TA2145AFG [TOSHIBA]

3 V Stereo Headphone Amplifier (3 V USE); 3 V立体声耳机放大器( 3 V使用)
TA2145AFG
型号: TA2145AFG
厂家: TOSHIBA    TOSHIBA
描述:

3 V Stereo Headphone Amplifier (3 V USE)
3 V立体声耳机放大器( 3 V使用)

放大器
文件: 总16页 (文件大小:310K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TA2145AFG  
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic  
TA2145AFG  
3 V Stereo Headphone Amplifier (3 V USE)  
The TA2145AFG is developed for play-back stereo headphone  
equipments (3 V USE).  
It is built in dual preamplifiers, dual OCL power amplifiers,  
motor governor, DC volume control and preamplifier on/off switch  
etc.  
Features  
Built-in preamplifier  
Input coupling condenser-less  
Built-in input capacitor for reducing buzz noise  
Weight: 0.32 g (typ.)  
Low noise: V = 1.2 µVrms (typ.)  
ni  
Preamplifier on/off switch.  
Built-in power amplifier  
OCL (Output condenser-less)  
Voltage gain: G = 31 dB (typ.)  
V
Built-in motor governor (Current proportion type)  
Built-in DC volume control function  
ATT = 82dB (Ta = 25°C, typ.)  
Built-in bass boost function  
Low supply current (V  
CC  
= 3 V, f = 1 kHz, PRE OUT = 100 mVrms, Ta = 25°C, typ.)  
Quiescent supply current  
PRE + PW: I = 8.5 mA  
CCQ  
= 2.5 mA  
GVN: I  
CC  
0.1 mW × 2 ch output  
I
I
= 9.8 mA (R = 32 )  
L
CC1  
CC2  
= 10.5 mA (R = 16 )  
L
0.5 mW × 2 ch output  
I
I
= 14.0 mA (R = 32 )  
L
CC3  
CC4  
= 16.5 mA (R = 16 )  
L
Operating supply voltage range (Ta = 25°C)  
= 1.8~3.6 V  
V
CC (opr)  
GVN V  
= 2.1~3.6 V (Motor voltage = 1.8 V)  
CC (opr)  
1
2006-04-19  
TA2145AFG  
Block Diagram  
M
PRE:  
OFF  
PRE  
OUT  
PW  
RF  
IN  
PRE  
SW  
GVN  
GVN  
CTL  
GVN  
OUT  
V
IN  
B
NF  
B
V
R
t
REF  
CC  
IN  
B
V
CC  
B
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
RIPPLE PRE  
FILTER SW  
PRE  
B
VOL.  
V
REF  
VOL.  
PW  
PW  
PW  
C
B
A
VOL.  
PRE  
A
CONTROL  
1
2
3
4
5
6
7
8
9
10  
11  
12  
PRE  
GND  
IN  
A
NF  
A
PRE  
OUT  
PW  
IN  
V
OUT  
OUT  
OUT  
C
PW  
IN  
PW  
GVN  
GND  
CTL  
B
A
C
GND  
A
A
OUT  
OUT  
OUT  
A
C
B
R
R
L
BST SW  
BST: OFF  
V
REF  
L
2
2006-04-19  
TA2145AFG  
Terminal Explanation (Terminal Voltage: Typical terminal voltage at no signal with test  
circuit, V = 3 V, Ta = 25°C)  
CC  
Terminal  
Voltage  
(v)  
Terminal  
Function  
Internal Circuit  
No.  
1
Name  
The GND, except for power drive  
stage and motor governer stage.  
PRE GND  
0
2
23  
3
IN  
A
B
RF  
Input of preamplifier  
1.2  
500 Ω  
500 Ω  
3
2
IN  
NF  
NF  
A
B
NF of preamplifier  
1.2  
V
REF  
22  
4
21  
7
PRE OUT  
PRE OUT  
A
Output of preamplifier  
Output of power amplifier  
V
CC  
B
4
1.2  
OUT  
OUT  
OUT  
B
A
C
8
9
5
5
PW IN  
A
B
RF  
Input of power amplifier  
1.2  
V
REF  
20  
PW IN  
V
CC  
V
REF  
6
V
CTL  
The terminal of DC volume control  
6
3
2006-04-19  
TA2145AFG  
Terminal  
Voltage  
(v)  
Terminal  
Name  
Function  
Internal Circuit  
No.  
20 kΩ  
V
REF  
10  
10  
PW IN  
Input of center amplifier  
1.2  
C
30 kΩ  
V
REF  
2 kΩ  
11  
12  
PW GND  
GND for power drive stage  
0
0
GVN GND  
GND for motor governor stage  
M
13  
14  
15  
GVN OUT  
GVN CTL  
Rt  
Motor terminal  
16 15 14  
13  
The terminal of motor speed control  
The terminal of amateur  
compensation resistor  
16  
17  
GVN V  
V
V
for motor governor stage  
for preamplifier stage and  
3
3
CC  
CC  
CC  
V
CC  
power amplifier stage.  
18  
Muting switch of preamplifier  
Preamp. on: “L” level/open  
Preamp. off: “H” level  
18  
PRE SW  
Refer to application note  
4
2006-04-19  
TA2145AFG  
Terminal  
Voltage  
(v)  
Terminal  
Name  
Function  
Internal Circuit  
No.  
19  
RF IN  
Ripple filter of power supply  
2.5  
19  
24  
V
CC  
Reference voltage  
24  
V
1.2  
REF  
Preamplifier and power amplifier  
operate on this reference.  
5
2006-04-19  
TA2145AFG  
Application Note  
V
and GND  
CC  
This IC has two VCC terminals and three GND terminals. Pattern layout should be designed carefully to  
reduce the common impedance.  
V
CC  
V
(pin 17) ---------------- Preamplifier stage and power amplifier stage.  
CC  
GVN V  
(pin 16)--------- Motor governor stage.  
CC  
GND  
PRE GND (pin 1)-----------Preamplifier stage, and power amplifier stage except for the power drive stage.  
PW GND (pin 11)-----------Power drive stage of power amplifier.  
GVN GND (pin 12)---------Motor governor stage.  
V
REF  
It is necessary to stabilize the V  
circuit, because the internal circuit operate on this reference.  
REF  
RF IN  
As this terminal is an input terminal of the ripple filter, it cannot supply a power supply to other ICs etc.  
Preamplifier  
Input signal should be applied to V  
REF  
standard, otherwise pop noise become bigger when V is turned on  
CC  
and off.  
Power amplifier  
It is necessary to insert the coupling capacitor through the PW IN terminal. In case that DC current or DC  
voltage is applied to the PW IN terminal, the internal circuit has unbalance and the power amplifier doesnt  
operate normally.  
Operating supply voltage range of motor governor stage  
As for the minimum of operating supply voltage range, the motor voltage is 1.8 V.  
In case that it is more than 1.8 V, the low voltage performance becomes bad.  
PRE SW sensitivity (Ta = 25°C)  
PRE SW  
4
3.6 V  
“H”  
PRE AMP: OFF  
3
2
1
3.0 V  
1.8 V  
1.5 V  
1.2 V  
0.5 V  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Supply voltage  
V
(V)  
CC  
6
2006-04-19  
TA2145AFG  
Absolute Maximum Ratings (Ta = 25°C)  
Characteristic  
Supply voltage  
Symbol  
Rating  
Unit  
V
V
4
400  
CC  
(Note 1)  
(Note 2)  
Power dissipation  
P
mW  
D
925  
Output current (PW AMP.)  
Output current (GVN)  
Operating temperature  
Storage temperature  
I
200  
mA  
mA  
°C  
O (PW)  
I
700  
O (GVN)  
T
opr  
25~75  
55~150  
T
stg  
°C  
Note 1: IC only: Derated above Ta = 25°C in the proportion 3.2 mW/°C  
Note 2: IC + PCB (TOSHIBA typical PCB): Derated above Ta = 25°C in the proportion7.4 mW/°C  
7
2006-04-19  
TA2145AFG  
Electrical Characteristics  
(Unless otherwise specified, V = 3 V, Ta = 25°C, f = 1 kHz, SW2: a, SW5: OPEN  
CC  
Preamplifier:  
R = 2.2 k, R = 10 k, SW1: ON, SW3: b, SW4: b  
g L  
Power amplifier: R = 600 , R = 16 , Vol.: max, SW1: OPEN, SW3: a, SW4: a  
Motor governor: I = 100 mA, SW1: OPEN, SW3: b, SW4: b)  
g
L
m
Test  
circuit  
Characteristic  
Symbol  
Test condition  
Min  
Typ.  
7.5  
Max  
13  
Unit  
mA  
Pre off, V = 0, Vol.: min,  
SW4: b, SW5: ON  
in  
I
I
CCQ1  
CCQ2  
Quiescent supply current  
V
V
V
= 0, Vol.: min, SW4: b  
= −10dBV, SW2: b  
= −10dBV  
8.5  
86  
14.5  
in  
o
Open loop voltage gain  
Closed loop voltage gain  
Maximum output voltage  
Total harmonic distortion  
G
G
dB  
dB  
VO  
VC  
om  
35  
o
V
THD = 1%  
550  
720  
0.02  
mVrms  
%
THD1  
V
o
= −10dBV  
0.3  
R
= 2.2 k, SW1: OPEN  
g
Equivalent input noise  
voltage  
V
ni  
BPF = 20 Hz~20 kHz,  
NAB (G = 35dB, f = 1 kHz)  
1.2  
2.4  
µVrms  
V
Cross talk  
CT1  
RR1  
V
= −10dBV  
70  
48  
dB  
dB  
o
Ripple rejection ratio  
f = 100 Hz, V = −20dBV  
r
r
Preamplifier muting  
attenuation  
ATT1  
V
o
= −10dBV, SW5: OPEN ON  
80  
dB  
Preamplifier on voltage  
Preamplifier off voltage  
Voltage gain  
V
0
1.5  
29  
31  
0
0.5  
1.8  
33  
V
V
18 (ON)  
V
= 1.8 V  
CC  
V
18 (OFF)  
G
V
V
= −10dBV  
dB  
dB  
mW  
mW  
%
V
o
Channel balance  
CB  
= −10dBV  
1.5  
17  
+1.5  
o
Output power 1  
P
P
R
R
= 16 , THD = 10%  
= 32 , THD = 10%  
= 1m W  
28  
20  
0.5  
o1  
o2  
L
L
o
Output power 2  
Total harmonic distortion  
THD2  
P
R
= 600 , SW3: b  
g
Output noise voltage  
V
270  
400  
µVrms  
no  
BPF = 20 Hz~20 kHz  
Ripple rejection ratio  
Cross talk  
RR2  
CT2  
f = 100 Hz, V = −20dBV  
52  
32  
dB  
dB  
r
r
V
o
= −10dBV  
Dc volume maximum  
attenuation  
V
= −10dBV, SW4: ab  
o
ATT2  
82  
dB  
(Vol.: max min)  
Supply current  
I
I
I
I
= 0  
2.5  
3.5  
0.5  
mA  
V
CC  
m
m
m
Saturation voltage  
Reference voltage  
V
= 200 mA  
= 100 mA  
CE (sat)  
V  
V  
0.76  
0.81  
0.86  
V
REF  
Reference voltage  
fluctuation 1  
V
= 2.1~3.6 V  
CC  
0.25  
0.003  
0.005  
%/V  
%/mA  
%/°C  
REF1  
REF2  
Reference voltage  
fluctuation 2  
V  
I
m
= 25~250 mA  
Reference voltage  
fluctuation 3  
V  
Ta = −25~75°C  
REF3  
K
Current ratio  
34.5  
37.5  
0.25  
40.5  
Current ratio fluctuation 1  
Current ratio fluctuation 2  
Current ratio fluctuation 3  
K1  
V
I
= 2.1~3.6 V  
%/V  
%/mA  
%/°C  
CC  
K2  
K3  
= 25~250 mA  
0.08  
m
Ta = −25~75°C  
0.005  
8
2006-04-19  
TA2145AFG  
Test Circuit  
Rg = 600 Ω  
(a)  
V
CC  
PW IN  
B
SW3b  
(b)  
V
REF  
600 Ω  
PRE OUT  
B
V
REF  
SW2b  
(b) (a)  
220 µF  
22 µF  
18 kΩ  
47 µF  
180 Ω  
PRE IN  
B
8200 pF  
5 Ω  
SW1b  
470 Ω  
470 kΩ  
SW5  
1 µF  
3.6 k5 kΩ  
470 kΩ  
24  
23  
IN  
22  
21  
20  
19  
18  
17  
16  
GVN  
15  
14  
GVN GVN  
CTL OUT  
13  
V
NF  
B
PRE  
OUT  
PW RF IN PRE PW  
Rt  
REF  
B
PRE SW1a  
IN  
B
SW  
V
V
CC  
B
CC  
IN  
A
TA2145AFG  
PRE  
GND  
1
PRE  
OUT  
4
PW  
PW  
PW  
GND GND  
11 12  
GVN  
IN  
NF  
3
V
CTL  
6
OUT OUT OUT  
B A C  
IN  
A
5
IN  
C
10  
A
A
A
2
7
8
9
470 kΩ  
470 kΩ  
PW OUT  
PW OUT  
PW OUT  
A
C
B
R
L
22 µF 470 Ω  
(b) (a)  
8200 pF  
SW4  
(a) (b)  
220 µF  
18 kΩ  
R
L
SW2a  
10 kΩ  
Rg = 600 Ω  
(a)  
SW3a  
PRE OUT  
A
600 Ω  
(b)  
PW IN  
A
V
REF  
V
REF  
9
2006-04-19  
TA2145AFG  
Characteristic Curves (Unless otherwise specified, V = 3 V, Ta = 25°C, f = 1 kHz,  
CC  
Preamplifier:  
Power amplifier: R = 600 , R = 16 , Vol. = max  
Motor governor: I = 100 mA)  
R = 2.2 k, R = 10 kΩ  
g
L
g
L
m
I
, I  
– V  
V – V  
O (DC) CC  
CCQ CC  
CC  
16  
12  
8
2.5  
2.0  
1.5  
1.0  
I
(PRE + PW, Vol.: min)  
CCQ1  
V
REF  
, PW OUT, PRE OUT  
I
(PW only, Vol.: min)  
CCQ2  
4
I
(GVN: I = 0)  
CC  
m
0.5  
0
0
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Supply voltage  
V
CC  
(V)  
Supply voltage  
V
CC  
(V)  
PRE  
G
VO  
, G – f  
PRE  
CT – f  
VC  
100  
80  
40  
50  
60  
70  
80  
V
= −10dBV  
o
V
= −10dBV  
o
G
VO  
60  
40  
G
VC  
20  
0
10  
100  
1 k  
Frequency  
10 k  
100 k  
10  
100  
1 k  
Frequency f (Hz)  
10 k  
100 k  
f
(Hz)  
PRE  
V
om  
– V  
PRE  
THD – V  
o
CC  
1000  
500  
THD = 1%  
10  
3
1
f = 10 kHz  
f = 100 Hz  
3
200  
100  
0.1  
f = 1 kHz  
0.03  
0.01  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
1
10  
100  
1000  
10000  
Supply voltage  
V
CC  
(V)  
Output voltage  
V
o
(mVrms)  
10  
2006-04-19  
TA2145AFG  
PRE  
V
ni  
– V  
PRE  
RR – V  
CC  
CC  
20  
10  
20  
30  
f
r
= 100 Hz  
V
r
= 20dBV  
10  
5
40  
50  
60  
2
1
70  
80  
0.5  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
100 k  
4.0  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
100 k  
100  
Supply voltage  
V
(V)  
Supply voltage  
V
(V)  
CC  
CC  
PW  
G
– f  
PW  
CT – f  
V
60  
50  
40  
30  
20  
V
= −10dBV  
o
V
o
= −10dBV  
0
10  
BST = ON  
20  
30  
40  
BST = ON  
BST = OFF  
BST = OFF  
50  
60  
20  
100  
1 k  
10 k  
20  
100  
1 k  
Frequency  
10 k  
(Hz)  
Frequency  
f
(Hz)  
f
PW  
P
– V  
PW  
THD – P  
o
o
CC  
100  
30  
10  
V
R
= 3 V  
CC  
THD = 10%  
= 16 Ω  
L
R
= 16 Ω  
L
3
1
32 Ω  
10  
f = 10 kHz  
100 Hz  
1 kHz  
2
0
0.2  
0.2  
1.5  
2.0  
2.5  
3.0  
3.5  
1
10  
Supply voltage  
V
CC  
(V)  
Output power  
P
(mW)  
o
11  
2006-04-19  
TA2145AFG  
PW  
V
– Vol.  
PW  
V
– Vol.  
no  
o
10  
500  
300  
Volume  
Ratio  
Resistance (Pin@GND)  
Volume  
Ratio  
Resistance (Pin@GND)  
=
=
Volume resistance  
Volume resistance  
10  
0dB = −10dBV  
30  
50  
100  
50  
30  
70  
90  
10  
0
0
0.2  
0.4  
0.6  
0.8  
1
0.2  
0.4  
0.6  
0.8  
1
Volume ratio  
Volume ratio  
RR – Vol.  
GVN  
V , K – V  
REF CC  
7.5  
5.0  
40  
50  
Resistance (Pin@GND)  
Volume ratio  
=
Volume resistance  
0dB = −10dBV, V = −20dBV  
r
2.5  
V  
REF  
60  
70  
80  
0.0  
K  
2.5  
5.0  
7.5  
0
0.2  
0.4  
0.6  
0.8  
1
1.5  
2.0  
2.5  
Supply voltage  
3.0  
3.5  
4.0  
Volume ratio  
V
CC  
(V)  
GVN  
V  
REF  
, K – I  
I
, I  
Ta  
m
CCQ CC  
10  
5
16  
12  
8
I
(PRE + PW, Vol. = min)  
(PW only, Vol. = min)  
CCQ1  
V  
REF  
0
K  
I
CCQ2  
5  
10  
4
I
(GVN: I = 0)  
m
CC  
0
0
50  
100  
150  
200  
(mA)  
250  
300  
20  
0
20  
40  
60  
80  
Motor current  
I
Ambient temperature Ta (°C)  
m
12  
2006-04-19  
TA2145AFG  
V
Ta  
PRE  
G , V  
V
Ta  
om  
O (DC)  
1.5  
40  
38  
800  
760  
720  
G
: V = −10dBV  
o
V
V
om  
: THD = 1%  
V
REF  
, PW OUT, PRE OUT  
1
V
om  
36  
34  
G
V
680  
640  
0.5  
32  
30  
0
600  
80  
20  
0
20  
40  
60  
80  
80  
80  
20  
0
20  
40  
60  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
PRE  
THD – Ta  
PW  
G , P – Ta  
V o  
1
35  
30  
25  
50  
V
o
= −10dBV  
G
: V = −10dBV  
o
V
P
o
: THD = 10%  
40  
30  
20  
10  
0.1  
G
V
P
o
0.01  
0.001  
20  
0
20  
40  
60  
20  
0
20  
40  
60  
80  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
PW  
THD – Ta  
GVN  
V , K – Ta  
REF  
10  
5
6
4
P
o
= 1 mW  
2
2
1
K  
V  
0
REF  
0.5  
2  
4  
6  
0.2  
0.1  
20  
0
20  
40  
60  
20  
0
20  
40  
60  
80  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
13  
2006-04-19  
TA2145AFG  
Application Circuit  
V
CC  
22 µF 470 Ω  
M
8200 pF 1 µF  
18 kΩ  
470 kΩ  
PRE  
OFF  
180 Ω  
1 µF  
3.6 kΩ  
470 kΩ  
5 kΩ  
24  
23  
22  
21  
20  
19  
RF  
IN  
18  
17  
16  
15  
14  
13  
PRE  
OUT  
PW  
PRE  
SW  
GVN  
GVN  
CTL  
GVN  
OUT  
V
IN  
B
NF  
PW  
V
R
t
REF  
B
IN  
B
V
CC  
B
CC  
TA2145AFG  
PRE  
GND  
1
PRE  
OUT  
4
PW  
PW  
PW  
GND  
11  
GVN  
GND  
12  
IN  
2
NF  
V
IN  
C
A
A
CTL  
6
OUT  
7
OUT  
8
OUT  
C
IN  
A
5
B
A
A
3
9
10  
470 kΩ  
1 µF  
8200 pF  
OUT  
OUT  
OUT  
A
C
B
470 k18 kΩ  
12 kΩ  
0.1 µF  
R
R
22 µF  
L
470 Ω  
V
REF  
L
BST: OFF  
BST SW  
14  
2006-04-19  
TA2145AFG  
Package Dimensions  
Weight: 0.32 g (typ.)  
15  
2006-04-19  
TA2145AFG  
RESTRICTIONS ON PRODUCT USE  
060116EBA  
The information contained herein is subject to change without notice. 021023_D  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of  
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of  
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc. 021023_A  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this  
document shall be made at the customer’s own risk. 021023_B  
The products described in this document shall not be used or embedded to any downstream products of which  
manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q  
The information contained herein is presented only as a guide for the applications of our products. No  
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of  
TOSHIBA or others. 021023_C  
The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E  
About solderability, following conditions were confirmed  
Solderability  
(1) Use of Sn-37Pb solder Bath  
· solder bath temperature = 230°C  
· dipping time = 5 seconds  
· the number of times = once  
· use of R-type flux  
(2) Use of Sn-3.0Ag-0.5Cu solder Bath  
· solder bath temperature = 245°C  
· dipping time = 5 seconds  
· the number of times = once  
· use of R-type flux  
16  
2006-04-19  

相关型号:

TA2145F

3V STEREO GEADPHONE AMPLIFIER (3V USE)
TOSHIBA

TA2149BFN

3 V AM/FM 1 Chip Tuner IC (for Digital Tuning System)
TOSHIBA

TA2149BFNG

IC AM/FM, AUDIO SINGLE CHIP RECEIVER, PDSO24, 0.300 INCH, 0.65 MM PITCH, PLASTIC, SSOP-24, Receiver IC
TOSHIBA

TA2149BN

3 V AM/FM 1 Chip Tuner IC (for Digital Tuning System)
TOSHIBA

TA2149BNG

IC AM/FM, AUDIO SINGLE CHIP RECEIVER, PDIP24, 0.300 INCH, 1.78 MM PITCH, PLASTIC, SDIP-24, Receiver IC
TOSHIBA

TA2149N

IC AUDIO SINGLE CHIP RECEIVER, PDIP24, 0.300 INCH, 1.78 MM PITCH, PLASTIC, SDIP-24, Receiver IC
TOSHIBA

TA2150FN

IC SPECIALTY CONSUMER CIRCUIT, PDSO30, 0.300 INCH, 0.65 MM PITCH, PLASTIC, SSOP-30, Consumer IC:Other
TOSHIBA

TA2151FN

RF Amplifier for Digital Servo CD System
TOSHIBA

TA2152FL

IC 0.008 W, 2 CHANNEL, AUDIO AMPLIFIER, PQCC24, 5 X 5 MM, 0.50 MM PITCH, PLASTIC, QON-24, Audio/Video Amplifier
TOSHIBA

TA2152FLG

Low Current Consumption Headphone Amplifier (for 1.5-V/3-V Use)
TOSHIBA

TA2152FN

IC 0.008 W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO24, 0.300 INCH, 0.65 MM PITCH, PLASTIC, SSOP-24, Audio/Video Amplifier
TOSHIBA

TA2152FNG

Low Current Consumption Headphone Amplifier (for 1.5-V/3-V Use)
TOSHIBA