TUSB522PRGET [TI]

第四代双通道 USB 3.0 转接驱动器 | RGE | 24 | 0 to 70;
TUSB522PRGET
型号: TUSB522PRGET
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

第四代双通道 USB 3.0 转接驱动器 | RGE | 24 | 0 to 70

驱动 驱动器
文件: 总24页 (文件大小:3339K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TUSB522P  
ZHCSFL6D JULY 2016REVISED MAY 2019  
TUSB522P 3.3V 双通道 USB 3.1 GEN 1 转接驱动器、均衡器  
1 特性  
3 说明  
1
USB3.1 GEN 1 5Gbps 双通道转接驱动器,由  
3.3V 电源供电运行  
TUSB522P 是一款支持 5Gbps 数据传输速率的第四代  
双单工通道 USB 3.1 GEN 1 转接驱动器和信号调节  
器。该器件采用超低功耗架构,在由 3.3V 电源供电运  
行时功耗非常低。转接驱动器还支持 USB 3.1 低功耗  
模式,可进一步降低空闲状态下的功耗。  
超低功耗架构  
工作:98mA  
U2U31.2mA  
断开:265µA  
关断:60µA  
双通道能力使得该系统能够在发送和接收数据路径上保  
持信号的完整性。接收器均衡有三种增益设置,用以克  
服插入损耗和码间串扰造成的通道性能退化。这些设置  
EQ 引脚控制。为了补偿传输线路损耗,输出驱动  
器还支持使用引脚 DE 配置去加重功能。此外,自动  
LFPS 去加重控制有助于实现与 USB 3.1 完全兼容。  
这些设置使得 USB 3.1 1 代路径中的 TUSB522P  
能够达到最佳性能,并延长信号传输距离以及实现灵活  
安置。  
绝佳接收器均衡  
3dB6dB 9dB 三种增益设置(2.5GHz 时)  
输出驱动器去加重功能,0dB3.5dB 6dB 三种  
配置可供选择  
自动低频周期信号 (LFPS) 去加重控制,满足 USB  
3.1 认证要求  
无主机/设备端要求  
支持热插拔  
器件信息(1)  
工业级温度范围:-40ºC 85ºC (TUSB522PI)  
商业级温度范围:0ºC 70ºC (TUSB522P)  
器件型号  
TUSB522P  
TUSB522PI  
封装  
封装尺寸(标称值)  
VQFN (24)  
4.00mm x 4.00mm  
2 应用  
手机  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
平板电脑  
笔记本电脑  
台式机  
扩展坞  
背板和有源电缆  
空白  
简化原理图  
Main PCB  
Detect  
USB  
Connector  
USB Host  
Redriver  
RX1P  
RX1N  
TX1P  
TX1N  
Receiver/  
Equalizer  
Driver  
CHANNEL 1  
LFPS  
CONTROLLER  
EQ1  
EQ2  
EQ  
CNTRL  
20"  
Device PCB  
Device  
Main PCB  
DE1  
DE2  
DEMP  
CNTRL  
Connector  
USB Host  
Redriver  
TX2N  
TX2N  
RX2P  
RX2N  
Receiver/  
Equalizer  
Driver  
CHANNEL 2  
3m USB  
3.0 Cable  
OS  
Cntrl.  
1"-6"  
20"  
Detect  
EN_RXD  
OS1 OS2  
Copyright © 2016, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEV9  
 
 
 
 
TUSB522P  
ZHCSFL6D JULY 2016REVISED MAY 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 11  
8.1 Application Information............................................ 11  
8.2 Typical Application ................................................. 11  
Power Supply Recommendations...................... 13  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics, Power Supply .................. 5  
6.6 Electrical Characteristics, DC ................................... 5  
6.7 Electrical Characteristics, AC.................................... 6  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 8  
7.3 Feature Description................................................... 9  
8
9
10 Layout................................................................... 14  
10.1 Layout Guidelines ................................................. 14  
10.2 Layout Example .................................................... 14  
11 器件和文档支持 ..................................................... 15  
11.1 文档支持 ............................................................... 15  
11.2 相关链接................................................................ 15  
11.3 接收文档更新通知 ................................................. 15  
11.4 社区资源................................................................ 15  
11.5 ....................................................................... 15  
11.6 静电放电警告......................................................... 15  
11.7 Glossary................................................................ 15  
12 机械、封装和可订购信息....................................... 15  
7
4 修订历史记录  
Changes from Revision C (May 2019) to Revision D  
Page  
Changed pin 11 From: TX1N To: TX2N and pin 12 From: TX1P To: TX2P in Figure 2...................................................... 11  
Changes from Revision B (November 2017) to Revision C  
Page  
删除了 RGE0024F 机械页面 ................................................................................................................................................ 15  
Changes from Revision A (October 2016) to Revision B  
Page  
Changed the values in the FOR OS = HIGH column of Table 1 ......................................................................................... 10  
Changes from Original (July 2016) to Revision A  
Page  
已将器件状态从产品预览更改为量产数据” .......................................................................................................................... 1  
2
Copyright © 2016–2019, Texas Instruments Incorporated  
 
TUSB522P  
www.ti.com.cn  
ZHCSFL6D JULY 2016REVISED MAY 2019  
5 Pin Configuration and Functions  
RGE Package  
24-Pin (VQFN)  
Top View  
OS2  
DE2  
EQ1  
VCC  
NC EN_RXD  
6
5
4
3
2
1
NC  
7
8
24 NC  
23  
22  
21  
20  
19  
TX1N  
TX1P  
RX1N  
RX1P  
CH1  
9
PAD  
(must be soldered to GND)  
10  
11  
12  
GND  
TX2N  
TX2P  
GND  
RX2N  
CH2  
RX2P  
13  
14  
15  
16  
17  
18  
VCC  
OS1  
DE1  
EQ2  
NC  
RSV  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
RX1N  
RX1P  
TX1N  
TX1P  
RX2N  
RX2P  
TX2N  
TX2P  
NO.  
8
Differential I Differential input for 5 Gbps negative signal on Channel 1  
Differential I Differential input for 5 Gbps positive signal on Channel 1  
Differential O Differential output for 5 Gbps negative signal on Channel 1  
Differential O Differential output for 5 Gbps positive signal on Channel 1  
Differential I Differential input for 5 Gbps negative signal on Channel 2  
Differential I Differential input for 5 Gbps positive signal on Channel 2  
Differential O Differential output for 5 Gbps negative signal on Channel 2  
Differential O Differential output for 5 Gbps positive signal on Channel 2  
9
23  
22  
20  
19  
11  
12  
Sets the receiver equalizer gain for Channel 1. 3-state input with integrated pull-up and pull-  
down resistors.  
EQ1  
2
I, CMOS  
EQ1 = Low = 3 dB  
EQ1 = Mid = 6 dB  
EQ1 = High = 9 dB  
Sets the output de-emphasis for Channel 1. 3-state input with integrated pull-up and pull-  
down resistors.  
DE1 = Low = 0 dB  
DE1 = Mid = -3.5 dB  
DE1 = High = -6.2 dB  
Note: When OS = Low  
DE1  
16  
I, CMOS  
Sets the output swing (differential voltage amplitude) for Channel 1. 2-state input with an  
integrated pull down resistor.  
OS1 = Low = 0.9 mV  
OS1 = High = 1.1 mV  
OS1  
EQ2  
15  
17  
I, CMOS  
I, CMOS  
Sets the receiver equalizer gain for Channel 2. 3-state input with integrated pull-up and pull-  
down resistors.  
EQ2 = Low = 3 dB  
EQ2 = Mid = 6 dB  
EQ2 = High = 9 dB  
Copyright © 2016–2019, Texas Instruments Incorporated  
3
TUSB522P  
ZHCSFL6D JULY 2016REVISED MAY 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Sets the output de-emphasis for Channel 2. 3-state input with integrated pull-up and pull-  
down resistors.  
DE2 = Low = 0 dB  
DE2 = Mid = -3.5 dB  
DE2 = High = -6.2 dB  
Note: When OS = Low  
DE2  
3
I, CMOS  
Sets the output swing (differential voltage amplitude) for Channel 2. 2-state input with an  
integrated pull down resistor.  
OS2 = Low = 0.9 mV  
OS2 = High = 1.1 mV  
OS2  
4
5
I, CMOS  
I, CMOS  
Enable. The device has a 660-kΩ pulldown resistor. Device is active when EN_RXD = High.  
Drive actively high or install a pullup resistor (recommend 4.7 KΩ) for normal operation. Does  
reset state machine.  
EN_RXD  
RSV  
VCC  
14  
I, CMOS  
P
Reserved. Can be left as No-connect.  
1, 13  
Positive Power Supply. Power Supply is 3.3 V.  
Ground. PAD must be connected to Ground. Pins 10, 21 can be connected to Ground or left  
unconnected.  
GND  
NC  
10, 21, PAD  
6, 7, 18, 24  
G
No Connection. These pins can be tied to any desired voltages including connecting them to  
GND.  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
–0.5  
MAX  
4
UNIT  
V
Supply Voltage Range(2)  
VCC  
Differential I/O  
CMOS Inputs  
1.5  
4
V
Voltage Range at any input or output terminal  
V
Junction temperature, TJ  
Storage temperature, Tstg  
105  
150  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the GND terminals.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
3.6  
UNIT  
V
Main power supply  
3
3.3  
VCC  
Supply Ramp Requirement  
Supply Noise on VCC Terminals  
100  
100  
70  
ms  
mV  
°C  
V(PSN)  
TA  
TUSB522P  
TUSB522PI  
0
–40  
75  
Operating free-air temperature  
AC coupling capacitor  
85  
°C  
C(AC)  
100  
200  
nF  
4
Copyright © 2016–2019, Texas Instruments Incorporated  
