V62/18613-01XE [TI]

采用增强型航天塑料的 2.2V 至 36V 耐辐射微功耗四路比较器 | PW | 14 | -55 to 125;
V62/18613-01XE
型号: V62/18613-01XE
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用增强型航天塑料的 2.2V 至 36V 耐辐射微功耗四路比较器 | PW | 14 | -55 to 125

放大器 光电二极管 比较器
文件: 总23页 (文件大小:1652K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV1704-SEP  
ZHCSJ09A NOVEMBER 2018 REVISED NOVEMBER 2022  
TLV1704-SEP 采用增强型航天塑料2.2V 36V 耐辐射微功耗  
四路比较器  
1 特性  
2 应用  
VID V62/18613  
• 耐辐射  
命令和数据处(C&DH)  
飞行器驾驶舱显示屏  
飞行控制单元  
– 单粒子闩(SEL) 125°C 下的抗扰度可达  
43MeV-cm2/mg  
卫星电力系(EPS)  
30 krad(Si) 的条件下ELDRS  
– 每个晶圆批次RLAT 总电离剂(TID) 高达  
20krad(Si)  
3 说明  
TLV1704-SEP四路器件具有宽电源电压范围、轨  
到轨输入、低静态电流和低传播延迟。凭借符合行业标  
准且在极小型封装内集成的上述特性此类器件成为当  
前市场中的最佳通用比较器。  
• 增强型航天塑料  
– 受控基线  
– 金线  
NiPdAu 铅涂层  
– 一个组装和测试基地  
– 一个制造基地  
– 支持军用55°C 125°C温度范围  
– 延长了产品生命周期  
– 延长了产品变更通知  
– 产品可追溯性  
集电极开路输出带来了能够将输出拉至任意电压轨最  
多可高出负电源 36V且不受 TLV1704-SEP 电源电压  
影响的优势。  
此器件是一款微功耗比较器。低输入失调电压、低输入  
偏置电流、低电源电流和集电极开路配置使 TLV1704-  
SEP 器件能够灵活处理从简单电压检测到驱动单个继  
电器的大部分应用。  
– 采用增强型模塑化合物实现低释气  
• 电源电压范围2.2V 36V ±1.1V ±18V  
• 低静态电流每个比较55µA  
• 输入共模范围包括两个电源轨  
• 低传播延迟560ns  
• 低输入失调电压300µV  
• 集电极开路输出:  
器件信息  
等级(1)  
器件型号  
封装  
TLV1704AMPWTPSEP  
TLV1704AMPWPSEP  
20krad(Si) RLAT  
TSSOP (14)  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
– 最多可高出负电源电36V 且不受电源电压影  
• 小型封装:  
– 四通道TSSOP-14  
1200  
ê18 V Low-to-High  
ê18 V High-to-Low  
2.2 V Low-to-High  
1000  
2.2 V High-to-Low  
800  
600  
400  
200  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
D001  
稳定传播延迟与温度  
TLV1704-SEP 用作窗口比较器  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLOSE29  
 
 
 
 
TLV1704-SEP  
ZHCSJ09A NOVEMBER 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................10  
7.4 Device Functional Modes..........................................10  
8 Application and Implementation.................................. 11  
8.1 Application Information..............................................11  
8.2 Typical Application.................................................... 11  
8.3 Power Supply Recommendations.............................12  
8.4 Layout....................................................................... 13  
9 Device and Documentation Support............................14  
9.1 Documentation Support............................................ 14  
9.2 接收文档更新通知..................................................... 14  
9.3 支持资源....................................................................14  
9.4 Trademarks...............................................................14  
9.5 Electrostatic Discharge Caution................................14  
9.6 术语表....................................................................... 14  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Switching Characteristics............................................5  
6.7 Typical Characteristics................................................6  
7 Detailed Description........................................................9  
7.1 Overview.....................................................................9  
7.2 Functional Block Diagram...........................................9  
Information.................................................................... 15  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (November 2018) to Revision A (November 2022)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 将标题从“抗辐射”更新为“耐辐射”...............................................................................................................1  
• 使用链接更新了“应用”部分.............................................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLV1704-SEP  
 
