFP) 或双角色端口 (DRP),是各种应用的理想之  
选。  
向后兼容 USB Type-C 规范 1.0  
通过专用电流模式引脚支持高达 3A 的电流通告  
模式配置  
仅主机 - 下行端口 (DFP)(供电设备)  
仅设备 上行端口 (UFP)(受电设备)  
双角色端口 – DRP  
通道配置 (CC)  
根据 Type-C 规范,TUSB321 器件在配置为 DRP  
时,会交替配置为 DFP UFPCC 逻辑块通过监视  
CC1 CC2 引脚上的上拉或下拉电阻,以确定何时连  
接了 USB 端口、电缆的方向以及检测到的角色。CC  
逻辑根据检测到的角色来确定 Type-C 电流模式为默  
认、中等还是高。该逻辑通过实施 VBUS 检测来确定端  
口在 UFP DRP 模式下是否连接成功。  
USB 端口连接检测  
电缆方向检测  
角色检测  
Type-C 电流模式通告和检测(默认、中等和  
高)  
VBUS 检测  
针对有源电缆提供 VCONN 支持  
该器件能够在宽电源范围内工作,并且具有较低功耗。  
器件信息(1)  
外部开关电缆检测与  
方向控制  
电源电压:4.5V 5.5V  
器件型号  
TUSB321  
封装  
封装尺寸(标称值)  
低电流消耗  
X2QFN (12)  
1.60mm x 1.60mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
2 应用  
主机、设备、双角色端口 应用  
移动电话  
平板电脑和笔记本电脑  
USB 外设  
空白  
简化原理图  
示例 应用  
VDD  
ID  
VCONN  
Power Rail  
VBUS  
Detection  
CC Logic  
for Mode  
Configuration  
and Detection  
VBUS_DET  
CC1  
CC2  
CURRENT_MODE  
VCONN_FAULT  
OUT1  
Controller  
DIR  
OUT2  
PORT  
GND  
Copyright © 2016, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEO6  
 
 
 
 
 
 
TUSB321  
ZHCSDT2C JUNE 2015REVISED AUGUST 2018  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 13  
8.1 Application Information............................................ 13  
8.2 Typical Application .................................................. 13  
8.3 Initialization Set Up ................................................ 17  
Power Supply Recommendations...................... 17  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 6  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 9  
7.3 Feature Description................................................... 9  
8
9
10 Layout................................................................... 17  
10.1 Layout Guidelines ................................................. 17  
10.2 Layout Example .................................................... 17  
11 器件和文档支持 ..................................................... 18  
11.1 接收文档更新通知 ................................................. 18  
11.2 社区资源................................................................ 18  
11.3 ....................................................................... 18  
11.4 静电放电警告......................................................... 18  
11.5 术语表 ................................................................... 18  
12 机械、封装和可订购信息....................................... 18  
7
4 修订历史记录  
Changes from Revision B (September 2016) to Revision C  
Page  
删除了特性“-40°C 85°C 的工业温度范围” .......................................................................................................................... 1  
删除了说明 中的“TUSB321 器件适用于工业和商业级温度范围。文本.................................................................................. 1  
Changed pin VBUS_DET description From: 900-kΩ To: RVBUS in Pin Functions table. ........................................................ 3  
Changed RVBUS values From: MIN = 891, TYP = 900, MAX = 909 KΩ To: MIN = 855, TYP = 887, MAX = 920 KΩ ........... 6  
Changed resister value From: 900 kΩ To: To: RVBUS in Figure 3........................................................................................... 8  
Changed resister value From: 900 kΩ To: To: RVBUS in Functional Block Diagram............................................................... 9  
Changed From: The system VBUS voltage must be routed through a 900-kΩ resistor to the VBUS_DET pin .. To: The  
system VBUS voltage must be routed through a RVBUS resistor to the VBUS_DET pin .. in the VBUS Detection................... 11  
Added resister RVBUS in Figure 4 .......................................................................................................................................... 14  
Added row for RVBUS to Table 4 ........................................................................................................................................... 15  
Changed From: must be connected through a 900-kΩ resistor to VBUS on the Type-C... To: must be connected  
through a RVBUS resistor to VBUS on the Type-C .. in the Detailed Design Procedure.......................................................... 15  
Changes from Revision A (June 2015) to Revision B  
Page  
Changed pins CC1 and CC2 values From: MIN = –0.3 MAX = VDD + 0.3 To: MIN –0.3 MAX = 6 in the Absolute  
Maximum Ratings................................................................................................................................................................... 4  
Changes from Original (June 2015) to Revision A  
Page  
已更改 器件状态从 产品预览 更改为 量产数据 ....................................................................................................................... 1  
2
Copyright © 2015–2018, Texas Instruments Incorporated  
 
TUSB321  
www.ti.com.cn  
ZHCSDT2C JUNE 2015REVISED AUGUST 2018  
5 Pin Configuration and Functions  
RWB Package  
12-Pin X2QFN  
Top View  
CC2 CC1  
2 1  
3
4
5
6
12  
11  
10  
9
CURRENT_MODE  
PORT  
VDD  
DIR  
VBUS_DET  
GND  
ID  
VCONN_FAULT  
7
8
OUT1 OUT2  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
CC1  
NO.  
1
I/O  
I/O  
Type-C configuration channel signal 1  
Type-C configuration channel signal 2  
CC2  
2
Advertise VBUS current. This 3-level input is used to control current advertisement in DFP  
mode or DRP mode connected as source. (See Table 2.)  
L - Default Current. Pull-down to GND or leave unconnected.  
M - Medium (1.5A) current. Pull-up to VDD with 500-kΩ resistor.  
H - High (3.0A) current. Pull-up to VDD with 10-kΩ resistor.  
CURRENT_MODE  
3
4
I
I
Tri-level input pin to indicate port mode. The state of this pin is sampled when VDD is active.  
H - DFP (Pull-up to VDD if DFP mode is desired)  
PORT  
NC - DRP (Leave unconnected if DRP mode is desired)  
L - UFP (Pull-down or tie to GND if UFP mode is desired)  
5- to 28-V VBUS input voltage. VBUS detection determines UFP attachment. One RVBUS  
external resistor required between system VBUS and VBUS_DET pin.  
VBUS_DET  
5
6
I
Open-drain output and is asserted low for tFAULT when VCONN over-current fault is detected.  
(See Figure 2.)  
VCONN_FAULT  
O
This pin is an open drain output for communicating Type-C current mode detect when the  
device is in UFP mode. Default current mode detected (H); medium or high current mode  
detected (L). (See Table 2.)  
OUT1  
OUT2  
7
8
I/O  
I/O  
This pin is an open drain output for communicating Type-C current mode detect when the  
device is in UFP mode: default or medium current mode detected (H); high current mode  
detected (L). (See Table 2.)  
Open drain output; asserted low when the CC pins detect device attachment when port is a  
source (DFP), or dual-role (DRP) acting as source (DFP).  
ID  
9
O
G
O
P
GND  
DIR  
VDD  
10  
11  
12  
Ground  
DIR of plug. This open drain output indicates the detected plug orientation: Type-C plug  
position 2 (H); Type-C plug position 1 (L).  
Positive supply voltage  
Copyright © 2015–2018, Texas Instruments Incorporated  
3
TUSB321  
ZHCSDT2C JUNE 2015REVISED AUGUST 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–65  
MAX  
UNIT  
Supply voltage  
Control pins  
VDD  
6
V
PORT, CURRENT_MODE, ID, DIR, VCONN_FAULT  
VDD + 0.3  
CC1, CC2  
6
VDD + 0.3  
4
V
OUT1, OUT2  
VBUS_DET  
Storage temperature, Tstg  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±7000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
4
NOM  
MAX  
5.5  
28  
UNIT  
V
VDD  
Supply voltage range  
VBUS  
System VBUS voltage  
5
V
VBUS_DET  
VCONN  
TA  
VBUS_DET threshold voltage on the pin  
Supply for active cable (With VDD at 5 V)  
Operating free air temperature range  
4
V
4.75  
0
5.5  
70  
V
25  
°C  
6.4 Thermal Information  
RWB (X2QFN)  
12 PINS  
169.3  
68.1  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
83.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.2  
ψJB  
83.4  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and C Package Thermal Metrics application  
report.  
4
Copyright © 2015–2018, Texas Instruments Incorporated  
TUSB321  
www.ti.com.cn  
ZHCSDT2C JUNE 2015REVISED AUGUST 2018  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Power Consumption  
Current consumption in unattached mode when port is  
IUNATTACHED_UFP  
unconnected and waiting for connection. (VDD = 5 V, PORT  
= L)  
100  
100  
µA  
µA  
Current consumption in active mode. (VDD = 5 V, PORT =  
L)  
IACTIVE_UFP  
CC1 and CC2 Pins  
RCC_D  
Pulldown resistor when in UFP or DRP mode.  
4.6  
5.1  
0.2  
5.6  
kΩ  
Voltage threshold for detecting a DFP attach when  
configured as a UFP and DFP is advertising default current  
source capability.  
VTH_UFP_CC_USB  
VTH_UFP_CC_MED  
VTH_UFP_CC_HIGH  
VTH_DFP_CC_USB  
VTH_DFP_CC_MED  
VTH_DFP_CC_HIGH  
VTH_AC_CC_USB  
VTH_AC_CC_MED  
VTH_AC_CC_HIGH  
0.15  
0.25  
V
Voltage threshold for detecting a DFP attach when  
configured as a UFP and DFP is advertising medium (1.5  
A) current source capability.  
0.61  
1.169  
1.51  
1.51  
2.46  
0.15  
0.35  
0.76  
0.66  
1.23  
1.6  
0.7  
1.29  
1.64  
1.64  
2.74  
0.25  
0.45  
0.84  
V
V
V
V
V
V
V
V
Voltage threshold for detecting a DFP attach when  
configured as a UFP and DFP is advertising high (3 A)  
current source capability.  
Voltage threshold for detecting a UFP attach when  
configured as a DFP and advertising default current source  
capability.  
Voltage threshold for detecting a UFP attach when  
configured as a DFP and advertising medium current (1.5  
A) source capability.  
1.6  
Voltage threshold for detecting a UFP attach when  
configured as a DFP and advertising high current (3.0 A)  
source capability.  
2.6  
Voltage threshold for detecting a active cable attach when  
configured as a DFP and advertising default current  
source.  
0.20  
0.40  
0.80  
Voltage threshold for detecting a active cable attach when  
configured as a DFP and advertising medium current (1.5  
A) source.  
Voltage threshold for detecting a active cable attach when  
configured as a DFP and advertising high current (3.0 A)  
source.  
Default mode pullup current source when operating in DFP  
or DRP mode.  
ICC_DEFAULT_P  
ICC_MED_P  
64  
166  
304  
80  
180  
330  
96  
194  
356  
µA  
µA  
µA  
Medium (1.5 A) mode pullup current source when  
operating in DFP or DRP mode.  
High (3 A) mode pullup current source when operating in  
DFP or DRP mode.(1)  
ICC_HIGH_P  
Control Pins: PORT, CURRENT_MODE, VCONN_FAULT, DIR, ID, OUT1, OUT2  
Low-level control signal input voltage, (PORT,  
CURRENT_MODE)  
VIL  
0.4  
V
V
V
Mid-level control signal input voltage (PORT,  
CURRENT_MODE)  
VIM  
0.28 × VDD  
VDD - 0.3  
0.56 × VDD  
High-level control signal input voltage (PORT,  
CURRENT_MODE)  
VIH  
IIH  
High-level input current  
–20  
–10  
20  
10  
µA  
µA  
kΩ  
MΩ  
kΩ  
IIL  
Low-level input current  
Rpu  
Internal pullup resistance (PORT)  
Internal pulldown resistance (PORT)  
Internal pulldown resistance for CURRENT_MODE pin  
588  
1.1  
Rpd  
RPD_CUR  
275  
Low-level signal output voltage (open-drain)  
(VCONN_FAULT, ID, OUT1, OUT2)  
VOL  
IOL = –1.6 mA  
0.4  
V
External pullup resistor on open drain IOs  
(VCONN_FAULT, ID, OUT1, OUT2)  
Rp_ODext  
Rp_TLext  
200  
4.7  
kΩ  
kΩ  
Tri-level input external pull-up resistor (PORT)  
(1) VDD must be 3.5 V or greater to advertise 3 A current.  
Copyright © 2015–2018, Texas Instruments Incorporated  
5
TUSB321  
ZHCSDT2C JUNE 2015REVISED AUGUST 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
500  
10  
MAX  
UNIT  
kΩ  
External pull-up resistor on CURRENT_MODE pin to  
advertise 1.5-A current  
Rp_cm_med  
External pull-up resistor on CURRENT_MODE pin to  
advertise 3.0-A current  
Rp_cm_high  
kΩ  
VBUS_DET IO Pins (Connected to System VBUS signal through external resistor)  
VBUS_THR  
RVBUS  
VBUS threshold range  
2.95  
855  
3.30  
887  
95  
3.80  
920  
V
External resistor between VBUS and VBUS_DET pin  
Internal pulldown resistance for VBUS_DET  
KΩ  
KΩ  
RVBUS_PD  
DIR pin (Open Drain IO)  
VOL  
Low-level signal output voltage  
IOL = –1.6 mA  
0.4  
V
VCONN  
RON  
On resistance of the VCONN power FET  
Voltage tolerance on VCONN power FET  
Voltage to pass through VCONN power FET  
1.25  
5.5  
Ω
V
V
VTOL  
VPASS  
5.5  
VCONN current limit; VCONN is disconnected above this  
value  
IVCONN  
CBULK  
200  
10  
mA  
µF  
Bulk capacitance on VCONN; placed on VDD supply  
200  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
133  
2
MAX  
UNIT  
ms  
tCCCB_DEFAULT  
tVBUS_DB  
Power on default of CC1 and CC2 voltage debounce time  
Debounce of VBUS_DET pin after valid VBUS_THR (See Figure 1.)  
Power-on default of percentage of time DRP advertises DFP during a TDRP  
ms  
tDRP_DUTY_CYCLE  
30%  
The period TUSB321 in DFP mode completes a DFP to UFP and back  
advertisement.  
tDRP  
50  
7
75  
10  
100  
13  
ms  
µs  
VCONN_FAULT asserted low time after VCONN over-current condition is  
detected. (See Figure 2.)  
tFAULT  
6
Copyright © 2015–2018, Texas Instruments Incorporated  
TUSB321  
www.ti.com.cn  
ZHCSDT2C JUNE 2015REVISED AUGUST 2018  
V
VBUS  
V
BUS_THR  
t
VBUS_DB  
0 V  
Time  
Figure 1. VBUS Detect and Debounce  
t
FAULT  
V
PULL-UP  
V
VCONN_FAULT  
0 V  
Time  
Figure 2. VCONN_FAULT Assertion Pulse Timing  
Copyright © 2015–2018, Texas Instruments Incorporated  
7
TUSB321  
ZHCSDT2C JUNE 2015REVISED AUGUST 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The USB Type-C ecosystem operates around a small form factor connector and cable that is flippable and  
reversible. Because of the nature of the connector, a scheme is needed to determine the connector orientation.  
Additional schemes are needed to determine when a USB port is attached and the acting role of the USB port  
(DFP, UFP, DRP), as well as to communicate Type-C current capabilities. These schemes are implemented over  
the CC pins according to the USB Type-C specifications. The TUSB321 device provides Configuration Channel  
(CC) logic for determining USB port attach and detach, role detection, cable orientation, and Type-C current  
mode. The TUSB321 device also contains several features such as VCONN sourcing, USB3.1 MUX direction  
control, mode configuration and low standby current which make this device ideal for source or sinks in USB2.0  
or USB3.1 applications.  
7.1.1 Cables, Adapters, and Direct Connect Devices  
Type-C Specification 1.1 defines several cables, plugs and receptacles to be used to attach ports. The TUSB321  
device supports all cables, receptacles, and plugs. The TUSB321 device does not support e-marking.  
7.1.1.1 USB Type-C Receptacles and Plugs  
Below is list of Type-C receptacles and plugs supported by the TUSB321 device:  
USB Type-C receptacle for USB2.0 and USB3.1 and full-featured platforms and devices  
USB full-featured Type-C plug  
USB2.0 Type-C plug  
7.1.1.2 USB Type-C Cables  
Below is a list of Type-C cables types supported by the TUSB321 device:  
USB full-featured Type-C cable with USB3.1 full-featured plug  
USB2.0 Type-C cable with USB2.0 plug  
Captive cable with either a USB full-featured plug or USB2.0 plug  
7.1.1.3 Legacy Cables and Adapters  
The TUSB321 device supports legacy cable adapters as defined by the Type-C Specification. The cable adapter  
must correspond to the mode configuration of the TUSB321 device.  
To system VBUS detection  
Legacy Host  
Adapter  
TUSB321  
VBUS_DET  
R
VBUS  
RP  
56 kW ±5%  
CC  
CC  
RD  
5.1 kW ±10%  
Figure 3. Legacy Adapter Implementation Circuit  
7.1.1.4 Direct Connect Devices  
The TUSB321 device supports the attaching and detaching of a direct-connect device.  
8
Copyright © 2015–2018, Texas Instruments Incorporated  
TUSB321  
www.ti.com.cn  
ZHCSDT2C JUNE 2015REVISED AUGUST 2018  
7.2 Functional Block Diagram  
VDD  
DIR  
DIR_CTRL  
DIR  
Logic  
CTRL  
CURRENT_MODE  
PORT  
Tri-State  
Buffer  
CC1  
Connection  
Digital  
Controller  
and  
Cable  
Detection  
VBUS_ON  
CRTL_INT  
CRTL_ID  
CC2  
CRTL_ID  
CRTL_EN_N  
CRTL_EN_N  
VBUS_ON  
CTRL  
VBUS  
Detection  
Open Drain Output  
VBUS_DET  
OUT1 OUT2 ID  
VCONN_FAULT  
GND  
R
VBUS  
SYS_VBUS  
7.3 Feature Description  
7.3.1 Port Role Configuration  
The TUSB321 device can be configured as a downstream facing port (DFP), upstream facing port (UFP), or  
dualrole port (DRP) using the tri-level PORT pin. The PORT pin should be pulled high to VDD using a pullup  
resistance, low to GND or left as floated on the PCB to achieve the desired mode. This flexibility allows the  
TUSB321 device to be used in a variety of applications. The TUSB321 device samples the PORT pin after reset  
and maintains the desired mode until the TUSB321 device is reset again. Table 1 lists the supported features in  
each mode:  
Copyright © 2015–2018, Texas Instruments Incorporated  
9
TUSB321  
ZHCSDT2C JUNE 2015REVISED AUGUST 2018  
www.ti.com.cn  
Feature Description (continued)  
Table 1. Supported Features for the v Device by Mode  
PORT PIN  
HIGH  
(DFP ONLY)  
LOW  
(UFP ONLY)  
NC  
(DRP)  
SUPPORTED  
FEATURES  
Port attach and  
detach  
Yes  
Yes  
Yes  
Cable orientation  
Current advertisement  
Current detection  
Active cable detection  
VCONN  
Yes  
Yes  
-
Yes  
-
Yes  
Yes (DFP)  
Yes (UFP)  
Yes (DFP)  
Yes (DFP)  
Yes  
Yes  
-
Yes  
Yes  
Yes  
-
-
Legacy cables  
Yes  
Yes  
VBUS detection  
Yes (UFP)  
7.3.1.1 Downstream Facing Port (DFP) - Source  
The TUSB321 device can be configured as a DFP only by pulling the PORT pin high through a resistance to  
VDD. In DFP mode, the TUSB321 device constantly presents Rps on both CC. In DFP mode, the TUSB321  
device advertises USB Type-C current based on the state of the CURRENT_MODE pin.  
When configured as a DFP, the TUSB321 can operate with older USB Type-C 1.0 devices except for a USB  
Type-C 1.0 DRP device. The TUSB321 can not operate with a USB Type-C 1.0 DRP device. This limitation is a  
result of backwards compatibility problem between USB Type-C 1.1 DFP and a USB Type-C 1.0 DRP.  
7.3.1.2 Upstream Facing Port (UFP) - Sink  
The TUSB321 device can be configured as a UFP only by pulling the PORT pin low to GND. In UFP mode, the  
TUSB321 device constantly presents pulldown resistors (Rd) on both CC pins. The TUSB321 device monitors  
the CC pins for the voltage level corresponding to the Type-C mode current advertisement by the connected  
DFP. The TUSB321 device debounces the CC pins and wait for VBUS detection before successfully attaching. As  
a UFP, the TUSB321 device detects and communicates the advertised current level of the DFP to the system  
through the OUT1 and OUT2 pins.  
7.3.1.3 Dual Role Port (DRP)  
The TUSB321 device can be configured to operate as a DRP when the PORT pin is left floated on the PCB. In  
DRP mode, the TUSB321 device toggles between operating as a DFP and a UFP. When functioning as a DFP in  
DRP mode, the TUSB321 device complies with all operations as defined for a DFP according to the Type-C  
Specification. When presenting as a UFP in DRP mode, the TUSB321 device operates as defined for a UFP  
according to the Type-C Specification.  
7.3.2 Type-C Current Mode  
The TUSB321 device supports both advertising and detection of Type-C current. When TUSB321 is a UFP or a  
DRP connected as a sink, the OUT1 and OUT2 pins are used to inform the system the detected USB Type-C  
current being broadcasted by the attached DFP. When TUSB321 device is a DFP or a DRP connected as a  
source, the CURRENT_MODE pin is used to advertise the USB Type-C current. The current advertisement for  
the TUSB321 device is 500 mA (for USB2.0) or 900 mA (for USB3.1) if CURRENT_MODE pin is left  
unconnected or pulled to GND. If a higher level of current is required, the CURRENT_MODE can be pulled up to  
VDD through a 500-kΩ resistor to advertise medium current at 1.5 A or pulled up to VDD through a 10-kΩ  
resistor to advertise high current at 3 A. Table 2 lists the Type-C current advertisements and detection.  
10  
Copyright © 2015–2018, Texas Instruments Incorporated  
TUSB321  
www.ti.com.cn  
ZHCSDT2C JUNE 2015REVISED AUGUST 2018  
Table 2. Type-C Current Advertisement and Detection  
UFP or DRP acting as UFP  
Current Detection  
DFP or DRP acting as DFP  
Current Advertisement  
TYPE-C CURRENT  
500 mA (USB2.0)  
900 mA (USB3.1)  
OUT1 = High  
OUT2 = High (unattached) or Low (attached)  
Default  
CURRENT_MODE = L  
CURRENT_MODE = M  
CURRENT_MODE = H  
OUT1 = Low  
OUT2 = High  
Medium - 1.5 A  
High - 3 A  
OUT1 = Low  
OUT2 = Low  
7.3.3 VBUS Detection  
The TUSB321 device supports VBUS detection according to the Type-C Specification. VBUS detection is used to  
determine the attachment and detachment of a UFP. VBUS detection is also used to successfully resolve the role  
in DRP mode.  
The system VBUS voltage must be routed through a RVBUS resistor to the VBUS_DET pin on the TUSB321 device  
if the PORT pin is configured as a DRP or a UFP. If the TUSB321 device is configured as a DFP and only ever  
used in DFP mode, the VBUS_DET pin can be left unconnected.  
7.3.4 Cable Orientation and External MUX Control  
The TUSB321 device has the ability to control an external/discrete MUX using the DIR pin. The TUSB321  
detects the cable orientation by monitoring the voltage on the CC pins. When a voltage level within the proper  
threshold is detected on CC1, the DIR pin is pulled low. When a voltage level within the proper threshold is  
detected on CC2, the DIR is pulled high. If the direction polarity of the external MUX is opposite of the TUSB321,  
the TUSB321 CC1/CC2 connection to USB Type-C receptacle can be reversed. The DIR pin is an open drain  
output.  
7.3.5 VCONN Support for Active Cables  
The TUSB321 device supplies VCONN to active cables when configured in DFP mode or in DRP acting as a  
DFP mode. VCONN is provided only when the unconnected CC pin is terminated to a resistance, Ra, and after a  
UFP is detected and the Attached.SRC state is entered. When in DFP mode or in DRP acting as a DFP mode, a  
5-V source must be connected to the VDD pin of the TUSB321 device after Attached.SRC. VCONN is supplied  
from VDD through a low resistance power FET out to the unconnected CC pin. VCONN is removed when a  
detach event is detected and the active cable is removed.  
7.4 Device Functional Modes  
The TUSB321 device has two functional modes. Table 3 lists these modes:  
Table 3. USB Type-C States According to TUSB321 Functional Modes  
MODES  
GENERAL BEHAVIOR  
PORT PIN  
STATES(1)  
Unattached.SNK  
UFP  
AttachWait.SNK  
USB port unattached. ID, PORT  
operational. CC pins configure  
according to PORT pin.  
Toggle Unattached.SNK Unattached.SRC  
AttachedWait.SRC or AttachedWait.SNK  
Unattached.SRC  
Unattached  
DRP  
DFP  
UFP  
DRP  
DFP  
AttachWait.SRC  
Attached.SNK  
Attached.SNK  
USB port attached. All GPIOs  
operational.  
Active  
Attached.SRC  
Attached.SRC  
(1) Required; not in sequential order.  
Copyright © 2015–2018, Texas Instruments Incorporated  
11  
 
TUSB321  
ZHCSDT2C JUNE 2015REVISED AUGUST 2018  
www.ti.com.cn  
7.4.1 Unattached Mode  
Unattached mode is the primary mode of operation for the TUSB321 device, because a USB port can be  
unattached for a lengthy period of time. In unattached mode, VDD is available, and all IOs are operational. After  
the TUSB321 device is powered up, the part enters unattached mode until a successful attach has been  
determined. Initially, right after power up, the TUSB321 device comes up as an Unattached.SNK. The TUSB321  
device checks the PORT pin and operates according to the mode configuration. The TUSB321 device toggles  
between the UFP and the DFP if configured as a DRP. The PORT pin is only sampled at reset or power up.  
7.4.2 Active Mode  
Active mode is defined as the port being attached. In active mode, all GPIOs are operational. When in active  
mode, the TUSB321 device communicates to the AP that the USB port is attached. This happens through the ID  
pin if TUSB321 is configured as a DFP or DRP connect as source. If TUSB321 is configured as a UFP or a DRP  
connected as a sink, the OUT1 and OUT2 pins are used. The TUSB321 device exits active mode under the  
following conditions:  
Cable unplug  
VBUS removal if attached as a UFP  
12  
Copyright © 2015–2018, Texas Instruments Incorporated  
TUSB321  
www.ti.com.cn  
ZHCSDT2C JUNE 2015REVISED AUGUST 2018  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TUSB321 device is a Type-C configuration channel logic and port controller. The TUSB321 device can  
detect when a Type-C device is attached, what type of device is attached, the orientation of the cable, and power  
capabilities (both detection and broadcast). The TUSB321 device can be used in a source application (DFP) or in  
a sink application (UFP).  
8.2 Typical Application  
8.2.1 DFP Mode  
Figure 4 shows the TUSB321 device configured as a DFP.  
Copyright © 2015–2018, Texas Instruments Incorporated  
13  
TUSB321  
ZHCSDT2C JUNE 2015REVISED AUGUST 2018  
www.ti.com.cn  
Typical Application (continued)  
DM  
DP  
USB VBUS Switch  
System VBUS  
PS_EN  
VIN  
EN  
VOUT  
PS_FAULT  
FAULT  
VDD_5V  
VCC_3.3V  
150 µF  
100 nF  
DM  
DP  
100 µF  
VBUS  
RVBUS  
A12 B1  
200 kW 200 kW  
10 kW  
4.7 kW  
RXP2  
RXN2  
TXP2  
TXN2  
VBUS_DET  
B2  
A10 B3  
A11  
PORT  
CURRENT_MODE  
USB3 Host  
and  
PMIC  
B4  
B5  
A9  
A8  
A7  
CC1  
CC2  
CC2  
CC1  
B6  
TUSB321  
ID  
ID  
A6 B7  
A5 B8  
VCONN_FAULT  
FAULT  
A4  
A3 B10  
B9  
100 nF  
TXN1  
TXP1  
RXN1  
RXP1  
A2  
A1  
B11  
B12  
VCC_3.3V  
VCC_3.3V  
10 kW  
100 nF  
SEL  
TXP2  
TXN2  
B0P  
B0N  
RXP2  
RXN2  
100 nF  
B1P  
B1N  
SSTXP  
SSTXN  
A0P  
A0N  
100 nF  
TXN1  
TXP1  
SSRXP  
SSRXN  
A1P  
A1N  
C0P  
C0N  
RXN1  
RXP1  
C1P  
C1N  
OEN  
Figure 4. DFP Mode Schematic  
14  
Copyright © 2015–2018, Texas Instruments Incorporated  
TUSB321  
www.ti.com.cn  
ZHCSDT2C JUNE 2015REVISED AUGUST 2018  
Typical Application (continued)  
8.2.1.1 Design Requirements  
For this design example, use the parameters listed in Table 4:  
Table 4. Design Requirements for DFP Mode  
DESIGN PARAMETER  
VALUE  
VDD (4.5 V to 5.5 V)  
5 V  
DFP  
Type-C port type (UFP, DFP, or DRP)  
PORT pin is pulled up  
Advertised Type-C Current (Default, 1.5 A, 3.0 A)  
RVBUS (855-kΩ to 920-kΩ)  
3.0 A  
900-kΩ  
Yes  
VCONN Support  
8.2.1.2 Detailed Design Procedure  
The TUSB321 device supports a VDD in the range of 4.5 to 5.5 V. In this particular case, VDD is set to 5 V. A 100-  
nF capacitor is placed near VDD. Also, a 100 µF is used to meet the USB Type-C bulk capacitance requirement  
of 10 µF to 220 µF.  
The TUSB321 current advertisement is determined by the state of the CURRENT_MODE pin. In this particular  
example, 3.0 A advertisement is desired so the CURRENT_MODE pin is pulled high to VDD through 10-kΩ  
resistor.  
The DIR pin is used to control the MUX for connecting the USB3 SS signals to the appropriate pins on the USB  
Type-C receptacle. In this particular case, a HD3SS3212 is used as the MUX. In order to minimize crossing in  
routing the USB3 SS signals to the USB Type C connector, the connection of CC1 and CC2 to the TUSB321 is  
swapped.  
The Type-C port mode is determined by the state of the PORT pin. When the PORT pin is pulled high, the  
TUSB321 device is in DFP mode.  
The VBUS_DET pin must be connected through a RVBUS resistor to VBUS on the Type-C that is connected. This  
large resistor is required to protect the TUSB321 device from large VBUS voltage that is possible in present day  
systems. This resistor along with internal pulldown keeps the voltage observed by the TUSB321 device in the  
recommended range.  
The USB2 specification requires the bulk capacitance on VBUS based on UFP or DFP. When operating the  
TUSB321 device in a DFP mode, a bulk capacitance of at least 120 µF is required. In this particular case, a 150-  
µF capacitor was chosen.  
Copyright © 2015–2018, Texas Instruments Incorporated  
15  
 
TUSB321  
ZHCSDT2C JUNE 2015REVISED AUGUST 2018  
www.ti.com.cn  
8.2.1.3 Application Curve  
Figure 5. Application Curve for DFP Mode  
16  
Copyright © 2015–2018, Texas Instruments Incorporated  
TUSB321  
www.ti.com.cn  
ZHCSDT2C JUNE 2015REVISED AUGUST 2018  
8.3 Initialization Set Up  
The general power-up sequence for the TUSB321 device is as follows:  
1. System is powered off (device has no VDD). The TUSB321 device is configured internally in UFP mode with  
Rds on CC pins.  
2. VDD ramps – POR circuit.  
3. The TUSB321 device enters unattached mode and determines the voltage level from the PORT pin. This  
determines the mode in which the TUSB321 device operates (DFP, UFP, DRP).  
4. The TUSB321 device monitors the CC pins as a DFP and VBUS for attach as a UFP.  
5. The TUSB321 device enters active mode when attach has been successfully detected.  
9 Power Supply Recommendations  
The TUSB321 device has a wide power supply range from 4.5 to 5.5 V. The TUSB321 device can be run off of a  
system power such as a battery.  
10 Layout  
10.1 Layout Guidelines  
1. An extra trace (or stub) is created when connecting between more than two points. A trace connecting pin A6  
to pin B6 will create a stub because the trace also has to go to the USB Host. Ensure that:  
A stub created by short on pin A6 (DP) and pin B6 (DP) at Type-C receptacle does not exceed 3.5 mm.  
A stub created by short on pin A7 (DM) and pin B7 (DM) at Type-C receptacle does not exceed 3.5 mm.  
2. A 100-nF capacitor should be placed as close as possible to the TUSB321 VDD pin.  
10.2 Layout Example  
Figure 6. TUSB321 Layout  
版权 © 2015–2018, Texas Instruments Incorporated  
17  
TUSB321  
ZHCSDT2C JUNE 2015REVISED AUGUST 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.3 商标  
E2E is a trademark of Texas Instruments.  
USB Type-C is a trademark of USB Implementers Forum.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
18  
版权 © 2015–2018, Texas Instruments Incorporated  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2018 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TUSB321RWBR  
ACTIVE  
X2QFN  
RWB  
12  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
0 to 70  
21  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TUSB321RWBR  
X2QFN  
RWB  
12  
3000  
180.0  
8.4  
1.8  
1.8  
0.61  
4.0  
8.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
X2QFN RWB 12  
SPQ  
Length (mm) Width (mm) Height (mm)  
213.0 191.0 35.0  
TUSB321RWBR  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RWB0012A  
X2QFN - 0.4 mm max height  
SCALE 6.500  
PLASTIC QUAD FLATPACK - NO LEAD  
1.65  
1.55  
B
A
PIN 1 INDEX AREA  
1.65  
1.55  
C
0.4 MAX  
SEATING PLANE  
0.05 C  
2X 1.2  
SYMM  
(0.13)  
TYP  
0.05  
0.00  
6X 0.4  
3
6
2
1
7
8
SYMM  
2X  
0.4  
0.4  
8X  
0.2  
12  
9
0.25  
0.15  
12X  
0.6  
4X  
0.4  
0.07  
0.05  
C B A  
C
4221631/B 07/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RWB0012A  
X2QFN - 0.4 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.3)  
6X (0.4)  
9
12  
4X (0.7)  
2X (0.4)  
1
8
SYMM  
(1.5)  
7
2
8X (0.5)  
3
6
SYMM  
(R0.05) TYP  
12X (0.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:30X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221631/B 07/2017  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RWB0012A  
X2QFN - 0.4 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.3)  
6X (0.4)  
12  
9
4X (0.67)  
2X (0.4)  
1
2
8
SYMM  
(1.5)  
7
8X  
METAL  
8X (0.5)  
3
6
(R0.05) TYP  
SYMM  
12X (0.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
PADS 1,2,7 & 8  
96% PRINTED SOLDER COVERAGE BY AREA  
SCALE:50X  
4221631/B 07/2017  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TUSB3210

UNIVERSAL SERIAL BUS GENERAL-PURPOSE DEVICE CONTROLLER
TI

TUSB3210PM

UNIVERSAL SERIAL BUS GENERAL-PURPOSE DEVICE CONTROLLER
TI

TUSB3210PMG4

Universal Serial Bus General-Purpose Device Controller
TI

TUSB3210_1

Universal Serial Bus General-Purpose Device Controller
TI

TUSB3210_15

Universal Serial Bus General-Purpose Device Controller
TI

TUSB321AI

支持 VCONN 的 USB Type-C 配置通道逻辑和端口控制
TI

TUSB321AIRWBR

支持 VCONN 的 USB Type-C 配置通道逻辑和端口控制 | RWB | 12 | -40 to 85
TI

TUSB321RWBR

支持 VCONN 的 USB Type-C 配置通道逻辑和端口控制 | RWB | 12 | 0 to 70
TI

TUSB322I

支持 VCONN 的 USB Type-C 配置通道逻辑和端口控制
TI

TUSB322IRWBR

支持 VCONN 的 USB Type-C 配置通道逻辑和端口控制 | RWB | 12 | -40 to 85
TI

TUSB3410

USB TO SERIAL PORT CONTROLLER
TI

TUSB3410-Q1

USB To Serial Port Controller
TI