TUSB522P  
www.ti.com.cn  
ZHCSFL6D JULY 2016REVISED MAY 2019  
6.4 Thermal Information  
TUSB522P  
THERMAL METRIC(1)  
RGE (VQFN)  
24 PINS  
51.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
55.9  
28.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.0  
ψJB  
28.3  
RθJC(bot)  
9.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics, Power Supply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Link in U0 with GEN1 data transmission.  
RSV, EQ cntrl pins = NC, EN_RXD = VCC  
k28.5 pattern at 5 Gbps,  
,
ICC(ACTIVE)  
Average active current  
98  
mA  
VID = 1000 mVpp, OS = 900 mV and DE =  
3.5 dB  
ICC(U2U3)  
Average current in U2/U3  
Link in U2 or U3  
1.2  
265  
60  
mA  
µA  
µA  
ICC(NC)  
Average current disconnect mode  
Average shutdown current  
Link in Disconnect mode  
EN_RXD = L  
ICC(SHUTDOWN)  
6.6 Electrical Characteristics, DC  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
3-State CMOS Inputs(EQ1/2, DE1/2)  
VIH  
VIM  
VIL  
VF  
High-level input voltage  
Mid-level input voltage  
Low-level input voltage  
Floating voltage  
VCC x 0.8  
V
V
VCC / 2.  
VCC x 0.2  
V
VIN = High impedance  
0.36 x VCC  
410  
V
RPU  
RPD  
IIH  
Internal pull-up resistance  
Internal pull-down resistance  
High-level input current  
Low-level input current  
kΩ  
kΩ  
µA  
µA  
240  
VIN = 3.6 V  
26  
IIL  
VIN = GND, VCC = 3.6.V  
–26  
2-State CMOS Input (OS1/2, EN_RXD)  
VIH  
VIL  
RPD  
IIH  
High-level input voltage  
Low-level input voltage  
Internal pull-down resistance  
Low-level input current  
Low-level input current  
VCC x 0.7  
V
VCC x 0.3  
25  
V
660  
kΩ  
µA  
µA  
VIN = 3.6 V  
IIL  
VIN = GND, VCC = 3.6.V  
–10  
Copyright © 2016–2019, Texas Instruments Incorporated  
5
TUSB522P  
ZHCSFL6D JULY 2016REVISED MAY 2019  
www.ti.com.cn  
6.7 Electrical Characteristics, AC  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Differential Receiver (RXP, RXN)  
AC-coupled differential peak-to-peak  
signal measured post CTLE through a  
reference channel  
Input differential voltage swing.  
100  
1200  
mVpp  
V(RX-DIFF-PP)  
V(RX-DC-CM)  
R(RX-DIFF-DC)  
R(RX-CM-DC)  
Common-mode voltage bias in the  
receiver (DC)  
0.7  
V
Ω
Ω
Differential input impedance (DC)  
72  
18  
120  
30  
Present after a GEN1 device is  
detected on TXP/TXN  
Receiver DC Common Mode  
impedance  
Present when no GEN1 device is  
detected on TXP/TXN. Measured over  
the range of 0-500 mV with respect to  
GND.  
Z(RX-HIGH-IMP-DC-POS)  
25  
kΩ  
Common-mode input impedance with  
termination disabled (DC)  
Input Differential peak-to-peak Signal  
Detect Assert Level  
V(RX-SIGNAL-DET-DIFF-PP)  
V(RX-IDLE-DET-DIFF-PP)  
85  
85  
mV  
mV  
At 5 Gbps, no input channel loss clock  
pattern  
Input Differential peak-to-peak Signal  
Detect De-assert Level  
Low Frequency Periodic Signaling  
(LFPS) Detect Threshold  
V(RX-LFPS-DET-DIFF-PP)  
V(RX-CM-AC-P)  
V(detect)  
Below the minimum is squelched.  
Measured at package pin  
100  
300  
150  
600  
0.99  
mV  
mV  
mV  
Peak RX AC common mode voltage  
Voltage change to allow receiver detect  
Positive voltage to sense receiver  
termination  
C(RX-PARASITIC)  
Voltage change to allow receiver detect At 2.5 GHz  
0.17  
0.63  
–19  
–14  
–13  
pF  
dB  
dB  
dB  
50 MHz – 1.25 GHz at 90 Ω  
RL(RX-DIFF)  
RL(RX-CM)  
Differential Return Loss  
2.5 GHz at 90 Ω  
Common Mode Return Loss  
50 MHz – 1.25 GHz at 90 Ω  
Differential Transmitter (TXP, TXN)  
OS Low, 0dB DE  
OS High, 0dB DE  
OS Low, High  
DE = Low  
0.8  
0.8  
0.9  
1.1  
Vpp  
Vpp  
Vpp  
dB  
Transmitter differential voltage swing  
(transition-bit)  
V(TX-DIFF-PP)  
1.2  
1.2  
V(TX-DIFF-PP-LFPS)  
LFPS differential voltage swing  
0
–3.5  
–6.2  
Transmitter differential voltage De-  
Emphasis ratio  
V(TX-DE-RATIO)  
DE = Floating  
DE = High  
dB  
dB  
Amount of voltage change allowed  
during Receiver Detection  
V(TX-RCV-DETECT)  
600  
600  
mV  
mV  
Transmitter idle common-mode voltage  
change while in U2/U3 and not actively  
transmitting LFPS  
V(TX-CM-IDLE-DELTA)  
–600  
Common-mode voltage bias in the  
transmitter (DC)  
V(TX-DC-CM)  
0.7  
V
mVpp  
mV  
Max mismatch from Txp + Txn for both  
time and amplitude  
V(TX-CM-AC-PP-ACTIVE)  
V(TX-IDLE-DIFF-AC-PP)  
V(TX-IDLE-DIFF-DC)  
Tx AC Common-mode voltage active  
100  
10  
AC Electrical idle differential peak-to-  
peak output voltage  
At package pins  
0
0
DC Electrical idle differential output  
voltage  
At package pins after low pass filter to  
remove AC component  
10  
mV  
V(TX-CM-DC-ACTIVE-IDLE-  
Absolute DC common mode voltage  
between U1 and U0  
At package pin  
At 2.5 GHz  
200  
mV  
DELTA)  
C(TX)  
TX input capacitance to GND  
1.25  
120  
pF  
R(TX-DIFF)  
Differential impedance of the driver  
72  
18  
Ω
Common-mode impedance of the  
driver  
Measured with respect to AC ground  
over 0-500 mV  
R(TX-CM)  
30  
Ω
I(TX-SHORT)  
TX short circuit current  
TX± shorted to GND  
Package Pins  
60  
mA  
F
C(TX-PARASITIC)  
TX input capacitance for return loss  
0.63  
12  
8
1.02  
50 MHz – 1.25 GHz at 90 Ω  
1.25 – 2.5 GHz at 90 Ω  
dB  
dB  
RL(RX-DIFF)  
Differential Return Loss  
6
Copyright © 2016–2019, Texas Instruments Incorporated  
TUSB522P  
www.ti.com.cn  
ZHCSFL6D JULY 2016REVISED MAY 2019  
Electrical Characteristics, AC (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
13  
MAX  
UNIT  
dB  
50 MHz – 1.25 GHz at 90 Ω  
RL(RX-CM)  
Common Mode Return Loss  
1.25 –2.5 GHz  
11  
dB  
AC Characteristic  
Differential Cross Talk between TX and  
RX signal Pairs  
Xtalk  
At 2.5 GHz  
–40  
dB  
mVpp  
V
AC Common-mode voltage swing in  
active mode  
V(CM-TX-AC)  
Within U0 and within LFPS  
Tested with a high-pass filter  
100  
10  
Differential voltage swing during  
electrical idle  
V(TX-IDLE-DIFF -AC-PP)  
0
f = 50 MHz - 1.25 GHz  
1.25 –2.5 Ghz  
12  
8
dB  
dB  
dB  
dB  
RL(TX-DIFF)  
Differential Return Loss  
f = 50 MHz - 1.25 GHz  
1.25 –2.5 GHz  
16  
13  
RL(TX-CM)  
Common Mode Return Loss  
Total Jitter  
Minimum input and output trace at 2.5  
GHz, VCC = 3.3 V  
tJ  
15  
ps  
Absolute delta of DC CM voltage during  
active and idle states  
V(TX-CM-ΔU1-U0)  
V(TX-IDLE-DIFF-DC)  
100  
12  
mV  
mV  
DC Electrical idle differential output  
voltage  
Voltage must be low pass filtered to  
remove any AC component  
0
Copyright © 2016–2019, Texas Instruments Incorporated  
7
TUSB522P  
ZHCSFL6D JULY 2016REVISED MAY 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TUSB522P is designed to overcome channel loss due to inter-symbol interference and crosstalk when 5  
Gbps USB3.1 GEN1 signals travel across a PCB or cable. The dual channel architecture is a one-chip, low-  
power solution, extending the possible channel length for transmit and receive data paths in an application. For a  
Host application, this enables the system to pass both transmitter compliance and receiver jitter tolerance tests.  
The re-driver recovers incoming data by applying equalization that compensates for channel loss, and drives out  
signals with a high differential voltage. Each channel has a receiver equalizer with selectable gain settings. The  
equalization should be set based on the amount of insertion loss in channel 1 or 2 before the TUSB522P  
receivers. Likewise, the output drivers support configuration of De-Emphasis. Independent equalization and de-  
emphasis control for each channel can be set using EQ1/2 and DE1/2 pins.  
The TUSB522P advanced state machine makes it transparent to hosts and devices. After power up, the  
TUSB522P periodically performs receiver detection on the TX pairs. If it detects a USB3.1 GEN1 receiver, the  
RX termination is enabled, and the TUSB522P is ready to re-drive.  
The device ultra-low-power architecture operates at a 3.3-V power supply and achieves Enhanced performance.  
The automatic LFPS De-Emphasis control further enables the system to be USB3.1 compliant.  
7.2 Functional Block Diagram  
EQ1  
DE1  
OS1  
RX1+  
TX1+  
Receiver/  
Equalizer  
CHANNEL 1  
Driver  
RX11-  
TX1-  
th  
VCC  
GND  
4
Generation  
State Machine  
LFPS  
Controller  
TX2-  
RX2-  
Receiver/  
Equalizer  
Driver  
CHANNEL 2  
TX2+  
RX2+  
OS2  
DE2  
EQ2  
8
Copyright © 2016–2019, Texas Instruments Incorporated  
TUSB522P  
www.ti.com.cn  
ZHCSFL6D JULY 2016REVISED MAY 2019  
7.3 Feature Description  
7.3.1 Receiver Equalization  
The purpose of receiver equalization is to compensate for channel insertion loss and inter-symbol interference in  
the system before the input of the TUSB522P. The receiver overcomes these losses by attenuating the low  
frequency components of the signals with respect to the high frequency components. The proper gain setting  
should be selected to match the channel insertion loss before the input of the TUSB522P receivers. The gain  
setting may differ for channel 1 and channel 2.  
7.3.2 De-Emphasis Control and Output Swing  
The differential driver output provides selectable de-emphasis and output swing control in order to achieve  
USB3.1 compliance. The TUSB522P offers a unique way to adjust output de-emphasis and transmitter swing  
based on the OS1/2 and DE1/2 pins. The level of de-emphasis required in the system depends on the channel  
length after the output of the re-driver. The output swing and de-emphasis levels may differ for channel 1 and  
channel 2.  
Figure 1. Transmitter Differential Voltage, OS = Floating  
7.3.3 Automatic LFPS Detection  
The TUSB522P features an intelligent low frequency periodic signaling (LFPS) controller. The controller senses  
the low frequency signals and automatically disables the driver de-emphasis, for full USB3.1 compliance.  
Copyright © 2016–2019, Texas Instruments Incorporated  
9
TUSB522P  
ZHCSFL6D JULY 2016REVISED MAY 2019  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Device Configuration  
Table 1. Control Pin Settings (Typical Values)  
PIN  
DESCRIPTION  
LOGIC STATE  
Low  
GAIN  
3 dB  
6 dB  
9 dB  
EQ1/EQ2  
Equalization Amount  
Floating  
High  
OUTPUT DIFFERENTIAL VOLTAGE FOR  
THE TRANSISTION BIT  
PIN  
DESCRIPTION  
LOGIC STATE  
LOW  
HIGH  
0.9 Vpp  
1.1 Vpp  
OS1/OS2  
Output Swing Amplitude  
DE-EMPHASIS RATIO  
PIN  
DESCRIPTION  
LOGIC STATE  
FOR OS = LOW  
0 dB  
FOR OS = HIGH  
0 dB  
Low  
Floating  
High  
DE1/DE2  
De-Emphasis Amount  
–3.5 dB  
–3.5 dB  
–6.2 dB  
–6.2 dB  
7.4.2 Power Modes  
The TUSB522P has 3 primary power modes:  
7.4.2.1 U0 Mode (Active Power Mode)  
During active power mode, U0, the device is transmitting USB SS data or USB LFPS signaling. The U0 mode is  
the highest power state of the TUSB522P. Anytime super-speed traffic is being received, the TUSB522P remains  
in this mode.  
7.4.2.2 U2/U3 (Low Power Mode)  
While in this mode, the TUSB522P periodically performs far-end receiver detection.  
7.4.2.3 Disconnect Mode - RX Detect  
In this state, the TUSB522P periodically checks for far-end receiver termination on both TX. Upon detection of  
the far-end receiver’s termination on both ports, the TUSB522P will transition to U0 mode.  
7.4.2.4 Shutdown Mode  
Shutdown mode is entered when the EN_RXD pin is driven low. This is lowest power setting for the device.  
10  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
TUSB522P  
www.ti.com.cn  
ZHCSFL6D JULY 2016REVISED MAY 2019  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TUSB522P is a dual-channel single-lane re-driver and signal conditioner designed to compensate for ISI  
jitter caused by attenuation through passive mediums such as traces or cables. The TUSB522P has two  
independent channels to allow optimization in both upstream and downstream directions through three EQ and  
six De-Emphasis settings.  
8.2 Typical Application  
2
DN  
DP  
DN  
DP  
3
0.1 mF  
0.1 mF  
0.1 mF  
0.1 mF  
23  
22  
8
9
8
9
TX1N  
TX1P  
SSTXN  
SSTXP  
RX1N  
RX1P  
TXN  
TXP  
USB Host  
11  
12  
20  
19  
5
6
0.1 mF  
0.1 mF  
TX2N  
TX2P  
RXN  
RXP  
SSRXN  
SSRXP  
RX2N  
RX2P  
3.3 V  
3.3 V  
TUSB522P  
1
13  
V
CC  
47 kW  
7
24  
6
3.3 V  
15  
16  
2
NC  
OS1  
DE1  
NC  
NC  
NC  
NC  
USB3.1 Type-A  
Receptacle  
0.1 mF  
10 mF  
0.1 mF  
18  
14  
EQ1  
OS2  
4
NC  
3
RSV  
GND  
DE2  
EQ2  
Thermal Pad  
17  
5
10  
21  
EN_RXD  
47 kW  
Figure 2. Embedded Host Application  
Copyright © 2016–2019, Texas Instruments Incorporated  
11  
TUSB522P  
ZHCSFL6D JULY 2016REVISED MAY 2019  
www.ti.com.cn  
Typical Application (continued)  
8.2.1 Design Requirements  
For this design example, use the parameters shown in Table 2.  
Table 2. Design Parameters  
PARAMETERS  
VCC Supply (3 V – 3.6 V)  
VALUE  
3.3 V  
AC Coupling Capacitor (75nF to 265nF)  
Host to TUSB522P FR4 Length (Inches)  
Host to TUSB522P FR4 Trace Width (mils)  
TUSB522P to Connector FR4 Length (Inches)  
TUSB522P to Connector FR4 Trace Width (mils)  
EQ1 (RX1P/RX1N)  
100 nF  
20  
4
6
4
9 dB (EQ1 = High)  
-6.2 dB (OS2 = Low, DE2 = High)  
6 dB (EQ2 = Floating)  
-3.5 dB (OS1 = Low, DE1 = Floating)  
900 mV (OS1 = Low)  
900 mV (OS2 = Low)  
De-Emphasis 2 (TX2P/TX2N)  
EQ2 (RX2P/RX2N)  
De-Emphasis 1 (TX1P/TX1N)  
Output Swing 1 (OS1)  
Output Swing 2 (OS2)  
8.2.2 Detailed Design Procedure  
The TUSB522P differential receivers and transmitters have internal BIAS and termination. Due to this, the  
TUSB522P must be connected to the USB Host and receptacle through ac-coupling capacitors. In this example,  
as depicted in Table 1, 100 nF capacitors are placed on TX2P, TX2N, RX1P, RX1N, TX1P and TX1N. No ac-  
coupling capacitors are placed on the RX2P and RX2N pins because it is assumed the device downstream of the  
TUSB522P will have ac-coupling capacitors on its transmitter as defined by the USB 3.1 specification.  
12  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
TUSB522P  
www.ti.com.cn  
ZHCSFL6D JULY 2016REVISED MAY 2019  
8.2.3 Application Curves  
BERT > 24"6mil > char-board > RX2-to-TX2 > char-board > Scope  
1ft SMP-SMP cable  
1ft SMP-SMP cable  
1ft SMP-SMP cable  
TUSB522  
RX2 > TX2  
Input PCB trace  
MP1800 BERT  
Output PCB trace  
1.0" FR-4  
DCAX  
35GHz BW  
PTB  
5Gbps, 680mVpp  
PRBS7  
25" FR-4  
-10.5dB Loss  
-0.8dB Loss  
EQ = H, OS = L, DE = L  
9 Power Supply Recommendations  
The TUSB522P is designed to operate with a 3.3-V power supply. Levels above those listed in the Absolute  
Ratings table should not be used. If using a higher voltage system power supply, a voltage regulator can be used  
to step down to 3.3 V. Decoupling capacitors should be used to reduce noise and improve power supply integrity.  
A 0.1-µF capacitor should be used on each power pin.  
Copyright © 2016–2019, Texas Instruments Incorporated  
13  
TUSB522P  
ZHCSFL6D JULY 2016REVISED MAY 2019  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
RXP/N and TXP/N pairs should be routed with controlled 90-Ω differential impedance (±15%).  
Keep away from other high speed signals.  
Intra-pair routing should be kept to within 2mils.  
Length matching should be near the location of mismatch.  
Each pair should be separated at least by 3 times the signal trace width.  
The use of bends in differential traces should be kept to a minimum. When bends are used, the number of left  
and right bends should be as equal as possible and the angle of the bend should be 135 degrees. This will  
minimize any length mismatch causes by the bends and therefore minimize the impact bends have on EMI.  
Route all differential pairs on the same of layer.  
The number of VIAS should be kept to a minimum. It is recommended to keep the VIAS count to 2 or less.  
Keep traces on layers adjacent to ground plane.  
Do NOT route differential pairs over any plane split.  
Adding Test points will cause impedance discontinuity; and will therefore, negatively impact signal  
performance. If test points are used, they should be placed in series and symmetrically. They must not be  
placed in a manner that causes a stub on the differential pair.  
The 100-nF capacitors on the TXP and SSTXN nets must be placed close to the USB connector (Type A,  
Type B, and so forth).  
The ESD and EMI protection devices (if used) must also be placed as close as possible to the USB  
connector.  
Place voltage regulators as far away as possible from the differential pairs.  
In order to minimize crosstalk, TI recommends keeping high-speed signals away from each other. Each pair  
must be separated by at least 5 times the signal trace width. Separating with ground also helps minimize  
crosstalk.  
10.2 Layout Example  
Figure 3. Example Layout  
14  
版权 © 2016–2019, Texas Instruments Incorporated  
TUSB522P  
www.ti.com.cn  
ZHCSFL6D JULY 2016REVISED MAY 2019  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
11.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016–2019, Texas Instruments Incorporated  
15  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TUSB522PIRGER  
TUSB522PIRGET  
TUSB522PRGER  
TUSB522PRGET  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
RGE  
24  
24  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
0 to 70  
TUSB  
522P  
ACTIVE  
ACTIVE  
ACTIVE  
RGE  
NIPDAU  
NIPDAU  
NIPDAU  
TUSB  
522P  
RGE  
TUSB  
522P  
RGE  
0 to 70  
TUSB  
522P  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TUSB522PIRGER  
TUSB522PIRGET  
TUSB522PRGER  
TUSB522PRGET  
VQFN  
VQFN  
VQFN  
VQFN  
RGE  
RGE  
RGE  
RGE  
24  
24  
24  
24  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
1.15  
1.15  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TUSB522PIRGER  
TUSB522PIRGET  
TUSB522PRGER  
TUSB522PRGET  
VQFN  
VQFN  
VQFN  
VQFN  
RGE  
RGE  
RGE  
RGE  
24  
24  
24  
24  
3000  
250  
356.0  
210.0  
356.0  
210.0  
356.0  
185.0  
356.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGE 24  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4204104/H  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGE0024C  
PLASTIC QUAD FLATPACK- NO LEAD  
4.1  
3.9  
A
B
4.1  
3.9  
PIN 1 INDEX AREA  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 2.5  
2.1±0.1  
(0.2) TYP  
12  
7
20X 0.5  
6
13  
SYMM  
25  
2X  
2.5  
1
18  
0.30  
PIN 1 ID  
(OPTIONAL)  
24X  
0.18  
0.1  
24  
19  
0.50  
C A B  
C
SYMM  
0.05  
24X  
0.30  
4224376 / C 07/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGE0024C  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.8)  
2.1)  
(
24  
19  
24X (0.6)  
24X (0.24)  
1
18  
20X (0.5)  
25  
SYMM  
(3.8)  
2X  
(0.8)  
(Ø0.2) VIA  
TYP  
6
13  
(R0.05)  
7
12  
2X(0.8)  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.07 MIN  
0.07 MAX  
ALL AROUND  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224376 / C 06/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGE0024C  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.8)  
4X ( 0.94)  
24  
19  
24X (0.6)  
24X (0.24)  
1
18  
20X (0.5)  
SYMM  
(3.8)  
(0.57)  
TYP  
6
13  
25  
(R0.05) TYP  
METAL  
TYP  
7
12  
(0.57)  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
80% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4224376 / C 06/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TUSB542

5Gbps USB 3.1 1 代 Type-C 2:1 多路复用器和线性转接驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB542RWQR

5Gbps USB 3.1 1 代 Type-C 2:1 多路复用器和线性转接驱动器 | RWQ | 18 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB544

USB Type-C™ 8.1 Gbps 多协议线性转接驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB544IRNQR

USB Type-C™ 8.1 Gbps 多协议线性转接驱动器 | RNQ | 40 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB544IRNQT

USB Type-C™ 8.1 Gbps 多协议线性转接驱动器 | RNQ | 40 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB544RNQR

USB Type-C™ 8.1 Gbps 多协议线性转接驱动器 | RNQ | 40 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB544RNQT

USB Type-C™ 8.1 Gbps 多协议线性转接驱动器 | RNQ | 40 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB546-DCI

USB Type-C DP 交替模式线性转接驱动器交叉点开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB546-DCIRNQR

USB Type-C DP 交替模式线性转接驱动器交叉点开关 | RNQ | 40 | 0 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB546-DCIRNQT

USB Type-C DP 交替模式线性转接驱动器交叉点开关 | RNQ | 40 | 0 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB546A-DCI

USB Type-C™ 8.1Gbps 多协议拉电流侧线性转接驱动器交叉点开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB546A-DCIRNQR

USB Type-C™ 8.1Gbps 多协议拉电流侧线性转接驱动器交叉点开关 | RNQ | 40 | 0 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI