UCC21750-Q1 [TI]

适用于 IGBT/SiC MOSFET 且具有 DESAT 和内部钳位的汽车类 5.7kVrms、±10A 单通道隔离式栅极驱动器;
UCC21750-Q1
型号: UCC21750-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 IGBT/SiC MOSFET 且具有 DESAT 和内部钳位的汽车类 5.7kVrms、±10A 单通道隔离式栅极驱动器

栅极驱动 双极性晶体管 驱动器
文件: 总53页 (文件大小:2657K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
UCC21750-Q1 适用SiC/IGBT 并具有主动保护、隔离式模拟感应和CMTI 的  
10A 拉电流/灌电流增强型隔离式单通道栅极驱动器  
输入侧通过 SiO2 电容隔离技术与输出侧相隔离支持  
高达 1.5kVRMS 的工作电压、12.8kVPK 的浪涌抗扰  
1 特性  
5.7kV RMS 单通道隔离式栅极驱动器  
• 符合面向汽车应用AEC-Q100 标准  
隔离层寿命超过 40 并提供较低的器件间偏  
共模噪声抗扰(CMTI) 150V/ns。  
– 器件温度等0-40°C +150°C 环境工作温  
度范围  
UCC21750-Q1 包括先进的保护特性如快速过流和短  
路检测、分流电流检测支持、故障报告、有源米勒钳  
位、输入和输出侧电源 UVLO用于优化 SiC IGBT  
开关行为和稳健性。可以利用隔离式模拟PWM 传  
感器更轻松地感测温度或电压从而进一步提高驱动器  
的多功能性并简化系统设计工作量、尺寸和成本。  
– 器HBM ESD 分类等3A  
– 器CDM ESD 分类等C6  
• 高2121Vpk SiC MOSFET IGBT  
33V 最大输出驱动电(VDD VEE)  
±10A 驱动强度和分离输出  
器件信息  
封装(1)  
150V/ns CMTI  
• 具200ns 快速响应时间DESAT 保护  
4A 内部有源米勒钳位  
封装尺寸标称值)  
器件型号  
UCC21750-Q1  
DW SOIC-16  
10.3mm × 7.5mm  
• 发生故障时400mA 软关断  
• 具PWM 输出的隔离式模拟传感器  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 采NTCPTC 或热敏二极管的温度感应  
– 高电压直流链路或相电压  
器件引脚配置  
• 过流警FLT 和通RST/EN 重置  
• 针RST/EN 的快速启用和禁用响应  
• 抑制输入引脚上<40ns 噪声瞬态和脉冲  
RDY 12V VDD UVLO具有电源正常指示功  
)  
• 具有高5V 过冲/欠冲瞬态电压抗扰度的输入/输出  
130 ns最大传播延迟30 ns最大脉冲/器  
件间偏移  
APWM  
VCC  
RST/EN  
FLT  
AIN  
DESAT  
COM  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
OUTH  
VDD  
RDY  
INÅ  
SOIC-16 DW 封装爬电距离和间> 8mm  
• 工作结温范围-40°C +150°C  
• 安全相关认证:  
OUTL  
CLMPI  
VEE  
IN+  
GND  
– 符DIN EN IEC 60747-17 (VDE 0884-17) 标  
准的增强型绝缘  
UL 1577 组件认证计划  
Not to scale  
2 应用  
• 适用EV 的牵引逆变器  
• 车载充电器和充电桩  
• 用HEV/EV 的直流/直流转换器  
3 说明  
UCC21750-Q1 是一款电隔离单通道栅极驱动器设计  
用于直流工作电压高达 2121V SiC MOSFET 和  
IGBT具有先进的保护功能、出色的动态性能和稳健  
性。UCC21750-Q1 具有高达 ±10A 的峰值拉电流和灌  
电流。  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDH9  
 
 
 
 
 
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
Table of Contents  
7.5 Desaturation (DESAT) Protection............................. 21  
8 Detailed Description......................................................23  
8.1 Overview...................................................................23  
8.2 Functional Block Diagram.........................................24  
8.3 Feature Description...................................................24  
8.4 Device Functional Modes..........................................30  
9 Applications and Implementation................................31  
9.1 Application Information............................................. 31  
9.2 Typical Application.................................................... 31  
10 Power Supply Recommendations..............................43  
11 Layout...........................................................................44  
11.1 Layout Guidelines................................................... 44  
11.2 Layout Example...................................................... 45  
12 Device and Documentation Support..........................46  
12.1 Device Support....................................................... 46  
12.2 Documentation Support.......................................... 46  
12.3 接收文档更新通知................................................... 46  
12.4 支持资源..................................................................46  
12.5 Trademarks.............................................................46  
12.6 静电放电警告.......................................................... 46  
12.7 术语表..................................................................... 46  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Power Ratings.............................................................5  
6.6 Insulation Specifications............................................. 5  
6.7 Safety Limiting Values.................................................6  
6.8 Electrical Characteristics.............................................6  
6.9 Safety-Related Certifications...................................... 8  
6.10 Switching Characteristics..........................................9  
6.11 Insulation Characteristics Curves............................10  
6.12 Typical Characteristics............................................ 11  
7 Parameter Measurement Information..........................16  
7.1 Propagation Delay.................................................... 16  
7.2 Input Deglitch Filter...................................................17  
7.3 Active Miller Clamp................................................... 18  
7.4 Undervoltage Lockout (UVLO)..................................19  
Information.................................................................... 46  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (March 2020) to Revision C (January 2023)  
Page  
• 向特性中添加AEC-Q100 子项目符号............................................................................................................. 1  
• 向特性中添加了安全相关认证.............................................................................................................................1  
Added what to do with unused pins to pin functions table..................................................................................3  
Changed recommended value of decoupling capacitors. ..................................................................................3  
Added recommended decoupling capacitor layout placement. ......................................................................... 3  
Changed test conditions per DIN EN IEC 60747-17 (VDE 0884-17) .................................................................5  
Changed Ichg lower limit to 430uA.....................................................................................................................6  
Changed VAin lower limit to 0.6V........................................................................................................................6  
Changed direction of ICLMPI in VCLP-CLMPI test condition.....................................................................................6  
Added test condition for soft turn-off current.......................................................................................................6  
Deleted short circuit clamping max condition..................................................................................................... 6  
Changed VDE and UL to certified.......................................................................................................................8  
Changed DESAT figure.....................................................................................................................................28  
Changed DESAT soft turn-off figure................................................................................................................. 28  
Added function state showing gate driver turning on. Changed RDY condition when VCC is PD. ................. 30  
Changes from Revision A (March 2020) to Revision B (March 2020)  
Page  
Deleted test voltage, 9600V, from value column.................................................................................................5  
Changes from Revision * (September 2019) to Revision A (March 2020)  
Page  
• 将销售状态从“预告信息”更改为“量产数据”。.............................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
APWM  
16  
AIN  
DESAT  
COM  
1
2
3
4
5
6
7
8
15  
14  
13  
12  
11  
10  
9
VCC  
RST/EN  
FLT  
OUTH  
VDD  
RDY  
INÅ  
OUTL  
CLMPI  
VEE  
IN+  
GND  
Not to scale  
5-1. UCC21750-Q1 DW SOIC (16) Top View  
5-1. Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
Isolated analog sensing input, parallel a small capacitor to COM for better noise immunity. Tie to COM if  
unused.  
AIN  
1
I
DESAT  
COM  
2
3
4
I
Desaturation current protection input. Tie to COM if unused.  
Common ground reference, connecting to emitter pin for IGBT and source pin for SiC-MOSFET.  
Gate driver output pull up.  
P
O
OUTH  
Positive supply rail for gate drive voltage. Bypass with a >10-μF capacitor to COM to support specified gate  
driver source peak current capability. Place decoupling capacitor close to the pin.  
VDD  
5
6
7
P
O
I
OUTL  
CLMPI  
Gate driver output pull down.  
Internal Active miller clamp, connecting this pin directly to the gate of the power transistor. Leave floating or  
tie to VEE if unused.  
Negative supply rail for gate drive voltage. Bypass with a >10-μF capacitor to COM to support specified  
gate driver sink peak current capability. Place decoupling capacitor close to the pin.  
VEE  
8
P
GND  
IN+  
9
P
I
Input power supply and logic ground reference.  
10  
11  
Non-inverting gate driver control input. Tie to VCC if unused.  
Inverting gate driver control input. Tie to GND if unused.  
I
IN–  
Power good for VCC-GND and VDD-COM. RDY is open drain configuration and can be paralleled with other  
RDY signals.  
RDY  
FLT  
12  
13  
O
O
Active low fault alarm output upon over current or short circuit. FLT is in open drain configuration and can be  
paralleled with other faults.  
The RST/EN serves two purposes:  
1) Enable / shutdown of the output side. The FET is turned off by a regular turn-off, if terminal EN is set to  
low;  
RST/EN  
14  
I
2) Resets the DESAT condition signaled on FLT pin if terminal RST/EN is set to low for more than 1000 ns.  
A reset of signal FLT is asserted at the rising edge of terminal RST/EN.  
For automatic RESET function, this pin only serves as an EN pin. Enable / shutdown of the output side. The  
FET is turned off by a regular turn-off, if terminal EN is set to low.  
Input power supply from 3 V to 5.5 V. Bypass with a >1-μF capacitor to GND. Place decoupling capacitor  
close to the pin.  
VCC  
15  
16  
P
APWM  
O
Isolated Analog Sensing PWM output. Leave floating if unused.  
(1) P = Power, G = Ground, I = Input, O = Output  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: UCC21750-Q1  
 
