GT50J327 [TOSHIBA]

TOSHIBA Insulated Gate Bipolar Transistor Silicon N Channel IGBT Current Resonance Inverter Switching Application; 东芝绝缘栅双极晶体管硅N沟道IGBT电流谐振逆变器开关的应用
GT50J327
型号: GT50J327
厂家: TOSHIBA    TOSHIBA
描述:

TOSHIBA Insulated Gate Bipolar Transistor Silicon N Channel IGBT Current Resonance Inverter Switching Application
东芝绝缘栅双极晶体管硅N沟道IGBT电流谐振逆变器开关的应用

晶体 开关 晶体管 双极性晶体管 栅
文件: 总6页 (文件大小:159K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GT50J327  
TOSHIBA Insulated Gate Bipolar Transistor Silicon N Channel IGBT  
GT50J327  
Current Resonance Inverter Switching Application  
Unit: mm  
Enhancement mode type  
High speed : t = 0.19 µs (typ.) (I = 50A)  
f
C
Low saturation voltage: V  
= 1.9 V (typ.) (I = 50A)  
C
CE (sat)  
FRD included between emitter and collector  
Fourth generation IGBT  
TO-3P(N) (Toshiba package name)  
Maximum Ratings (Ta = 25°C)  
Characteristics  
Symbol  
Rating  
Unit  
Collector-emitter voltage  
Gate-emitter voltage  
V
V
600  
±25  
29  
V
V
CES  
1.Gate  
2.Collector(heatsink)  
3.Emitter  
GES  
@ Tc = 100°C  
Continuous collector  
I
A
A
A
C
current  
@ Tc = 25°C  
50  
Pulsed collector current  
I
100  
20  
CP  
JEDEC  
JEITA  
DC  
Diode forward current  
Pulsed  
I
F
I
40  
FP  
TOSHIBA  
2-16C1C  
@ Tc = 100°C  
56  
Collector power  
P
W
C
Weight: 4.6 g (typ.)  
dissipation  
@ Tc = 25°C  
140  
150  
55 to 150  
Junction temperature  
T
°C  
°C  
j
Storage temperature range  
T
stg  
Thermal Characteristics  
Characteristics  
Symbol  
Max  
Unit  
Thermal resistance (IGBT)  
Thermal resistance (diode)  
R
R
0.89  
2.7  
°C/W  
°C/W  
th (j-c)  
th (j-c)  
Equivalent Circuit  
Marking  
Collector  
Part No. (or abbreviation code)  
TOSHIBA  
GT50J327  
Gate  
Lot No.  
Emitter  
A line indicates  
lead (Pb)-free package or  
lead (Pb)-free finish.  
1
2005-02-09  
GT50J327  
Electrical Characteristics (Ta = 25°C)  
Characteristics  
Gate leakage current  
Symbol  
Test Condition  
Min  
3.0  
Typ.  
Max  
Unit  
I
I
V
V
= ±25 V, V = 0  
±500  
1.0  
nA  
mA  
V
GES  
GE  
CE  
CE  
Collector cut-off current  
Gate-emitter cut-off voltage  
Collector-emitter saturation voltage  
Input capacitance  
= 600 V, V  
= 0  
CES  
GE  
V
I
I
= 50 mA, V = 5 V  
6.0  
GE (OFF)  
C
C
CE  
V
= 50 A, V  
= 15 V  
GE  
1.9  
2500  
0.20  
0.27  
0.19  
0.44  
2.3  
V
CE (sat)  
C
V
= 10 V, V = 0, f = 1 MHz  
GE  
pF  
ies  
CE  
t
Resistive Load  
Rise time  
r
Turn-on time  
Switching time  
t
t
V
V
= 300 V, I = 50 A  
C
on  
CC  
GG  
µs  
= ±15 V, R = 39 Ω  
Fall time  
t
f
0.32  
G
(Note 1)  
Turn-off time  
Diode forward voltage  
off  
V
I
I
= 15 A, V = 0  
GE  
2.0  
0.2  
V
F
F
F
Reverse recovery time  
t
= 15 A, di/dt = 100 A/µs  
µs  
rr  
Note 1: Switching time measurement circuit and input/output waveforms  
V
GE  
90%  
10%  
0
0
R
G
R
L
I
C
0
90%  
90%  
V
CC  
10%  
10%  
V
CE  
t
d (off)  
t
f
t
r
t
t
off  
on  
2
2005-02-09  
GT50J327  
I
– V  
I – V  
C CE  
C
CE  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
Common emitter  
Tc = −40°C  
Common emitter  
Tc = 25°C  
10  
15  
15  
9
20  
10  
9
20  
8
= 7 V  
5
8
V
4
GE  
V
4
= 7 V  
GE  
0
1
2
3
5
0
1
2
3
Collector-emitter voltage  
V
(V)  
Collector-emitter voltage  
V
(V)  
CE  
CE  
I
– V  
I – V  
C GE  
C
CE  
100  
80  
60  
40  
20  
0
100  
80  
Common emitter  
Tc = 125°C  
10  
Common emitter  
9
8
V
CE  
= 5 V  
20  
15  
60  
40  
20  
0
V
= 7 V  
GE  
25  
Tc = 125°C  
40  
0
1
2
3
4
5
0
2
4
6
8
10  
Collector-emitter voltage  
V
(V)  
Gate-emitter voltage  
V
(V)  
CE  
GE  
V
Tc  
CE (sat)  
4
3
2
1
Common emitter  
V
GE  
= 15 V  
I
= 100 A  
C
70  
50  
30  
10  
0
40  
0
40  
80  
120  
160  
Case temperature Tc (°C)  
3
2005-02-09  
GT50J327  
V
V
– Q  
C – V  
CE  
CE, GE  
G
500  
400  
300  
200  
100  
0
20  
16  
12  
8
10000  
1000  
100  
Common emitter  
= 6 Ω  
Tc = 25°C  
R
L
C
ies  
V
CE  
= 300 V  
100  
200  
Common emitter  
= 0  
f = 1 MHz  
C
oes  
4
V
GE  
C
res  
Tc = 25°C  
0
10  
0
160  
240  
320  
400  
1
10  
Collector-emitter voltage  
100  
1000  
80  
Gate charge  
Q
(nC)  
V
(V)  
G
CE  
Switching Time – R  
Switching Time – I  
G
C
10  
1
10  
1
Common emitter  
= 300 V  
Common emitter  
= 300 V  
V
V
CC  
CC  
I
= 50 A  
= ±15 V  
R
= 39 Ω  
= ±15 V  
C
G
V
V
GG  
GG  
Tc = 25°C  
t
t
off  
on  
Tc = 25°C  
t
r
t
off  
t
f
t
on  
t
f
0.1  
0.1  
0.01  
t
r
0.01  
1
10  
Gate resistance  
100  
()  
1000  
0
10  
20  
30  
40  
50  
60  
R
Collector current  
I
(A)  
G
C
Safe Operating Area  
Reverse Bias SOA  
1000  
100  
10  
1000  
100  
10  
<
=
*: Single  
T
V
R
125°C  
= 20 V  
= 39 Ω  
j
non-repetitive  
GG  
G
pulse Tc = 25°C  
Curves must be  
derated linearly  
with increases  
in temperature.  
I
max (pulsed) *  
10 ms*  
C
10 µs*  
I
max  
C
(continuous)  
100 µs*  
DC operation  
1 ms*  
1
1
0.1  
0.1  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Collector-emitter voltage  
V
(V)  
Collector-emitter voltage  
V
(V)  
CE  
CE  
4
2005-02-09  
GT50J327  
I max Tc  
C
r
– t  
th (t)  
w
60  
50  
40  
30  
20  
10  
0
102  
101  
100  
Common emitter  
= 15 V  
Tc = 25°C  
V
GE  
Diode stage  
IGBT stage  
1
10  
10  
2
3
10  
5
4
3
2
1
100  
(s)  
101  
102  
25  
50  
75  
100  
125  
150  
10  
10  
10  
10  
10  
Case temperature Tc (°C)  
Pulse width  
t
w
I
– V  
I , t – I  
rr rr F  
F
F
50  
40  
50  
500  
Common collector  
= 0  
V
GE  
30  
300  
30  
20  
10  
100  
t
rr  
5
3
50  
30  
I
Common collector  
di/dt = 100 A/µs  
rr  
Tc = 125°C  
0.8  
25  
10  
0
V
= 0  
GE  
40  
Tc = 25°C  
1
10  
0
0.4  
1.2  
V
1.6  
2.0  
0
4
8
12  
16  
20  
Forward voltage  
(V)  
Forward current  
I
F
(A)  
F
C – V  
j
I , t – di/dt  
rr rr  
R
300  
100  
Common collector  
= 15 A  
f = 1 MHz  
Tc = 25°C  
200  
100  
0
10  
8
I
F
Tc = 25°C  
t
rr  
50  
30  
6
10  
4
I
rr  
5
3
2
0
1
0
40  
80  
120  
160  
200  
1
3
5
10  
30 50 100  
300 500  
Reverse voltage  
V
(V)  
di/dt (A/µs)  
R
5
2005-02-09  
GT50J327  
RESTRICTIONS ON PRODUCT USE  
030619EAA  
The information contained herein is subject to change without notice.  
The information contained herein is presented only as a guide for the applications of our products. No  
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of  
TOSHIBA or others.  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of  
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of  
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc..  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this  
document shall be made at the customer’s own risk.  
TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced  
and sold, under any law and regulations.  
6
2005-02-09  

相关型号:

GT50J328

Current Resonance Inverter Switching Application Fourth Generation IGBT
TOSHIBA

GT50J341

TRANSISTOR 50 A, 600 V, N-CHANNEL IGBT, ROHS COMPLIANT, 2-16C1S, TO-3P(N), 3 PIN, Insulated Gate BIP Transistor
TOSHIBA

GT50J341,Q

Insulated Gate Bipolar Transistor
TOSHIBA

GT50MR21

Discrete IGBTs Silicon N-Channel IGBT
TOSHIBA

GT50N321

Bipolar Small-Signal Transistors
TOSHIBA

GT50N322A

TRANSISTOR 50 A, 1000 V, N-CHANNEL IGBT, LEAD FREE, 2-16C1C, 3 PIN, Insulated Gate BIP Transistor
TOSHIBA

GT50N324

Bipolar Small-Signal Transistors
TOSHIBA

GT50Q101

TRANSISTOR 50 A, 1200 V, N-CHANNEL IGBT, Insulated Gate BIP Transistor
TOSHIBA

GT50S101

TRANSISTOR 50 A, 1400 V, N-CHANNEL IGBT, 2-37A1B, 3 PIN, Insulated Gate BIP Transistor
TOSHIBA

GT516NS

Mini size of Discrete semiconductor elements
ETC

GT520

Ceramic Capacitor, Multilayer, Ceramic, 3000V, 12.5% +Tol, 12.5% -Tol, SL, 500ppm/Cel TC, 0.000002uF, Through Hole Mount, RADIAL LEADED, ROHS COMPLIANT
CDE

GT530

Ceramic Capacitor, Multilayer, Ceramic, 3000V, 8.33% +Tol, 8.33% -Tol, SL, 500ppm/Cel TC, 0.000003uF, Through Hole Mount, RADIAL LEADED, ROHS COMPLIANT
CDE