TLV1704-SEP  
ZHCSJ09A NOVEMBER 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
2OUT  
1OUT  
V+  
1
2
3
4
5
6
7
14 3OUT  
4OUT  
V-  
13  
12  
11  
10  
9
1INœ  
1IN+  
4IN+  
4INœ  
2INœ  
3IN+  
2IN+  
3INœ  
8
5-1. TLV1704-SEP PW Package 14-Pin TSSOP Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
IN+  
I
I
Noninverting input.  
5
1IN+  
2IN+  
3IN+  
4IN+  
IN–  
Noninverting input, channel 1.  
Noninverting input, channel 2.  
Noninverting input, channel 3.  
Noninverting input, channel 4.  
Inverting input.  
7
I
9
I
11  
I
I
4
I
Inverting input, channel 1.  
Inverting input, channel 2.  
Inverting input, channel 3.  
Inverting input, channel 4.  
Output.  
1IN–  
2IN–  
3IN–  
4IN–  
OUT  
1OUT  
2OUT  
3OUT  
4OUT  
V+  
6
I
8
I
10  
I
O
O
O
O
O
2
Output, channel 1.  
1
Output, channel 2.  
14  
13  
3
Output, channel 3.  
Output, channel 4.  
Positive (highest) power supply.  
Negative (lowest) power supply.  
12  
V–  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV1704-SEP  
 
TLV1704-SEP  
ZHCSJ09A NOVEMBER 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
40 (±20)  
(VS+) + 0.5  
±10  
UNIT  
V
Supply voltage  
Voltage(2)  
Signal input pins  
V
(VS) 0.5  
Current(2)  
mA  
mA  
°C  
Output short-circuit(3)  
Continuous  
Operating Junction temperature, TJ  
Storage temperature, Tstg  
125  
150  
55  
65  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails must be  
current limited to 10 mA or less.  
(3) Short-circuit to ground; one comparator per package.  
6.2 ESD Ratings  
VALUE  
±1000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.2 (±1.1)  
55  
NOM  
MAX  
36 (±18)  
125  
UNIT  
V
Supply voltage VS = (VS+) (VS)  
Specified temperature  
°C  
6.4 Thermal Information  
TLV1704-SEP  
THERMAL METRIC(1)  
PW (TSSOP)  
14 PINS  
128.1  
56.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
69.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
9.1  
ψJT  
69.3  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLV1704-SEP  
 
 
 
 
 
 
 
 
 
 
 
TLV1704-SEP  
ZHCSJ09A NOVEMBER 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
at TA = 55°C to 125°C, VS = 2.2 V to 36 V, CL = 15 pF, RPULLUP = 5.1 kΩ, VCM = VS / 2, and VS = VPULLUP (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
TA = 25°C, VS = 2.2 V  
±0.5  
±0.3  
±3.5  
±2.5  
±5.5  
±20  
mV  
mV  
mV  
TA = 25°C, VS = 36 V  
TA = 55°C to 125°C  
TA = 55°C to 125°C  
TA = 25°C  
VOS  
Input offset voltage  
dVOS/dT  
PSRR  
Input offset voltage drift  
±4  
15  
20  
μV/°C  
μV/V  
μV/V  
100  
Power-supply rejection ratio  
TA = 55°C to 125°C  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
(V+)  
V
TA = 55°C to 125°C  
(V)  
INPUT BIAS CURRENT  
TA = 25°C  
5
15  
20  
nA  
nA  
nA  
IB  
Input bias current  
TA = 55°C to 125°C  
TA = 25°C  
IOS  
Input offset current  
0.5  
CLOAD  
OUTPUT  
Capacitive load drive  
See 6.7  
IO 4 mA, input overdrive = 100 mV,  
VS = 36 V  
1100  
700  
mV  
mV  
VO  
Voltage output swing from rail  
IO = 0 mA, input overdrive = 100 mV,  
VS = 36 V  
ISC  
Short circuit sink current  
Output leakage current  
TA = 25°C  
20  
70  
mA  
nA  
VIN+ > VIN, TJ = 25°C  
POWER SUPPLY  
VS  
Specified voltage range  
2.2  
36  
75  
V
IO = 0 A , TA = 25°C  
55  
μA  
μA  
IQ  
Quiescent current (per channel)  
100  
IO = 0 A, TA = 55°C to 125°C  
6.6 Switching Characteristics  
at TA = 55°C to 125°C, VS = 2.2 V to 36 V, CL = 15 pF, RPULLUP = 5.1 kΩ, VCM = VS / 2, and VS = VPULLUP (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input overdrive = 100 mV, TA  
25°C  
=
=
=
=
tpHL  
tpLH  
tR  
Propagation delay time, high-to-low  
460  
ns  
Input overdrive = 100 mV, TA  
25°C  
Propagation delay time, low-to-high  
560  
365  
240  
ns  
ns  
ns  
Input overdrive = 100 mV, TA  
25°C  
Rise time  
Fall time  
Input overdrive = 100 mV, TA  
25°C  
tF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV1704-SEP  
 
 
TLV1704-SEP  
ZHCSJ09A NOVEMBER 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics  
at TA = 25°C, VS = 5 V, RPULLUP = 5.1 kΩ, and input overdrive = 100 mV (unless otherwise noted)  
75  
70  
65  
60  
55  
50  
45  
40  
35  
6
4
2
0
VS = 2.2 V - lbn  
VS = 2.2 V - lbp  
VS = ê18 V - lbp  
VS = ê18 V - lbn  
VS = 2.2 V  
VS = ê18 V  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
Temperature (èC)  
D004  
D003  
6-1. Quiescent Current vs Temperature  
6-2. Input Bias Current vs Temperature  
1
0.75  
0.5  
0
œ2  
VS = 2.2 V  
VS = ê18 V  
VS  
=
1.1 V  
œ4  
œ6  
œ8  
œ10  
œ12  
œ14  
œ16  
œ18  
0.25  
VS  
= 18 V  
0
-55  
0
5
10  
Output Current (mA)  
15  
20  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
C011  
D002  
6-4. Output Voltage vs Output Current  
6-3. Input Offset Current vs Temperature  
3
2
1
0
3
2
1
0
-1  
-1  
-2  
-3  
-2  
-3  
0
6
12  
Common-Mode Voltage (V)  
18  
24  
30  
36  
0
0.5  
1
Common-Mode Voltage (V)  
1.5  
2
D003  
D002  
VS = ±18 V  
14 typical units shown  
VS = 2.2 V  
13 typical units shown  
6-5. Offset Voltage vs Common-Mode Voltage  
6-6. Offset Voltage vs Common-Mode Voltage  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLV1704-SEP  
 
 
TLV1704-SEP  
ZHCSJ09A NOVEMBER 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, RPULLUP = 5.1 kΩ, and input overdrive = 100 mV (unless otherwise noted)  
3
1000n  
800n  
600n  
400n  
200n  
±18 V Low-to-High  
±18 V High-to-Low  
2.2 V Low-to-High  
2.2 V High-to-Low  
2
1
0
-1  
-2  
-3  
0
200  
400  
600  
800  
1000  
Input Overdrive (mV)  
C020  
0
6
12  
18  
Supply Voltage (V)  
24  
30  
36  
D001  
6-8. Propagation Delay vs Input Overdrive  
16 typical units shown  
6-7. Offset Voltage vs Supply Voltage  
1200  
4.0  
3.5ꢀ  
3.0ꢀ  
2.5ꢀ  
2.0ꢀ  
1.5ꢀ  
1.0ꢀ  
0.5ꢀ  
0.0ꢀ  
ê18 V Low-to-High  
ê18 V High-to-Low  
2.2 V Low-to-High  
2.2 V High-to-Low  
2.2 V Supply  
±18 V Supply  
1000  
800  
600  
400  
200  
tPLH  
tPHL  
20p  
200p  
2n  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
Output Capacitive Load (F)  
C020  
D001  
6-9. Propagation Delay vs Capacitive Load  
VOD = 100 mV  
6-10. Propagation Delay vs Temperature  
,QSXWꢀ9ROWDJHꢀ  
2XWSXWꢀ9ROWDJHꢀ  
W3/+ꢀ ꢀꢈꢈꢃꢀQVꢀ  
W3/+ꢀ ꢀꢈꢃꢃꢀQVꢀ  
2XWSXWꢀ9ROWDJHꢀ  
,QSXWꢀ9ROWDJHꢀ  
7LPHꢀꢁꢂꢆꢃꢀQVꢄGLYꢅꢀ  
7LPHꢀꢁꢂꢆꢃꢀQVꢄGLYꢅꢀ  
&ꢃꢃꢇꢀ  
&ꢃꢃꢇꢀ  
VS = 36 V  
Overdrive = 100 mV  
VS = 36 V  
Overdrive = 100 mV  
6-11. Propagation Delay (TpLH  
)
6-12. Propagation Delay (TpHL)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV1704-SEP  
TLV1704-SEP  
ZHCSJ09A NOVEMBER 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, RPULLUP = 5.1 kΩ, and input overdrive = 100 mV (unless otherwise noted)  
2XWSXWꢀ9ROWDJHꢀ  
,QSXWꢀ9ROWDJHꢀ  
W3/+ꢀ ꢀꢂꢈꢃꢀQVꢀ  
W3/+ꢀ ꢀꢇꢈꢃꢀQVꢀ  
2XWSXWꢀ9ROWDJHꢀ  
,QSXWꢀ9ROWDJHꢀ  
7LPHꢀꢁꢆꢂꢃꢀQVꢄGLYꢅꢀ  
7LPHꢀꢁꢆꢂꢃꢀQVꢄGLYꢅꢀ  
&ꢃꢃꢇꢀ  
&ꢃꢆꢃꢀ  
VS = 2.2 V  
Overdrive = 100 mV  
VS = 2.2 V  
Overdrive = 100  
mV  
6-13. Propagation Delay (TpLH  
)
6-14. Propagation Delay (TpHL  
)
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
0
0
D005  
D004  
Offset Voltage (mV)  
Offset Voltage (mV)  
VS = ±18 V  
Distribution taken from 2524 comparators  
VS = 2.2 V  
Distribution taken from 2524 comparators  
6-15. Offset Voltage Production Distribution  
6-16. Offset Voltage Production Distribution  
30  
VS = 2.2 V  
25  
20  
15  
10  
5
0
0
6
12  
18  
24  
30  
36  
Supply Voltage (V)  
C016  
Sink current  
6-17. Short-Circuit Current vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLV1704-SEP  
TLV1704-SEP  
ZHCSJ09A NOVEMBER 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLV1704-SEP comparator features rail-to-rail input and output on supply voltages as high as 36 V. The rail-  
to-rail input stage enables detection of signals close to the supply and ground. The open-collector configuration  
allows the device to be used in wired-OR configurations, such as a window comparator. A low supply current of  
55 μA per channel with small, space-saving packages, makes these comparators versatile for use in a wide  
range of applications, from portable to industrial.  
7.2 Functional Block Diagram  
V+  
OUT  
IN+  
IN-  
IN+  
IN-  
V-  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV1704-SEP  
 
 
 
TLV1704-SEP  
ZHCSJ09A NOVEMBER 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Comparator Inputs  
The TLV1704-SEP device is a rail-to-rail input comparator, with an input common-mode range that includes the  
supply rails. The TLV1704-SEP device is designed to prevent phase inversion when the input pins exceed the  
supply voltage. 7-1 shows the TLV1704-SEP device response when input voltages exceed the supply,  
resulting in no phase inversion.  
Output Voltage  
Input Voltage  
Time (5 ms/div)  
C030  
7-1. No Phase Inversion: Comparator Response to Input Voltage (Propagation Delay Included)  
7.4 Device Functional Modes  
7.4.1 Setting Reference Voltage  
Using a stable reference is important when setting the transition point for the TLV1704-SEP device. The  
REF3333, as shown in 7-2, provides a 3.3-V reference voltage with low drift and only 3.9 μA of quiescent  
current.  
V
S
REF3333  
GND  
V
(PULLUP)  
V
S+  
R
(PULLUP)  
+
Device  
V
O
_
V
Sœ  
V
I
7-2. Reference Voltage for the TLV1704-SEP  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLV1704-SEP  
 
 
 
 
TLV1704-SEP  
ZHCSJ09A NOVEMBER 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The TLV1704-SEP device can be used in a wide variety of applications, such as zero crossing detectors, window  
comparators, over and undervoltage detectors, and high-side voltage sense circuits.  
8.2 Typical Application  
Comparators are used to differentiate between two different signal levels. For example, a comparator  
differentiates between an overtemperature and normal-temperature condition. However, noise or signal variation  
at the comparison threshold causes multiple transitions. This application example sets upper and lower  
hysteresis thresholds to eliminate the multiple transitions caused by noise.  
5 V  
Rp  
5 k  
-
+V  
+
Vout  
5 V  
Vin  
5 V  
Rx  
100 kΩ  
Rh  
576 kΩ  
Ry  
100 kΩ  
8-1. Comparator Schematic With Hysteresis  
8.2.1 Design Requirements  
The design requirements are as follows:  
Supply voltage: 5 V  
Input: 0 V to 5 V  
Lower threshold (VL) = 2.3 V ±0.1 V  
Upper threshold (VH) = 2.7 V ±0.1 V  
VH VL = 2.4 V ±0.1 V  
Low-power consumption  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV1704-SEP  
 
 
 
 
TLV1704-SEP  
ZHCSJ09A NOVEMBER 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
Make a small change to the comparator circuit to add hysteresis. Hysteresis uses two different threshold  
voltages to avoid the multiple transitions introduced in the previous circuit. The input signal must exceed the  
upper threshold (VH) to transition low, or below the lower threshold (VL) to transition high.  
8-1 illustrates hysteresis on a comparator. Resistor Rh sets the hysteresis level. An open-collector output  
stage requires a pullup resistor (Rp). The pullup resistor creates a voltage divider at the comparator output that  
introduces an error when the output is at logic high. This error can be minimized if Rh > 100 Rp.  
When the output is at a logic high (5 V), Rh is in parallel with Rx (ignoring Rp). This configuration drives more  
current into Ry, and raises the threshold voltage (VH) to 2.7 V. The input signal must drive above VH = 2.7 V to  
cause the output to transition to logic low (0 V).  
When the output is at logic low (0 V), Rh is in parallel with Ry. This configuration reduces the current into Ry, and  
reduces the threshold voltage to 2.3 V. The input signal must drive below VL = 2.3 V to cause the output to  
transition to logic high (5 V).  
For more details on this design and other alternative devices that can be used in place of the TLV1702, refer to  
Precision Design TIPD144, Comparator with Hysteresis Reference Design.  
8.2.3 Application Curve  
8-2 shows the upper and lower thresholds for hysteresis. The upper threshold is 2.76 V and the lower  
threshold is 2.34 V, both of which are close to the design target.  
8-2. TLV1701 Upper and Lower Threshold With Hysteresis  
8.3 Power Supply Recommendations  
The TLV1704-SEP device is specified for operation from 2.2 V to 36 V (±1.1 to ±18 V); many specifications apply  
from 55°C to 125°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are presented in the 6.7 section.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device; see the 6.1.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement; see the 8.4.1  
section.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLV1704-SEP  
 
 
TLV1704-SEP  
ZHCSJ09A NOVEMBER 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.4 Layout  
8.4.1 Layout Guidelines  
Comparators are very sensitive to input noise. For best results, maintain the following layout guidelines:  
Use a printed-circuit board (PCB) with a good, unbroken low-inductance ground plane. Proper grounding (use  
of ground plane) helps maintain specified performance of the TLV1704-SEP device.  
To minimize supply noise, place a decoupling capacitor (0.1-μF ceramic, surface-mount capacitor) as close  
as possible to VS as shown in 8-3.  
On the inputs and the output, keep lead lengths as short as possible to avoid unwanted parasitic feedback  
around the comparator. Keep inputs away from the output.  
Solder the device directly to the PCB rather than using a socket.  
For slow-moving input signals, take care to prevent parasitic feedback. A small capacitor (1000 pF or less)  
placed between the inputs can help eliminate oscillations in the transition region. This capacitor causes some  
degradation to propagation delay when the impedance is low. Run the topside ground plane between the  
output and inputs.  
Run the ground pin ground trace under the device up to the bypass capacitor, shielding the inputs from the  
outputs.  
8.4.2 Layout Example  
Ground  
Bypass  
Capacitor  
1
2
3
14  
13  
12  
1OUT  
2OUT  
3OUT  
4OUT  
0.1 μF  
Positive Supply  
V
Negative Supply or Ground  
GND  
4IN+  
4IN–  
3IN+  
CC  
Only needed  
for dual power  
supplies  
4
5
6
7
2IN–  
2IN+  
1IN–  
1IN+  
11  
10  
9
0.1 μF  
Ground  
8
3IN–  
8-3. Comparator Board Layout  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV1704-SEP  
 
 
 
TLV1704-SEP  
ZHCSJ09A NOVEMBER 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Documentation Support  
9.1.1 Related Documentation  
For related documentation, see the following:  
Precision Design, Comparator with Hysteresis Reference Design, TIDU020  
REF33xx 3.9-μA, SC70-3, SOT-23-3, and UQFN-8, 30-ppm/°C Drift Voltage Reference, SBOS392  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLV1704-SEP  
 
 
 
 
 
 
 
TLV1704-SEP  
ZHCSJ09A NOVEMBER 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV1704-SEP  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Nov-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV1704AMPWPSEP  
TLV1704AMPWTPSEP  
V62/18613-01XE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
14  
14  
14  
14  
90  
250  
250  
90  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
1704SEP  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
1704SEP  
1704SEP  
1704SEP  
V62/18613-01XE-T  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Nov-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV1704-SEP :  
Automotive : TLV1704-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Nov-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV1704AMPWTPSEP TSSOP  
PW  
14  
250  
180.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Nov-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 14  
SPQ  
Length (mm) Width (mm) Height (mm)  
210.0 185.0 35.0  
TLV1704AMPWTPSEP  
250  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Nov-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TLV1704AMPWPSEP  
V62/18613-01XE-T  
PW  
PW  
TSSOP  
TSSOP  
14  
14  
90  
90  
530  
530  
10.2  
10.2  
3600  
3600  
3.5  
3.5  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

V62/18613-01XE-T

采用增强型航天塑料的 2.2V 至 36V 耐辐射微功耗四路比较器 | PW | 14 | -55 to 125
TI

V62/18615-01XE

采用增强型航天塑料、具有增强的 PWM 抑制能力的 -4V 至 80V、超精密电流感应放大器 | PW | 8 | -55 to 125
TI

V62/18615-01XE-T

采用增强型航天塑料、具有增强的 PWM 抑制能力的 -4V 至 80V、超精密电流感应放大器 | PW | 8 | -55 to 125
TI

V62/18616-01XE

采用塑料封装的耐辐射、2.2V 至 20V 输入、1A 可调节 LDO 稳压器 | DCQ | 6 | -55 to 125
TI

V62/18616-01XE-T

采用塑料封装的耐辐射、2.2V 至 20V 输入、1A 可调节 LDO 稳压器 | DCQ | 6 | -55 to 125
TI

V62/18617-01XE

采用增强型航天塑料封装且具有待机模式的耐辐射加固保障 3.3V CAN 收发器 | D | 8 | -55 to 125
TI

V62/18617-01XE-T

采用增强型航天塑料封装且具有待机模式的耐辐射加固保障 3.3V CAN 收发器 | D | 8 | -55 to 125
TI

V62/18622-01XE

增强型产品 2.5V 低温漂、低功耗串联电压基准 | DBV | 6 | -55 to 125
TI

V62/18622-02XE

增强型产品 4.1V 低温漂、低功耗串联电压基准 | DBV | 6 | -55 to 125
TI

V62/18622-03XE

增强型产品 3V 低温漂、低功耗、小型串联电压基准 | DBV | 6 | -55 to 125
TI

V62/18622-04XE

增强型产品 3.3V 低温漂、低功耗、小型串联电压基准 | DBV | 6 | -55 to 125
TI

V62/19602-01XE

采用塑料封装的耐辐射 40V 可调节电压监控器 | PW | 8 | -55 to 125
TI