 
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
MIN  
0.3  
MAX  
6
UNIT  
V
VCC  
VDD  
VEE  
VMAX  
VCC GND  
VDD COM  
VEE COM  
VDD VEE  
36  
V
0.3  
0.3  
V
17.5  
36  
V
0.3  
DC  
VCC  
VCC+5.0  
VDD+0.3  
5
V
GND0.3  
GND5.0  
COM0.3  
0.3  
IN+, IN, RST/EN  
Transient, less than 100 ns(2)  
V
Reference to COM  
Reference to COM  
DESAT  
AIN  
V
V
DC  
VDD  
VDD+5.0  
VCC  
20  
V
VEE0.3  
VEE5.0  
GND0.3  
OUTH, OUTL , CLMPI  
Transient, less than 100 ns(2)  
V
RDY, FLT, APWM  
V
IFLT, IRDY  
IAPWM  
TJ  
FLT, and RDY pin input current  
APWM pin output current  
mA  
mA  
°C  
°C  
20  
Junction temperature range  
Storage temperature range  
150  
40  
65  
Tstg  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and  
this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Values are verified by characterization on bench.  
6.2 ESD Ratings  
VALUE  
±4000  
±1500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
PARAMETER  
MIN  
3.0  
13  
MAX  
5.5  
UNIT  
VCC  
VDD  
VMAX  
V
V
V
VCCGND  
VDDCOM  
VDDVEE  
33  
33  
0.7×VCC  
0
High level input voltage  
Low level input voltage  
VCC  
0.3×VCC  
4.5  
Reference to GND  
V
IN+, IN, RST/EN  
AIN  
tRST/EN  
TA  
Reference to COM  
0.6  
V
Minimum pulse width that reset the fault  
Ambient temperature  
800  
ns  
°C  
°C  
125  
150  
40  
40  
TJ  
Junction temperature  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
 
 
 
 
 
 
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
6.4 Thermal Information  
UCC21750-Q1  
THERMAL METRIC(1)  
DW (SOIC)  
16 PINS  
68.3  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
27.5  
32.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
14.1  
32.3  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
Value  
UNIT  
PD  
Maximum power dissipation (both sides)  
985  
mW  
Maximum power dissipation by  
transmitter side  
PD1  
20  
mW  
mW  
VCC = 5 V, VDDCOM = 20 V, COMVEE = 5 V, IN+/= 5 V,  
150 kHz, 50% Duty Cycle for a 10-nF load, Ta = 25oC  
Maximum power dissipation by receiver  
side  
PD2  
965  
6.6 Insulation Specifications  
PARAMETER  
TEST CONDITIONS  
VALUE  
UNIT  
GENERAL  
CLR  
CPG  
External clearance(1)  
External creepage(1)  
Shortest terminal-to-terminal distance through air  
> 8  
> 8  
mm  
mm  
Shortest terminal-to-terminal distance across the  
package surface  
Minimum internal gap (Internal clearance) of the  
double insulation (2 × 0.0085 mm)  
DTI  
CTI  
Distance through the insulation  
> 17  
µm  
V
Comparative tracking index  
Material group  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 606641  
> 600  
I
I-IV  
I-IV  
I-III  
Rated mains voltage 300 VRMS  
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
Overvoltage Category per IEC 606641  
DIN EN IEC 60747-17 (VDE 0884-17)(2)  
VIORM Maximum repetitive peak isolation voltage AC voltage (bipolar)  
2121  
1500  
VPK  
AC voltage (sine wave) Time dependent dielectric  
breakdown (TDDB) test  
VRMS  
VIOWM  
Maximum isolation working voltage  
DC voltage  
2121  
8000  
VDC  
VPK  
VIMP  
Maximum impulse voltage  
Tested in air, 1.2/50-μs waveform per IEC 62368-1  
VTEST=VIOTM, t = 60 s (qualification test)  
VTEST=1.2 x VIOTM, t = 1 s (100% production test)  
Test method per IEC 62368-1, 1.2/50 µs waveform  
VIOTM  
VIOSM  
Maximum transient isolation voltage  
Maximum surge isolation voltage(3)  
8000  
VPK  
VPK  
12800  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: UCC21750-Q1  
 
 
 
 
 
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
UNIT  
6.6 Insulation Specifications (continued)  
PARAMETER  
TEST CONDITIONS  
VALUE  
Method a: After I/O safety test subgroup 2/3, Vini  
=
VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM = 2545 VPK  
tm = 10 s  
,
5  
Method a: After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s; Vpd(m) = 1.6 × VIORM = 3394  
VPK, tm = 10 s  
qpd  
Apparent charge(4)  
pC  
5  
Method b1: At routine test (100% production) and  
preconditioning (type test) Vini = VIOTM, tini = 1 s;  
Vpd(m) = 1.875 × VIORM = 3977 VPK, tm = 1 s  
5  
CIO  
RIO  
Barrier capacitance, input to output(5)  
Insulation resistance, input to output(5)  
~ 1  
pF  
VIO = 0.5 sin (2πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
1012  
1011  
109  
2
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
40/125/21  
UL 1577  
VTEST = VISO = 5700 VRMS, t = 60 s (qualification);  
VTEST = 1.2 × VISO = 6840 VRMS, t = 1 s (100%  
production)  
VISO  
Withstand isolation voltage  
5700  
VRMS  
(1) Apply creepage and clearance requirements according to the specific equipment isolation standards of an application. Care must be  
taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the  
printed circuit board (PCB) do not reduce this distance. Creepage and clearance on a PCB become equal in certain cases. Techniques  
such as inserting grooves and ribs on the PCB are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured  
by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-terminal device.  
6.7 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure  
of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat  
the die and damage the isolation barrier, potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
R
θJA = 68.3°C/W, VDD = 15 V, VEE = 5 V, TJ = 150°C,  
61  
TA = 25°C  
Safety input, output, or supply  
current  
IS  
mA  
49  
R
θJA = 68.3°C/W, VDD = 20 V, VEE = 5 V, TJ = 150°C,  
TA = 25°C  
R
θJA = 68.3°C/W, VDD = 20 V, VEE = 5 V, TJ = 150°C,  
PS  
TS  
Safety input, output, or total power  
Safety temperature  
1220  
150  
mW  
°C  
TA = 25°C  
(1) The safety-limiting constraint is the maximum junction temperature specified in the data sheet. The power dissipation and junction-to-  
air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-  
to-air thermal resistance in the Thermal Information table is that of a device installed on a high-K test board for leaded surface-mount  
packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient  
temperature plus the power times the junction-to-air thermal resistance.  
6.8 Electrical Characteristics  
VCC = 3.3 V or 5.0 V, 1-µF capacitor from VCC to GND, VDD COM = 20 V, 18 V or 15 V, COM VEE = 0 V, 5 V, 8 V or  
15 V, CL = 100 pF, 40°C < TJ < 150°C (unless otherwise noted)(1) (2)  
.
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VCC UVLO THRESHOLD AND DELAY  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
 
 
 
 
 
 
 
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
6.8 Electrical Characteristics (continued)  
VCC = 3.3 V or 5.0 V, 1-µF capacitor from VCC to GND, VDD COM = 20 V, 18 V or 15 V, COM VEE = 0 V, 5 V, 8 V or  
15 V, CL = 100 pF, 40°C < TJ < 150°C (unless otherwise noted)(1) (2)  
.
PARAMETER  
TEST CONDITIONS  
MIN  
2.55  
2.35  
TYP  
2.7  
2.5  
0.2  
10  
MAX UNIT  
VVCC_ON  
2.85  
VVCC_OFF  
VVCC_HYS  
tVCCFIL  
2.65  
V
VCCGND  
VCC UVLO Deglitch time  
tVCC+ to OUT  
tVCCto OUT  
tVCC+ to RDY  
tVCCto RDY  
VCC UVLO on delay to output high  
VCC UVLO off delay to output low  
VCC UVLO on delay to RDY high  
VCC UVLO off delay to RDY low  
28  
5
37.8  
10  
50  
15  
50  
15  
IN+ = VCC, IN= GND  
µs  
30  
5
37.8  
10  
RST/EN = VCC  
VDD UVLO THRESHOLD AND DELAY  
VVDD_ON  
10.5  
9.9  
12.0  
10.7  
0.8  
5
12.8  
11.8  
VVDD_OFF  
VVDD_HYS  
tVDDFIL  
V
VDDCOM  
VDD UVLO Deglitch time  
tVDD+ to OUT  
tVDDto OUT  
tVDD+ to RDY  
tVDDto RDY  
VDD UVLO on delay to output high  
VDD UVLO off delay to output low  
VDD UVLO on delay to RDY high  
VDD UVLO off delay to RDY low  
2
5
8
10  
15  
15  
IN+ = VCC, IN= GND  
5
µs  
10  
10  
RST/EN = FLT=High  
VCC, VDD QUIESCENT CURRENT  
OUT(H) = High, fS = 0Hz, AIN = 2 V  
OUT(L) = Low, fS = 0Hz, AIN = 2 V  
OUT(H) = High, fS = 0Hz, AIN = 2 V  
OUT(L) = Low, fS = 0Hz, AIN = 2 V  
2.5  
1.45  
3.6  
3
2
4
2.75  
5.9  
IVCCQ VCC quiescent current  
mA  
mA  
4
IVDDQ  
VDD quiescent current  
3.1  
3.7  
5.3  
LOGIC INPUTS IN+, INand RST/EN  
VINH  
VINL  
VINHYS  
IIH  
Input high threshold  
VCC = 3.3 V  
1.85  
1.52  
0.33  
90  
2.31  
V
V
Input low threshold  
VCC = 3.3 V  
0.99  
Input threshold hysteresis  
Input high level input leakage current  
Input low level input leakage  
Input pins pull down resistance  
Input pins pull up resistance  
VCC = 3.3 V  
V
VIN = VCC  
µA  
µA  
IIL  
VIN = GND  
90  
55  
RIND  
RINU  
see Detailed Description for more information  
see Detailed Description for more information  
kΩ  
55  
IN+, INand RST/EN deglitch (ON and  
OFF) filter time  
TINFIL  
fS = 50 kHz  
28  
40  
60  
ns  
ns  
TRSTFIL  
Deglitch filter time to reset /FLT  
400  
650  
800  
GATE DRIVER STAGE  
IOUT, IOUTH Peak source current  
IOUT, IOUTL  
10  
10  
A
A
CL = 0.18 µF, fS = 1 kHz  
Peak sink current  
(3)  
ROUTH  
Output pull-up resistance  
Output pull-down resistance  
High level output voltage  
Low level output voltage  
2.5  
0.3  
17.5  
60  
IOUT = 0.1 A  
Ω
Ω
ROUTL  
VOUTH  
VOUTL  
IOUT = 0.1 A  
V
IOUT = 0.2 A, VDD = 18 V  
IOUT = 0.2 A  
mV  
ACTIVE PULLDOWN  
IOUTL or IOUT = 0.1 × IOUT(L)(tpy), VDD=OPEN,  
VEE=COM  
VOUTPD  
Output active pull down on OUT, OUTL  
1.5  
1.5  
2
2.5  
2.5  
V
INTERNAL ACTIVE MILLER CLAMP  
VCLMPTH  
VCLMPI  
ICLMPI  
Miller clamp threshold voltage  
Reference to VEE  
ICLMPI = 1 A  
2.0  
V
V
A
Output low clamp voltage  
Output low clamp current  
VEE + 0.5  
4
VCLMPI = 0 V, VEE = 2.5 V  
ICLMPI = 0.2 A  
RCLMPI  
Miller clamp pull down resistance  
0.6  
Ω
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: UCC21750-Q1  
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
6.8 Electrical Characteristics (continued)  
VCC = 3.3 V or 5.0 V, 1-µF capacitor from VCC to GND, VDD COM = 20 V, 18 V or 15 V, COM VEE = 0 V, 5 V, 8 V or  
15 V, CL = 100 pF, 40°C < TJ < 150°C (unless otherwise noted)(1) (2)  
.
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
tDCLMPI  
Miller clamp ON delay time  
CL = 1.8 nF  
15  
50  
ns  
SHORT CIRCUIT CLAMPING  
VCLP-OUT(H)  
VCLP-OUT(L)  
VCLP-CLMPI  
OUT = Low, IOUT(H) = 500 mA, tCLP =1 0 us  
OUT = High, IOUT(L) = 500 mA, tCLP = 10 us  
OUT = High, ICLMPI = 20 mA, tCLP = 10 us  
0.9  
1.8  
1.0  
V
V
V
VOUTVDD, VOUTHVDD  
VOUTVDD, VOUTLVDD  
VCLMPIVDD  
DESAT PROTECTION  
ICHG  
Blanking capacitor charge current  
VDESAT = 2.0 V  
VDESAT = 6.0 V  
430  
10  
500  
15  
570  
9.8  
µA  
mA  
V
IDCHG  
Blanking capacitor discharge current  
Detection Threshold  
VDESAT  
tDESATLEB  
tDESATFIL  
tDESATOFF  
tDESATFLT  
8.5  
9.15  
200  
140  
200  
580  
Leading edge blank time  
ns  
ns  
ns  
ns  
DESAT deglitch filter  
50  
150  
400  
230  
300  
750  
DESAT propagation delay to OUT(L) 90%  
DESAT to FLT low delay  
INTERNAL SOFT TURN-OFF  
ISTO Soft turn-off current on fault conditions  
VDD-VEE=20V, VOUTL-COM=8V  
250  
400  
570  
mA  
ISOLATED TEMPERATURE SENSE AND MONITOR (AINAPWM)  
VAIN  
Analog sensing voltage range  
Internal current source  
0.6  
196  
380  
4.5  
209  
420  
V
IAIN  
VAIN = 2.5 V, -40°C < TJ< 150°C  
VAIN = 2.5 V  
200  
400  
10  
µA  
fAPWM  
BWAIN  
APWM output frequency  
AINAPWM bandwidth  
kHz  
kHz  
VAIN = 0.6 V  
VAIN = 2.5 V  
VAIN = 4.5 V  
86.5  
48.5  
7.5  
88  
89.5  
51.5  
11.5  
DAPWM  
APWM Dutycycle  
50  
%
10  
FLT AND RDY REPORTING  
tRDYHLD  
tFLTMUTE  
RODON  
VODL  
VDD UVLO RDY low minimum holding time  
0.55  
0.55  
1
1
ms  
ms  
Output mute time on fault  
Reset fault through RST/EN  
IODON = 5 mA  
Open drain output on resistance  
Open drain low output voltage  
30  
Ω
IODON = 5 mA  
0.3  
V
COMMON MODE TRANSIENT IMMUNITY  
CMTI Common-mode transient immunity  
150  
V/ns  
(1) Current are positive into and negative out of the specified terminal.  
(2) All voltages are referenced to COM unless otherwise notified.  
(3) For internal PMOS only. Refer to 8.3.2 for effective pull-up resistance.  
6.9 Safety-Related Certifications  
VDE  
UL  
Recognized under UL 1577 Component  
Certified according to DIN EN IEC 60747-17 (VDE 0884-17)  
Reinforced insulation  
Recognition Program, CSA Component Acceptance  
Notice 5A  
Maximum transient isolation voltage, 8000 VPK  
Maximum repetitive peak isolation voltage, 2121 VPK  
Maximum surge isolation voltage, 8000 VPK  
;
Single protection, 5700 VRMS  
File Number: E181974  
;
Certificate number: 40040142  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
 
 
 
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
6.10 Switching Characteristics  
VCC=5.0V, 1uF capacitor from VCC to GND, VDDCOM=20V, 18V or 15V, COMVEE = 3V, 5V or 8V, CL=100pF, –  
40°C<TJ<150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Propagation delay time High to  
Low  
tPDHL  
60  
90  
130  
Propagation delay time Low to  
High  
tPDLH  
60  
90  
130  
ns  
PWD  
tsk-pp  
tr  
30  
30  
Pulse width distortion |tPDHL tPDLH  
Part to Part skew  
|
Rising or Falling Propagation Delay  
CL = 10 nF  
Driver output rise time  
33  
27  
tf  
Driver output fall time  
CL = 10 nF  
fMAX  
Maximum switching frequency  
1
MHz  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: UCC21750-Q1  
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
6.11 Insulation Characteristics Curves  
80  
1400  
1200  
1000  
800  
600  
400  
200  
0
VDD=15V; VEE=-5V  
VDD=20V; VEE=-5V  
60  
40  
20  
0
0
25  
50  
75  
100  
125  
150  
0
20  
40  
60  
80  
100  
120  
140  
160  
Ambient Temperature (oC)  
Ambient Temperature (oC)  
Safe  
Safe  
6-1. Thermal Derating Curve for Limiting Current 6-2. Thermal Derating Curve for Limiting Power  
per VDE  
per VDE  
1.E+12  
1.E+11  
1.E+10  
1.E+09  
1.E+08  
1.E+07  
1.E+06  
1.E+05  
1.E+04  
1.E+03  
1.E+02  
1.E+01  
54 Yrs  
TDDB Line (< 1 ppm Fail Rate)  
VDE Safety Margin Zone  
1800VRMS  
2200  
200  
1200  
3200  
4200  
5200  
6200  
Applied Voltage (VRMS  
)
6-3. Reinforced Isolation Capacitor Life Time Projection  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
6.12 Typical Characteristics  
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
VDD/VEE = 18V/0V  
VDD/VEE = 20V/-5V  
VDD/VEE = 18V/0V  
VDD/VEE = 20V/-5V  
6
6
4
4
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
D016  
D017  
6-4. Output High Drive Current vs Temperature  
6-5. Output Low Driver Current vs Temperature  
6
4
VCC = 3.3V  
VCC = 5V  
VCC = 3.3V  
VCC = 5V  
5.5  
3.5  
5
4.5  
4
3
2.5  
2
3.5  
1.5  
3
1
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
D015  
D014  
IN+ = High  
IN- = Low  
IN+ = Low  
IN- = Low  
6-6. IVCCQ Supply Current vs Temperature  
6-7. IVCCQ Supply Current vs Temperature  
5
4.5  
4
6
5.5  
5
VDD/VEE = 18V/0V  
VDD/VEE = 20V/-5V  
VDD/VEE = 18V/0V  
VDD/VEE = 20V/-5V  
3.5  
3
4.5  
4
2.5  
3.5  
2
3
30  
70  
110  
150 190  
Frequency (kHz)  
230  
270  
310  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
D018  
D012  
6-8. IVCCQ Supply Current vs Input Frequency  
IN+ = High  
IN- = Low  
6-9. IVDDQ Supply Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: UCC21750-Q1  
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
6
10  
9
VDD/VEE = 18V/0V  
VDD/VEE = 20V/-5V  
VDD/VEE = 18V/0V  
VDD/VEE = 20V/-5V  
5.5  
8
5
4.5  
4
7
6
5
4
3.5  
3
3
2
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
30  
70  
110  
150  
190  
Frequency (kHz)  
230  
270  
310  
D013  
D019  
IN+ = Low  
IN- = Low  
6-11. IVDDQ Supply Current vs Input Frequency  
6-10. IVDDQ Supply Current vs Temperature  
4
3.5  
3
14  
13.5  
13  
12.5  
12  
2.5  
2
11.5  
11  
10.5  
10  
1.5  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
D002  
D001  
6-13. VDD UVLO vs Temperature  
6-12. VCC UVLO vs Temperature  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
D022  
D021  
VCC = 3.3V  
VDD=18V  
ROFF = 0Ω  
CL = 100pF  
VCC = 3.3V  
VDD=18V  
ROFF = 0Ω  
CL = 100pF  
RON = 0Ω  
RON = 0Ω  
6-15. Propagation Delay tPDHL vs Temperature  
6-14. Propagation Delay tPDLH vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
60  
60  
50  
40  
30  
20  
10  
50  
40  
30  
20  
10  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
D023  
D024  
VCC = 3.3V  
VDD=18V  
CL = 10nF  
VCC = 3.3V  
VDD=18V  
CL = 10nF  
RON = 0Ω  
ROFF = 0Ω  
RON = 0Ω  
ROFF = 0Ω  
6-16. tr Rise Time vs Temperature  
6-17. tf Fall Time vs Temperature  
2.5  
2.25  
2
3
2.75  
2.5  
1.75  
1.5  
1.25  
1
2.25  
2
1.75  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
1.5  
D025  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
6-19. VCLP-OUT(H) Short Circuit Clamping Voltage vs  
D008  
Temperature  
6-18. VOUTPD Output Active Pulldown Voltage vs Temperature  
2
2.6  
2.45  
2.3  
1.75  
1.5  
2.15  
2
1.25  
1
1.85  
1.7  
0.75  
0.5  
1.55  
1.4  
0.25  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
D026  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (°C)  
6-20. VCLP-OUT(L) Short Circuit Clamping Voltage vs  
D007  
Temperature  
6-21. VCLMPTH Miller Clamp Threshold Voltage vs  
Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: UCC21750-Q1  
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
8.5  
7.5  
6.5  
5.5  
4.5  
3.5  
2.5  
1.5  
0.5  
18  
17  
16  
15  
14  
13  
12  
11  
10  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (°C)  
D011  
D010  
6-22. ICLMPI Miller Clamp Sink Current vs Temperature  
6-23. tDCLMPI Miller Clamp ON Delay Time vs Temperature  
10  
9.8  
9.6  
9.4  
9.2  
9
420  
380  
340  
300  
260  
220  
180  
140  
100  
8.8  
8.6  
8.4  
8.2  
8
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (°C)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (°C)  
D002  
D001  
6-25. tDESATLEB DESAT Leading Edge Blanking Time vs  
6-24. VDESAT DESAT Threshold Voltage vs Temperature  
Temperature  
680  
660  
640  
620  
600  
580  
560  
540  
520  
500  
300  
290  
280  
270  
260  
250  
240  
230  
220  
210  
200  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (°C)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (°C)  
D004  
D003  
6-27. tDESATFLT DESAT Sense to /FLT Low Delay Time vs  
6-26. tDESATOFF DESAT Propagation Delay to OUT(L) 90% vs  
Temperature  
Temperature  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
320  
310  
300  
290  
280  
270  
260  
250  
240  
230  
220  
560  
550  
540  
530  
520  
510  
500  
490  
480  
470  
460  
450  
440  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (°C)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (°C)  
D005  
D008  
6-28. tDESATFIL DESAT Deglitch Filter vs Temperature  
6-29. ICHG DESAT Charging Current vs Temperature  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
D009  
6-30. IDCHG DESAT Discharge Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: UCC21750-Q1  
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Propagation Delay  
7.1.1 Regular Turn-OFF  
7-1 shows the propagation delay measurement for non-inverting configurations. 7-2 shows the propagation  
delay measurement with the inverting configurations.  
50%  
50%  
IN+  
INÅ  
tPDLH  
tPDHL  
90%  
10%  
OUT  
7-1. Non-inverting Logic Propagation Delay Measurement  
IN+  
INÅ  
50%  
50%  
tPDLH  
tPDHL  
90%  
OUT  
10%  
7-2. Inverting Logic Propagation Delay Measurement  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
 
 
 
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
7.2 Input Deglitch Filter  
In order to increase the robustness of gate driver over noise transient and accidental small pulses on the input  
pins, that is. IN+, IN, RST/EN, a 40-ns deglitch filter is designed to filter out the transients and make sure there  
is no faulty output responses or accidental driver malfunctions. When the IN+ or INPWM pulse is smaller than  
the input deglitch filter width, TINFIL, there is no responses on OUT drive signal. 7-3 and 7-4 show the IN+  
pin ON and OFF pulse deglitch filter effect. 7-5 and 7-6 show the INpin ON and OFF pulse deglitch filter  
effect.  
IN+  
tPWM < TINFIL  
tPWM < TINFIL  
IN+  
INÅ  
INÅ  
OUT  
OUT  
7-3. IN+ ON Deglitch Filter  
7-4. IN+ OFF Deglitch Filter  
IN+  
IN+  
INÅ  
tPWM < TINFIL  
tPWM < TINFIL  
INÅ  
OUT  
OUT  
7-5. INON Deglitch Filter  
7-6. INOFF Deglitch Filter  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: UCC21750-Q1  
 
 
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
7.3 Active Miller Clamp  
7.3.1 Internal On-chip Active Miller Clamp  
For a gate driver application with unipolar bias supply or bipolar supply with small negative turn-off voltage,  
active miller clamp can help add a additional low impedance path to bypass the miller current and prevent the  
high dV/dt introduced unintentional turn-on through the miller capacitance. 7-7 shows the timing diagram for  
on-chip internal miller clamp function.  
IN  
(”IN+Å ”INÅ)  
tDCLMPI  
VCLMPTH  
OUT  
HIGH  
CLMPI  
Ctrl.  
LOW  
7-7. Timing Diagram for Internal Active Miller Clamp Function  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
 
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
7.4 Undervoltage Lockout (UVLO)  
UVLO is one of the key protection features designed to protect the system in case of bias supply failures on VCC  
primary side power supply, and VDD secondary side power supply.  
7.4.1 VCC UVLO  
The VCC UVLO protection details are discussed in this section. 7-8 shows the timing diagram illustrating the  
definition of UVLO ON/OFF threshold, deglitch filter, response time, RDY and AINAPWM.  
IN  
(”IN+Å ”INÅ)  
tVCCFIL  
tVCCÅ to OUT  
VVCC_ON  
VCC  
VVCC_OFF  
VDD  
COM  
VEE  
tVCC+ to OUT  
90%  
VCLMPTH  
OUT  
10%  
tVCC+ to RDY  
tRDYHLD  
tVCCÅ to RDY  
Hi-Z  
RDY  
VCC  
APWM  
7-8. VCC UVLO Protection Timing Diagram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: UCC21750-Q1  
 
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
7.4.2 VDD UVLO  
The VDD UVLO protection details are discussed in this section. 7-9 shows the timing diagram illustrating the  
definition of UVLO ON/OFF threshold, deglitch filter, response time, RDY and AINAPWM.  
IN  
(”IN+Å ”INÅ)  
tVDDFIL  
VDD  
tVDDÅ to OUT  
VVDD_ON  
VVDD_OFF  
COM  
VEE  
VCC  
tVDD+ to OUT  
VCLMPTH  
OUT  
90%  
tRDYHLD  
10%  
tVDD+ to RDY  
tVDDÅ to RDY  
RDY  
Hi-Z  
VCC  
APWM  
7-9. VDD UVLO Protection Timing Diagram  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
7.5 Desaturation (DESAT) Protection  
7.5.1 DESAT Protection with Soft Turn-OFF  
DESAT function is used to detect VDS for SiC-MOSFETs or VCE for IGBTs under over current conditions. 7-10  
shows the timing diagram of DESAT operation with soft turn-off during the turning on transition.  
7-10. DESAT Protection With Soft Turn-OFF During Turn-ON Transition  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: UCC21750-Q1  
 
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
7-11 shows the timing diagram of DESAT protection while the power device is already turned on.  
IN  
(”IN+Å ”INÅ)  
VDESAT  
tDESATLEB  
tDESATFIL  
DESAT  
tDESATOFF  
90%  
GATE  
VCLMPTH  
tDESATFLT  
tFLTMUTE  
Hi-Z  
FLT  
tRSTFIL  
tRSTFIL  
RST/EN  
HIGH  
Hi-Z  
OUTH  
OUTL  
LOW  
Hi-Z  
LOW  
7-11. DESAT Protection With Soft Turn-OFF While Power Device is ON  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The UCC21750-Q1 device is an advanced isolated gate driver with state-of-art protection and sensing features  
for SiC MOSFETs and IGBTs. The device can support up to 2121-V DC operating voltage based on SiC  
MOSFETs and IGBTs, and can be used to above 10-kW applications, such as HEV/EV traction inverter, motor  
drive, on-board and off-board battery charger, solar inverter, and so forth. The galvanic isolation is implemented  
by the capacitive isolation technology, which can realize a reliable reinforced isolation between the low voltage  
DSP/MCU and high voltage side.  
The ±10-A peak sink and source current of the UCC21750-Q1 can drive the SiC MOSFET modules and IGBT  
modules directly without an extra buffer. The driver can also be used to drive higher power modules or parallel  
modules with external buffer stage. The input side is isolated with the output side with a reinforced isolation  
barrier based on capacitive isolation technology. The device can support up to 1.5-kVRMS working voltage, 12.8-  
kVPK surge immunity with longer than 40 years isolation barrier life. The strong drive strength helps to switch the  
device fast and reduce the switching loss, while the 150-V/ns minimum CMTI assures the reliability of the system  
with fast switching speed. The small propagation delay and part-to-part skew can minimize the deadtime setting,  
so the conduction loss can be reduced.  
The device includes extensive protection and monitor features to increase the reliability and robustness of the  
SiC MOSFET and IGBT based systems. The 12-V output side power supply UVLO is suitable for switches with  
gate voltage 15 V. The active miller clamp feature prevents the false turn on causing by miller capacitance  
during fast switching. The device has the state-of-art DESAT detection time and fault reporting function to the  
low voltage side DSP/MCU. The soft turn-off is triggered when the DESAT fault is detected, minimizing the short  
circuit energy while reducing the overshoot voltage on the switches.  
The isolated analog to PWM sensor can be used as switch temperature sensing, DC bus voltage sensing,  
auxiliary power supply sensing, and so forth. The PWM signal can be fed directly to DSP/MCU or through a low-  
pass-filter as an analog signal.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: UCC21750-Q1  
 
 
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
8.2 Functional Block Diagram  
8.3 Feature Description  
8.3.1 Power Supply  
The input side power supply VCC can support a wide voltage range from 3 V to 5.5 V. The device supports both  
unipolar and bipolar power supply on the output side, with a wide range from 13 V to 33 V from VDD to VEE.  
The negative power supply with respect to switch source or emitter is usually adopted to avoid false turn on  
when the other switch in the phase leg is turned on. The negative voltage is especially important for SiC  
MOSFET due to its fast switching speed.  
8.3.2 Driver Stage  
The UCC21750-Q1 has ±10-A peak drive strength and is suitable for high power applications. The high drive  
strength can drive a SiC MOSFET module, IGBT module or paralleled discrete devices directly without extra  
buffer stage. The UCC21750-Q1 can also be used to drive higher power modules or parallel modules with extra  
buffer stage. Regardless of the values of VDD, the peak sink and source current can be kept at 10 A. The driver  
features an important safety function wherein, when the input pins are in floating condition, the OUTH/OUTL is  
held in LOW state. The split output of the driver stage is depicted in 8-1. The driver has rail-to-rail output by  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
 
 
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
implementing a hybrid pull-up structure with a P-Channel MOSFET in parallel with an N-Channel MOSFET, and  
an N-Channel MOSFET to pulldown. The pull-up NMOS is the same as the pull down NMOS, so the on  
resistance RNMOS is the same as ROL. The hybrid pull-up structure delivers the highest peak-source current  
when it is most needed, during the miller plateau region of the power semiconductor turn-on transient. The ROH  
in 8-1 represents the on-resistance of the pull-up P-Channel MOSFET. However, the effective pull-up  
resistance is much smaller than ROH. Because the pull-up N-Channel MOSFET has much smaller on-resistance  
than the P-Channel MOSFET, the pull-up N-Channel MOSFET dominates most of the turn-on transient, until the  
voltage on OUTH pin is about 3 V below VDD voltage. The effective resistance of the hybrid pull-up structure  
during this period is about 2 × ROL. Then the P-Channel MOSFET pulls up the OUTH voltage to VDD rail. The  
low pull-up impedance results in strong drive strength during the turn-on transient, which shortens the charging  
time of the input capacitance of the power semiconductor and reduces the turn on switching loss.  
The pull-down structure of the driver stage is implemented solely by a pull-down N-Channel MOSFET. This  
MOSFET can ensure the OUTL voltage be pulled down to VEE rail. The low pull-down impedance not only  
results in high sink current to reduce the turn-off time, but also helps to increase the noise immunity considering  
the miller effect.  
VDD  
ROH  
RNMOS  
OUTH  
Input  
Signal  
Anti Shoot-  
through  
Circuitry  
OUTL  
ROL  
8-1. Gate Driver Output Stage  
8.3.3 VCC and VDD Undervoltage Lockout (UVLO)  
The UCC21750-Q1 implements the internal UVLO protection feature for both input and output power supplies  
VCC and VDD. When the supply voltage is lower than the threshold voltage, the driver output is held as LOW.  
The output only goes HIGH when both VCC and VDD are out of the UVLO status. The UVLO protection feature  
not only reduces the power consumption of the driver itself during low power supply voltage condition, but also  
increases the efficiency of the power stage. For SiC MOSFET and IGBT, the on-resistance reduces while the  
gate-source voltage or gate-emitter voltage increases. If the power semiconductor is turned on with a low VDD  
value, the conduction loss increases significantly and can lead to a thermal issue and efficiency reduction of the  
power stage. The UCC21750-Q1 implements a 12-V threshold voltage of VDD UVLO, with 800-mV hysteresis.  
This threshold voltage is suitable for both SiC MOSFET and IGBT.  
The UVLO protection block features with hysteresis and deglitch filter, which help to improve the noise immunity  
of the power supply. During the turn-on and turn-off switching transient, the driver sources and sinks a peak  
transient current from the power supply, which can result in sudden voltage drop of the power supply. With  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: UCC21750-Q1  
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
hysteresis and UVLO deglitch filter, the internal UVLO protection block ignores small noises during the normal  
switching transients.  
The timing diagrams of the UVLO feature of VCC and VDD are shown in 7-8, and 7-9. The RDY pin on the  
input side is used to indicate the power good condition. The RDY pin is open drain. During UVLO condition, the  
RDY pin is held in low status and connected to GND. Normally the pin is pulled up externally to VCC to indicate  
the power good. The AIN-APWM function stops working during the UVLO status. The APWM pin on the input  
side is held LOW.  
8.3.4 Active Pulldown  
The UCC21750-Q1 implements an active pulldown feature to ensure the OUTH/OUTL pin clamping to VEE  
when the VDD is open. The OUTH/OUTL pin is in high-impedance status when VDD is open, the active  
pulldown feature can prevent the output be false turned on before the device is back to control.  
VDD  
OUTL  
Ra  
Control  
Circuit  
VEE  
COM  
8-2. Active Pulldown  
8.3.5 Short Circuit Clamping  
During short circuit condition, the miller capacitance can cause a current sinking to the OUTH/OUTL/CLMPI pin  
due to the high dV/dt and boost the OUTH/OUTL/CLMPI voltage. The short circuit clamping feature of the  
UCC21750-Q1 can clamp the OUTH/OUTL/CLMPI pin voltage to be slightly higher than VDD, which can protect  
the power semiconductors from a gate-source and gate-emitter overvoltage breakdown. This feature is realized  
by an internal diode from the OUTH/OUTL/CLMPI to VDD.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
VDD  
D1 D2 D3  
OUTH  
Control  
Circuitry  
OUTL  
CLMPI  
8-3. Short Circuit Clamping  
8.3.6 Internal Active Miller Clamp  
Active miller clamp feature is important to prevent the false turn-on while the driver is in OFF state. In  
applications which the device can be in synchronous rectifier mode, the body diode conducts the current during  
the deadtime while the device is in OFF state, the drain-source or collector-emitter voltage remains the same  
and the dV/dt happens when the other power semiconductor of the phase leg turns on. The low internal pull-  
down impedance of the UCC21750-Q1 can provide a strong pulldown to hold the OUTL to VEE. However,  
external gate resistance is usually adopted to limit the dV/dt. The miller effect during the turn on transient of the  
other power semiconductor can cause a voltage drop on the external gate resistor, which boost the gate-source  
or gate-emitter voltage. If the voltage on VGS or VGE is higher than the threshold voltage of the power  
semiconductor, a shoot through can happen and cause catastrophic damage. The active miller clamp feature of  
the UCC21750-Q1 drives an internal MOSFET, which connects to the device gate. The MOSFET is triggered  
when the gate voltage is lower than VCLMPTH, which is 2 V above VEE, and creates a low impedance path to  
avoid the false turn on issue.  
VCLMPTH  
VCC  
OUTH  
+
3V to 5.5V  
IN+  
œ
CLMPI  
OUTL  
Control  
Circuitry  
µC  
MOD  
DEMOD  
IN-  
VEE  
COM  
VCC  
8-4. Active Miller Clamp  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: UCC21750-Q1  
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
8.3.7 Desaturation (DESAT) Protection  
The UCC21750-Q1 implements a fast overcurrent and short circuit protection feature to protect the IGBT module  
from catastrophic breakdown during fault. The DESAT pin of the device has a typical 9-V threshold with respect  
to COM, source or emitter of the power semiconductor. When the input is in floating condition, or the output is  
held in low state, the DESAT pin is pulled down by an internal MOSFET and held in LOW state, which prevents  
the overcurrent and short circuit fault from false triggering. The internal current source of the DESAT pin is  
activated only during the driver ON state, which means the overcurrent and short circuit protection feature only  
works when the power semiconductor is in on state. The internal pulldown MOSFET helps to discharge the  
voltage of DESAT pin when the power semiconductor is turned off. The UCC21750-Q1 features a 200-ns  
internal leading edge blanking time after the OUTH switches to high state. The internal current source is  
activated to charge the external blanking capacitor after the internal leading edge blanking time. The typical  
value of the internal current source is 500 µA.  
8-5. DESAT Protection  
8.3.8 Soft Turn-Off  
The UCC21750-Q1 initiates a soft turn-off when the overcurrent and short circuit protection is triggered. When  
the overcurrent and short circuit fault happens, the IGBT transits from the active region to the desaturation  
region very fast. The channel current is controlled by the gate voltage and decreasing in a soft manner, thus the  
overshoot of the IGBT is limited and prevents the overvoltage breakdown. There is a tradeoff between the  
overshoot voltage and short circuit energy. The turn off speed must to be slow to limit the overshoot voltage, but  
the shutdown time must not be too long that the large energy dissipation can breakdown the device. The 400-  
mA soft turn-off current of the UCC21750-Q1 makes sure the power switches is safely turned off during short  
circuit events. The timing diagram of soft turn-off shows in 7-10.  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
 
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
8-6. Soft Turn-Off  
8.3.9 Fault (FLT, Reset, and Enable (RST/EN)  
The FLT pin of the UCC21750-Q1 is open drain and can report a fault signal to the DSP/MCU when the fault is  
detected through the DESAT pin. The FLT pin is pulled down to GND after the fault is detected, and is held low  
until a reset signal is received from RST/EN. The device has a fault mute time tFLTMUTE, within which the device  
ignores any reset signal.  
The RST/EN is pulled down internally by a 50-kΩ resistor, and is thus disabled by default when this pin is  
floating. Pull up externally to enable the driver. The pin has two purposes:  
To reset the FLT pin: to reset, then RST/EN pin is pulled low; if the pin is set and held in low state for more  
than tRSTFIL after the mute time tFLTMUTE, then the fault signal is reset and FLT is reset back to the high  
impedance status at the rising edge of the input signal at RST/EN pin.  
Enable and shutdown the device: if the RST/EN pin is pulled low for longer than tRSTFIL, the driver disables  
and OUTL is activated to pull down the gate of the IGBT or SiC MOSFET. The pin must be pulled up  
externally to enable the part, otherwise the device is disabled by default.  
8.3.10 Isolated Analog to PWM Signal Function  
The UCC21750-Q1 features an isolated analog to PWM signal function from AIN to APWM pin, which allows the  
isolated temperature sensing, high voltage dc bus voltage sensing, and so forth. An internal current source IAIN  
in AIN pin is implemented in the device to bias an external thermal diode or temperature sensing resistor. The  
UCC21750-Q1 encodes the voltage signal VAIN to a PWM signal, passing through the reinforced isolation  
barrier, and output to APWM pin on the input side. The PWM signal can either be transferred directly to  
DSP/MCU to calculate the duty cycle, or filtered by a simple RC filter as an analog signal. The AIN voltage input  
range is from 0.6 V to 4.5 V, and the corresponding duty cycle of the APWM output ranges from 88% to 10%.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: UCC21750-Q1  
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
The duty cycle increases linearly from 10% to 88% while the AIN voltage decreases from 4.5 V to 0.6 V. This  
action corresponds to the temperature coefficient of the negative temperature coefficient (NTC) resistor and  
thermal diode. When AIN is floating, the AIN voltage is 5 V and the APWM operates at 400 kHz with  
approximately 10% duty cycle. The accuracy of the duty cycle is ±3% across temperature without one time  
calibration. The accuracy can be improved using calibration. The accuracy of the internal current source IAIN is  
±3% across temperature.  
The isolated analog to PWM signal feature can also support other analog signal sensing, such as the high  
voltage dc bus voltage, and so forth. The internal current source IAIN must be taken into account when designing  
the potential divider if sensing a high voltage.  
UCC217xx  
In Module or  
Discrete  
VCC  
VDD  
13V to  
33V  
+
+
3V to 5.5V  
APWM  
œ
œ
AIN  
+
DEMOD  
MOD  
µC  
Rfilt  
Cfilt  
OSC  
GND  
COM  
Thermal  
Diode  
NTC or  
PTC  
8-7. Isolated Analog to PWM Signal  
8-1. Function Table  
8.4 Device Functional Modes  
The 8-1 lists the device function.  
INPUT  
OUTPUT  
OUTH/  
OUTL  
VCC  
VDD  
VEE  
IN+  
IN-  
RST/EN  
AIN  
RDY  
FLT  
CLMPI  
APWM  
PU  
PD  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PD  
PU  
PU  
PU  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Low  
Low  
HiZ  
Low  
Low  
HiZ  
HiZ  
HiZ  
HiZ  
HiZ  
HiZ  
HiZ  
HiZ  
HiZ  
HiZ  
HiZ  
HiZ  
HiZ  
Low  
Low  
Low  
HiZ  
Low  
Low  
Low  
HiZ  
Low  
Low  
Low  
HiZ  
Low  
P*  
PU  
PU  
X
X
Low  
X
Open  
PU  
PU  
X
X
Open  
PU  
X
X
X
Low  
Low  
Low  
Low  
High  
Low  
Low  
Low  
Low  
HiZ  
PU  
Low  
X
X
High  
High  
High  
High  
PU  
PU  
High  
High  
Low  
P*  
PU  
PU  
High  
High  
P*  
PU  
PU  
P*  
PU: Power Up (VCC 2.85 V, VDD 13.1 V, VEE 0 V); PD: Power Down (VCC 2.35 V, VDD 9.9 V);  
X: Irrelevant; P*: PWM Pulse; HiZ: High Impedance  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
 
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
9 Applications and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The UCC21750-Q1 device is very versatile because of the strong drive strength, wide range of output power  
supply, high isolation ratings, high CMTI and superior protection and sensing features. The 1.5-kVRMS working  
voltage and 12.8-kVPK surge immunity can support up both SiC MOSFET and IGBT modules with DC bus  
voltage up to 2121 V. The device can be used in both low power and high power applications such as the  
traction inverter in HEV/EV, on-board charger and charging pile, motor driver, solar inverter, industrial power  
supplies and so forth. The device can drive the high power SiC MOSFET module, IGBT module or paralleled  
discrete device directly without external buffer drive circuit based on NPN/PNP bipolar transistor in totem-pole  
structure, which allows the driver to have more control to the power semiconductor and saves the cost and  
space of the board design. The UCC21750-Q1 can also be used to drive very high power modules or paralleled  
modules with external buffer stage. The input side can support power supply and microcontroller signal from 3.3  
V to 5 V, and the device level shifts the signal to output side through reinforced isolation barrier. The device has  
wide output power supply range from 13 V to 33 V and support wide range of negative power supply. This  
feature allows the driver to be used in SiC MOSFET applications, IGBT application and many others. The 12-V  
UVLO benefits the power semiconductor with lower conduction loss and improves the system efficiency. As a  
reinforced isolated single channel driver, the device can be used to drive either a low-side or high-side driver.  
The UCC21750-Q1 device features extensive protection and monitoring features, which can monitor, report and  
protect the system from various fault conditions.  
Fast detection and protection for the overcurrent and short circuit fault. The semiconductor is shutdown when  
the fault is detected and FLT pin is pulled down to indicate the fault detection. The device is latched unless  
reset signal is received from the RST/EN pin.  
Soft turn-off feature to protect the power semiconductor from catastrophic breakdown during overcurrent and  
short circuit fault. The shutdown energy can be controlled while the overshoot of the power semiconductor is  
limited.  
UVLO detection to protect the semiconductor from excessive conduction loss. After the device is detected to  
be in UVLO mode, the output is pulled down and RDY pin indicates the power supply is lost. The device is  
back to normal operation mode after the power supply is out of the UVLO status. The power good status can  
be monitored from the RDY pin.  
Analog signal sensing with isolated analog to PWM signal feature. This feature allows the device to sense the  
temperature of the semiconductor from the thermal diode or temperature sensing resistor, or dc bus voltage  
with resistor divider. A PWM signal is generated on the low voltage side with reinforced isolated from the high  
voltage side. The signal can be fed back to the microcontroller for the temperature monitoring, voltage  
monitoring and so forth.  
The active miller clamp feature protects the power semiconductor from false turn on.  
Enable and disable function through the RST/EN pin.  
Short circuit clamping.  
Active pulldown.  
9.2 Typical Application  
9-1 shows the typical application of a half bridge using two UCC21750-Q1 isolated gate drivers. The half  
bridge is a basic element in various power electronics applications such as traction inverter in HEV/EV to convert  
the DC current of the electric vehicles battery to the AC current to drive the electric motor in the propulsion  
system. The topology can also be used in motor drive applications to control the operating speed and torque of  
the AC motors.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: UCC21750-Q1  
 
 
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
UCC  
UCC  
UCC  
UCC  
21750  
21750  
21750  
21750  
1
2
3
4
5
6
PWM  
3-Phase  
Input  
1
2
3
4
5
6
µC  
M
APWM  
FLT  
UCC  
UCC  
21750  
21750  
9-1. Typical Application Schematic  
9.2.1 Design Requirements  
The design of the power system for end equipment must consider some design requirements to ensure the  
reliable operation of the UCC21750-Q1 through the load range. The design considerations include the peak  
source and sink current, power dissipation, overcurrent and short circuit protection, AIN-APWM function for  
analog signal sensing and so forth.  
A design example for a half bridge based on IGBT is given in this subsection. 9-1 shows the design  
parameters.  
9-1. Design Parameters  
PARAMETER  
Input supply voltage  
IN-OUT configuration  
Positive output voltage VDD  
Negative output voltage VEE  
DC bus voltage  
VALUE  
5 V  
Non-inverting  
15 V  
5 V  
800 V  
Peak drain current  
300 A  
Switching frequency  
Switch type  
50 kHz  
IGBT module  
9.2.2 Detailed Design Procedure  
9.2.2.1 Input Filters for IN+, IN, and RST/EN  
In the applications of traction inverter or motor drive, the power semiconductors are in hard switching mode. With  
the strong drive strength of the UCC21750-Q1, the dV/dt can be high, especially for SiC MOSFET. Noise cannot  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
 
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
only be coupled to the gate voltage due to the parasitic inductance, but also to the input side as the non-ideal  
PCB layout and coupled capacitance.  
The UCC21750-Q1 features a 40-ns internal deglitch filter to IN+, INand RST/EN pin. Any signal less than 40  
ns can be filtered out from the input pins. For noisy systems, external low-pass filter can be added externally to  
the input pins. Adding low-pass filters to IN+, INand RST/EN pins can effectively increase the noise immunity  
and increase the signal integrity. When not in use, the IN+, INand RST/EN pins must not be floating. IN–  
must be tied to GND if only IN+ is used for non-inverting input to output configuration. The purpose of the low-  
pass filter is to filter out the high frequency noise generated by the layout parasitics. While choosing the low-pass  
filter resistors and capacitors, both the noise immunity effect and delay time must be considered according to the  
system requirements.  
9.2.2.2 PWM Interlock of IN+ and IN–  
The UCC21750-Q1 features the PWM interlock for IN+ and INpins, which can be used to prevent the phase  
leg shoot through issue. As shown in 8-1, the output is logic low while both IN+ and INare logic high. When  
only IN+ is used, INcan be tied to GND. To use the PWM interlock function, the PWM signal of the other  
switch in the phase leg can be sent to the INpin. As shown in 9-2, the PWM_T is the PWM signal to top  
side switch, the PWM_B is the PWM signal to bottom side switch. For the top side gate driver, the PWM_T signal  
is given to the IN+ pin, while the PWM_B signal is given to the IN- pin; for the bottom side gate driver, the  
PWM_B signal is given to the IN+ pin, while PWM_T signal is given to the IN- pin. When both PWM_T and  
PWM_B signals are high, the outputs of both gate drivers are logic low to prevent the shoot through condition.  
IN+  
IN-  
RON  
OUTH  
OUTL  
ROFF  
PWM_T  
PWM_B  
RON  
IN+  
IN-  
OUTH  
OUTL  
ROFF  
9-2. PWM Interlock for a Half Bridge  
9.2.2.3 FLT, RDY, and RST/EN Pin Circuitry  
Both FLT and RDY pin are open-drain output. The RST/EN pin has a 50-kΩ internal pulldown resistor, so the  
driver is in OFF status if the RST/EN pin is not pulled up externally. A 5 kΩ resistor can be used as pullup  
resistor for the FLT, RDY and RST/EN pins.  
To improve the noise immunity due to the parasitic coupling and common mode noise, low pass filters can be  
added between the FLT, RDY and RST/EN pins and the microcontroller. A filter capacitor between 100 pF to 300  
pF can be added.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: UCC21750-Q1  
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
3.3V to 5V  
VCC  
15  
9
1µF  
0.1µF  
GND  
IN+  
10  
INt  
11  
5kQ  
5kQ 5kQ  
FLT  
12  
13  
100pF  
RDY  
100pF  
RST/EN  
14  
16  
100pF  
APWM  
9-3. FLT, RDY, and RST/EN Pins Circuitry  
9.2.2.4 RST/EN Pin Control  
The RST/EN pin has two functions. The pin is used to enable or shutdown the outputs of the driver and to reset  
the fault signaled on the FLT pin after DESAT is detected. RST/EN pin must to be pulled up to enable the device;  
when the pin is pulled down, the device is in disabled status. By default the driver is disabled with the internal  
50kΩpulldown resistor at this pin.  
When the driver is latched after DESAT is detected, the FLT pin and output are latched low and must be reset by  
the RST/EN pin. The microcontroller must send a signal to RST/EN pin after the fault to reset the driver. The  
driver does not respond until after the mute time tFLTMUTE. The reset signal must be held low for at least tRSTFIL  
after the mute time.  
This pin can also be used to automatically reset the driver. The continuous input signal IN+ or IN- can be applied  
to RST/EN pin. There is no separate reset signal from the microcontroller when configuring the driver this way. If  
the PWM is applied to the non-inverting input IN+, then IN+ can also be tied to RST/EN pin. If the PWM is  
applied to the inverting input IN, then a NOT logic is needed between the PWM signal from the microcontroller  
and the RST/EN pin. Using either configuration results in the driver being reset in every switching cycle without  
an extra control signal from microcontroller tied to RST/EN pin. One must ensure the PWM off-time is greater  
than tRSTFIL in order to reset the driver in cause of a DESAT fault.  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
3.3V to 5V  
0.1µF  
3.3V to 5V  
VCC  
VCC  
15  
15  
1µF  
1µF  
0.1µF  
GND  
IN+  
GND  
IN+  
9
9
10  
10  
INt  
INt  
5kQ  
11  
5kQ  
5kQ  
11  
5kQ  
FLT  
FLT  
12  
13  
12  
13  
100pF  
100pF  
100pF  
100pF  
RDY  
RDY  
RST/EN  
APWM  
RST/EN  
APWM  
14  
16  
14  
16  
9-4. Automatic Reset Control  
9.2.2.5 Turn-On and Turn-Off Gate Resistors  
The UCC21750-Q1 features split outputs OUTH and OUTL, which enables the independent control of the turn  
on and turn off switching speed. The turn on and turn off resistance determine the peak source and sink current,  
which controls the switching speed in turn. Meanwhile, the power dissipation in the gate driver must be  
considered to ensure the device is in the thermal limit. At first, the peak source and sink current are calculated  
as:  
VDD - VEE  
ROH_EFF +RON +RG _Int  
Isource _ pk = min(10A,  
Isink _ pk = min(10A,  
)
VDD - VEE  
ROL +ROFF +RG _Int  
)
(1)  
Where  
ROH_EFF is the effective internal pull up resistance of the hybrid pull-up structure, shown in 8-1, which is  
approximately 2 × ROL, about 0.7 . This is the dominant resistance during the switching transient of the pull  
up structure.  
ROL is the internal pulldown resistance, about 0.3 .  
RON is the external turn on gate resistance.  
ROFF is the external turn off gate resistance.  
RG_Int is the internal resistance of the SiC MOSFET or IGBT module.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: UCC21750-Q1  
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
VDD  
Cies=Cgc+Cge  
+
Cgc  
VDD  
ROH_EFF  
OUTH  
t
RON  
RG_Int  
OUTL  
ROFF  
Cge  
+
VEE  
ROL  
t
VEE  
COM  
9-5. Output Model for Calculating Peak Gate Current  
For example, for an IGBT module based system with the following parameters:  
Qg = 3300 nC  
RG_Int = 1.7 Ω  
RON = ROFF = 1 Ω  
The peak source and sink current in this case are:  
VDD - VEE  
ROH_EFF +RON +RG _Int  
Isource _ pk = min(10A,  
) ö 5.9A  
VDD - VEE  
ROL +ROFF +RG _Int  
Isink _ pk = min(10A,  
) ö 6.7A  
(2)  
Thus, by using a 1-Ω external gate resistance, the peak source current is 5.9 A, the peak sink current is 6.7 A.  
The collector-to-emitter dV/dt during the turn on switching transient is dominated by the gate current at the miller  
plateau voltage. The hybrid pullup structure ensures the peak source current at the miller plateau voltage, unless  
the turn on gate resistor is too high. The faster the collector-to-emitter, Vce, voltage rises to VDC, the smaller the  
turn on switching loss is. The dV/dt can be estimated as Qgc/Isource_pk. For the turn off switching transient, the  
drain-to-source dV/dt is dominated by the load current, unless the turn off gate resistor is too high. After Vce  
reaches the dc bus voltage, the power semiconductor is in saturation mode and the channel current is controlled  
by Vge. The peak sink current determines the dI/dt, which dominates the Vce voltage overshoot accordingly. If  
using relatively large turn off gate resistance, the Vce overshoot can be limited. The overshoot can be estimated  
by:  
DV = Lstray Iload / ((ROFF +ROL +RG_Int )Cies ln(Vplat / V ))  
ce  
th  
(3)  
Where  
Lstray is the stray inductance in power switching loop, as shown in 9-6  
Iload is the load current, which is the turn off current of the power semiconductor  
Cies is the input capacitance of the power semiconductor  
Vplat is the plateau voltage of the power semiconductor  
Vth is the threshold voltage of the power semiconductor  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
LDC  
Lc1  
Lstray=LDC+Le1+Lc1+Le1+Lc1  
RG  
Lload  
t
+
Le1  
+
VDC  
t
Lc2  
VDD  
Cgc  
Cies=Cgc+Cge  
RG  
OUTH  
OUTL  
COM  
Cge  
Le2  
9-6. Stray Parasitic Inductance of IGBTs in a Half-Bridge Configuration  
The power dissipation must be taken into account to maintain the gate driver within the thermal limit. The power  
loss of the gate driver includes the quiescent loss and the switching loss, which can be calculated as:  
P
= PQ +P  
DR  
SW  
(4)  
PQ is the quiescent power loss for the driver, which is Iq x (VDD-VEE) = 5 mA × 20 V = 0.100 W. The quiescent  
power loss is the power consumed by the internal circuits such as the input stage, reference voltage, logic  
circuits, protection circuits when the driver is switching when the driver is biased with VDD and VEE, and also  
the charging and discharing current of the internal circuit when the driver is switching. The power dissipation  
when the driver is switching can be calculated as:  
ROH_EFF  
2 ROH_EFF +RON +RG _Int ROL +ROFF +RG _Int  
ROL  
1
P
=
(  
+
)(VDD - VEE)fsw Qg  
SW  
(5)  
Where  
Qg is the gate charge required at the operation point to fully charge the gate voltage from VEE to VDD  
fsw is the switching frequency  
In this example, the PSW can be calculated as:  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: UCC21750-Q1  
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
ROH_EFF  
2 ROH_EFF + RON + RG _Int ROL +ROFF +RG _Int  
ROL  
1
P
=
(  
+
)(VDD - VEE)fsw Qg = 0.505W  
SW  
(6)  
Thus, the total power loss is:  
P =P +P = 0.10W +0.505W = 0.605W  
DR  
Q
SW  
(7)  
When the board temperature is 125°C, the junction temperature can be estimated as:  
Tj = T + yjb P ö 150oC  
b
DR  
(8)  
Therefore, for the application in this example, with 125°C board temperature, the maximum switching frequency  
is approximately 50 kHz to keep the gate driver in the thermal limit. By using a lower switching frequency, or  
increasing external gate resistance, the gate driver can be operated at a higher switching frequency.  
9.2.2.6 Overcurrent and Short Circuit Protection  
A standard desaturation circuit can be applied to the DESAT pin. If the voltage of the DESAT pin is higher than  
the threshold VDESAT, the soft turn-off is initiated. A fault is reported to the input side to DSP/MCU. The output is  
held to LOW after the fault is detected, and can only be reset by the RST/EN pin. The state-of-art overcurrent  
and short circuit detection time helps to ensure a short shutdown time for SiC MOSFET and IGBT.  
If DESAT pin is not in use, it must be tied to COM to avoid overcurrent fault false triggering.  
TI recommends fast reverse recovery high voltage diode in the desaturation circuit. A resistor is  
recommended in series with the high voltage diode to limit the inrush current.  
Ti recommends a Schottky diode from COM to DESAT to prevent driver damage caused by negative voltage.  
TI recommends a Zener diode from COM to DESAT to prevent driver damage caused by positive voltage.  
9.2.2.7 Isolated Analog Signal Sensing  
The isolated analog signal sensing feature provides a simple isolated channel for the isolated temperature  
detection, voltage sensing and so forth. One typical application of this function is the temperature monitor of the  
power semiconductor. Thermal diodes or temperature sensing resistors are integrated in the SiC MOSFET or  
IGBT module close to the dies to monitor the junction temperature. The UCC21750-Q1 has an internal 200-uA  
current source with ±3% accuracy across temperature, which can forward bias the thermal diodes or create a  
voltage drop on the temperature sensing resistors. The sensed voltage from the AIN pin is passed through the  
isolation barrier to the input side and transformed to a PWM signal. The duty cycle of the PWM changes linearly  
from 10% to 88% when the AIN voltage changes from 4.5 V to 0.6 V and can be represented using 方程9.  
DAPWM(%) = -20 * VAIN +100  
(9)  
9.2.2.7.1 Isolated Temperature Sensing  
A typical application circuit is shown in 9-7. To sense temperature, the AIN pin is connected to the thermal  
diode or thermistor which can be discrete or integrated within the power module. TI recommends a low pass filter  
for the AIN input. Because the temperature signal does not have a high bandwidth, the low pass filter is mainly  
used for filtering the noise introduced by the switching of the power device, which does not require stringent  
control for propagation delay. The filter capacitance for Cfilt can be chosen between 1 nF to 100 nF and the filter  
resistance Rfilt between 1 to 10 according to the noise level.  
The output of APWM is directly connected to the microcontroller to measure the duty cycle dependent on the  
voltage input at AIN, using 方程9.  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
UCC217xx  
In Module or  
Discrete  
VCC  
VDD  
13V to  
33V  
+
+
3V to 5.5V  
APWM  
œ
œ
AIN  
+
DEMOD  
MOD  
µC  
Rfilt  
Cfilt  
OSC  
GND  
COM  
Thermal  
Diode  
NTC or  
PTC  
9-7. Thermal Diode or Thermistor Temperature Sensing Configuration  
When a high-precision voltage supply for VCC is used on the primary side of UCC21750-Q1 the duty cycle  
output of APWM can also be filtered and the voltage measured using the microcontroller's ADC input pin, as  
shown in 9-8. The frequency of APWM is 400 kHz, so the value for Rfilt_2 and Cfilt_2 must be such that the  
cutoff frequency is below 400 kHz. Temperature does not change rapidly, thus the rise time due to the RC  
constant of the filter is not under a strict requirement.  
UCC217xx  
VDD  
In Module or  
Discrete  
VCC  
13V to  
33V  
+
+
œ
3V to 5.5V  
APWM  
œ
AIN  
+
DEMOD  
MOD  
µC  
Rfilt_1  
Rfilt_2  
Cfilt_2  
GND  
OSC  
Cfilt_1  
COM  
Thermal  
Diode  
NTC or  
PTC  
9-8. APWM Channel with Filtered Output  
The example below shows the results using a 4.7-kΩNTC, NTCS0805E3472FMT, in series with a 3-kΩresistor  
and also the thermal diode using four diode-connected MMBT3904 NPN transistors. The sensed voltage of the 4  
MMBT3904 thermal diodes connected in series ranges from about 2.5 V to 1.6 V from 25°C to 135°C,  
corresponding to 50% to 68% duty cycle. The sensed voltage of the NTC thermistor connected in series with the  
3-kΩ resistor ranges from about 1.5 V to 0.6 V from 25°C to 135°C, corresponding to 70% to 88% duty cycle.  
The voltage at VAIN of both sensors and the corresponding measured duty cycle at APWM is shown in 9-9.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: UCC21750-Q1  
 
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
90  
84  
Thermal Diode VAIN  
NTC VAIN  
Thermal Diode APWM  
NTC APWM  
78  
72  
66  
60  
54  
48  
20  
40  
60  
80  
Temperature (èC)  
100  
120  
140  
VAIN  
9-9. Thermal Diode and NTC VAIN and Corresponding Duty Cycle at APWM  
The duty cycle output has an accuracy of ±3% throughout temperature without any calibration, as shown in 图  
9-10 but with single-point calibration at 25°C, the duty accuracy can be improved to ±1%, as shown in 9-11.  
1.5  
Thermal Diode APWM Duty Error  
NTC APWM Duty Error  
1.25  
1
0.75  
0.5  
0.25  
0
-0.25  
20  
40  
60  
80  
Temperature (èC)  
100  
120  
140  
APWM  
9-10. APWM Duty Error Without Calibration  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
 
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
0.8  
Thermal Diode APWM Duty Error  
NTC APWM Duty Error  
0.6  
0.4  
0.2  
0
-0.2  
20  
40  
60  
80  
Temperature (èC)  
100  
120  
140  
APWM  
9-11. APWM Duty Error With Single-Point Calibration  
9.2.2.7.2 Isolated DC Bus Voltage Sensing  
The AIN to APWM channel can be used for other applications such as the DC-link voltage sensing, as shown in  
9-12. The same filtering requirements as given above can be used in this case, as well. The number of  
attenuation resistors, Ratten_1 through Ratten_n, is dependent on the voltage level and power rating of the resistor.  
The voltage is finally measured across RLV_DC to monitor the stepped-down voltage of the HV DC-link which  
must fall within the voltage range of AIN from 0.6 V to 4.5 V. The driver must be referenced to the same point as  
the measurement reference, thus in the case shown below the UCC21750-Q1 is driving the lower IGBT in the  
half-bridge and the DC-link voltage measurement is referenced to COM. The internal current source IAIN must be  
taken into account when designing the resistor divider. The AIN pin voltage is:  
RLV _DC  
n
VAIN  
=
VDC +RLV _DC IAIN  
RLV _DC  
+
R
atten _ i  
ƒ
i=1  
(10)  
Ratten_1  
Ratten_2  
UCC217xx  
VDD  
VCC  
Ratten_n  
13V to  
33V  
+
+
3V to 5.5V  
APWM  
œ
œ
CDC  
+
AIN  
DEMOD  
MOD  
µC  
Rfilt  
Cfilt  
Rfilt_2  
Cfilt_2  
GND  
RLV_DC  
OSC  
COM  
9-12. DC-link Voltage Sensing Configuration  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: UCC21750-Q1  
 
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
9.2.2.8 Higher Output Current Using an External Current Buffer  
To increase the IGBT gate drive current, a non-inverting current buffer (such as the NPN/PNP buffer shown in 图  
9-13) can be used. Inverting types are not compatible with the desaturation fault protection circuitry and must be  
avoided. The MJD44H11/MJD45H11 pair is appropriate for peak currents up to 15 A, the D44VH10/ D45VH10  
pair is up to 20-A peak.  
In the case of an over-current detection, the soft turn off (STO) is activated. External components must be added  
to implement STO instead of normal turn off speed when an external buffer is used. CSTO sets the timing for soft  
turn off and RSTO limits the inrush current to below the current rating of the internal FET (10A). RSTO must be at  
least (VDDVEE)/10. The soft turn off timing is determined by the internal current source of 400 mA and the  
capacitor CSTO. CSTO is calculated using 方程11.  
ISTO tSTO  
VDD
-
VEE  
CSTO  
=
(11)  
ISTO is the internal STO current source, 400 mA  
tSTO is the desired STO timing  
9-13. Current Buffer for Increased Drive Strength  
9.2.3 Application Curves  
Step Input (0.6 V to 4.5 V)  
APWM Output  
9-15. AIN Step Input (Green) and APWM Output  
(Pink)  
9-14. PWM Input (Yellow) and Driver Output  
(Blue)  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
 
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
10 Power Supply Recommendations  
During the turn on and turn off switching transient, the peak source and sink current is provided by the VDD and  
VEE power supply. The large peak current is possible to drain the VDD and VEE voltage level and cause a  
voltage droop on the power supplies. To stabilize the power supply and ensure a reliable operation, TI  
recommends a set of decoupling capacitors at the power supplies. Considering the UCC21750-Q1 has ±10-A  
peak drive strength and can generate high dV/dt, TI recommends a 10-µF bypass cap between VDD and COM,  
VEE and COM. TI recommends a 1-µF bypass cap between VCC and GND due to less current comparing with  
output side power supplies. A 0.1-µF decoupling cap is also recommended for each power supply to filter out  
high frequency noise. The decoupling capacitors must be low ESR and ESL to avoid high frequency noise, and  
must be placed as close as possible to the VCC, VDD and VEE pins to prevent noise coupling from the system  
parasitics of PCB layout.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: UCC21750-Q1  
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Due to the strong drive strength of the UCC21750-Q1, careful considerations must be taken in PCB design.  
Below are some key points:  
The driver must be placed as close as possible to the power semiconductor to reduce the parasitic  
inductance of the gate loop on the PCB traces.  
The decoupling capacitors of the input and output power supplies must be placed as close as possible to the  
power supply pins. The peak current generated at each switching transient can cause high dI/dt and voltage  
spike on the parasitic inductance of PCB traces.  
The driver COM pin must be connected to the Kelvin connection of SiC MOSFET source or IGBT emitter. If  
the power device does not have a split Kelvin source or emitter, the COM pin must be connected as close as  
possible to the source or emitter terminal of the power device package to separate the gate loop from the  
high power switching loop  
Use a ground plane on the input side to shield the input signals. The input signals can be distorted by the  
high frequency noise generated by the output side switching transients. The ground plane provides a low-  
inductance filter for the return current flow.  
If the gate driver is used for the low side switch which the COM pin connected to the dc bus negative, use the  
ground plane on the output side to shield the output signals from the noise generated by the switch node; if  
the gate driver is used for the high side switch, which the COM pin is connected to the switch node, ground  
plane is not recommended  
If ground plane is not used on the output side, separate the return path of the DESAT and AIN ground loop  
from the gate loop ground which has large peak source and sink current.  
No PCB trace or copper is allowed under the gate driver. TI recommends a PCB cutout to avoid any noise  
coupling between the input and output side which can contaminate the isolation barrier.  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
 
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
11.2 Layout Example  
11-1. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: UCC21750-Q1  
 
UCC21750-Q1  
ZHCSKA3C SEPTEMBER 2019 REVISED JANUARY 2023  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
Isolation Glossary  
12.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: UCC21750-Q1  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
UCC21750QDWQ1  
UCC21750QDWRQ1  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
DW  
DW  
16  
16  
40  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
UCC21750Q  
UCC21750Q  
Samples  
Samples  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jan-2023  
OTHER QUALIFIED VERSIONS OF UCC21750-Q1 :  
Catalog : UCC21750  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DW 16  
7.5 x 10.3, 1.27 mm pitch  
SOIC - 2.65 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224780/A  
www.ti.com  
PACKAGE OUTLINE  
DW0016B  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A  
B
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4221009/B 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (2)  
1
16X (1.65)  
SEE  
DETAILS  
SEE  
DETAILS  
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
R0.05 TYP  
9
9
8
8
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221009/B 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (1.65)  
16X (2)  
1
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
8
9
8
9
R0.05 TYP  
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4221009/B 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

UCC21750DW

适用于 IGBT/SiC FET 且具有 DESAT 和内部米勒钳位的 5.7kVrms ±10A 单通道隔离式栅极驱动器 | DW | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC21750DWR

适用于 IGBT/SiC FET 且具有 DESAT 和内部米勒钳位的 5.7kVrms ±10A 单通道隔离式栅极驱动器 | DW | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC21750QDWQ1

适用于 IGBT/SiC MOSFET 且具有 DESAT 和内部钳位的汽车类 5.7kVrms、±10A 单通道隔离式栅极驱动器 | DW | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC21750QDWRQ1

适用于 IGBT/SiC MOSFET 且具有 DESAT 和内部钳位的汽车类 5.7kVrms、±10A 单通道隔离式栅极驱动器 | DW | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC21755-Q1

具有主动保护和隔离式感应功能的汽车类 ±10A 隔离式单通道栅极驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC21755QDWRQ1

具有主动保护和隔离式感应功能的汽车类 ±10A 隔离式单通道栅极驱动器 | DW | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC21756-Q1

Automotive, ± 10-A  isolated single-channel gate driver with active protection and isolated sensing

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC21756QDWRQ1

Automotive, ± 10-A  isolated single-channel gate driver with active protection and isolated sensing | DW | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC21759-Q1

适用于 IGBT/SiC MOSFET 且具有 DESAT 和内部钳位的汽车类 3.0kVrms、±10A 单通道隔离式栅极驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC21759QDWQ1

适用于 IGBT/SiC MOSFET 且具有 DESAT 和内部钳位的汽车类 3.0kVrms、±10A 单通道隔离式栅极驱动器 | DW | 16 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC21759QDWRQ1

适用于 IGBT/SiC MOSFET 且具有 DESAT 和内部钳位的汽车类 3.0kVrms、±10A 单通道隔离式栅极驱动器 | DW | 16 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC2305

HID Lamp Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI