XDL602B30382-Q [TOREX]

HiSAT-COT ® Control, 1.5A Inductor Built-in Step-Down “micro DC/DC” Converters;
XDL602B30382-Q
型号: XDL602B30382-Q
厂家: Torex Semiconductor    Torex Semiconductor
描述:

HiSAT-COT ® Control, 1.5A Inductor Built-in Step-Down “micro DC/DC” Converters

文件: 总21页 (文件大小:1235K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XDL601/XDL602 Series  
ETR44001-002  
HiSAT-COT ® Control, 1.5A Inductor Built-in Step-Down micro DC/DC” Converters  
AEC-Q100 Grade2  
Green Operation Compatible  
GENERAL DESCRIPTION  
The XDL601/XDL602 series is a synchronous step-down micro DC/DC converter which integrates an inductor and a control  
IC in one tiny package. An internal coil simplifies the circuit and enables minimization of noise and other operational trouble  
due to the circuit wiring.  
The XDL601/XDL602 series uses synchronous rectification at an operating frequency of 3.0MHz. The XDL601/XDL602  
series uses HiSAT-COT (*) synchronous rectification. HiSAT-COT+PWM control (XDL601) or HiSAT-COT+automatic  
PWM/PFM switching control (XDL602) can be selected.  
XDL601/XD602 series employ the wettable flank plated packaging. This provides a visual indicator of solderability and lowers  
the inspection time.  
(*) HiSAT-COT is a proprietary high-speed transient response technology for DC/DC converter which was developed by Torex.  
It is Ideal for the LSI's that require high precision and high stability power supply voltage.  
FEATURES  
APPLICATIONS  
Car Navigation System  
Drive Recorder  
Car Audio  
Car-mounted camera  
ETC / Other automotive accessories  
Input Voltage  
:
:
2.5V ~ 5.5V  
0.8V,1.0V,1.1V,1.2V,1.25V,1.3V,1.35V,  
1.5V,1.8V,2.5V,3.0V,3.3V  
3.0MHz  
Output Voltage  
Oscillation Frequency  
Output Current  
Efficiency  
:
:
:
:
1.5A  
93% (VIN=5.0V,VOUT=3.3V/500mA)  
HiSAT-COT  
Control Methods  
100% Duty Cycle  
HiSAT-COT+PWM (XDL601)  
HiSAT-COT+PWM/PFM (XDL602)  
Thermal Shut Down  
Circuit Protection  
Functions  
:
:
Current Limit Circuit (Drop)  
Short Circuit Protection (Latch)  
Soft-start Circuit Built-in  
UVLO  
CL Discharge  
Output Capacitor  
OperatingAmbient Temperature  
Package  
:
:
:
:
Low ESR Ceramic Capacitor  
-40~ 105℃  
DFN3625-11B (with Wettable Flanks)  
EU RoHS Compliant, Pb Free  
Environmental Friendly  
TYPICAL PERFORMANCE  
CHARACTERISTICS  
XDL601/XDL602 (VOUT=3.3V)  
TYPICALAPPLICATION CIRCUIT  
L1  
Lx  
VIN  
CIN  
VOUT  
CL  
VIN  
L2  
CE  
VOUT  
PGND  
AGND  
1/21  
XDL601/XDL602 Series  
BLOCK DIAGRAM  
1) XDL601/XDL602 Series Type A  
Inductor  
L1  
L2  
VOUT  
FB  
C
R1  
R2  
High Side  
Current Limit  
Phase  
VIN  
Compensation  
Error  
Comparator  
Amp.  
S
R
AGND  
CE  
Synch  
Buffer  
Drive  
Q
Logic  
Lx  
Vref with  
Soft Start  
CE Control Logic,  
UVLO  
Thermal Shutdown  
Minimum On  
Time  
Generator  
IN  
V
PGND  
VOUT  
/
PWM PFM  
Selector  
* The XDL601 offers a fixed PWM control, a Control Logic of PWM/PFM Selector is fixed at PWMinternally.  
The XDL602 control scheme is a fixed PWM/PFM automatic switching, a Control Logic of PWM/PFM Selector is fixed at PWM/PFM  
automatic switching” internally.  
Diodes inside the circuit are an ESD protection diode and a parasitic diode.  
2) XDL601/XDL602 Series Type B  
Inductor  
L1  
L2  
Short  
Protection  
VOUT  
FB  
C
R1  
R2  
High Side  
Current Limit  
Phase  
V
IN  
Compensation  
Error  
Comparator  
Amp  
.
S
Synch  
Buffer  
Drive  
AGND  
CE  
Logic  
Q
Lx  
R
Vref with  
Soft Start  
CE Control Logic  
,
Minimum On  
UVLO  
Time  
V
IN  
Thermal Shutdown  
Generator  
PGND  
VOUT  
/
PWM PFM  
Selector  
* The XDL601 offers a fixed PWM control, a Control Logic of PWM/PFM Selector is fixed at PWMinternally.  
The XDL602 control scheme is a fixed PWM/PFM automatic switching, a Control Logic of PWM/PFM Selector is fixed at PWM/PFM  
automatic switching” internally.  
Diodes inside the circuit are an ESD protection diode and a parasitic diode.  
2/21  
XDL601/XDL602  
Series  
PRODUCT CLASSIFICATION  
Ordering Information  
XDL601①②③④⑤⑥-PWM  
XDL602①②③④⑤⑥-PWM/PFM Automatic switching control  
DESIGNATOR  
ITEM  
SYMBOL  
DESCRIPTION  
A
B
Type  
Refer to Selection Guide  
Output Voltage options  
e.g.)1.2V → =1, =2  
1.25V → =1, =C  
08,10,11,12,1C  
13,1D,15,18  
25,30,33(*1)  
②③  
Output Voltage  
0.05V Increments:  
0.25=C,0.35=D  
Oscillation Frequency  
Package  
3
3.0MHz  
(*2)  
⑤⑥-⑦  
82-Q  
DFN3625-11B (2,000pcs/Reel) (*3)  
(Order Unit)  
(*1) Contact Torex sales representatives for other voltages. Product selections from 0.8V to 3.6V are available.  
(*2)  
The “-Q” suffix denotes “AEC-Q100” compliant.  
(*3) “Halogen and Antimony free” as well as being fully EU RoHS compliant. The products are shipped in a moisture-proof  
packing.  
Selection Guide  
LATCH or  
SHORT  
PROTECTION  
OUTPUT  
VOLTAGE DISCHARGE  
CL AUTO-  
CHIP  
ENABLE  
CURRENT SOFT-  
THERMAL  
TYPE  
UVLO  
LIMIT  
START SHUTDOWN  
A
B
Fixed  
Fixed  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Fixed  
Fixed  
Yes  
Yes  
Yes  
Yes  
3/21  
XDL601/XDL602 Series  
PIN CONFIGURATION  
PGND  
9
9
8
7
6
5
1
2
3
4
CE  
AGND  
VOUT  
VIN  
NC  
LX  
PGND  
PGND  
10  
L1  
L2 11  
12  
L2  
13  
L1  
DFN3625-11B  
(BOTTOM VIEW)  
* The dissipation pad, No.9 pin of the DFN3625-11B package, should be soldered in recommended  
mount pattern and metal masking so as to enhance mounting strength and heat release.  
The mount pattern for the dissipation pad should be connected to the GND pin (No.4, 5 and 7).  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTIONS  
Power Input  
1
VIN  
2
NC  
No Connection  
3
Lx  
Switching Output  
Power Ground  
4
PGND  
PGND  
VOUT  
AGND  
CE  
5
Power Ground  
6
7
Fixed Output Voltage PIN  
Analog Ground  
Chip Enable  
8
9
PGND  
L1  
Power Ground  
10,13  
11,12  
Inductor Electrodes  
Inductor Electrodes  
L2  
* This 2-pin NC terminal is not connected to an IC chip.  
FUNCTION TABLE  
PIN NAME  
SIGNAL  
STATUS  
Stand-by  
Active  
Low  
CE  
High  
* Please do not leave the CE pin open.  
4/21  
XDL601/XDL602  
Series  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
VIN Pin Voltage  
LX Pin Voltage  
VOUT Pin Voltage  
CE Pin Voltage  
SYMBOL  
RATINGS  
-0.3 ~ 6.2  
UNITS  
VIN  
VLx  
Vout  
VCE  
V
V
V
V
-0.3 ~ VIN + 0.3 or 6.2(*1)  
-0.3 ~ VIN + 0.3 or 4.0 (*2)  
-0.3 ~ 6.2  
Power Dissipation  
(Ta=25)  
DFN3625-11B  
Pd  
2100 (JESD51-7 board) (*3)  
mW  
Operating Ambient Temperature  
Storage Temperature  
Topr  
Tstg  
-40 ~ 105  
-55 ~ 125  
All voltages are described based on the GND (AGND and PGND) pin.  
(*1) The maximum value should be either VIN+0.3V or 6.2V in the lowest voltage  
(*2) The maximum value should be either VIN+0.3V or 4.0V in the lowest voltage  
(*3) The power dissipation figure shown is PCB mounted and is for reference only.  
The mounting condition is please refer to PACKAGING INFORMATION.  
5/21  
XDL601/XDL602 Series  
ELECTRICAL CHARACTERISTICS  
Ta=25  
XDL601/XDL602  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNITS CIRCUIT  
When connected to external components,  
Output Voltage  
VOUT  
VIN  
<E-1>  
2.5  
<E-2>  
<E-3>  
V
V
IOUT=30mA  
-
-40℃≦Ta  
-40℃≦Ta  
105  
105  
Operating Voltage Range  
Maximum Output Current  
-
-
5.5  
-
When connected to external components (*1)  
,
IOUTMAX  
1500  
mA  
VIN=<C -1>  
VOUT=0.6V,Voltage which Lx pin  
holding “L” level (*6)  
UVLO Voltage(*2)  
VUVLO  
-40℃≦Ta  
105  
1.35  
2.00  
2.68  
V
-
-
-
-
-
25.0  
-
40.0  
50.0  
825  
900  
1.0  
Quiescent Current  
(XDL602)  
Iq  
VOUT =VOUT(T) × 1.1  
μA  
-40℃≦Ta  
105  
400  
-
Quiescent Current  
(XDL601)  
Iq  
VOUT =VOUT(T) × 1.1  
VCE=0V  
μA  
μA  
ns  
-40℃≦Ta  
105  
Stand-by Current  
ISTB  
0.0  
When connected to external components,  
VIN=<C-1>, IOUT=1mA  
Minimum ON time  
tONmin  
<E-5>  
<E-6>  
<E-7>  
Thermal shutdown  
Thermal shutdown hysteresis  
Lx SW ”H” ON Resistance  
Lx SW ”L” ON Resistance (*4)  
Lx SW ”H” Leakage Current  
Lx SW ”L” Leakage Current  
Current Limit (*5)  
TTSD  
THYS  
RLXH  
RLXL  
ILeakH  
IleakL  
ILIMH  
-
-
150  
30  
-
Ω
-
-
-
VOUT=0.6V, ILX=100mA (*3)  
VOUT=VOUT(T) V × 1.1, ILX=100mA (*3)  
VIN=5.5V, VCE=0V, VOUT=0V, VLX=0V  
VIN=5.5V, VCE=0V, VOUT=0V, VLX=5.5V  
VOUT=0.6V, ILx until Lx pin oscillates  
-
0.14  
0.10  
0.0  
0.28  
0.20  
1.0  
30.0  
4.5  
-
-
Ω
μA  
μA  
A
-
0.0  
2.5  
3.0  
VOUT=0.6V, Applied voltage to VCE  
Voltage changes Lx to “H” level (*6)  
,
CE ”H” Voltage  
CE ”L” Voltage  
VCEH  
-40℃≦Ta  
-40℃≦Ta  
105  
105  
1.4  
-
-
5.5  
V
V
VOUT=0.6V, Applied voltage to VCE  
Voltage changes Lx to “L” level (*6)  
VIN=5.5V, VCE=5.5V, VOUT=0V  
VIN=5.5V, VCE=0V, VOUT=0V  
,
VCEL  
AGND  
0.30  
CE ”H” Current  
CE ”L” Current  
ICEH  
ICEL  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
VCE=0V  
After "H" is fed to CE,  
the time by when clocks are generated at Lx pin.  
Sweeping VOUT  
5.0V, VOUT=VOUT(T)× 0.9  
Soft-start Time  
tSS  
0.10  
0.30  
0.50  
ms  
Short Protection Threshold  
Voltage (Type B)  
,
VSHORT  
0.17  
0.27  
0.37  
V
VOUT voltage which Lx becomes “L” level(*6)  
CL Discharge (Type B)  
Inductance  
RDCHG  
L
VCE=0V, VOUT=4.0V  
50  
-
210  
0.5  
1.8  
300  
Ω
μH  
A
-
Test Freq.=1MHz  
-
-
Inductor Rated Current  
IDC  
ΔT=+40deg  
-
-
Unless otherwise stated, VIN=5V, VCE=5V, VOUT(T)=Nominal Value,  
The ambient temperature range (-40℃≦Ta105) is design Value.  
NOTE:  
(*1) When the difference between the input and the output is small, 100% duty might come up and internal control circuits keep P-ch driver  
turning on even though the output current is not so large.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
(*2) Including UVLO detect voltage, hysteresis operating voltage range for UVLO release voltage.  
(*3)  
R = (VIN - Lx pin measurement voltage) / 100mA, RLXL= Lx pin measurement voltage / 100mA  
LXH  
(*4) Design value for the XDL602 series.  
(*5) Current limit denotes the level of detection at peak of coil current.  
(*6) "H"=VIN ~ VIN - 1.2V, "L"=- 0.1V ~ 0.1V  
6/21  
XDL601/XDL602  
Series  
ELECTRICAL CHARACTERISTICS  
SPEC Table (VOUT, tONmin  
)
VOUT  
(Ta=25)  
VOUT  
tONmin  
(Ta=25)  
NOMINAL  
OUTPUT  
(-40℃≦Ta105)  
VOLTAGE  
<C-1>  
<E-1>  
MIN.  
<E-2>  
<E-3>  
MAX.  
<E-1>  
<E-2>  
<E-3>  
<E-5>  
<E-6>  
TYP.  
<E-7>  
MAX.  
VIN,  
VCE  
VOUT(T)  
TYP.  
MIN.  
TYP.  
MAX.  
MIN.  
0.80  
1.00  
1.10  
1.20  
1.25  
1.30  
1.35  
1.50  
1.80  
2.50  
3.00  
3.30  
0.784  
0.980  
1.078  
1.176  
1.225  
1.274  
1.323  
1.470  
1.764  
2.450  
2.940  
3.234  
0.800  
1.000  
1.100  
1.200  
1.250  
1.300  
1.350  
1.500  
1.800  
2.500  
3.000  
3.300  
0.816  
1.020  
1.122  
1.224  
1.275  
1.326  
1.377  
1.530  
1.836  
2.550  
3.060  
3.366  
0.768  
0.960  
1.056  
1.152  
1.200  
1.248  
1.296  
1.440  
1.728  
2.400  
2.880  
3.168  
0.800  
1.000  
1.100  
1.200  
1.250  
1.300  
1.350  
1.500  
1.800  
2.500  
3.000  
3.300  
0.824  
1.030  
1.133  
1.236  
1.288  
1.339  
1.391  
1.545  
1.854  
2.575  
3.090  
3.399  
2.70  
2.70  
2.70  
2.70  
2.70  
2.70  
2.70  
2.70  
3.00  
4.17  
5.00  
5.50  
71  
119  
123  
136  
148  
154  
160  
167  
185  
200  
200  
200  
200  
166  
160  
177  
193  
201  
209  
217  
241  
260  
260  
260  
260  
86  
95  
104  
108  
112  
117  
130  
140  
140  
140  
140  
7/21  
XDL601/XDL602 Series  
TEST CIRCUITS  
< Circuit No.  
>
< Circuit No. >  
Wave Form Measure Point  
L
L2  
L1  
Lx  
L2  
L1  
Lx  
VOUT  
AGND  
CE  
VOUT  
AGND  
CE  
A
A
VIN  
V
IN  
CL  
V
RL  
1μF  
CIN  
PGND  
PGND  
External Components  
L0.5μH(Selected goods)  
C
C
10μF(Ceramic)  
:
:
IN  
μF(Ceramic)  
10  
L
< Circuit No. >  
< Circuit No. >  
Wave Form Measure Point  
L2  
L1  
L2  
L1  
VOUT  
Lx  
VOUT  
Lx  
VIN  
AGND  
VIN  
AGND  
V
1μF  
RPulldown  
200Ω  
I
LX  
1μF  
PGND  
CE  
PGND  
CE  
RLXH=(VIN-VL)/ILX  
RLXL=VLX/ILX  
< Circuit No. >  
< Circuit No. >  
Wave Form Measure Point  
L2  
L1  
L2  
L1  
LeakH  
I
A
VOUT  
Lx  
VOUT  
Lx  
ILeakL  
1μF  
VIN  
AGND  
AGND  
VIN  
ILIMH  
1μF  
CEH  
I
V
A
PGND  
CE  
CE  
PGND  
ICEL  
< Circuit No. >  
L2  
L1  
A
VOUT  
Lx  
VIN  
AGND  
1μF  
CE  
PGND  
8/21  
XDL601/XDL602  
Series  
TYPICAL CIRCUIT  
L1  
Lx  
VIN  
CIN  
VOUT  
CL  
VIN  
L2  
CE  
VOUT  
PGND  
AGND  
NOTE:  
The integrated Inductor can be used only for this DC/DC  
converter. Please do not use this inductor for other reasons.  
VALUE  
PRODUCT NUMBER  
CGA4J3X7S1A106K125AE (TDK)  
GCM21BR71A106KE22L (murata)  
CIN  
CL  
10V/10μF  
9/21  
XDL601/XDL602 Series  
OPERATIONAL EXPLANATION  
The XDL601/XDL602 series consists of a reference voltage source, error amplifier, comparator, phase compensation,  
minimum on time generation circuit, output voltage adjustment resistors, P-channel MOS driver transistor, N-channel MOS  
switching transistor for the synchronous switch, current limiter circuit, UVLO circuit, thermal shutdown circuit, short protection  
circuit, PWM/PFM selection circuit and others. (See the BLOCK DIAGRAM below.)  
Inductor  
L1  
L2  
Short  
Protection  
VOUT  
R1  
R2  
CFB  
High Side  
Current Limit  
VIN  
Phase  
Compensation  
Error  
Amp.  
Comparator  
AGND  
CE  
S
Synch  
Buffer  
Drive  
Q
Logic  
Lx  
R
Vref with  
Soft Start  
CE Control Logic,  
UVLO  
Thermal Shutdown  
Minimum On  
Time  
Generator  
VIN  
PGND  
VOUT  
PWM/PFM  
Selector  
BLOCK DIAGRAM (XDL601/602 Series)  
The method is HiSAT-COT (High Speed circuit Architecture for Transient with Constant On Time) control, which features on time  
control method and a fast transient response that also achieves low output voltage ripple.  
The on time is determined by the input voltage and output voltage, and turns on the Pch MOS driver Tr. for a fixed time. During  
the off time, the voltage that is fed back through R1 and R2 is compared to the reference voltage by the error amp, and the error  
amp output is phase compensated and sent to the comparator. The comparator compares this signal to the reference voltage,  
and if the signal is lower than the reference voltage, sets the SR latch. On time then resumes. By doing this, PWM operation takes  
place with the off time controlled to the optimum duty ratio and the output voltage is stabilized. The phase compensation circuit  
optimizes the frequency characteristics of the error amp, and generates a ramp wave similar to the ripple voltage that occurs in  
the output to modulate the output signal of the error amp. This enables a stable feedback system to be obtained even when a low  
ESR capacitor such as a ceramic capacitor is used, and a fast transient response and stabilization of the output voltage are  
achieved.  
<Minimum on time generation circuit>  
Generates an on time that depends on the input voltage and output voltage. The on time is set as given by the equations below.  
tONmin=VOUT/VIN×333 ns  
<Switching frequency>  
The switching frequency can be obtained from the on time which is determined by the input voltage and output voltage, and the  
PWM controlled off time as given by the equation below.  
fOSC = (VOUT / VIN) x (1 / tONmin  
)
<100% duty cycle mode>  
When the load current is heavy and the voltage difference between input voltage and output voltage is small, 100% duty cycle  
mode is activated and it keeps the Pch MOS driver Tr. keep on. 100% duty cycle mode attains a high output voltage stability and  
a high-speed response under all load conditions, from light to heavy, even in conditions where the dropout voltage is low.  
<Error amp>  
The error amp monitors the output voltage. The voltage divided by the internal R1 and R2 resistors is a feedback voltage for  
Error Amp. and compared to the reference voltage. The output voltage of the error amp becomes higher when the feedback  
voltage is higher than the reference voltage. The frequency characteristics of the error amp are optimized internally.  
10/21  
XDL601/XDL602  
Series  
OPERATIONAL EXPLANATION (Continued)  
<Reference voltage source, soft start function>  
The reference voltage forms a reference that is used to stabilize the output voltage of the IC.  
After “H” level is fed to CE pin, the reference voltage connected to the error amp increases linearly during the soft start interval.  
This allows the voltage divided by the internal R1 and R2 resistors and the reference voltage to be controlled in a balanced manner,  
and the output voltage rises in proportion to the rise in the reference voltage. This operation prevents rush input current and  
enables the output voltage to rise smoothly.  
If the output voltage does not reach the set output voltage within the soft start time, such as when the load is heavy or a large  
capacity output capacitor is connected, the balancing of the voltage divided by the internal resistors R1 and R2 and the reference  
voltage is lost, however, the current restriction function activates to prevent an excessive increase of input current, enabling a  
smooth rise of the output voltage.  
<PWM/PFM selection circuit>  
Regarding XDL601 which has PWM control method, it works with a continuous conduction mode, and operates at a stable  
switching frequency by means of an on time that is determined by the input voltage and output voltage regardless of the load.  
Regarding XDL602 which has PWM/PFM auto switching control method, it works with a discontinuous conduction mode at light  
loads, and lowers the switching frequency to reduce switching loss and improve efficiency.  
<CE function>  
Operation starts when “H” voltage is input into the CE pin. The IC can be put in the shutdown state by inputting “L” voltage into  
the CE pin. In the shutdown state, the supply current of the IC is 0μA (TYP.), and the Pch MOS driver Tr. and Nch MOS switch  
Tr. for synchronous rectification turn off. The CE pin is a CMOS input and the sink current is 0μA.  
<UVLO Circuit>  
When the VIN voltage becomes 2.00V (TYP.) or lower, the P-ch MOS driver transistor output driver transistor is forced OFF to  
prevent false pulse output caused by unstable operation of the internal circuitry. When the VIN pin voltage becomes 2.10V (TYP.)  
or higher, switching operation takes place. By releasing the UVLO function, the IC performs the soft start function to initiate output  
startup operation. The UVLO circuit does not cause a complete shutdown of the IC,but causes pulse output to be suspended;  
therefore, the internal circuitry remains in operation.  
<Thermal Shutdown>  
For protection against heat damage of the ICs, thermal shutdown function monitors chip temperature. The thermal shutdown  
circuit starts operating and the P-ch MOS driver and N-ch MOS driver transistor will be turned off when the chips temperature  
reaches 150. When the temperature drops to 120or less after shutting of the current flow, the IC performs the soft-start  
function to initiate output startup operation.  
<Short-circuit protection function>  
The B type short-circuit protection circuit protects the device that is connected to this product and to the input/output in situations  
such as when the output is accidentally shorted to GND. The short-circuit protection circuit monitors the output voltage, and when  
the output voltage falls below the short-circuit protection threshold voltage, it turns off the Pch MOS driver Tr and latches it. Once  
in the latched state, operation is resumed by turning off the IC from the CE pin and then restarting, or by re-input into the VIN pin.  
<CL High Speed Discharge>  
The B type can quickly discharge the electric charge at the output capacitor (CL) when a low signal to the CE pin which enables  
a whole IC circuit put into OFF state, is inputted via the N-ch MOS switch transistor located between the VOUT pin and the GND  
pin. When the IC is disabled, electric charge at the output capacitor (CL) is quickly discharged so that it may avoid application  
malfunction.  
Output Voltage Dischage characteristics  
RDCHG = 210Ω (TYP) CL=10μ F  
τ
t /  
V=VOUT(T)×e  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
t=τln (VOUT(T) / V)  
VOUT = 1.2V  
V: Output voltage after discharge  
VOUT(T): Output voltage  
VOUT = 1.8V  
VOUT = 3.3V  
---  
t: Discharge time  
τ: CL×RDCHG  
CL: Capacitance of Output capacitor  
RDCHG: CL auto-discharge resistance,  
but it depends on supply voltage.  
0
2
4
6
8
10 12 14 16 18 20  
Discharge Time: t(ms)  
11/21  
XDL601/XDL602 Series  
OPERATIONAL EXPLANATION (Continued)  
<Current Limit>  
The current limiter circuit of the XDL601/XDL602 series monitors the current flowing through the P-channel MOS driver  
transistor connected to the Lx pin. When the driver current is greater than a specific level, the current limit function operates to  
turn off the pulses from the Lx pin at any given timing. When the over current state is eliminated, the IC resumes its normal  
operation.  
NOTE ON USE  
1. For the phenomenon of temporal and transitional voltage decrease or voltage increase, the IC may be damaged or deteriorated  
if IC is used beyond the absolute MAX. specifications.  
2. Spike noise and ripple voltage arise in a switching regulator as with a DC/DC converter. These are greatly influenced by external  
component selection, such as the coil inductance, capacitance values, and board layout of external components. Once the  
design has been completed, verification with actual components should be done.  
3. The DC/DC converter characteristics depend greatly on the externally connected components as well as on the characteristics  
of this IC, so refer to the specifications and standard circuit examples of each component when carefully considering which  
components to select. Be especially careful of the capacitor characteristics and use B characteristics (JIS standard) or X7R,  
X5R (EIA standard) ceramic capacitors.  
4. Make sure that the PCB GND traces are as thick and wide as possible. The VSS pin or PGND pin and AGND pin fluctuation  
caused by high ground current at the time of switching may result in instability of the IC. Therefore, the GND traces close to  
the VSS pin, PGND pin and AGND pin are important.  
5. Mount external components as close as possible to the IC. Keep the wiring short and thick to lower the wiring impedance.  
6. A feature of HiSAT-COT control is that it controls the off time in order to control the duty, which varies due to the effects of power  
loss. In addition, changes in the on time due to 100% duty cycle mode are allowed. For this reason, caution must be exercised  
as the characteristics of the switching frequency will vary depending on the external component characteristics, board layout,  
input voltage, output voltage, load current and other parameters.  
7. Due to propagation delay inside the product, the on time generated by the minimum on time generation circuit is not the same  
as the on time that is the ratio of the input voltage to the output voltage.  
8. With regard to the current limiting value, the actual coil current may at times exceed the electrical characteristics due to  
propagation delay inside the product.  
9. The CE pin is a CMOS input pin. Do not use with the pin open. If connecting to the input or ground, use the resistor not more  
than 1MΩ or less. To prevent malfunctioning of the device connected to this product or the input/output due to short circuiting  
between pins, it is recommended that a resistor be connected.  
10. In the B type, if the output voltage drops below the short circuit protection threshold voltage at the end of the soft start interval,  
operation will stop.  
11. Regarding XDL602 which has PWM/PFM auto switching control method, it works with a discontinuous conduction mode at  
light loads, and in this case where the voltage difference between input voltage and output voltage is low or the coil inductance  
is higher than the value indicated in the standard circuit example, the coil current may reverse when the load is light, and thus  
pulse skipping will not be possible and light load efficiency will worsen.  
12. When the voltage difference between input voltage and output voltage is low, the load stability feature may deteriorate.  
13. Torex places an importance on improving our products and their reliability.We request that users incorporate fail-safe designs  
and post-aging protection treatment when using Torex products in their systems.  
12/21  
XDL601/XDL602  
Series  
NOTE ON USE (Continued)  
14. Instructions of pattern layouts  
The operation may become unstable due to noise and/or phase lag from the output current when the wire impedance is high.  
Please place the input capacitor(CIN) and the output capacitor (CL) as close to the IC as possible.  
(1) In order to stabilize VIN voltage level, we recommend that a by-pass capacitor (CIN) be connected as close as possible to  
the VIN pin, PGND pin and AGND pin.  
(2) Please mount each external component as close to the IC as possible.  
(3) Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit  
impedance.  
(4) Make sure that the GND traces are as thick as possible, as variations in ground potential caused by high ground currents  
at the time of switching may result in instability of the IC.  
(5) This series’ internal driver transistors bring on heat because of the output current and ON resistance of P-channel and N-  
channel MOS driver transistors. Please consider the countermeasures against heat if necessary.  
< Reference Pattern Layout >  
Layer 1  
Layer 2  
Layer 4  
Layer 3  
13/21  
XDL601/XDL602 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Efficiency vs. Output Current  
XDL601A083 / XDL602A083 Vout=0.8V  
XDL601A183 / XDL602A183 Vout=1.8V  
C
= 10μF(C2012X7R1A106M)  
C
= 10μF(C2012X7R1A106M)  
IN  
IN  
CL = 10μF(C2012X7R1A106M)  
CL = 10μF(C2012X7R1A106M)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 2.5V  
VIN = 5.5V  
XDL601  
XDL602  
XDL601  
VIN = 2.5V  
VIN = 5.5V  
XDL602  
VIN = 2.5V  
VIN = 5.5V  
VIN = 2.5V  
VIN = 5.5V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current: IOUT (mA)  
Output Current: IOUT (mA)  
XDL601A333 / XDL602A333 Vout=3.3V  
C
= 10μF(C2012X7R1A106M)  
IN  
CL = 10μF(C2012X7R1A106M)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
XDL601  
XDL602  
VIN = 5.5V  
0.1  
1
10  
100  
1000  
10000  
Output Current: IOUT (mA)  
(2) Output Voltage vs. Output Current  
XDL601A333 Vout=3.3V  
XDL601A183 Vout=0.8V  
C
= 10μF(C2012X7R1A106M)  
IN  
C
= 10μF(C2012X7R1A106M)  
IN  
CL = 10μF(C2012X7R1A106M)  
CL = 10μF(C2012X7R1A106M)  
3.60  
2.00  
1.90  
1.80  
1.70  
1.60  
3.50  
3.40  
3.30  
3.20  
3.10  
3.00  
VIN = 5.5V  
VIN = 2.5V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current: IOUT (mA)  
Output Current: IOUT (mA)  
14/21  
XDL601/XDL602  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(3) Ripple Voltage vs. Output Current  
XDL601A333 / XDL602A333 Vout=3.3V  
= 10μF(C2012X7R1A106M)  
XDL601A183 / XDL602A183 Vout=1.8V  
= 10μF(C2012X7R1A106M)  
C
IN  
C
IN  
CL = 10μF(C2012X7R1A106M)  
CL = 10μF(C2012X7R1A106M)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
XDL601  
XDL602  
XDL601  
XDL602  
VIN = 3.3V  
VIN = 5.0V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current: IOUT (mA)  
Output Current: IOUT (mA)  
(4) Output Voltage vs. Ambient Temperature  
XDL601A183 Vout=1.8V  
(5) UVLO Voltage vs. Ambient Temperature  
XDL601A083 Vout=0.8V  
VCE = VIN  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
2.00  
1.95  
1.90  
VIN = 3.7V  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
(6) Quiescent Current vs. Ambient Temperature  
XDL602A083 Vout=0.8V  
XDL601A083 Vout=0.8V  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
100  
90  
VIN = 2.7V  
VIN = 3.7V  
VIN = 5.0V  
80  
70  
VIN =5.0V, 3.7V, 2.7V  
60  
50  
40  
30  
20  
10  
0
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
15/21  
XDL601/XDL602 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(7) Stand-by Current vs. Ambient Temperature  
(8) Oscillation Frequency vs. Ambient Temperature  
XDL601A083 Vout=0.8V  
XDL601A083 Vout=0.8V  
5.0  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
4.0  
3.0  
2.0  
VIN =5.0V  
VIN =5.0V  
VIN = 3.6V  
VIN = 3.0V  
1.0  
VIN = 3.7V, 2.7V  
0.0  
-50  
-25  
0
25  
50  
75  
100 125  
0
250  
500  
750  
1000 1250 1500  
Ambient Temperature: Ta ()  
Output Current: IOUT (mA)  
XDL601A333 Vout=3.3V  
XDL601A183 Vout=1.8V  
6.0  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
VIN = 5.0V, 5.5V  
VIN =5.0V, 3.6V  
VIN = 3.0V  
VIN = 4.2V  
0
250  
500  
750  
1000 1250 1500  
0
250  
500  
750  
1000 1250 1500  
Output Current: IOUT (mA)  
Output Current: IOUT (mA)  
(9) Pch Driver ON Resistance vs. Ambient Temperature  
XDL601A083 Vout=0.8V  
(10) Nch Driver ON Resistance vs. Ambient Temperature  
XDL601A083 Vout=0.8V  
VOUT = 0.6V , ILX = 100mA  
VOUT = VOUT(T)×1.1 , I = 100mA  
LX  
300  
250  
200  
150  
100  
50  
300  
VIN =5.0V  
VIN = 3.7V  
VIN = 2.7V  
250  
200  
150  
100  
50  
VIN =5.0V  
VIN = 3.7V  
VIN = 2.7V  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
16/21  
XDL601/XDL602  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(11) Lx SW ”H” Leakage Current vs. Ambient Temperature  
(12) Lx SW ”L” Leakage Current vs. Ambient Temperature  
XDL601A083 Vout=0.8V  
XDL601A083 Vout=0.8V  
VIN =5.5V , VCE = 0V , VOUT = 0V , VLX = 5.5V  
VIN =5.5V , VCE = 0V , VOUT = 0V , VLX = 0V  
10.0  
10.0  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature : Ta ()  
Ambient Temperature : Ta ()  
(13) CE ”H” Voltage vs. Ambient Temperature  
(14) CE ”L” Voltage vs. Ambient Temperature  
XDL601A083 Vout=0.8V  
XDL601A083 Vout=0.8V  
1.4  
1.2  
1.0  
0.8  
0.6  
1.4  
1.2  
1.0  
0.8  
0.6  
VIN =5.0V  
VIN =5.0V  
VIN = 3.7V  
VIN = 2.7V  
0.4  
0.4  
0.2  
0.0  
VIN = 3.7V  
VIN = 2.7V  
0.2  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
(15) Soft-Start Time vs. Ambient Temperature  
XDL601A083 Vout=0.8V  
(16) Current Limit vs. Ambient Temperature  
XDL601A083 Vout=0.8V  
VOUT = 0.6V  
500  
450  
400  
4000  
3800  
3600  
3400  
3200  
3000  
VIN =5.0V  
350  
300  
250  
200  
150  
100  
50  
2800  
VIN =5.0V  
2600  
VIN = 3.7V  
VIN = 2.7V  
2400  
2200  
2000  
0
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature: Ta ()  
Ambient Temperature : Ta ()  
17/21  
XDL601/XDL602 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(17) CL Discharge Resistance vs. Ambient Temperature  
(18) Short Protection Threshold vs. Ambient  
XDL601B083 Vout=0.8V  
XDL601B083 Vout=0.8V  
500  
VIN = 5.0V , VCE =0V , VOUT = 4.0V  
300  
250  
200  
150  
100  
50  
400  
300  
200  
100  
VIN =5.0V, 3.7V, 2.7V  
0
0
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
Ambient Temperature: Ta ()  
(19) Load Transient Response  
50  
75  
100  
125  
Ambient Temperature: Ta ()  
VIN = 5.0V , VOUT = 1.8V , fOSC = 3.0MH, IOUT = 10mA 1.0A  
CIN = 10μF(C2012X7R1A106M) , CL = 10μF(C2012X7R1A106M)  
VIN = 5.0V , VOUT = 1.8V , fOSC = 3.0MH, IOUT = 10mA 1.0A  
CIN = 10μF(C2012X7R1A106M) , CL = 10μF(C2012X7R1A106M)  
V
OUT50mV/div , IOUT1A/div , Time50μs/div  
V
OUT50mV/div , IOUT1A/div , Time50μs/div  
I
OUT1.0A  
IOUT1.0A  
I
OUT10mA  
I
OUT10mA  
V
OUT50mV/div  
VOUT50mV/div  
VIN = 5.0V , VOUT = 3.3V , fOSC = 3.0MH, IOUT = 10mA 1.0A  
CIN = 10μF(C2012X7R1A106) , CL = 10μF(C2012X7R1A106M)  
VIN = 5.0V , VOUT = 3.3V , fOSC = 3.0MH, IOUT = 10mA 1.0A  
CIN = 10μF(C2012X7R1A106) , CL = 10μF(C2012X7R1A106M)  
V
OUT50mV/div ,  
I
OUT1A/div , Time50μs/div  
V
OUT50mV/div , IOUT1A/div , Time50μs/div  
I
OUT1.0A  
I
OUT1.0A  
I
OUT10mA  
I
OUT10mA  
V
OUT50mV/div  
V
OUT50mV/div  
18/21  
XDL601/XDL602  
Series  
PACKAGING INFORMATION  
For the latest package information go to, www.torexsemi.com/technical-support/packages  
PACKAGE  
OUTLIN / LAND PATTERN  
DFN3625-11B PKG  
THERMAL CHARACTERISTICS  
DFN3625-11B Power Dissipation  
DFN3625-11B  
19/21  
XDL601/XDL602 Series  
MARKING RULE  
DFN3625-11B
DFN3625-11B  
8
7
5
11  
6
TOREX  
9
9
① ② ③ ④ ⑤  
1
2
3
4
10  
(図中”TOREX”は固定)  
represents product series  
MARK  
PRODUCT SERIES  
Package  
C
D
XDL601****8*-Q  
XDL602****8*-Q  
DFN3625-11B  
DFN3625-11B  
represents integer of the reference voltage and product type  
Product  
MARK  
VOUT(V)  
PRODUCT SERIES  
Type  
A
A
B
C
D
E
F
0.x  
1.x  
2.x  
3.x  
0.x  
1.x  
2.x  
3.x  
XDL60*A0****-Q  
XDL60*A1****-Q  
XDL60*A2****-Q  
XDL60*A3****-Q  
XDL60*B0****-Q  
XDL60*B1****-Q  
XDL60*B2****-Q  
XDL60*B3****-Q  
A
A
A
B
B
H
K
B
B
represents decimal number of the output voltage  
MARK  
VOUT(V)  
x.0  
PRODUCT SERIES  
XDL60***0***-Q  
XDL60***1***-Q  
XDL60***2***-Q  
XDL60***3***-Q  
XDL60***4***-Q  
XDL60***5***-Q  
XDL60***6***-Q  
XDL60***7***-Q  
XDL60***8***-Q  
XDL60***9***-Q  
MARK  
VOUT(V)  
x.05  
x.15  
x.25  
x.35  
x.45  
x.55  
x.65  
x.75  
x.85  
x.95  
PRODUCT SERIES  
XDL60***A***-Q  
XDL60***B***-Q  
XDL60***C***-Q  
XDL60***D***-Q  
XDL60***E***-Q  
XDL60***F***-Q  
XDL60***H***-Q  
XDL60***K***-Q  
XDL60***L***-Q  
XDL60***M***-Q  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
x.1  
x.2  
x.3  
x.4  
x.5  
x.6  
H
K
L
x.7  
x.8  
x.9  
M
,represents production lot number  
01090A0Z119ZA1A9AAAZB1ZZ in order  
(G, I, J, O, Q, W excluded*)No Character inversion used.  
20/21  
XDL601/XDL602  
Series  
1. The product and product specifications contained herein are subject to change without notice to  
improve performance characteristics. Consult us, or our representatives before use, to confirm that  
the information in this datasheet is up to date.  
2. The information in this datasheet is intended to illustrate the operation and characteristics of our  
products. We neither make warranties or representations with respect to the accuracy or  
completeness of the information contained in this datasheet nor grant any license to any intellectual  
property rights of ours or any third party concerning with the information in this datasheet.  
3. Applicable export control laws and regulations should be complied and the procedures required by  
such laws and regulations should also be followed, when the product or any information contained in  
this datasheet is exported.  
4. The product is neither intended nor warranted for use in equipment of systems which require  
extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss  
of human life, bodily injury, serious property damage including but not limited to devices or equipment  
used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and  
other transportation industry and 5) safety devices and safety equipment to control combustions and  
explosions, excluding when specified for in-vehicle use or other uses.  
Do not use the product for in-vehicle use or other uses unless agreed by us in writing in advance.  
5. Although we make continuous efforts to improve the quality and reliability of our products;  
nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal  
injury and/or property damage resulting from such failure, customers are required to incorporate  
adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention  
features.  
6. Our products are not designed to be Radiation-resistant.  
7. Please use the product listed in this datasheet within the specified ranges.  
8. We assume no responsibility for damage or loss due to abnormal use.  
9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex  
Semiconductor Ltd in writing in advance.  
21/21  

相关型号:

XDL602B33382-Q

HiSAT-COT ® Control, 1.5A Inductor Built-in Step-Down “micro DC/DC” Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XDL605

36V Operation 600mA Inductor Built-in Step-down “micro DC/DC” Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XDL605B75D82-Q

36V Operation 600mA Inductor Built-in Step-down “micro DC/DC” Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XDL606

36V Operation 600mA Inductor Built-in Step-down “micro DC/DC” Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XDL606B75D82-Q

36V Operation 600mA Inductor Built-in Step-down “micro DC/DC” Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XDLP2021AFQUQ1

Automotive 0.2-inch DLP® digital micromirror device (DMD) | FQU | 64 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

XDLP4621AFQXQ1

适用于外部照明应用的汽车类 0.46 英寸 DLP® 数字微镜器件 (DMD) | FQX | 120 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

XDLP462SAFQXQ1

适用于内部显示应用的汽车类 0.46 英寸 DLP® 数字微镜器件 (DMD) | FQX | 120 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

XDM2140P

Telecom Circuit, 1-Func, ROHS COMPLIANT, MODULE-30

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MURATA

XDM2510HP

Telecom Circuit, 1-Func, ROHS COMPLIANT PACKAGE-30

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MURATA

XDM3730ACBP

Digital Media Processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

XDM3730ACUS

Applications Processor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI