XC9519 [TOREX]

Dual Output Step-Up/Inverting DC/DC Converter; 双输出升压/负输出DC / DC转换器
XC9519
型号: XC9519
厂家: Torex Semiconductor    Torex Semiconductor
描述:

Dual Output Step-Up/Inverting DC/DC Converter
双输出升压/负输出DC / DC转换器

转换器
文件: 总38页 (文件大小:1801K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XC9519Series  
ETR0710-008  
Dual Output Step-Up/Inverting DC/DC Converter  
GENERAL DESCRIPTION  
The XC9519 series is a 2 channel (step-up and inverting) DC/DC converter IC. One DC/DC converter is a step-up DC/DC and the other is an  
inverting DC/DC converter. The step-up converter compares a built-in reference voltage 1.0V to the FBP voltage (accuracy ±1.5%) and a  
positive output voltage can be set freely with the external components up to 18V. The inverting DC/DC converter compares a difference  
between a reference voltage and the FBN voltage (accuracy ±1.5%) to the GND, then a negative output voltage can be set until -15V with the  
external components.  
With a 1.2MHz frequency, the size of the external components can be reduced. As for operation mode, the device can be selected to use PWM  
control or automatic PWM/PFM switching control by the MODE pin. In the automatic PWM/PFM switching control mode, control switches from  
PWM to PFM during light loads. The series is highly efficient from light loads through to large output currents. In the PWM control mode,  
noise is easily reduced since the frequency is fixed. The control mode can be selected for each application. The soft start and current control  
functions are internally optimized. During stand-by, all circuits in the IC are shutdown to reduce current consumption to as low as 1.0μA or  
less. The device includes a gate control pin for the P-channel MOSFET which is used for a load disconnection at the stand-by mode. The  
GAINP and GAINN pins are used for loop compensation in order to optimize load transient response. With the built-in UVLO (Under Voltage  
Lock Out) function, the internal driver transistor is forced OFF when input voltage becomes 2.2V or lower.  
FEATURES  
APPLICATIONS  
AMOLED  
Input Voltage  
: 2.7V ~ 5.5V  
Output Current  
: 500mA @VIN=3.7V, VOUTP=5.0V, VOUTN=-5.0V  
Positive Output Voltage  
Negative Output Voltage  
Oscillation Frequency  
Soft-Start Circuit Built-In  
:
:
4.0V (*1) ~ 18.0V (accuracy ±1.5% @25oC)  
-15.0V (*2) ~ -4.0V (accuracy ±1.5% @25oC)  
- Smartphones  
- Tablet PCs  
- Automotive navigation systems  
CCD image sensors  
- Surveillance cameras  
e-paper  
: 1.2MHz  
: Step-up DC/DC converter 2.5ms (TYP.)  
:
Inverting DC/DC converter 2.2ms (TYP.)  
Protection Circuits  
: Over Current Limit (Integral Latching)  
Short Protection Latching  
UVLO  
-e-Books  
Thermal Shutdown  
Over Voltage Protection  
: Control Pin  
Function Addition  
Load disconnect Pin  
Phase Compensation Pin  
Ceramic Capacitor Compatible  
: -40~ +85℃  
Operating Ambient Temperature  
Package  
: QFN-24  
Environmentally Friendly  
: EU RoHS Compliant, Pb Free  
*1VOUTPSETVIN + 0.2V (VOUTPSET :Positive output voltage range)  
*2VIN - VOUTNSET+ VFN20V  
(VFN : Forward voltage of SBDN, VOUTNSET : Nagative output voltage range)  
TYPICAL PERFORMANCE  
TYPICAL APPLICATION CIRCUIT  
CHARACTERISTICS  
VOUTP=5.0V, VOUTN=-5.0V, IOUTP=IOUTN  
CLP, CLN=4×4.7μF, LP, LN=3.3μH (VLF5014S-3R3M2R0), SBDP, SBDN: CMS03  
P-ch MOS: EMH1303, RZP=7.5kΩ, CZP=4.7nF, RZN=130kΩ, CZN=0.47nF  
LP  
SBDP  
VOUTP  
100  
CFBP  
VENP="H",VENN="H"  
RFBP1  
SWP  
LXP  
VOUTP  
FBP  
P-ch MOS  
RSP  
CLP  
BSW  
80  
PVIN  
AVIN  
ENP  
ENN  
VREF  
VIN= 4.4V  
60  
RFBN2  
CL_VR  
RFBP2  
3.6V  
FBN  
XC9519  
2.7V  
40  
RFBN1  
VIN  
CIN_SW CIN_P CIN_A  
MODE  
VOUTN  
VOUTN  
AGND  
PGND  
SBDN  
20  
PWM/PFM (VMODE="H")  
LXN  
PWM (VMODE="L")  
GAINP  
GAINN  
CLN  
0
RZP  
CZP  
RZN  
CZN  
LN  
0.1  
1
10  
100  
1000  
Output Current:IOUT P, IOUT N (mA)  
1/38  
XC9519 Series  
BLOCK DIAGRAM  
* Diodes inside the circuit are an ESD protection diode and a parasitic diode.  
PRODUCT CLASSIFICATION  
Ordering Information  
XC9519①②③④⑤⑥-⑦  
DESIGNATOR  
ITEM  
SYMBOL  
A
DESCRIPTION  
UVLO Detect Voltage 2.2V  
UVLO Detect Voltage  
UVLO Hysteresis width 0.2V  
1.2 MHz  
②③  
Oscillation Frequency  
Maximum Current Limit  
Package (Order Unit)  
12  
A
2.0A  
⑤⑥-⑦  
ZR-G  
QFN-24 (1,000/Reel) (*2)  
(*1)  
(*1) The “-G” suffix denotes Halogen and Antimony free as well as being fully RoHS compliant.  
(*2) The XC9519 reels are shipped in a moisture-proof packing.  
2/38  
XC9519  
Series  
PIN CONFIGURATION  
*1  
*1: The back metal pad, AGND pin and two PGND pins (No. 21 and 22) should be connected outside.  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTION  
QFN-24  
1, 2  
3
PVIN  
NC  
Power Supply Input 1  
No Connection  
4, 5  
6
LXN  
Switching of Inverting DC/DC Converter  
Detect Monitoring of Inverting DC/DC Output Voltage  
Selection Pin for Control Mode  
VOUTN  
MODE  
VREF  
AVIN  
FBN  
7
8
Reference Output Voltage  
9
Power Supply Input 2  
10  
11  
Feedback Pin for Inverting DC/DC Converter  
Loop Compensation Pin for Inverting DC/DC Converter  
Analog Ground  
GAINN  
AGND  
GAINP  
FBP  
12  
13  
14  
15  
16  
17  
18, 19  
20  
21, 22  
23  
24  
Loop Compensation Pin for Step-Up DC/DC Converter  
Feedback Pin for Step-Up DC/DC Converter  
Chip Enable Pin for Step-Up DC/DC Converter  
P-channel MOS FET Gate Control Pin  
Output Voltage Sense for Step-Up DC/DC Converter  
Switching Output of Step-Up DC/DC Converter  
No Connection  
ENP  
BSW  
VOUTP  
LXP  
NC  
PGND  
ENN  
Power Ground  
Chip Enable Pin for Inverting DC/DC Converter  
SWP  
Detect Monitoring Voltage Pin for P-channel MOS FET Drain  
3/38  
XC9519 Series  
FUNCTION  
1. ENP Pin Function  
ENP PIN  
STATUS  
H
L
Step-up DC/DC Converter Active  
Step-up DC/DC Converter Stand-by  
* Please do not leave the ENP pin open.  
VIN  
ENP  
0V  
VIN  
BSW  
0V  
2.5ms  
VOUTP  
VIN  
0V  
2. ENN Pin Function  
ENN PIN  
STATUS  
H
L
Inverting DC/DC Converter Active  
Inverting DC/DC Converter Stand-by  
* Please do not leave the ENP pin open.  
VIN  
ENN  
0V  
2.2ms  
0V  
VOUTN  
3. MODE Pin Function  
MODE PIN  
STATUS  
Auto PWM/PFM  
PWM Control  
H
L
* Please do not leave the MODE pin open.  
4/38  
XC9519  
Series  
ABSOLUTE MAXIMUM RATINGS  
Ta=25℃  
PARAMETER  
PVIN Pin Voltage  
AVIN Pin Voltage  
ENP Pin Voltage  
SYMBOL  
RATINGS  
-0.3 ~ +6.0  
UNITS  
V
VPVIN  
VAVIN  
VENP  
VENN  
VMODE  
VLXP  
VLXN  
VFBP  
VFBN  
VOUTP  
VOUTN  
VBSW  
VSWP  
VREF  
VGAINP  
VGAINN  
ILXP  
-0.3 ~ +6.0  
V
-0.3 ~ +6.0  
V
ENN Pin Voltage  
-0.3 ~ +6.0  
V
MODE Pin Voltage  
LXP Pin Voltage  
-0.3 ~ +6.0  
V
-0.3 ~ +22.0  
VPVIN -22.0 ~ VPVIN +0.3  
-0.3 ~ +6.0  
V
LXN Pin Voltage  
V
FBP Pin Voltage  
V
FBN Pin Voltage  
-0.3 ~ +6.0  
V
VOUTP Pin Voltage  
VOUTN Pin Voltage  
BSW Pin Voltage  
SWP Pin Voltage  
VREF Pin Voltage  
GAINP Pin Voltage  
GAINN Pin Voltage  
LXP Pin Current  
-0.3 ~ +22.0  
VAVIN -22.0 ~ VAVIN +0.3  
-0.3 ~ +6.0  
V
V
V
-0.3 ~ +6.0  
V
-0.3 ~ +6.0  
V
-0.3 ~ +6.0  
V
-0.3 ~ +6.0  
V
4000  
mA  
mA  
mW  
oC  
oC  
LXN Pin Current  
ILXN  
4000  
Power Dissipation  
Operating Ambient Temperature  
Storage Temperature  
Pd  
1500 (PCB mounted) *  
-40 ~ +85  
Topr  
Tstg  
-55 ~ +125  
* All voltages are described based on the AGND and PGND pin.  
* The value is an example of data which is taken with the PCB mounted. Please refer to our web site for details.  
5/38  
XC9519 Series  
ELECTRICAL CHARACTERISTICS  
XC9519 Series, Common Characteristics  
fOSC=1.2MHz  
Ta=25℃  
PARAMETER  
Input Voltage  
SYMBOL  
VIN  
CONDITIONS (*1)  
MIN.  
2.7  
TYP.  
-
MAX.  
5.5  
UNITS CIRCUIT  
V
V
-
VENP =1.5V , VENN = VFBP = 0V, VFBN = 0.1V  
The voltage which LXP stops oscillation while  
IN is decreasing from 2.4V.  
VUVLO  
2.0  
2.2  
2.2  
2.4  
2.4  
2.6  
UVLO Detect Voltage  
UVLO Release Voltage  
V
VENP =1.5V , VENN = VFBP = 0V, VFBN = 0.1V  
The voltage which LXP starts oscillation while  
VUVLOR  
V
V
IN is increasing from VUVLO  
.
VUVLOH  
IDD1  
VUVLOH = VUVLOR - VUVLO  
-
0.2  
-
V
-
UVLO Hysteresis Range  
Supply Current 1  
V
V
IN =VENP = VENN = VMODE = 5.5V  
FBP =5.5V, VFBN = -0.1V, VOUTP = VSWP = 5.5V  
50  
170  
450  
μA  
V
V
IN = VENN = VMODE = 5.5V, VENP = 0V  
FBN = -0.1V  
IDD2  
30  
90  
250  
μA  
Supply Current 2  
V
V
IN =VENP = VMODE = 5.5V, VENN =0V  
FBP = 5.5V, VOUTP = VSWP = 5.5V  
IDD3  
ISTB  
30  
-
110  
0
250  
1.0  
μA  
μA  
Supply Current 3  
Stand-by Current  
VIN =5.5V, VENP =VENN = VMODE = 0V  
VIN = 5.5V, VENN = VMODE = 0V, VFBP = 0V  
VENPH  
The voltage which LXP starts oscillation while  
1.4  
-
-
5.5  
0.3  
V
V
ENP ”H” Voltage  
ENP ”L” Voltage  
V
ENP is increasing from 0.3V.  
VIN = 5.5V, VENN = VMODE = 0V, VFBP = 0V  
The voltage which LXP stops oscillation while  
VENP Is decreasing from 1.4V.  
VENPL  
AGND  
IENPH  
IENPL  
VIN = VENP = 5.5V  
VIN = VENP = 0V  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
ENP ”H” Current  
ENP ”L” Current  
VIN = 5.5V, VENP = VMODE = 0V, VFBN = 5.5V  
The voltage which LXN starts oscillation while  
VENNH  
1.4  
-
-
5.5  
0.3  
V
V
ENN ”H” Voltage  
ENN ”L” Voltage  
V
ENN is increasing from 0.3V.  
VIN = 5.5V, VENP = VMODE = 0V, VFBN = 5.5V  
The voltage which LXN stops oscillation while  
VENNL  
AGND  
V
ENN is decreasing from 1.4V.  
IENNH  
IENNL  
VIN = VENN = 5.5V  
VIN = VENN = 0V  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
ENN ”H” Current  
ENN ”L” Current  
VIN = VENP = 5.5V, VENN = 0V,  
VMODEH  
The voltage which supply current decreases  
while VMODE is increasing from 0.3V.  
VIN = VENP = 5.5V, VENN = 0V,  
1.4  
-
5.5  
V
MODE ”H” Voltage  
VMODEL  
IMODEH  
The voltage which supply current increases while AGND  
MODE is decreasing from 1.4V.  
-
-
0.3  
0.1  
V
MODE ”L” Voltage  
MODE ”H” Current  
V
VIN = VMODE = 5.5V  
-0.1  
μA  
IMODEL  
IFBPH  
IFBPL  
IFBNH  
IFBNL  
ISWPH  
ISWPL  
VIN = VMODE = 0V  
-0.1  
-0.1  
-0.1  
-0.1  
-0.1  
-0.1  
-0.1  
-
-
-
-
-
-
-
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
MODE ”L” Current  
FBP ”H” Current  
FBP ”L” Current  
FBN ”H” Current  
FBN ”L” Current  
SWP ”H” Current  
SWP ”L” Current  
VIN =5.5V, VENP =VENN =VMODE =0V, VFBP =5.5V  
VIN =5.5V, VENP =VENN =VMODE =0V, VFBP =0V  
VIN =5.5V, VENP =VENN =VMODE =0V, VFBN =5.5V  
VIN =5.5V, VENP =VENN =VMODE =0V, VFBN =0V  
VIN =5.5V, VENP =VENN =VMODE =0V, VSWP =5.5V  
VIN =5.5V, VENP =VENN =VMODE =0V, VSWP =0V  
VIN =VENP =VENN = 5.5V, VMODE =0V  
V
FBP =0.9V, VFBN = 0.1V  
tLAT  
1.0  
2.0  
3.0  
ms  
Integral Latch Time  
Time to stop operation from the start of maximum  
current limit status.  
Thermal Shutdown  
Temperature  
TTSD  
TTSDR  
THYS  
-
-
-
150  
130  
20  
-
-
-
oC  
oC  
oC  
-
-
-
Thermal Shutdown  
Release Temperature  
Thermal Shutdown  
Hysteresis Range  
THYS =TTSDR - TTSD  
(*1) If the applied voltage and its pin name are not stated, those pins are left open for measurement.  
6/38  
XC9519  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9519 Series, Step-up DC/DC Converter  
Ta=25℃  
PARAMETER  
SYMBOL  
VOUTPSET  
CONDITIONS (*1)  
MIN.  
TYP.  
-
MAX.  
18.0  
UNITS CIRCUIT  
4.0 (*2)  
V
-
Output Voltage Range  
V
V
IN = VENP = 3.6V, VENN = VMODE = 0V  
OUTP = VSWP = 3.6V  
VFBP  
0.985  
1.000 1.015  
V
FBP Voltage  
The voltage which LXP starts oscillation while  
VFBP is decreasing.  
V
V
IN = VENP = 3.6V, VENN = VMODE = 0V  
OUTP = VSWP = 3.6V, VFBP =0V  
fOSCP  
IPFMP  
1020  
180  
84  
1200  
350  
90  
1380  
550  
97  
kHz  
mA  
%
Oscillation Frequency  
PFM Switching Current  
Maximum Duty Cycle  
VIN =VENP = VMODE = 3.6V, VENN =0V  
V
V
IN = VENP = 3.6V, VENN = VMODE = 0V  
OUTP = VSWP = 3.6V, VFBP =0V  
DMAXP  
LXP SW “H” ON  
Resistance  
RLXPH  
VIN = VENP = 3.6V, VENN = VMODE = 0V, ILXP = 100mA  
VIN =5.5V, VENP=0V, VLXP=5.5V  
-
0.12  
0.28  
Ω
LXP SW “H” Leak  
Current  
ILEAKH  
ILIMP  
-
0.01  
-
1.0  
μA  
V
V
IN =VENP = 5.5V, VENN = VMODE =0V  
FBP = 0.9V, VOUTP = VSWP = 5.5V  
Maximum Current Limit (*3)  
2000  
4000  
mA  
FBP Voltage  
Temperature  
Characteristics  
VFBP  
/
-40 oCTopr85 oC  
-
±100  
2.5  
-
ppm / oC  
-
(VFBP  
Topr)  
VIN = 3.6V, VENN = VMODE = 0V  
V
OUTP = VSWP = 3.6V, VFBP = 0.95V  
tSSP  
0.8  
5.2  
ms  
Soft-Start Time  
Time to start LXP oscillation from the rise of VENP  
.
(0V3.6V)  
V
V
IN =VENP = 5.5V, VENN = VMODE =0V  
OUTP = VSWP = 5.5V  
Short Protection  
VSHORTP  
0.3  
0.5  
0.7  
V
V
The voltage which the integral latch time  
Threshold Voltage  
becomes 200μs or less while VFBP is decreasing.  
VIN = VENP = 3.6V, VENN = VMODE = 0V  
V
OUTP = VSWP = 3.6V, VGAINP = 3.6V  
Over Voltage  
Protection Limit  
VFBP  
+0.03  
VFBP  
+0.07  
VFBP  
+0.10  
VOVPP  
The voltage which LXP stops oscillation while  
VFBP is increasing.  
V
V
V
V
IN = VENP = 3.6V, VENN = VMODE = 0V  
OUTP = VSWP = 3.6V, VBSW =3.6V  
IN = 6.0V, VENP =VENN = VMODE = 0V  
OUTP = 4.0V  
IBSW  
BSW Pin Current  
0.2  
50  
1.2  
3.0  
mA  
RDCHGP  
CL Discharge Resistance  
200  
500  
Ω
NOTE:  
(*1) If the applied voltage and its pin name are not stated, those pins are left open for measurement.  
(*2) Input voltage or positive output voltage range should be VOUTPSETVIN + 0.2V.  
(*3) Maximum current limit denotes the level of detection at peak of coil current.  
7/38  
XC9519 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9519 Series, Inverting DC/DC Converter  
Ta=25℃  
PARAMETER  
SYMBOL  
VOUTNSET  
CONDITIONS (*1)  
MIN.  
TYP.  
-
MAX.  
-4.0  
UNITS CIRCUIT  
-15.0(*2)  
V
-
Output Voltage Range  
VIN = VENN = 3.6V, VENP = VMODE = 0V  
The voltage which LXN starts oscillation while  
VFBN is increasing.  
VFBN  
-26  
0
26  
mV  
FBN Voltage  
VREF  
VOUTNA  
fOSCN  
VIN = VENN = 3.6V, VENP = VMODE = 0V, VFBN= 0.1V  
VOUTNA =VREF -VFBN  
0.970  
0.985  
1020  
220  
1.000 1.030  
1.000 1.015  
V
V
-
Reference Voltage  
Output Voltage Accuracy  
Oscillation Frequency  
PFM Switching Current  
Maximum Duty Cycle  
VIN = VENN = 3.6V, VENP = VMODE = 0V, VFBN= 0.1V  
VIN = VENN = VMODE = 3.6V, VENP = 0V  
VIN = VENN = 3.6V, VENP = VMODE = 0V, VFBN= 0.1V  
1200  
350  
90  
1380  
550  
97  
kHz  
mA  
%
IPFMN  
DMAXN  
84  
LXN SW “L” ON  
Resistance  
RLXNL  
VIN = VENN = 3.6V, VENP = VMODE = 0V, ILXN = 100mA  
VIN = VENN = 3.6V, VENP = VMODE = 0V, VFBN= 0.1V  
-
0.22  
0.48  
Ω
LXN SW “L” Leak  
Current  
ILEAKL  
ILIMN  
-
0.01  
-
1.0  
μA  
V
V
IN = VENN = 5.5V, VENP = VMODE = 0V  
FBN = 0.1V  
Maximum Current Limit (*3)  
2000  
4000  
mA  
Reference Voltage  
Temperature  
VREF  
/
-40 oCTopr85 oC  
-
±100  
-
ppm / oC  
-
(VREF  
Topr)  
Characteristics  
VIN = 3.6V, VENP = VMODE = 0V, VFBN = 0.05V  
Time to start LXN oscillation from the rise of VENP  
(0V3.6V)  
VIN = VENN = 5.5V, VENP = VMODE = 0V  
The voltage which the integral latch time  
becomes 200μs or less while VFBN is increasing.  
VIN = VENN = 3.6V, VENP = VMODE = 0V, VGAINN = 3.6V  
The voltage which LXN stops oscillation while  
tSSN  
.
0.8  
0.3  
2.2  
0.5  
4.0  
0.7  
ms  
V
Soft-Start Time  
Short Protection  
VSHORTN  
Threshold Voltage  
Over Voltage  
Protection Limit  
VFBN  
-0.10  
VFBN  
-0.07  
VFBN  
-0.03  
VOVPN  
V
V
FBN is decreasing.  
V
V
IN = 6.0V, VENP =VENN = VMODE = 0V  
OUTN = -4.0V  
RDCHGN  
CL Discharge Resistance  
NOTE:  
50  
200  
500  
Ω
(*1) If the applied voltage and its pin name are not stated, those pins are left open for measurement.  
(*2) Input voltage or positive output voltage range should be VIN - VOUTNSET+ VFN20V (VFN: Forward voltage of external schottky barrier diode) .  
(*3) Maximum current limit denotes the level of detection at peak of coil current.  
8/38  
XC9519  
Series  
OPERATIONAL EXPLANATION  
The XC9519 series consists of a reference voltage source, ramp wave circuit, error amplifier, PWM comparator, phase compensation circuit,  
driver transistor, current limiter circuit, short protection circuit, UVLO circuit, thermal shutdown circuit, over voltage protection, load disconnect  
control and others. (See the block diagram below.)  
By using the error amplifier, the FBP (FBN) pin voltage is compared with the internal reference voltage. The error amplifier output is sent to the  
PWM comparator in order to determine the duty cycle of PWM switching. The signal from the error amplifier is compared with the ramp wave from  
the ramp wave circuit, and the resulting output is delivered to the buffer driver circuit to provide on-time of the duty cycle at the LXP (LXN) pin.  
This process is continuously performed to ensure stable output voltage.  
The current feedback circuit monitors the driver transistor current for each switching operation, and modulates the error amplifier output signal  
to provide multiple feedback signals. This enables a stable feedback loop even when using a low ESR capacitor such as ceramic, which results in  
ensuring stable output voltage.  
* Diodes inside the circuit are an ESD protection diode and a parasitic diode.  
9/38  
XC9519 Series  
OPERATIONAL EXPLANATION (Continued)  
<Reference Voltage Source>  
The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter.  
<Step-up DC/DC Converter Error Amplifier>  
The step-up DC/DC converter error amplifier is an amplifier for output voltage monitoring. The FBP pin voltage is compared to the reference  
voltage. When a voltage lower than the reference voltage is feedback to the FBP pin voltage, the output voltage of the error amplifier goes high.  
External compensation of the error amplifier frequency characteristic is also possible.  
<Inverting DC/DC Converter Error Amplifier>  
The inverting DC/DC converter error amplifier is an amplifier for output voltage monitoring. The FBN pin voltage is compared to GND. When a  
voltage higher than GND is feedback to the FBN pin voltage, the output voltage of the error amplifier goes high. External compensation of the  
error amplifier frequency characteristic is also possible.  
<Ramp Wave Circuit>  
The ramp wave circuit determines switching frequency. The frequency is fixed 1.2MHz internally. Clock pulses generated in this circuit are  
used to produce ramp waveforms needed for PWM operation, and to synchronize all the internal circuits.  
<UVLO Circuit>  
When the AVIN pin voltage becomes 2.2V or lower, the driver transistor is forced OFF to prevent false pulse output caused by unstable  
operation of the internal circuitry. When the AVIN pin voltage becomes 2.4V or higher, switching operation takes place. By releasing the UVLO  
function, the IC performs the soft start function to initiate output startup operation. The soft start function operates even when the AVIN pin  
voltage falls momentarily below the UVLO detect voltage. The UVLO circuit does not cause a complete shutdown of the IC, but causes pulse  
output to be suspended; therefore, the internal circuitry remains in operation.  
<Thermal Shutdown>  
For protection against heat damage of the ICs, thermal shutdown function monitors chip temperature. The thermal shutdown circuit starts  
operating and the driver transistor will be turned off when the chip’s temperature reaches 150oC. When the temperature drops to 130 oC or less  
after shutting of the current flow, the IC performs the soft start function to initiate output startup operation.  
<PFM Switch Current>  
In PFM control operation, until coil current reaches to a specified level (IPFMP, IPFMN), the IC keeps the driver transistor on. In this case, time  
(tON) that the driver transistor is kept on can be given by the following formula.  
tON = L ×IPFMP (IPFMN) / VIN  
< PFM Duty Limit >  
In PFM control operation, the maximum duty cycle (DTYLIMIT_PFM) is set to 50% (TYP.). Therefore, under the condition that the duty increases  
(e.g. the condition that the step-up ratio is large), it’s possible for the driver transistor to be turned off even when the coil current doesn’t reach to IPFMP  
(IPFMN).  
10/38  
XC9519  
Series  
OPERATIONAL EXPLANATION (Continued)  
< CL Auto-Discharge Function >  
This function enables high-speed discharge of the charge on the output capacitor (CL) when an L level signal is input to the ENP (ENN) pin by  
means of the internal switch between the VOUTP pin and AGND pin (between the VOUTN pin and AVIN pin).  
This function makes it possible to prevent malfunctioning of applications caused by charge remaining on CL.  
The discharge time is determined by the CL discharge resistance (RDCHC) and CL. Ifτ(τ= CL × RDCHG) is the time constant of CL and RDCHG, the  
equation for the output voltage discharge time can be obtained from the following CR discharge equation.  
=τlnVOUTSET / V)  
V: Output voltage during discharge  
V
OUTSET: Output voltage  
t: Discharge time  
τ: CL×RDCHG  
[Example]  
When the set voltage (VOUTPSET)=5.0V, CLP=18.8μF, and the CL discharge resistance (RDCHGP)=200Ω (TYP.) of the DC/DC Converter, the  
discharge time t from the start of CL high-speed discharge until the output voltage falls to 1.0V can be calculated as follows:  
=τln ( VOUTPSET / V )= CLP×RDCHGP ln ( VOUTPSET / V ) = 18.8μF×200Ω×ln ( 5.0V / 1.0V ) = 6.05×10-3 s = 6.05 ms (*1)  
(*1) Calculated with IOUT = 0mA  
<Internal OSC Timing Chart>  
The step-up DC/DC Converter and the Inverting DC/DC Converter are switching synchronously based on one internal clock. The phase of  
the step-up driver on timing for the DC/DC Converter is shifted to completely opposite position (180 degrees different) upon the phase of driver  
on timing for the Inverting DC/DC Converter.  
1.2MHz  
Internal OSC  
Inductor Peak Current  
Boost_ILX  
0A  
Inductor Peak Current  
Inverting_ILX  
0A  
<Overvoltage Protection>  
Overvoltage protection monitors the output voltage VOUTP (VOUTN) using the FBP (FBN) pin voltage, and prevents the output voltage VOUTP  
(VOUTN) from rising too far above the set voltage. In particular, fluctuations in the load cause the output voltage to rise, and when the FBP (FBN)  
pin voltage reaches the overvoltage protection detection voltage, the driver transistor of the step-up DC/DC converter (inverting DC/DC  
converter) is turned off to hold down the rise of output voltage. When the output voltage falls after overvoltage protection detection, normal  
DC/DC converter operation resumes.  
The output voltage VOUT_OVP that is detected by overvoltage protection is obtained from the following equation:  
V
OUT_OVP P (VOUT_OVPN)=VOUTPSET (VOUTNSET) × VOVP P (VOVPN  
)
V
OUTPSET (VOUTNSET): Output voltage, VOVPP(VOVPN): Detect Overvoltage Protection Voltage  
[Example]  
In a step-up DC/DC converter with the indicated conditions, the output voltage VOUT_OVPP that is detected by overvoltage protection can be  
calculated as shown below.  
Condition: Output Voltage (VOUTPSET)=5.0V, VOVPP=VFBP+0.07V(TYP.) , VFBP=1.0V(TYP.)  
V
OUT_OVPP = VOUTPSET × VOVP = 5.0V × (1.0 + 0.07(TYP.)) =5.0V × 1.07 = 5.35V  
<Load disconnect Control Circuit>  
The Load disconnect control circuit makes it possible to break continuity between VIN and VOUTP by turning off the external P-ch MOS FET when the  
step-up DC/DC converter is in the standby state.  
11/38  
XC9519 Series  
OPERATIONAL EXPLANATION (Continued)  
<Current Limit>  
The current limiter circuit of the XC9519 series monitors the current flowing through the driver transistor, and features a combination of the  
current limit mode and the operation suspension mode.  
When the driver current is greater than a specific level, the current limit function operates to turn off the pulses from the LXP (LXN) pin at any  
given timing.  
When the driver transistor is turned off, the limiter circuit is then released from the current limit detection state.  
At the next pulse, the driver transistor is turned on. However, the transistor is immediately turned off in the case of an over current state.  
When the over current state is eliminated, the IC resumes its normal operation.  
The IC waits for the over current state to end by repeating the steps through . If an over current state continues for the integral latch time  
and the above three steps are repeatedly performed, the IC performs the function of integral latching the OFF state of the driver transistor, and  
goes into operation suspension mode.  
Once the IC is in suspension mode, operations can be resumed by either turning the IC off via the ENP (ENN) pin, or by restoring power. Care  
must be taken when laying out the PC Board, in order to prevent misoperation of the current limit mode. Depending on the state of the PC Board,  
latch time may become longer and latch operation may not work. In order to avoid the effect of noise, the board should be laid out so that input  
capacitors are placed as close to the IC as possible.  
(a) Step-up DC/DC Converter  
Limit < 2.0ms(TYP.)  
Limit > 2.0ms(TYP.)  
Current Limit Level  
IOUTP  
VOUTP  
VLXP  
0mA  
AGND,PGND  
ENP  
Restart  
AGND,PGND  
(b) Inverting DC/DC Converter  
Limit < 2.0ms(TYP.)  
Limit > 2.0ms(TYP.)  
Current Limit Level  
IOUTN  
0mA  
AGND,PGND  
VOUTN  
VLXN  
ENN  
Restart  
AGND,PGND  
<Short-Circuit Protection>  
The short-circuit protection circuit monitors the output voltage from the VOUTP (VOUTN). In case where output is accidentally shorted to the GND  
and when the FBP voltage decreases less than short protection threshold voltage or FBN pin voltage becomes larger than short protection  
threshold voltage and a current more than the ILIM flows to the driver transistor, the short-circuit protection quickly operates to turn off and to latch  
the driver transistor.  
Once the IC is in suspension mode, operations can be resumed by either turning the IC off via the ENP (ENN) pin, or by restoring power.  
12/38  
XC9519  
Series  
EXTERNAL COMPONENTS  
<Step-up DC/DC Converter Output Voltage Setting>  
The output voltage VOUTP of a step-up DC/DC converter can be set by connecting external dividing resistors RFBP1 and RFBP2  
The output voltage VOUTP is determined by the values of RFBP1 and RFBP2 as given in the equation below.  
Adjust RFBP1 and RFBP2 so that (RFBP1 + RFBP2) < 500kΩ.  
.
VOUTP = VFBP × (RFBP1 + RFBP2) / RFBP2  
Set the output voltage so that VOUTPVIN + 0.2V is satisfied.  
Adjust the value of the phase compensation speed-up capacitor CFBP so that fzfp=1 / (2 × π × RFBP1) is about 40kHz, and insert several kΩ in  
series as RSP. If a high output voltage is set, inserting a phase compensation speed-up capacitor may cause unstable operation.  
Examples of setting CFBP and RSP are shown in the next section, “Step-up DC/DC Converter Error Amplifier External Compensation”.  
Typical Examples】  
VOUTP  
RFBP1  
RFBP2  
4.0V  
5.0V  
300kΩ  
300kΩ  
240kΩ  
330kΩ  
336kΩ  
408kΩ  
100kΩ  
75kΩ  
30kΩ  
30kΩ  
24kΩ  
24kΩ  
9.0V  
12.0V  
15.0V  
18.0V  
<Inverting DC/DC Converter Output Voltage Setting>  
The output voltage VOUTN of an inverting DC/DC converter can be set by connecting external dividing resistors RFBN1 and RFBN2  
The output voltage VOUTN is determined by the values of RFBN1 and RFBN2 as given in the equation below.  
Adjust RFBN1 and RFBN2 so that (RFBN1 + RFBN2) < 500kΩ.  
.
VOUTN = - (VREF - VFBN) × RFBN1 / RFBN2  
Set the output voltage so that  
V
IN - VOUTN+ VFN20.0V  
(VFN : Forward voltage of external diode SBDN) is satisfied.  
Typical Examples】  
VOUTN  
RFBN1  
RFBN2  
-4.0V  
-5.0V  
300kΩ  
300kΩ  
270kΩ  
360kΩ  
360kΩ  
75kΩ  
60kΩ  
30kΩ  
30kΩ  
24kΩ  
-9.0V  
-12.0V  
-15.0V  
13/38  
XC9519 Series  
COMPONENT SELECTION METHOD (Continued)  
<Step-up DC/DC Converter Error Amplifier External Compensation>  
External compensation of the frequency characteristic of a step-up DC/DC converter error amplifier is possible with RZP and CZP. The values of  
RZP and CZP can be adjusted to obtain the optimum load-transient response (step response). For adjustment using the input voltage and output  
voltage, use the setting values below.  
VIN  
Output Voltage Range  
LP  
CLP  
RZP  
CZP  
CFBP  
RSP  
2×4.7μF  
4×4.7μF  
2×4.7μF  
4×4.7μF  
2×4.7μF  
4×4.7μF  
2×4.7μF  
4×4.7μF  
2×4.7μF  
4×4.7μF  
5.1kΩ  
8.2kΩ  
5.1kΩ  
7.5kΩ  
10kΩ  
18kΩ  
16kΩ  
27kΩ  
16kΩ  
24kΩ  
4.7nF  
4.7nF  
4.7nF  
4.7nF  
4.7nF  
2.2nF  
2.2nF  
2.2nF  
2.2nF  
4.7nF  
47pF(*1)  
47pF(*1)  
4.7kΩ  
4.6V VOUTP 5.0V  
5.0V < VOUTP 9.0V  
9.0V < VOUTP 12.0V  
12.0V < VOUTP 15.0V  
15.0V < VOUTP 18.0V  
3.3μH  
4.7kΩ  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3.3μH  
3.3μH  
3.3μH  
3.3μH  
Li-ion  
(2.74.4V)  
VIN  
Output Voltage Range  
LP  
CLP  
RZP  
CZP  
CFBP  
RSP  
2×4.7μF  
4×4.7μF  
2×4.7μF  
4×4.7μF  
2×4.7μF  
4×4.7μF  
2×4.7μF  
4×4.7μF  
2×4.7μF  
4×4.7μF  
8.2kΩ  
13kΩ  
16kΩ  
22kΩ  
18kΩ  
30kΩ  
24kΩ  
36kΩ  
22kΩ  
36kΩ  
4.7nF  
4.7nF  
2.2nF  
2.2nF  
2.2nF  
2.2nF  
2.2nF  
2.2nF  
2.2nF  
2.2nF  
47pF(*2)  
47pF(*2)  
4.7kΩ  
4.0V VOUTP 5.0V  
3.3μH  
4.7kΩ  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5.0V < VOUTP 9.0V  
9.0V < VOUTP 12.0V  
12.0V < VOUTP 15.0V  
15.0V < VOUTP 18.0V  
3.3μH  
3.3μH  
3.3μH  
3.3μH  
3.3V±10%  
VIN  
VOUTP  
LP  
CLP  
RZP  
CZP  
CFBP  
RSP  
2×4.7μF  
4×4.7μF  
2×4.7μF  
4×4.7μF  
2×4.7μF  
4×4.7μF  
2×4.7μF  
4×4.7μF  
2×4.7μF  
4×4.7μF  
4.7kΩ  
8.2kΩ  
5.1kΩ  
10kΩ  
8.2kΩ  
16kΩ  
13kΩ  
24kΩ  
12kΩ  
18kΩ  
4.7nF  
4.7nF  
4.7nF  
4.7nF  
4.7nF  
2.2nF  
2.2nF  
2.2nF  
2.2nF  
4.7nF  
68pF(*3)  
68pF(*3)  
4.7kΩ  
5.7V VOUTP 7.0V  
3.3μH  
4.7kΩ  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
7.0V < VOUTP 9.0V  
9.0V < VOUTP 12.0V  
12.0V < VOUTP 15.0V  
15.0V < VOUTP 18.0V  
3.3μH  
3.3μH  
3.3μH  
3.3μH  
5V±10%  
(*1) Setting value with RFBP1 = 300kΩ  
(*2) Setting value with RFBP1 = 360kΩ  
(*3) Setting value with RFBP1 = 240kΩ  
14/38  
XC9519  
Series  
COMPONENT SELECTION METHOD (Continued)  
<Inverting DC/DC Converter Error Amplifier External Compensation>  
External compensation of the frequency characteristic of an inverting DC/DC converter error amplifier is possible with RZN and CZN. The values  
of RZN and CZN can be adjusted to obtain the optimum load-transient response (step response). For adjustment using the input voltage and output  
voltage, use the setting values below.  
VIN  
Output Voltage Range  
LN  
CLN  
RZN  
CZN  
2×4.7μF  
4×4.7μF  
2×4.7μF  
4×4.7μF  
2×4.7μF  
4×4.7μF  
2×4.7μF  
4×4.7μF  
51kΩ  
110kΩ  
68kΩ  
1.0nF  
0.47nF  
0.47nF  
0.47nF  
0.47nF  
0.47nF  
1.0nF  
-4.0VVOUTN-5.0V  
3.3μH  
-5.0V > VOUTN-9.0V  
-9.0V > VOUTN-12.0V  
-12.0V > VOUTN-15.0V  
3.3μH  
3.3μH  
3.3μH  
130kΩ  
120kΩ  
200kΩ  
110kΩ  
200kΩ  
Li-ion  
(2.74.4V)  
0.47nF  
VIN  
Output Voltage Range  
LN  
CLN  
RZN  
CZN  
2×4.7μF  
4×4.7μF  
2×4.7μF  
4×4.7μF  
2×4.7μF  
4×4.7μF  
2×4.7μF  
4×4.7μF  
51kΩ  
110kΩ  
68kΩ  
1.0nF  
0.47nF  
0.47nF  
0.47nF  
0.47nF  
0.47nF  
1.0nF  
-4.0VVOUTN-5.0V  
3.3μH  
-5.0V > VOUTN-9.0V  
-9.0V > VOUTN-12.0V  
-12.0V > VOUTN-15.0V  
3.3μH  
3.3μH  
3.3μH  
130kΩ  
120kΩ  
200kΩ  
110kΩ  
200kΩ  
3.3V±10%  
0.47nF  
VIN  
Output Voltage Range  
LN  
CLN  
RZN  
CZN  
2×4.7μF  
4×4.7μF  
2×4.7μF  
4×4.7μF  
2×4.7μF  
4×4.7μF  
2×4.7μF  
4×4.7μF  
51kΩ  
110kΩ  
68kΩ  
1.0nF  
0.47nF  
0.47nF  
0.47nF  
0.47nF  
0.47nF  
1.0nF  
-4.0VVOUTN-5.0V  
3.3μH  
-5.0V > VOUTN-9.0V  
-9.0V > VOUTN-12.0V  
-12.0V > VOUTN-15.0V  
3.3μH  
3.3μH  
3.3μH  
130kΩ  
120kΩ  
200kΩ  
110kΩ  
200kΩ  
5V±10%  
0.47nF  
15/38  
XC9519 Series  
TYPICAL APPLICATION CIRCUIT  
(VIN=3.6V, VOUTP=5.0V, VOUTN=-5.0V)  
<Typical Examples> VIN=3.6V, VOUTP=5.0V, VOUTN=-5.0V  
Capacitor  
CIN_P  
CIN_SW  
CIN_A  
CLP  
: 10μF/ 10V (C2012JB1A106M, TDK-EPC)  
: 4.7μF/ 10V (C2012JB1A475M, TDK-EPC)  
: 0.1μF/ 10V (C1005JB1A104K, TDK-EPC)  
: 4×4.7μF/ 10V (C2012JB1A475M, TDK-EPC)  
: 4×4.7μF/ 10V (C2012JB1A475M, TDK-EPC)  
: 0.22μF/ 6.3V (C1005JB0J224M, TDK-EPC)  
: 4.7nF/ 25V (C1005JB1E472K, TDK-EPC)  
: 0.47nF/ 50V (C1005JB1H471K, TDK-EPC)  
: 47pF/ 50V (C1005CH1H470J, TDK-EPC)  
CLN  
CL_VR  
CZP  
CZN  
CFBP  
For CIN_P, CIN_SW, CIN_A, CL_VR, CLP, and CLN, use a B characteristic (JIS Standards) or X7R/X5R (EIA Standards), and use a ceramic capacitor with  
minimal reduction of capacitance when a DC bias is applied.  
Coil, Schottky diode, P-ch MOSFET  
LP, LN  
: 3.3μH (VLF5014S-3R3M2R0, TDK-EPC)  
(MSS5121-332, Coilcraft)  
SBDP, SBDN  
P-ch MOS  
: XBS304S17R-G (TOREX)  
CMS03 (TOSHIBA)  
: EMH1303 (SANYO)  
When selecting external components, refer to the specifications of each component and select so as not to exceed the ratings.  
Resistor  
RFBP1  
RFBP2  
RSP  
: 300kΩ  
: 75kΩ  
: 4.7kΩ  
RFBN1  
RFBN2  
: 300kΩ  
: 60kΩ  
RZP  
RZN  
: 8.2kΩ  
: 110kΩ  
16/38  
XC9519  
Series  
TYPICAL APPLICATION CIRCUIT (Continued)  
(VIN=3.6V, VOUTP=15.0V, VOUTN=-15.0V)  
<Typical Examples> VIN=3.6V, VOUTP=15.0V, VOUTN=-15.0V  
Capacitor  
CIN_P  
CIN_SW  
CIN_A  
CLP  
: 10μF/ 10V (C2012JB1A106M, TDK-EPC)  
: 4.7μF/ 10V (C2012JB1A475M, TDK-EPC)  
: 0.1μF/ 10V (C1005JB1A104K, TDK-EPC)  
: 4×4.7μF/ 25V (TMK212BJ475KG, TAIYO YUDEN)  
: 4×4.7μF/ 25V (TMK212BJ475KG, TAIYO YUDEN)  
: 0.22μF/ 6.3V (C1005JB0J224M, TDK-EPC)  
: 2.2nF/ 50V (C1005JB1H222K, TDK-EPC)  
: 0.47nF/ 50V (C1005JB1H471K, TDK-EPC)  
: OPEN  
CLN  
CL_VR  
CZP  
CZN  
CFBP  
For CIN_P, CIN_SW, CIN_A, CL_VR, CLP, and CLN, use a B characteristic (JIS Standards) or X7R/X5R (EIA Standards), and  
use a ceramic capacitor with minimal reduction of capacitance when a DC bias is applied.  
Coil, Schottky diode, P-ch MOSFET  
LP, LN  
: 3.3μH (VLF5014S-3R3M2R0, TDK-EPC)  
(MSS5121-332, Coilcraft)  
SBDP, SBDN  
P-ch MOS  
: XBS304S17R-G (TOREX)  
CMS03 (TOSHIBA)  
: EMH1303 (SANYO)  
When selecting external components, refer to the specifications of each component and select so as not to exceed the ratings.  
Resistor  
RFBP1  
RFBP2  
RSP  
: 336kΩ  
: 24kΩ  
: OPEN  
RFBN1  
RFBN2  
: 360kΩ  
: 24kΩ  
RZP  
RZN  
: 27kΩ  
: 200kΩ  
17/38  
XC9519 Series  
TEST CIRCUITS  
1) Circuit ①  
2) Circuit ②  
3) Circuit ③  
Wave Form Measure Point  
47Ω  
ENP  
LXP  
VOUTP  
FBP  
ENN  
MODE  
SWP  
0.22μF  
VREF  
FBN  
BSW  
Wave Form Measure Point  
47Ω  
PVIN  
AVIN  
AGND  
PGND  
VOUTN  
LXN  
1μF  
GAINN  
GAINP  
VIN  
100kΩ  
V
4) Circuit ④  
18/38  
XC9519  
Series  
TEST CIRCUITS (Continued)  
5) Circuit ⑤  
6) Circuit ⑥  
7) Circuit ⑦  
Wave Form Measure Point  
47Ω  
ENP  
LXP  
VOUTP  
FBP  
A
A
A
A
A
ENN  
A
A
A
A
A
MODE  
SWP  
VREF  
FBN  
BSW  
PVIN  
AVIN  
AGND  
PGND  
VOUTN  
LXN  
Wave Form Measure Point  
47Ω  
1μF  
GAINN  
GAINP  
A
A
A
VIN  
19/38  
XC9519 Series  
TEST CIRCUITS (Continued)  
8) Circuit ⑧  
9) Circuit ⑨  
1. Capacitance between pins  
The capacitances between the following pins are omitted in the circuit diagram.  
PVIN pin – PGND pin: 1μF  
FBP pin - AGND pin: 1μF  
FBN pin - AGND pin: 1μF  
VREF pin - AGND pin: 1μF  
2. Testing method for on resistance  
Testing is executed at 100% DUTY using test mode.  
20/38  
XC9519  
Series  
NOTES ON USE  
1. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.  
2. The characteristics of this IC are highly dependent on peripheral circuits.  
When selecting external components, refer to the specifications of each component and select so as not to exceed the ratings.  
Some peripheral component selections may cause unstable operation.  
Before use, sufficiently test operation using the actual equipment.  
3. When the input voltage VIN is low and the output voltage VOUTP/VOUTN is high, the input current may be limited by the maximum duty limit and  
the set output voltage may not be output.  
4. If the step-up ratio is high and excessive load current flows, the input current may be limited by the maximum duty limit and maximum current  
limit protection and short-circuit protection may not activate.  
5. Do not connect a component other than CL_VR to the VREF pin.  
If a component other than CL_VR is connected, the output voltage VOUTN of an inverting DC/DC converter may become unstable.  
6. For external components, use the components specified in the standard circuit examples and component selection methods.  
7. When the input voltage VIN is high and the output voltage VOUTP/VOUTN is low, intermittent oscillation may occur during PWM control.  
8. If the step-up ratio is low in a step-up DC/DC converter, the output voltage VOUTP may become unstable during PFM/PWM switching control  
(VMODE = "H").  
<External Components>  
CLP=4×4.7  
F
μ
Step-up DC/DC Converter: PWM/PFM MODE  
(VIN=4.4V, VOUTP=5.0V, IOUTP=200mA  
L =3.3 H (VLF5014S-3R3M2R0)  
μ
P
SBDP: CMS03  
VENP="H", VENN="L", VMODE="H")  
P-ch MOS: EMH1303  
RZP=7.5k, CZP=4.7nF  
V
OUT P:50mV/div  
time:20 s/div  
μ
9. During PFM/PWM switching control (VMODE = "H"), the output voltage may become unstable near switching between PFM mode and PWM mode.  
<External Components>  
Step-up DC/DC Converter: PWM/PFM MODE  
CLP=4×4.7  
F
μ
(VIN=3.6V, VOUTP=5.0V, IOUTP=120mA  
ENP="H", VENN="L", VMODE="H")  
L =3.3 H (VLF5014S-3R3M2R0)  
μ
P
SBDP: CMS03  
V
P-ch MOS: EMH1303  
RZP=7.5k, CZP=4.7nF  
V
OUT P:20mV/div  
time:10 s/div  
μ
21/38  
XC9519 Series  
NOTES ON USE (Continued)  
10. During PWM control (VMODE = "L"), the output voltage may become unstable at light loads.  
<External Components>  
Inverting DC Converter: PWM MODE  
(VIN=5.5V, VOUTN=-15.0V, IOUTN=100mA  
CLN=4×4.7  
F
μ
L =3.3 H (VLF5014S-3R3M2R0)  
μ
N
SBDN: CMS03  
VENP="L", VENN="H", VMODE="L")  
R
ZN=200k, CZN=0.47nF  
V
OUT N:20mV/div  
time:50 s/div  
μ
11. Torex places an importance on improving our products and their reliability.  
We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.  
22/38  
XC9519  
Series  
NOTES ON USE (Continued)  
Notes on Layout  
1. Position external components close to the IC so that the wiring is thick and short.  
2. To minimize input voltage fluctuations, place CIN_P and CIN_A as close as possible to the IC.  
3. Make the GND wiring sufficiently strong. Fluctuations of AGND or PGND voltage due to GND current during switching may cause unstable IC operation.  
4. When creating a layout, refer to the circuit diagram and recommended layout pattern below.  
5. This product is incorporated into a driver, and thus the driver transistor current and on-resistance may cause heat generation.  
LP  
SBDP  
VOUTP  
P-ch MOS  
CFBP  
SWP  
LXP  
VOUTP  
RFBP1  
CLP  
BSW  
PVIN  
AVIN  
ENP  
RSP  
FBP  
RFBP2  
VREF  
RFBN2  
FBN  
VIN  
CIN_SW CIN_P CIN_A  
ENN  
MODE  
CL_VR  
RFBN1  
VOUTN  
VOUTN  
LXN  
AGND  
PGND  
SBDN  
GAINP  
GAINN  
CLN  
RZP  
CZP  
RZN  
CZN  
LN  
Recommended Pattern Layout  
Front  
Back side see-through  
23/38  
XC9519 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Efficiency vs. Output Current  
Step-up DC/DC Converter (VOUTP=5.0V)  
Inverting DC/DC Converter (VOUTN=-5.0V)  
CLP=4×4.7μF, LP=3.3μH (VLF5014S-3R3M2R0)  
CLN=4×4.7μF, LN=3.3μH (VLF5014S-3R3M2R0)  
SBDP: CMS03, P-ch MOS: EMH1303, RZP=7.5k, CZP=4.7nF  
SBDN: CMS03, RZN=130k, CZN=0.47nF  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VENP="H",VENN="L"  
VENP="L",VENN="H"  
VIN= 4.4V  
3.6V  
VIN= 4.4V  
3.6V  
2.7V  
2.7V  
PWM/PFM (VMODE="H")  
PWM (VMODE="L")  
PWM/PFM (VMODE="H")  
PWM (VMODE="L")  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current:IOUTP (mA)  
Output Current:IOUTN (mA)  
Step-up DC/DC Converter (VOUTP=15.0V)  
Inverting DC/DC Converter (VOUTN=-15.0V)  
CLN=4×4.7μF, LN=3.3μH (VLF5014S-3R3M2R0)  
SBDN: CMS03, RZN=200k, CZN=0.47nF  
CLP=4×4.7μF, LP=3.3μH (VLF5014S-3R3M2R0)  
SBDP: CMS03, P-ch MOS: EMH1303, RZP=27k, CZP=2.2nF  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VENP="H",VENN="L"  
VENP="L",VENN="H"  
VIN= 5.5V  
3.6V  
3.6V  
VIN= 5.5V  
PWM/PFM (VMODE="H")  
PWM (VMODE="L")  
PWM/PFM (VMODE="H")  
PWM (VMODE="L")  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current:IOUTP (mA)  
Output Current:IOUTN (mA)  
(2) Output Voltage vs. Output Current  
Step-up DC/DC Converter (VOUTP=5.0V)  
Inverting DC/DC Converter (VOUTN=-5.0V)  
CLP=4×4.7μF, LP=3.3μH (VLF5014S-3R3M2R0)  
CLN=4×4.7μF, LN=3.3μH (VLF5014S-3R3M2R0)  
SBDP: CMS03, P-ch MOS: EMH1303, RZP=7.5k, CZP=4.7nF  
SBDN: CMS03, RZN=130k, CZN=0.47nF  
5.2  
5.1  
5.0  
4.9  
4.8  
-4.8  
-4.9  
-5.0  
-5.1  
-5.2  
VENP="L",VENN="H"  
VENP="H",VENN="L"  
VIN 4.4V  
VIN 4.4V,3.6V,2.7V  
3.6V  
2.7V  
PWM/PFM (VMODE="H")  
PWM/PFM (VMODE="H")  
PWM (VMODE="L")  
PWM (VMODE="L")  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current:IOUTP (mA)  
Output Current:IOUTN (mA)  
24/38  
XC9519  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(2) Output Voltage vs. Output Current (Continued)  
Inverting DC/DC Converter (VOUTN=-15.0V)  
Step-up DC/DC Converter (VOUTP=15.0V)  
CLN=4×4.7μF, LN=3.3μH (VLF5014S-3R3M2R0)  
CLP=4×4.7μF, LP=3.3μH (VLF5014S-3R3M2R0)  
SBDP: CMS03, P-ch MOS: EMH1303, RZP=27k, CZP=2.2nF  
SBDN: CMS03, RZN=200k, CZN=0.47nF  
15.4  
15.2  
15.0  
14.8  
14.6  
-14.6  
-14.8  
-15.0  
-15.2  
-15.4  
VENP="H",VENN="L"  
VENP="L",VENN="H"  
V
V,3.6V  
IN=5.5  
VIN 5.5V  
3.6V  
PWM/PFM (VMODE="H")  
PWM/PFM (VMODE="H")  
PWM (VMODE="L")  
PWM (VMODE="L")  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current:IOUTP (mA)  
Output Current:IOUTN (mA)  
(3) Ripple Voltage vs. Output Current  
Step-up DC/DC Converter (VOUTP=5.0V)  
Inverting DC/DC Converter (VOUTN=-5.0V)  
CLP=4×4.7μF, LP=3.3μH (VLF5014S-3R3M2R0)  
CLN=4×4.7μF, LN=3.3μH (VLF5014S-3R3M2R0)  
SBDN: CMS03, RZN=130k, CZN=0.47nF  
SBDP: CMS03, P-ch MOS: EMH1303, RZP=7.5k, CZP=4.7nF  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VENP="H",VENN="L"  
VENP="L",VENN="H"  
PWM/PFM (VMODE="H")  
PWM (VMODE="L")  
PWM/PFM (VMODE="H")  
PWM (VMODE="L")  
4.4V  
3.6V  
4.4V  
2.7V  
2.7V  
3.6V  
VIN= 2.7V,3.6V,4.4V  
VIN= 2.7V,3.6V,4.4V  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current:IOUTP (mA)  
Output Current:IOUTN (mA)  
Step-up DC/DC Converter (VOUTP=15.0V)  
Inverting DC/DC Converter (VOUTN=-15.0V)  
CLN=4×4.7μF, LN=3.3μH (VLF5014S-3R3M2R0)  
SBDN: CMS03, RZN=200k, CZN=0.47nF  
CLP=4×4.7μF, LP=3.3μH (VLF5014S-3R3M2R0)  
SBDP: CMS03, P-ch MOS: EMH1303, RZP=27k, CZP=2.2nF  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VENP="H",VENN="L"  
PWM/PFM (VMODE="H")  
PWM (VMODE="L")  
VENP="L",VENN="H"  
PWM/PFM (VMODE="H")  
PWM (VMODE="L")  
VIN= 5.5V  
3.6V  
5.5V  
2.7V  
VIN= 2.7V,3.6V,4.4V  
3.6V  
2.7V  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current:IOUTP (mA)  
Output Current:IOUTN (mA)  
25/38  
XC9519 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(4) Oscillation Frequency vs. Ambient Temperature  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
3.6V  
VIN=5.5V  
3.6V  
VIN=5.5V  
2.7V  
2.7V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
)
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
(5) Supply Current 1,2,3 vs. Ambient Temperature  
Supply Current 1  
Supply Current 2  
250  
200  
VIN=5.5V  
200  
150  
100  
50  
VIN=5.5V  
150  
2.7V  
2.7V  
100  
50  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
Supply Current 3  
)
Ambient Temperature: Ta (  
)
200  
150  
100  
50  
VIN=5.5V  
2.7V  
0
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
26/38  
XC9519  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(6) FBP Voltage vs. Ambient Temperature  
(7) Output Voltage Accuracy vs. Ambient Temperature  
1.02  
1.02  
1.01  
1.00  
0.99  
0.98  
VIN=5.5V  
VIN=5.5V  
1.01  
1.00  
0.99  
0.98  
2.7V  
2.7V,3.6V  
3.6V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
(8) UVLO Voltage vs. Ambient Temperature  
2.7  
2.6  
2.5  
UVLO Release Voltage  
UVLO Detect Voltage  
2.4  
2.3  
2.2  
2.1  
2.0  
VENP="H",VENN="L",VMODE="L"  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
(9) ENP "H" Voltage vs. Ambient Temperature  
(10) ENP "L" Voltage vs. Ambient Temperature  
1.2  
1.4  
1.3  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
1.2  
1.1  
1.0  
0.9  
0.8  
VIN=5.5V,VENN="L",VMODE="L"  
VIN=5.5V,VENN="L",VMODE="L"  
0.7  
0.5  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
27/38  
XC9519 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(11) ENN "H" Voltage vs. Ambient Temperature  
(12) ENN "L" Voltage vs. Ambient Temperature  
1.4  
1.2  
1.3  
1.2  
1.1  
1.0  
0.9  
1.1  
1.0  
0.9  
0.8  
0.7  
0.8  
0.6  
VIN=5.5V,VENP="L",VMODE="L"  
VIN=5.5V,VENP="L",VMODE="L"  
0.7  
0.5  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
(14) MODE "L" Voltage vs. Ambient Temperature  
(13) MODE "H" Voltage vs. Ambient Temperature  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
VIN=5.5V,VENP="H",VENN="L"  
VIN=5.5V,VENP="H",VENN="L"  
0.7  
0.5  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
(16) LXN SW "L" ON Resistance vs. Ambient Temperature  
0.5  
(15) LXP SW “H” ON Resistance vs. Ambient Temperature  
0.3  
0.4  
2.7V  
2.7V  
0.2  
0.3  
0.2  
0.1  
3.6V VIN=5.5V  
3.6V  
0.1  
VIN=5.5V  
0.0  
0.0  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
28/38  
XC9519  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(17) Output Voltage Rise Wave Form  
Step-up DC/DC Converter (VOUTP=15.0V)  
Inverting DC/DC Converter (VOUTN=-15.0V)  
CLN=4×4.7μF, LN=3.3μH (VLF5014S-3R3M2R0)  
CLP=4×4.7μF, LP=3.3μH (VLF5014S-3R3M2R0)  
SBDP: CMS03, P-ch MOS: EMH1303, RZP=27k, CZP=2.2nF  
VIN=3.6V,VENN="L",VMODE="L"  
SBDN: CMS03, RZN=200k, CZN=0.47nF  
VIN=3.6V,VENP="L",VMODE="L"  
1ch  
VOUTN  
VOUTP  
1ch  
2ch  
VENN = 0 3.6V  
VENP = 0 3.6V  
2ch  
1ch:5V/div, 2ch:5V/div  
1ch:5V/div, 2ch:5V/div  
time:500 s/div  
time:500 s/div  
μ
μ
(18) Soft Start Time vs. Ambient Temperature  
Step-up DC/DC Converter  
5.0  
Inverting DC/DC Converter  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
4.5  
4.0  
VIN=5.5V  
3.6V  
VIN=5.5V  
3.6V  
3.5  
3.0  
2.5  
2.0  
2.7V  
2.7V  
1.5  
1.0  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
(19) Maximum Duty Cycle vs. Ambient Temperature  
Step-up DC/DC Converter  
96  
Inverting DC/DC Converter  
96  
94  
92  
90  
88  
86  
84  
94  
92  
90  
88  
86  
VIN=3.6V,VENP="H",VENN="L",VMODE="L"  
VIN=3.6V,VENP="L",VENN="H",VMODE="L"  
84  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
29/38  
XC9519 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(20) Maximum Current Limit vs. Ambient Temperature  
Step-up DC/DC Converter (VOUTP=5.0V)  
CLP=4×4.7μF, LP=3.3μH (VLF5014S-3R3M2R0)  
Inverting DC/DC Converter (VOUTN=-5.0V)  
CLN=4×4.7μF, LN=3.3μH (VLF5014S-3R3M2R0)  
SBDN: CMS03, RZN=130k, CZN=0.47nF  
SBDP: CMS03, P-ch MOS: EMH1303, RZP=7.5k, CZP=4.7nF  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
VIN=4.4V  
2.7V  
VIN=4.4V  
3.6V  
2.7V  
3.6V  
VENP="H",VENN="L",VMODE="L"  
VENP="L",VENN="H",VMODE="L"  
-50  
-25  
0
25  
50  
75  
)
100  
-50  
-25  
0
25  
50  
75  
)
100  
Ambient Temperature: Ta (  
Ambient Temperature: Ta (  
Step-up DC/DC Converter (VOUTP=15.0V)  
Inverting DC/DC Converter (VOUTN=-15.0V)  
CLN=4×4.7μF, LN=3.3μH (VLF5014S-3R3M2R0)  
SBDN: CMS03, RZN=200k, CZN=0.47nF  
CLP=4×4.7μF, LP=3.3μH (VLF5014S-3R3M2R0)  
SBDP: CMS03, P-ch MOS: EMH1303, RZP=27k, CZP=2.2nF  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
VIN=5.5V  
3.6V  
3.6V  
VIN=5.5V  
VENP="L",VENN="H",VMODE="L"  
VENP="H",VENN="L",VMODE="L"  
-50  
-25  
0
25  
50  
75  
)
100  
-50  
-25  
0
25  
50  
75  
)
100  
Ambient Temperature: Ta (  
Ambient Temperature: Ta (  
(21) Latch Time vs. Ambient Temperature  
3.0  
2.5  
2.7V  
2.0  
3.6V  
1.5  
VIN=5.5V  
1.0  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
30/38  
XC9519  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(22) CL Discharge Resistance vs. Ambient Temperature  
Step-up DC/DC Converter  
Inverting DC/DC Converter  
400  
350  
300  
250  
200  
150  
100  
400  
350  
300  
250  
200  
150  
100  
2.7V  
2.7V  
3.6V VIN=5.5V  
3.6V VIN=5.5V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
(23) PFM Switching Current vs. Ambient Temperature  
Step-up DC/DC Converter (VOUTP=5.0V)  
CLP=4×4.7μF, LP=3.3μH (VLF5014S-3R3M2R0)  
Inverting DC/DC Converter (VOUTN=-5.0V)  
CLN=4×4.7μF, LN=3.3μH (VLF5014S-3R3M2R0)  
SBDN: CMS03, RZN=130k, CZN=0.47nF  
SBDP: CMS03, P-ch MOS: EMH1303, RZP=7.5k, CZP=4.7nF  
550  
500  
450  
400  
350  
300  
250  
200  
150  
550  
500  
450  
400  
350  
300  
250  
200  
150  
VIN=4.4V  
VIN=4.4V  
3.6V  
3.6V  
VENP="H",VENN="L",VMODE="H"  
VENP="L",VENN="H",VMODE="H"  
-50  
-25  
0
25  
50  
75  
)
100  
-50  
-25  
0
25  
50  
75  
)
100  
Ambient Temperature: Ta (  
Ambient Temperature: Ta (  
Step-up DC/DC Converter (VOUTP=15.0V)  
Inverting DC/DC Converter (VOUTN=-15.0V)  
CLN=4×4.7μF, LN=3.3μH (VLF5014S-3R3M2R0)  
SBDN: CMS03, RZN=200k, CZN=0.47nF  
CLP=4×4.7μF, LP=3.3μH (VLF5014S-3R3M2R0)  
SBDP: CMS03, P-ch MOS: EMH1303, RZP=27k, CZP=2.2nF  
550  
500  
450  
400  
350  
300  
250  
200  
150  
550  
500  
450  
400  
350  
300  
250  
200  
150  
VIN=5.5V  
VIN=5.5V  
3.6V  
3.6V  
VENP="H",VENN="L",VMODE="H"  
VENP="H",VENN="L",VMODE="H"  
-50  
-25  
0
25  
50  
75  
)
100  
-50  
-25  
0
25  
50  
75  
)
100  
Ambient Temperature: Ta (  
Ambient Temperature: Ta (  
31/38  
XC9519 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(24) Load Transient Response  
Step-up DC/DC Converter: PWM/PFM MODE  
Step-up DC/DC Converter: PWM MODE  
(VIN=3.6V, VOUTP=5.0V, IOUTP=2001mA)  
CLP=4×4.7μF, LP=3.3μH (VLF5014S-3R3M2R0), SBDP: CMS03  
P-ch MOS: EMH1303, RZP=8.2k, CZP=4.7nF, CFBP=47pF, RSP=4.7kΩ  
(VIN=3.6V, VOUTP=5.0V, IOUTP=1200mA)  
CLP=4×4.7μF, LP=3.3μH (VLF5014S-3R3M2R0), SBDP: CMS03  
P-ch MOS: EMH1303, RZP=8.2k, CZP=4.7nF, CFBP=47pF, RSP=4.7kΩ  
VENP="H",VENN="L",VMODE="L"  
VENP="H",VENN="L",VMODE="L"  
VOUTP  
VOUTP  
1ch  
1ch  
2ch  
IOUTP = 200 1mA  
IOUTP = 1 200mA  
2ch  
1ch:200mV/div, 2ch:200mA/div  
1ch:200mV/div, 2ch:200mA/div  
time:100 s/div  
μ
time:1ms/div  
Step-up DC/DC Converter: PWM/PFM MODE  
Step-up DC/DC Converter: PWM/PFM MODE  
(VIN=3.6V, VOUTP=5.0V, IOUTP=1200mA)  
(VIN=3.6V, VOUTP=5.0V, IOUTP=2001mA)  
CLP=4×4.7μF, LP=3.3μH (VLF5014S-3R3M2R0), SBDP: CMS03  
P-ch MOS: EMH1303, RZP=8.2k, CZP=4.7nF, CFBP=47pF, RSP=4.7kΩ  
VENP="H",VENN="L",VMODE="H"  
CLP=4×4.7μF, LP=3.3μH (VLF5014S-3R3M2R0), SBDP: CMS03  
P-ch MOS: EMH1303, RZP=8.2k, CZP=4.7nF, CFBP=47pF, RSP=4.7kΩ  
VENP="H",VENN="L",VMODE="H"  
VOUTP  
VOUTP  
1ch  
1ch  
2ch  
IOUTP = 200 1mA  
IOUTP = 1 200mA  
2ch  
1ch:200mV/div, 2ch:200mA/div  
1ch:200mV/div, 2ch:200mA/div  
time:100 s/div  
μ
time:1ms/div  
32/38  
XC9519  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Step-up DC/DC Converter: PWM MODE  
Step-up DC/DC Converter: PWM MODE  
(VIN=3.6V, VOUTP=15.0V, IOUTP=150mA)  
(VIN=3.6V, VOUTP=15.0V, IOUTP=501mA)  
CLP=4×4.7μF, LP=3.3μH (VLF5014S-3R3M2R0)  
CLP=4×4.7μF, LP=3.3μH (VLF5014S-3R3M2R0)  
SBDP: CMS03, P-ch MOS: EMH1303, RZP=27k, CZP=2.2nF  
SBDP: CMS03, P-ch MOS: EMH1303, RZP=27k, CZP=2.2nF  
VENP="H",VENN="L",VMODE="L"  
VENP="H",VENN="L",VMODE="L"  
VOUTP  
VOUTP  
1ch  
1ch  
2ch  
IOUTP = 1 50mA  
IOUTP = 50 1mA  
2ch  
1ch:500mV/div, 2ch:50mA/div  
1ch:500mV/div, 2ch:50mA/div  
time:200 s/div  
time:1ms/div  
μ
Step-up DC/DC Converter: PWM/PFM MODE  
Step-up DC/DC Converter: PWM/PFM MODE  
(VIN=3.6V, VOUTP=15.0V, IOUTP=150mA)  
(VIN=3.6V, VOUTP=15.0V, IOUTP=501mA)  
CLP=4×4.7μF, LP=3.3μH (VLF5014S-3R3M2R0)  
CLP=4×4.7μF, LP=3.3μH (VLF5014S-3R3M2R0)  
SBDP: CMS03, P-ch MOS: EMH1303, RZP=27k, CZP=2.2nF  
SBDP: CMS03, P-ch MOS: EMH1303, RZP=27k, CZP=2.2nF  
VENP="H",VENN="L",VMODE="H"  
VENP="H",VENN="L",VMODE="H"  
VOUTP  
VOUTP  
1ch  
1ch  
2ch  
IOUTP = 50 1mA  
IOUTP = 1 50mA  
2ch  
1ch:500mV/div, 2ch:50mA/div  
1ch:500mV/div, 2ch:50mA/div  
time:200 s/div  
μ
time:1ms/div  
33/38  
XC9519 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Inverting DC/DC Converter: PWM MODE  
Inverting DC/DC Converter: PWM MODE  
(VIN=3.6V, VOUTN=-5.0V, IOUTN=1200mA)  
(VIN=3.6V, VOUTN=-5.0V, IOUTN=2001mA)  
CLN=4×4.7μF, LN=3.3μH (VLF5014S-3R3M2R0)  
CLN=4×4.7μF, LN=3.3μH (VLF5014S-3R3M2R0)  
SBDN: CMS03, RZN=130k, CZN=0.47nF  
SBDN: CMS03, RZN=130k, CZN=0.47nF  
VENP="L",VENN="H",VMODE="L"  
VENP="L",VENN="H",VMODE="L"  
VOUTN  
VOUTN  
1ch  
1ch  
2ch  
IOUTN = 200 1mA  
IOUTN = 1 200mA  
2ch  
1ch:200mV/div, 2ch:200mA/div  
1ch:200mV/div, 2ch:200mA/div  
time:100 s/div  
time:500 s/div  
μ
μ
Inverting DC/DC Converter: PWM/PFM MODE  
Inverting DC/DC Converter: PWM/PFM MODE  
(VIN=3.6V, VOUTN=-5.0V, IOUTN=1200mA)  
(VIN=3.6V, VOUTN=-5.0V, IOUTN=2001mA)  
CLN=4×4.7μF, LN=3.3μH (VLF5014S-3R3M2R0)  
CLN=4×4.7μF, LN=3.3μH (VLF5014S-3R3M2R0)  
SBDN: CMS03, RZN=130k, CZN=0.47nF  
SBDN: CMS03, RZN=130k, CZN=0.47nF  
VENP="L",VENN="H",VMODE="H"  
VENP="L",VENN="H",VMODE="H"  
VOUTN  
VOUTN  
1ch  
1ch  
2ch  
IOUTN = 200 1mA  
IOUTN = 1 200mA  
2ch  
1ch:200mV/div, 2ch:200mA/div  
1ch:200mV/div, 2ch:200mA/div  
time:100 s/div  
time:500 s/div  
μ
μ
34/38  
XC9519  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Inverting DC/DC Converter: PWM MODE  
Inverting DC/DC Converter: PWM MODE  
(VIN=3.6V, VOUTN=-15.0V, IOUTN=150mA)  
(VIN=3.6V, VOUTN=-15.0V, IOUTN=501mA)  
CLN=4×4.7μF, LN=3.3μH (VLF5014S-3R3M2R0)  
CLN=4×4.7μF, LN=3.3μH (VLF5014S-3R3M2R0)  
SBDN: CMS03, RZN=200k, CZN=0.47nF  
SBDN: CMS03, RZN=200k, CZN=0.47nF  
VENP="L",VENN="H",VMODE="L"  
VENP="L",VENN="H",VMODE="L"  
VOUTN  
VOUTN  
1ch  
1ch  
2ch  
IOUTN = 1 50mA  
IOUTN = 50 1mA  
2ch  
1ch:500mV/div, 2ch:50mA/div  
1ch:500mV/div, 2ch:50mA/div  
time:100 s/div  
time:500 s/div  
μ
μ
Inverting DC/DC Converter: PWM/PFM MODE  
Inverting DC/DC Converter: PWM/PFM MODE  
(VIN=3.6V, VOUTN=-15.0V, IOUTN=150mA)  
(VIN=3.6V, VOUTN=-15.0V, IOUTN=501mA)  
CLN=4×4.7μF, LN=3.3μH (VLF5014S-3R3M2R0)  
CLN=4×4.7μF, LN=3.3μH (VLF5014S-3R3M2R0)  
SBDN: CMS03, RZN=200k, CZN=0.47nF  
SBDN: CMS03, RZN=200k, CZN=0.47nF  
VENP="L",VENN="H",VMODE="H"  
VENP="L",VENN="H",VMODE="H"  
VOUTN  
VOUTN  
1ch  
1ch  
2ch  
IOUTN = 1 50mA  
IOUTN = 50 1mA  
2ch  
1ch:500mV/div, 2ch:50mA/div  
1ch:500mV/div, 2ch:50mA/div  
time:100 s/div  
time:500 s/div  
μ
μ
35/38  
XC9519 Series  
PACKAGING INFORMATION  
QFN-24 (unit:mm)  
1 PIN INDENT  
4.0±0.10  
0.075  
0.40±0.05  
7
8
9
10 11 12  
13  
14  
6
5
4
3
2
1
15  
16  
17  
18  
24 23 22 21 20 19  
2.8±0.05  
QFN-24 Reference Pattern Layout (unit:mm)  
QFN-24 Reference Metal Mask Design (unit:mm)  
36/38  
XC9519  
Series  
MARKING RULE  
QFN-24  
1pin  
represent product series.  
MARK  
9
PRODUCT SERIES  
XC9519******-G  
①②③④⑤⑥  
represents UVLO detect voltage.  
MARK  
A
UVLO VOLTAGE  
PRODUCT SERIES  
XC9519A*****-G  
Detect: 2.2V, Hysteresis Width: 0.2V  
③④ represents oscillation frequency and maximum current limit.  
MARK  
OSCILLATION  
FREQUENCY  
MAXIMUM  
PRODUCT SERIES  
XC9519*12A**-G  
CURRENT LIMIT  
1
2
1.2MHz  
2.0A  
⑤⑥ represents production lot number.  
0109, 0A0Z, 119Z, A1A9, AAAZ, and B1ZZ repeated  
(G, I, J, O, Q, W excluded)  
*No character inversion used.  
37/38  
XC9519 Series  
1. The products and product specifications contained herein are subject to change without  
notice to improve performance characteristics. Consult us, or our representatives  
before use, to confirm that the information in this datasheet is up to date.  
2. We assume no responsibility for any infringement of patents, patent rights, or other  
rights arising from the use of any information and circuitry in this datasheet.  
3. Please ensure suitable shipping controls (including fail-safe designs and aging  
protection) are in force for equipment employing products listed in this datasheet.  
4. The products in this datasheet are not developed, designed, or approved for use with  
such equipment whose failure of malfunction can be reasonably expected to directly  
endanger the life of, or cause significant injury to, the user.  
(e.g. Atomic energy; aerospace; transport; combustion and associated safety  
equipment thereof.)  
5. Please use the products listed in this datasheet within the specified ranges.  
Should you wish to use the products under conditions exceeding the specifications,  
please consult us or our representatives.  
6. We assume no responsibility for damage or loss due to abnormal use.  
7. All rights reserved. No part of this datasheet may be copied or reproduced without the  
prior permission of TOREX SEMICONDUCTOR LTD.  
38/38  

相关型号:

XC9519A12AZR-G

Dual Switching Controller, Current-mode, 0.5A, 1380kHz Switching Freq-Max, PQCC24,
TOREX

XC95216

XC95216 In-System Programmable CPLD
XILINX

XC95216-10BG352C

XC95216 In-System Programmable CPLD
XILINX

XC95216-10BG352I

XC95216 In-System Programmable CPLD
XILINX

XC95216-10BGG352C

Flash PLD, 10ns, CMOS, PBGA352, BGA-352
XILINX

XC95216-10BGG352I

Flash PLD, 10ns, CMOS, PBGA352, BGA-352
XILINX

XC95216-10HQ208C

XC95216 In-System Programmable CPLD
XILINX

XC95216-10HQ208I

XC95216 In-System Programmable CPLD
XILINX

XC95216-10HQG208C

Flash PLD, 10ns, CMOS, PQFP208, HQFP-208
XILINX

XC95216-10HQG208I

Flash PLD, 10ns, CMOS, PQFP208, HQFP-208
XILINX

XC95216-10PQ160C

XC95216 In-System Programmable CPLD
XILINX

XC95216-10PQ160I

XC95216 In-System Programmable CPLD
XILINX