V62/18616-01XE-T [TI]

采用塑料封装的耐辐射、2.2V 至 20V 输入、1A 可调节 LDO 稳压器 | DCQ | 6 | -55 to 125;
V62/18616-01XE-T
型号: V62/18616-01XE-T
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用塑料封装的耐辐射、2.2V 至 20V 输入、1A 可调节 LDO 稳压器 | DCQ | 6 | -55 to 125

稳压器
文件: 总31页 (文件大小:2269K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS73801-SEP  
ZHCSJ39A DECEMBER 2018 REVISED MAY 2021  
TPS73801-SEP 1A 采用增强型航天塑料的  
低噪声快速瞬态响应低压降稳压器  
1 特性  
2 应用  
VID V62/18616  
• 耐辐射  
• 支持近地轨(LEO) 航天应用  
• 用于射频、VCO、接收器和放大器的耐辐射低噪声  
线性稳压器电源  
• 洁净模拟电源要求  
SELSEB SEGR 对于  
LET 的抗扰度高43MeV-cm2/mg  
SET SEFI 的  
• 航天卫星有效载荷  
命令和数据处(C&DH)  
光学成像有效载荷  
雷达成像有效载荷  
LET 特征值高43MeV-cm2/mg  
– 每个晶圆批次的保TID 高达  
20krad(Si)  
卫星电力系(EPS)  
TID 特征值高50krad(Si)  
• 增强型航天塑料  
3 说明  
Au 键合线NiPdAu 铅涂层  
– 采用增强型塑封实现低释气  
– 制造、组装和测试一体化基地  
– 延长了产品生命周期  
– 延长了产品变更通知周期  
– 产品可追溯性  
TPS73801-SEP 是一款针对快速瞬态响应进行了优化  
的低压降 (LDO) 稳压器。该器件可提高 1A 的输出电  
压降为 300mV。工作静态电流为 1mA在关断  
时下降至小于 1µA。与许多其他稳压器相比静态电  
流受到很好的控制在压降时不上升。除了快速瞬态响  
TPS73801-SEP 稳压器还有很低的输出噪声因  
此非常适合灵敏射频电源应用。  
• 针对快速瞬态响应进行了优化  
• 输出电流1A  
• 压降电压300mV  
输出电压范围是 1.21V 20V与低至 10µF 的输出  
电容器搭配使用时可保持稳定。使用小型陶瓷电容器可  
无需额外的 ESR。内部保护电路包括反向电池保护、  
电流限制、热限制和反向电流保护。TPS73801-SEP  
稳压器可采用 6 引脚 TO-223 (DCQ) 封装提供可调  
1.21V 基准电压。  
• 低噪声45μVRMS10Hz 100kHz)  
1mA 静态电流  
• 无需保护二极管  
• 压降中的受控静态电流  
• 可调节输出电压1.21V 20V  
• 关断模式下静态电流小1µA  
10µF 输出电容器搭配使用时可保持稳定  
• 与陶瓷电容器搭配使用时可保持稳定  
• 反向电池保护  
器件信息  
器件型号(1)  
等级  
封装  
TPS73801MDCQTPSEP  
TPS73801MDCQPSEP  
SOT-223 (6)  
6.55mm × 7.26mm  
= 119.8mg(2)  
20krad(Si)  
RLAT  
• 无反向电流  
• 热限制  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
VOUT  
IN  
OUT  
录。  
(2) 质量误差±10% 以内。  
+
VIN  
R2  
R1  
TPS73801-SEP  
FB  
EN  
GND  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSER5  
 
 
 
 
TPS73801-SEP  
ZHCSJ39A DECEMBER 2018 REVISED MAY 2021  
www.ti.com.cn  
Table of Contents  
8 Application and Implementation..................................14  
8.1 Application Information............................................. 14  
8.2 Typical Application.................................................... 14  
9 Power Supply Recommendations................................17  
10 Layout...........................................................................18  
10.1 Layout Guidelines................................................... 18  
10.2 Layout Example...................................................... 18  
10.3 Thermal Considerations..........................................18  
11 Device and Documentation Support..........................20  
11.1 Receiving Notification of Documentation Updates..20  
11.2 支持资源..................................................................20  
11.3 Trademarks............................................................. 20  
11.4 Electrostatic Discharge Caution..............................20  
11.5 Glossary..................................................................20  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................11  
7.1 Overview................................................................... 11  
7.2 Functional Block Diagram......................................... 11  
7.3 Feature Description...................................................11  
7.4 Device Functional Modes..........................................13  
Information.................................................................... 21  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2018) to Revision A (May 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 更新了部分中的耐辐射和增强型航天塑料要点............................................................................................1  
• 更新了部分..................................................................................................................................................1  
• 向“器件信息”表添加了器件质量和尺寸...........................................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS73801-SEP  
 
TPS73801-SEP  
ZHCSJ39A DECEMBER 2018 REVISED MAY 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
5
4
3
2
1
EN  
FB  
6
GND  
OUT  
IN  
5-1. DCQ Package  
SOT-223  
Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
Input. Power is supplied to the device through the IN pin. A bypass capacitor is required on this pin if  
the device is more than six inches away from the main input filter capacitor. In general, the output  
impedance of a battery rises with frequency, so it is advisable to include a bypass capacitor in battery-  
powered circuits. A bypass capacitor (ceramic) in the range of 1 µF to 10 µF is sufficient. The  
TPS73801-SEP regulators are designed to withstand reverse voltages on the IN pin with respect to  
ground and the OUT pin. In the case of a reverse input, which can happen if a battery is plugged in  
backwards, the device acts as if there is a diode in series with its input. There is no reverse current  
flow into the regulator, and no reverse voltage appears at the load. The device protects both itself and  
the load.  
1
IN  
Output. The output supplies power to the load. A minimum output capacitor (ceramic) of 10 µF is  
required to prevent oscillations. Larger output capacitors are required for applications with large  
transient loads to limit peak voltage transients.  
2
3
4
OUT  
GND  
FB  
I
Ground.  
Feedback. This is the input to the error amplifier. This pin is internally clamped to ±7 V. It has a bias  
current of 3 µA that flows into the pin. The FB pin voltage is 1.21 V referenced to ground, and the  
output voltage range is 1.21 V to 20 V.  
Enable. The EN pin is used to put the TPS73801-SEP regulators into a low-power shutdown state.  
The output is off when the EN pin is pulled low. The EN pin can be driven either by 5-V logic or open-  
collector gate, normally several microamperes, and the EN pin current, typically 3 µA. If unused, the  
EN pin must be connected to the IN pin. The device is in the low-power shutdown state if the EN pin is  
not connected.  
5
6
EN  
I
GND  
Ground.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS73801-SEP  
 
TPS73801-SEP  
ZHCSJ39A DECEMBER 2018 REVISED MAY 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
20  
20  
20  
7  
MAX  
20  
UNIT  
IN  
OUT  
20  
VIN  
Input voltage  
Input-to-output differential(2)  
20  
V
FB  
EN  
7
20  
20  
tshort  
TJ  
Output short-circuit duration  
Indefinite  
150  
150  
Operating virtual-junction temperature  
Storage temperature  
°C  
°C  
55  
65  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Absolute maximum input-to-output differential voltage cannot be achieved with all combinations of rated IN pin and OUT pin voltages.  
With the IN pin at 20 V, the OUT pin may not be pulled below 0 V. The total measured voltage from IN to OUT cannot exceed ±20 V.  
6.2 ESD Ratings  
VALUE  
2000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
20  
UNIT  
VIN  
VIH  
VIL  
TJ  
Input voltage  
VOUT + VDO  
2
V
V
EN high-level input voltage  
EN low-level input voltage  
Recommended operating junction temperature  
20  
0.25  
125  
V
°C  
55  
6.4 Thermal Information  
TPS73801-SEP  
THERMAL METRIC(1)  
DCQ (SOT-223)  
UNIT  
6 PINS  
50.5  
31.1  
5.1  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1
ψJT  
5
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS73801-SEP  
 
 
 
 
 
 
 
 
 
 
TPS73801-SEP  
ZHCSJ39A DECEMBER 2018 REVISED MAY 2021  
www.ti.com.cn  
6.5 Electrical Characteristics  
Over operating temperature range TA = 55°C to 125°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TJ  
MIN TYP(9) MAX UNIT  
VIN  
Input voltage(1) (2)  
25°C  
2.2  
1.192  
1.174  
1.9  
20  
V
VIN = 2.21 V, ILOAD = 1 mA  
25°C  
1.21 1.228  
1.21 1.246  
VFB  
FB pin voltage(1) (3)  
Line regulation(1)  
Load regulation(1)  
V
VIN = 2.5 V to 20 V, ILOAD = 1 mA to 1 A  
Full range  
Full range  
25°C  
1.5  
2
5
8
mV  
mV  
ΔVIN = 2.21 V to 20 V, ILOAD = 1 mA  
VIN = 2.5 V, ΔILOAD = 1 mA to 1 A  
ILOAD = 1 mA  
Full range  
25°C  
18  
0.02  
0.1  
0.06  
0.10  
0.17  
0.22  
0.27  
0.35  
0.30  
0.40  
1.5  
Full range  
25°C  
ILOAD = 100 mA  
Dropout voltage(2) (5) (4)  
VIN = VOUT(NOMINAL)  
Full range  
25°C  
VDO  
V
0.19  
0.24  
ILOAD = 500 mA  
Full range  
25°C  
ILOAD = 1 A  
Full range  
Full range  
Full range  
Full range  
Full range  
Full range  
ILOAD = 0 mA  
ILOAD = 1 mA  
ILOAD = 100 mA  
ILOAD = 500 mA  
ILOAD = 1 A  
1
1.1  
3.8  
15  
1.6  
GND pin current(4) (6)  
VIN = VOUT(NOMINAL) + 1  
IGND  
5.5  
mA  
25  
35  
80  
COUT = 10 µF, ILOAD = 1 A,  
BW = 10 Hz to 100 kHz  
VN  
IFB  
Output voltage noise  
25°C  
45  
µVRMS  
µA  
FB pin bias current(1) (7)  
25°C  
Full range  
Full range  
25°C  
3
0.9  
10  
2
VOUT = OFF to ON  
VOUT = ON to OFF  
VEN = 0 V  
VEN  
Shutdown threshold  
EN pin current  
V
0.15  
0.75  
0.01  
3
1
30  
1
IEN  
µA  
VEN = 20 V  
25°C  
Quiescent current in shutdown VIN = 6 V, VEN = 0 V  
25°C  
0.01  
µA  
dB  
VIN VOUT = 1.5 V (avg), VRIPPLE = 0.5 VP-P  
fRIPPLE = 120 Hz, ILOAD = 0.75 A  
,
PSRR Ripple rejection(10)  
25°C  
55  
63  
2
VIN = 7 V, VOUT = 0 V  
25°C  
Full range  
Full range  
25°C  
ICL  
Current limit  
A
VIN = VOUT(NOMINAL) + 1  
VIN = 20 V, VOUT = 0 V  
VOUT = 1.21 V, VIN < 1.21 V  
1.6  
IREV  
IRO  
Input reverse leakage current  
Reverse output current(8)  
1
mA  
µA  
300  
600  
(1) The TPS73801-SEP is tested and specified for these conditions with the FB pin connected to the OUT pin.  
(2) Dropout voltages are limited by the minimum input voltage specification under some output voltage/load conditions.  
(3) Operating conditions are limited by maximum junction temperature. The regulated output voltage specification does not apply for all  
possible combinations of input voltage and output current. When operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current, the input voltage range must be limited.  
(4) To satisfy requirements for minimum input voltage, the TPS73801-SEP is tested and specified for these conditions with an external  
resistor divider (two 4.12-kΩresistors) for an output voltage of 2.4 V. The external resistor divider adds a 300-mA DC load on the  
output.  
(5) Dropout voltage is the minimum input to output voltage differential needed to maintain regulation at a specified output current. In  
dropout, the output voltage is equal to VIN VDROPOUT  
.
(6) GND pin current is tested with VIN = (VOUT(NOMINAL) + 1 V) and a current source load. The GND pin current decreases at higher input  
voltages.  
(7) FB pin bias current flows into the FB pin.  
(8) Reverse output current is tested with the IN pin grounded and the OUT pin forced to the rated output voltage. This current flows into  
the OUT pin and out the GND pin.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS73801-SEP  
 
 
 
 
 
 
 
 
 
TPS73801-SEP  
ZHCSJ39A DECEMBER 2018 REVISED MAY 2021  
www.ti.com.cn  
(9) Typical values represent the likely parametric nominal values determined at the time of characterization. Typical values depend on the  
application and configuration and may vary over time. Typical values are not ensured on production material.  
(10) Parameter is specified by characterization and is not tested in production.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS73801-SEP  
 
 
TPS73801-SEP  
ZHCSJ39A DECEMBER 2018 REVISED MAY 2021  
www.ti.com.cn  
6.6 Typical Characteristics  
480  
600  
500  
400  
300  
200  
100  
0
TA = 25èC  
TA = 125èC  
TA = œ55èC  
Iout = 1 mA  
Iout = 100 mA  
Iout = 0.5 A  
Iout = 0.75 A  
Iout = 1 A  
360  
240  
120  
0
0
0.25  
0.5 0.75  
Output Current (A)  
1
1.25  
1.5  
-75  
-25  
25  
TA Free Air Temperature (°C)  
75  
125  
D005  
D001  
6-1. Dropout Voltage vs Output Current  
6-2. Dropout Voltage vs Temperature  
1.5  
1.4  
1.3  
1.2  
1.1  
1
1.23  
1.225  
1.22  
1.215  
1.21  
1.205  
1.2  
0.9  
0.8  
0.7  
0.6  
0.5  
1.195  
1.19  
-75  
-50  
-25  
0
25  
50  
75  
100  
125  
TA Free Air Temperature (èC)  
-50  
-25  
0
25  
50  
75  
100  
125  
D020  
TA – Free-Air Temperature – °C  
VIN = 2.9 V  
IOUT = 1 mA  
VIN = 6 V  
IOUT = 0 A  
VEN = VIN  
6-3. Quiescent Current vs Temperature  
6-4. Output Voltage vs Temperature  
1.2  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
0.8  
0.6  
0.4  
0.2  
0
IOUT = 1 A  
IOUT = 0.5 A  
0
1
2
3
4
5
6
7
8
9
10  
0
2
4
6
8
10 12 14 16  
18 20  
Input Voltage – V  
Input Voltage – V  
TJ = 25°C  
VEN = VIN  
TJ = 25°C  
VOUT = 1.21 V  
VEN = VIN  
ROUT = 4.3 kΩ  
6-6. Ground Current vs Input Voltage  
6-5. Quiescent Current vs Input Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS73801-SEP  
 
TPS73801-SEP  
ZHCSJ39A DECEMBER 2018 REVISED MAY 2021  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
10  
80  
70  
60  
50  
40  
30  
20  
10  
0
8
6
4
2
0
IOUT = 300 mA  
IOUT = 100 mA  
IOUT = 10 mA  
0
0.2  
0.4  
0.6  
0.8  
1
0
1
2
3
4
5
6
7
8
9
10  
Input Voltage – V  
Output Current – A  
TJ = 25°C  
VOUT = 1.21 V  
VEN = VIN  
VIN = VOUT(nom) + 1  
6-8. Ground Current vs Output Current  
6-7. Ground Current vs Input Voltage  
2.5  
0.2  
0.15  
0.1  
2.25  
2
1.75  
1.5  
1.25  
1
0.05  
0.75  
0.5  
0.25  
0
0
-75  
-50  
-25  
0
25  
50  
75  
100  
125  
TA Free Air Temperature (èC)  
D011  
0
2
4
6
8
10 12 14 16 18 20  
VEN = 0 V  
6-9. EN Input Current vs Temperature  
EN Input Voltage – V  
6-10. EN Input Current vs EN Input Voltage  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-75  
-50  
-25  
0
TA Free Air Temperature (°C)  
25  
50  
75  
100  
125  
-75  
-50  
-25  
0
TA Free Air Temperature (°C)  
25  
50  
75  
100  
125  
D013  
D014  
IOUT = 1 mA  
IOUT = 1 mA  
6-12. EN Threshold (On to Off) vs Temperature  
6-11. EN Threshold (Off to On) vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS73801-SEP  
TPS73801-SEP  
ZHCSJ39A DECEMBER 2018 REVISED MAY 2021  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
3.5  
3
5
4
3
2
1
0
TA = -40°C  
TA = 25°C  
2.5  
2
TA = 125°C  
1.5  
1
0.5  
0
0
2
4
6
8
10 12  
14  
16 18  
20  
-75  
-50  
-25  
0
25  
50  
TA Free Air Temperature (°C)  
75  
100  
125  
Input/Output Differential Voltage – V  
D015  
ΔVOUT = 100 mV  
6-13. FB Bias Current vs Temperature  
6-14. Current Limit vs Input/Output Differential Voltage  
5
4
3
2
1
0
12  
10  
8
6
4
2
0
-2  
0
2
4
6
8
10  
-50  
-25  
0
25  
50  
75  
TA – Free-Air Temperature – °C  
100  
125  
Output Voltage – V  
VIN = 7 V  
VOUT = 0 V  
TJ = 25°C  
VIN = 0 V  
Current flows into OUT pin  
6-15. Current Limit vs Temperature  
6-16. Reverse Output Current vs Output Voltage  
80  
1000  
800  
600  
400  
200  
0
70  
60  
50  
40  
30  
20  
10  
0
-75  
-50  
-25  
0
25  
50  
TA Free Air Temperature (°C)  
75  
100  
125  
10  
100  
1k  
10k  
100k  
1M  
D008  
Frequency – Hz  
VIN = 0 V  
VIN = 2.7 V  
CIN = 0  
VRIPPLE = 0.05 VPP IOUT = 750 mA  
COUT = 10 µF (ceramic) TA = 25°C  
6-18. Ripple Rejection vs Frequency  
6-17. Reverse Output Current vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS73801-SEP  
TPS73801-SEP  
ZHCSJ39A DECEMBER 2018 REVISED MAY 2021  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
20  
15  
10  
1
TPS73801  
5
0
-5  
0.1  
-10  
-15  
-20  
-25  
-30  
-35  
0.01  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
100k  
100  
1k  
10k  
TA – Free-Air Temperature – °C  
Frequency – Hz  
IOUT = 1 A  
COUT = 10 µF (ceramic)  
IOUT = 1 A  
6-19. Load Regulation vs Temperature  
6-20. Output Noise Voltage vs Frequency  
VIN = 4.3 V  
CIN = 10 µF COUT = 10 µF (ceramic)  
VIN = 4.3 V  
CIN = 10 µF COUT = 10 µF (ceramic)  
6-22. Max Load Transient Response  
6-21. Load Transient Response  
IOUT = 1.5 A  
CIN = 10 µF  
COUT = 10 µF (ceramic)  
6-23. Line Transient Response  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS73801-SEP  
TPS73801-SEP  
ZHCSJ39A DECEMBER 2018 REVISED MAY 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS73801-SEP is a 1-A LDO regulator optimized for fast transient response. The devices are capable of  
supplying 1 A at a dropout voltage of 300 mV. The low operating quiescent current (1 mA) drops to less than  
1 µA in shutdown. In addition to the low quiescent current, the TPS73801-SEP regulators incorporate several  
protection features which make them ideal for use in battery-powered systems. The devices are protected  
against both reverse input and reverse output voltages. In battery-backup applications where the output can be  
held up by a backup battery when the input is pulled to ground, the TPS73801-SEP acts as if it has a diode in  
series with its output and prevents reverse current flow. Additionally, in dual-supply applications where the  
regulator load is returned to a negative supply, the output can be pulled below ground by as much as 20 V and  
still allow the device to start and operate.  
7.2 Functional Block Diagram  
Reverse  
Current  
Protection  
Pass  
Element  
Current  
Limit  
IN  
OUT  
EN  
Error Amplifier  
+
Thermal  
Overload  
FB  
+
Voltage Reference  
Reverse  
Voltage  
Protection  
GND  
7.3 Feature Description  
7.3.1 Adjustable Operation  
The TPS73801-SEP has an adjustable output voltage range of 1.21 V to 20 V. The output voltage is set by the  
ratio of two external resistors as shown in 7-1. The device maintains the voltage at the FB pin at 1.21 V  
referenced to ground. The current in R1 is then equal to (1.21 V / R1), and the current in R2 is the current in R1  
plus the FB pin bias current. The FB pin bias current, 3 µA at 25°C, flows through R2 into the FB pin. The output  
voltage can be calculated using the formula shown in 方程式 1. The value of R1 should be less than 4.17 kΩ to  
minimize errors in the output voltage caused by the FB pin bias current. Note that in shutdown the output is  
turned off, and the divider current is zero.  
IN  
VOUT  
OUT  
+
VIN  
R2  
R1  
TPS73801-SEP  
FB  
EN  
GND  
7-1. Adjustable Operation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS73801-SEP  
 
 
 
 
 
TPS73801-SEP  
ZHCSJ39A DECEMBER 2018 REVISED MAY 2021  
www.ti.com.cn  
The output voltage can be set using the following equations:  
V
OUT = 1.21 V(1+ R2) +IFB ´R2  
R1  
(1)  
(2)  
(3)  
(4)  
VFB = 1.21 V  
IFB = 3 µA at 25°C  
Output Range = 1.21 to 20 V  
7.3.2 Fixed Operation  
The TPS73801-SEP can be used in a fixed voltage configuration. By connecting the FB pin to OUT, the  
TPS73801-SEP will regulate the output to 1.21 V. During fixed voltage operation, the FB pin can be used for a  
Kelvin connection if routed separately to the load. This allows the regulator to compensate for voltage drop  
across parasitic resistances (RP) between the output and the load. This becomes more crucial with higher load  
currents.  
RP  
IN  
TPS73801-SEP  
EN FB  
OUT  
+
VIN  
Load  
GND  
RP  
7-2. Kelvin Sense Connection  
7.3.3 Overload Recovery  
Like many IC power regulators, the TPS73801-SEP has safe operating area protection. The safe area protection  
decreases the current limit as input-to-output voltage increases and keeps the power transistor inside a safe  
operating region for all values of input-to-output voltage. The protection is designed to provide some output  
current at all values of input-to-output voltage up to the device breakdown.  
When power is first turned on, as the input voltage rises, the output follows the input, allowing the regulator to  
start up into very heavy loads. During start up, as the input voltage is rising, the input-to-output voltage  
differential is small, allowing the regulator to supply large output currents. With a high input voltage, a problem  
can occur wherein removal of an output short does not allow the output voltage to recover. Other regulators also  
exhibit this phenomenon, so it is not unique to the TPS73801-SEP.  
The problem occurs with a heavy output load when the input voltage is high and the output voltage is low.  
Common situations occur immediately after the removal of a short circuit or when the shutdown pin is pulled high  
after the input voltage has already been turned on. The load line for such a load may intersect the output current  
curve at two points. If this happens, there are two stable output operating points for the regulator. With this  
double intersection, the input power supply may need to be cycled down to zero and brought up again to make  
the output recover.  
7.3.4 Output Voltage Noise  
The TPS73801-SEP regulators have been designed to provide low output voltage noise over the 10-Hz to 100-  
kHz bandwidth while operating at full load. Output voltage noise is typically 40 nV/Hz over this frequency  
bandwidth for the TPS73801-SEP. For higher output voltages (generated by using a resistor divider), the output  
voltage noise is gained up accordingly. This results in RMS noise over the 10-Hz to 100-kHz bandwidth of 14  
µVRMS for the TPS73801-SEP.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS73801-SEP  
 
TPS73801-SEP  
ZHCSJ39A DECEMBER 2018 REVISED MAY 2021  
www.ti.com.cn  
Higher values of output voltage noise may be measured when care is not exercised with regards to circuit layout  
and testing. Crosstalk from nearby traces can induce unwanted noise onto the output of the TPS73801-SEP.  
Power supply ripple rejection must also be considered; the TPS73801-SEP regulators do not have unlimited  
power-supply rejection and pass a small portion of the input noise through to the output.  
7.3.5 Protection Features  
The TPS73801-SEP regulators incorporate several protection features that make them ideal for use in battery-  
powered circuits. In addition to the normal protection features associated with monolithic regulators, such as  
current limiting and thermal limiting, the devices are protected against reverse input voltages, reverse output  
voltages, and reverse voltages from output to input.  
Current limit protection and thermal overload protection are intended to protect the device against current  
overload conditions at the output of the device. For normal operation, the junction temperature should not  
exceed 125°C.  
The input of the device withstands reverse voltages of 20 V. Current flow into the device is limited to less than 1  
mA (typically less than 100 µA), and no negative voltage appears at the output. The device protects both itself  
and the load. This provides protection against batteries that can be plugged in backward.  
The output of the TPS73801-SEP can be pulled below ground without damaging the device. If the input is left  
open circuit or grounded, the output can be pulled below ground by 20 V. The output acts like an open circuit; no  
current flows out of the pin. If the input is powered by a voltage source, the output sources the short-circuit  
current of the device and protects itself by thermal limiting. In this case, grounding the EN pin turns off the device  
and stops the output from sourcing the short-circuit current.  
The FB pin can be pulled above or below ground by as much as 7 V without damaging the device. If the input is  
left open circuit or grounded, the FB pin acts like an open circuit when pulled below ground and like a large  
resistor (typically 5 kΩ) in series with a diode when pulled above ground.  
In situations where the FB pin is connected to a resistor divider that would pull the FB pin above its 7-V clamp  
voltage if the output is pulled high, the FB pin input current must be limited to less than 5 mA. For example, a  
resistor divider is used to provide a regulated 1.5-V output from the 1.21-V reference when the output is forced to  
20 V. The top resistor of the resistor divider must be chosen to limit the current into the FB pin to less than 5 mA  
when the FB pin is at 7 V. The 13-V difference between OUT and FB pins divided by the 5-mA maximum current  
into the FB pin yields a minimum top resistor value of 2.6 kΩ.  
In circuits where a backup battery is required, several different input and output conditions can occur. The output  
voltage may be held up while the input is either pulled to ground, pulled to some intermediate voltage, or is left  
open circuit. When the IN pin of the TPS73801-SEP is forced below the OUT pin or the OUT pin is pulled above  
the IN pin, input current typically drops to less than 2 µA. This can happen if the input of the device is connected  
to a discharged (low voltage) battery and the output is held up by either a backup battery or a second regulator  
circuit. The state of the EN pin has no effect on the reverse output current when the output is pulled above the  
input.  
7.4 Device Functional Modes  
See the device modes in 7-1.  
7-1. Device Modes  
EN  
DEVICE STATE  
Regulated voltage  
Shutdown  
H
L
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS73801-SEP  
 
 
TPS73801-SEP  
ZHCSJ39A DECEMBER 2018 REVISED MAY 2021  
www.ti.com.cn  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Output Capacitance and Transient Response  
The TPS73801-SEP regulators are designed to be stable with a wide range of output capacitors. The ESR of the  
output capacitor affects stability, most notably with small capacitors. A minimum output capacitor of 10 µF with  
an ESR of 3 Ω or less is recommended to prevent oscillations. Larger values of output capacitance can  
decrease the peak deviations and provide improved transient response for larger load current changes. Bypass  
capacitors, used to decouple individual components powered by the TPS73801-SEP, increase the effective  
output capacitor value.  
Extra consideration must be given to the use of ceramic capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior over temperature and applied voltage. The most common  
dielectrics used are Z5U, Y5V, X5R and X7R. The Z5U and Y5V dielectrics are good for providing high  
capacitances in a small package, but exhibit strong voltage and temperature coefficients. When used with a 5-V  
regulator, a 10-µF Y5V capacitor can exhibit an effective value as low as 1 µF to 2 µF over the operating  
temperature range. The X5R and X7R dielectrics result in more stable characteristics and are more suitable for  
use as the output capacitor. The X7R type has better stability across temperature, while the X5R is less  
expensive and is available in higher values.  
Voltage and temperature coefficients are not the only sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates voltage across its terminals due to mechanical stress,  
similar to the way a piezoelectric accelerometer or microphone works. For a ceramic capacitor, the stress can be  
induced by vibrations in the system or thermal transients.  
8.2 Typical Application  
This section will highlight some of the design considerations when implementing this device in various  
applications.  
IN  
2.5 V at 1 A  
OUT  
TPS73801-SEP  
+
R2  
4.22 k  
C2  
10 µF  
C1  
10 µF  
VIN = 5 V  
FB  
EN  
GND  
R1  
4 kꢀ  
All capacitors are ceramic.  
8-1. Adjustable Output Voltage Operation  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS73801-SEP  
 
 
 
 
TPS73801-SEP  
ZHCSJ39A DECEMBER 2018 REVISED MAY 2021  
www.ti.com.cn  
8.2.1 Design Requirements  
8-1 shows the design parameters for this application.  
8-1. Design Parameters  
DESIGN PARAMETER  
Input voltage (VIN)  
Output voltage (VOUT  
EXAMPLE VALUE  
5 V  
2.5 V  
0 to 1 A  
1%  
)
Output current (IOUT  
Load regulation  
)
8.2.2 Detailed Design Procedure  
The TPS73801-SEP has an adjustable output voltage range of 1.21 to 20 V. The output voltage is set by the  
ratio of two external resistors R1 and R2 as shown in Adjustable Output Voltage Operation. The device  
maintains the voltage at the FB pin at 1.21 V referenced to ground. The current in R1 is then equal to (1.21 V /  
R1), and the current in R2 is the current in R1 plus the FB pin bias current. The FB pin bias current, 3 µA at  
25°C, flows through R2 into the FB pin. The output voltage can be calculated using 方程5.  
V
OUT = 1.21 V(1+ R2) +IFB ´R2  
R1  
(5)  
The value of R1 should be less than 4.17 kΩ to minimize errors in the output voltage caused by the FB pin bias  
current. Note that in shutdown the output is turned off, and the divider current is zero. For an output voltage of  
2.50 V, R1 will be set to 4.0 kΩ. R2 is then found to be 4.22 kΩusing the equation above.  
4.22kW  
V
OUT = 1.21V(1+  
) + 3µA ´ 4.22kW  
4.0kW  
(6)  
(7)  
VOUT = 2.50 V  
The adjustable device is tested and specified with the FB pin tied to the OUT pin for an output voltage of 1.21 V.  
Specifications for output voltages greater than 1.21 V are proportional to the ratio of the desired output voltage to  
1.21 V: VOUT / 1.21 V. For example, load regulation for an output current change of 1 mA to 1.5 A is 2 mV (typ)  
at VOUT = 1.21 V. At VOUT = 2.50 V, the typical load regulation is:  
(2.50 V / 1.21 V)(2 mV) = 4.13 mV  
(8)  
8-2 shows the actual change in output is approximately 3 mV for a 1-A load step. The maximum load  
regulation at 25°C is 8 mV. At VOUT = 2.50 V, the maximum load regulation is:  
(2.50 V / 1.21 V)(8 mV) = 16.53 mV  
(9)  
Since 16.53 mV is 0.7% of the 2.5-V output voltage, the load regulation will meet the design requirements.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS73801-SEP  
 
 
TPS73801-SEP  
ZHCSJ39A DECEMBER 2018 REVISED MAY 2021  
www.ti.com.cn  
8.2.3 Application Curve  
8-2. 1-A Load Transient Response  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS73801-SEP  
 
TPS73801-SEP  
ZHCSJ39A DECEMBER 2018 REVISED MAY 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
The device is designed to operate with an input voltage supply up to 20 V. The minimum input voltage should  
provide adequate headroom greater than the dropout voltage in order for the device to have a regulated output.  
If the input supply is noisy, additional input capacitors with low ESR can help improve the output noise  
performance.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS73801-SEP  
 
TPS73801-SEP  
ZHCSJ39A DECEMBER 2018 REVISED MAY 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
1. For best performance, all traces should be as short as possible.  
2. Use wide traces for IN, OUT, and GND to minimize the parasitic electrical effects.  
3. A minimum output capacitor of 10 µF with an ESR of 3 Ωor less is recommended to prevent oscillations.  
X5R and X7R dielectrics are preferred.  
4. Place the output capacitor as close as possible to the OUT pin of the device.  
5. The tab of the DCQ package should be connected to ground.  
10.2 Layout Example  
10-1. SOT-223 Layout Example (DCQ)  
10.3 Thermal Considerations  
The power handling capability of the device is limited by the recommended maximum operating junction  
temperature (125°C). The power dissipated by the device is made up of two components:  
1. Output current multiplied by the input/output voltage differential: IOUT (VIN VOUT  
)
2. GND pin current multiplied by the input voltage: IGND × VIN  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS73801-SEP  
 
 
 
 
TPS73801-SEP  
ZHCSJ39A DECEMBER 2018 REVISED MAY 2021  
www.ti.com.cn  
The GND pin current can be found using the GND Pin Current graphs in 6.6 . Power dissipation is equal to  
the sum of the two components listed above.  
The TPS73801-SEP series regulators have internal thermal limiting designed to protect the device during  
overload conditions. For continuous normal conditions, the recommended maximum operating junction  
temperature is 125°C. It is important to give careful consideration to all sources of thermal resistance from  
junction to ambient. Additional heat sources mounted nearby must also be considered.  
10.3.1 Calculating Junction Temperature  
Example: Given an output voltage of 3.3 V, an input voltage range of 4 V to 6 V, an output current range of 0 mA  
to 500 mA, and a maximum ambient temperature of 50°C, what is the operating junction temperature?  
The power dissipated by the device is equal to:  
IOUT(MAX)(VIN(MAX) VOUT) + IGND(VIN(MAX)  
)
(10)  
where  
IOUT(MAX) = 500 mA  
VIN(MAX) = 6 V  
IGND at (IOUT = 500 mA, VIN = 6 V) = 10 mA  
So,  
P = 500 mA × (6 V 3.3 V) + 10 mA × 6 V = 1.41 W  
(11)  
The thermal resistance of the DCQ package is 50.5°C/W. So the junction temperature rise above ambient is  
approximately equal to:  
1.41 W × 50.5°C/W = 71.2°C  
(12)  
The junction temperature rise can then be added to the maximum ambient temperature to find the operating  
junction temperature (TJ):  
TJ = 50°C + 71.2°C = 121.2°C  
(13)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS73801-SEP  
TPS73801-SEP  
ZHCSJ39A DECEMBER 2018 REVISED MAY 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.5 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS73801-SEP  
 
 
 
 
 
 
TPS73801-SEP  
ZHCSJ39A DECEMBER 2018 REVISED MAY 2021  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS73801-SEP  
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Apr-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS73801MDCQPSEP  
TPS73801MDCQTPSEP  
V62/18616-01XE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
DCQ  
DCQ  
DCQ  
DCQ  
6
6
6
6
78  
250  
250  
78  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
73801-SP  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
73801-SP  
73801-SP  
73801-SP  
V62/18616-01XE-T  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Apr-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS73801MDCQTPSEP SOT-223 DCQ  
6
250  
177.8  
12.4  
7.1  
7.45  
1.88  
8.0  
12.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOT-223 DCQ  
SPQ  
Length (mm) Width (mm) Height (mm)  
213.0 191.0 35.0  
TPS73801MDCQTPSEP  
6
250  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TPS73801MDCQPSEP  
V62/18616-01XE-T  
DCQ  
DCQ  
SOT-223  
SOT-223  
6
6
78  
78  
532.13  
532.13  
8.63  
8.63  
3.6  
3.6  
3.68  
3.68  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DCQ0006A  
SOT - 1.8 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC SMALL OUTLINE  
7.26  
6.86  
3.6  
3.4  
NOTE 3  
0.08  
B
A
PIN 1  
INDEX AREA  
1
1.27  
TYP  
6.6  
6.4  
NOTE 3  
5.08  
6
3.05  
2.95  
0.1  
C A B  
5
0.51  
5X  
0.41  
0.10  
(1.6)  
0.02  
0.1  
C A B  
1.8 MAX  
0.32  
0.24  
0.25  
GAGE PLANE  
1.14  
0.91  
SEATING PLANE  
C
0 -8  
TYP  
4214845/C 11/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCQ0006A  
SOT - 1.8 mm max height  
PLASTIC SMALL OUTLINE  
(6)  
1
0.2 TYP  
4X (1.27)  
(1.35)  
SYMM  
(3.2)  
6
(R0.05) TYP  
(0.775) TYP  
5X (0.65)  
5
(2.05)  
PKG  
5X (2.05)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK DETAILS  
4214845/C 11/2021  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
6. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCQ0006A  
SOT - 1.8 mm max height  
PLASTIC SMALL OUTLINE  
(6)  
1
(0.56) TYP  
(0.755)  
(1.27) TYP  
SYMM  
6
4X (1.31)  
(R0.05) TYP  
4X (0.92)  
5X (0.65)  
5
SYMM  
5X (2.05)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4214845/C 11/2021  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

V62/18617-01XE

采用增强型航天塑料封装且具有待机模式的耐辐射加固保障 3.3V CAN 收发器 | D | 8 | -55 to 125
TI

V62/18617-01XE-T

采用增强型航天塑料封装且具有待机模式的耐辐射加固保障 3.3V CAN 收发器 | D | 8 | -55 to 125
TI

V62/18622-01XE

增强型产品 2.5V 低温漂、低功耗串联电压基准 | DBV | 6 | -55 to 125
TI

V62/18622-02XE

增强型产品 4.1V 低温漂、低功耗串联电压基准 | DBV | 6 | -55 to 125
TI

V62/18622-03XE

增强型产品 3V 低温漂、低功耗、小型串联电压基准 | DBV | 6 | -55 to 125
TI

V62/18622-04XE

增强型产品 3.3V 低温漂、低功耗、小型串联电压基准 | DBV | 6 | -55 to 125
TI

V62/19602-01XE

采用塑料封装的耐辐射 40V 可调节电压监控器 | PW | 8 | -55 to 125
TI

V62/19602-01XE-T

采用塑料封装的耐辐射 40V 可调节电压监控器 | PW | 8 | -55 to 125
TI

V62/19608-01XE

增强型产品 PCI 基于 EXPRESS® 的 IEEE 1394b OHCI 主机控制器 | PZT | 100 | -40 to 110
TI

V62/19616-01XE

具有相位同步功能的增强型产品 15GHz 射频合成器 | RTC | 48
TI

V62/19622-01XE

精度为 0.5% 的塑料增强型、低电压、宽工作电流、可调节精密并联稳压器 | DBZ | 3 | -55 to 125
TI

V62/19623-019A

采用塑料封装的抗辐射、3.5V 至 32V 输入、6A 同步降压转换器 | KGD | 0
TI