TB2923HQ [TOSHIBA]

IC 29 W, 4 CHANNEL, AUDIO AMPLIFIER, PZFM25, 1 MM PITCH, PLASTIC, HZIP-25, Audio/Video Amplifier;
TB2923HQ
型号: TB2923HQ
厂家: TOSHIBA    TOSHIBA
描述:

IC 29 W, 4 CHANNEL, AUDIO AMPLIFIER, PZFM25, 1 MM PITCH, PLASTIC, HZIP-25, Audio/Video Amplifier

局域网 放大器 信息通信管理 商用集成电路
文件: 总17页 (文件大小:298K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TB2923HQ  
TOSHIBA Bi-CMOS Linear Integrated Circuit Silicon Monolithic  
TB2923HQ  
50 W × 4-ch BTL Audio Power IC  
The TB2923HQ is a four-channel BTL power amplifier for car  
audio applications.  
This IC has a pure complementary P-ch and N-ch DMOS output  
stage, offering maximum output power (P  
MAX) of 50 W.  
OUT  
It includes a standby switch, mute function and various  
protection features.  
Features  
High output power  
Weight: 7.7 g (typ.)  
P
(V  
MAX (1) = 50 W (typ.)  
= 15.2 V, f = 1 kHz, JEITA max, R = 4 )  
OUT  
CC  
L
P
OUT  
MAX (2) = 43 W (typ.)  
= 13.7 V, f = 1 kHz, JEITA max, R = 4 )  
(V  
CC  
L
P
OUT  
MAX (3) = 80 W (typ.)  
= 14.4 V, f = 1 kHz, JEITA max, R = 2 )  
(V  
CC  
L
P
OUT  
(1) = 29 W (typ.)  
= 14.4 V, f = 1 kHz, THD = 10%, R = 4 )  
(V  
CC  
L
P
OUT  
(2) = 25 W (typ.)  
(V  
CC  
= 13.2 V, f = 1 kHz, THD = 10%, R = 4 )  
L
Low THD: 0.005% (typ.) (V  
= 13.2 V, f = 1 kHz, P = 5 W, R = 4 )  
OUT L  
CC  
Low noise: V  
= 50 µVrms (typ.)  
NO  
(V  
CC  
= 13.2 V, R = 0 , BW = 20 Hz to 20 kHz, R = 4 )  
g L  
Standby switch (pin 4)  
Mute function (pin 22)  
Output DC offset detection (pin 25)  
Various protection features  
Thermal overload; overvoltage; output short-circuits to GND, V  
and across the load; speaker current limiting  
CC  
Operating supply voltage: V (opr) = 8.0 to 18 V (R = 4 )  
CC L  
Note 1: Install the device correctly. Otherwise, the device or system may be degraded, damaged or even destroyed.  
Note 2: The protection features are intended to avoid output short-circuits or other abnormal conditions temporarily. It  
is not guaranteed that they will prevent the IC from being damaged.  
Exposure to conditions beyond the guaranteed operating ranges may not activate the protection features,  
resulting in an IC damage due to output short-circuits.  
1
2006-11-30  
TB2923HQ  
Block Diagram  
+B  
10  
1
6
20  
Ripple  
TAB  
V
V
CC1  
CC2  
C1  
IN1  
Out1 (+)  
11  
9
8
7
PW-GND1  
R
L
R
L
R
L
R
L
Out1 ()  
C1  
IN2  
Out2 (+)  
PW-GND2  
Out2 ()  
12  
5
2
3
13 Pre-GND  
C1  
C6  
C1  
IN3  
15  
Out3 (+)  
17  
18  
19  
PW-GND3  
Out3 ()  
16 AC-GND  
IN4  
14  
Out4 (+)  
PW-GND4  
Out4 ()  
21  
24  
23  
5 V  
4 Stby  
Play  
Mute  
R1  
22 Mute  
25  
Offset/short  
Some of the functional blocks, circuits or constants may be omitted from the block diagram or simplified for  
explanatory purposes.  
2
2006-11-30  
TB2923HQ  
Detailed Description  
1. Standby Switch (pin 4)  
The power supply can be turned on or off via  
pin 4 (Stby). The threshold voltage of pin 4 is  
V
CC  
set at about 3 V  
current is about 0.01 µA (typ.) in the standby  
(typ.). The power supply  
BE  
ON  
Power  
10 kΩ  
4
2 V  
BE  
state.  
OFF  
to Bias  
filter network  
Standby Control Voltage (V ): Pin 4  
SB  
Standby  
Power  
V
(V)  
SB  
ON  
OFF  
ON  
0 to 0.9  
OFF  
2.9 to VCC  
Figure 1 Setting Pin 4 High Turns on  
Power  
Check the pop levels when the time constant of  
pin 4 is changed.  
Benefits of the Standby Switch  
(1)  
V
CC  
can be directly turned on or off by a microcontroller, eliminating the need for a switching relay.  
(2) Since the control current is minuscule, a low-current-rated switching relay can be used.  
Relay  
High-current-rated switch  
Battery  
Battery  
From  
microcontroller  
V
V
CC  
CC  
– Conventional Method –  
From microcontroller  
Low-current-rated switch  
Battery  
Battery  
Standby  
V
Standby  
V
CC  
CC  
– Using the Standby Switch –  
Figure 2 Standby Switch  
3
2006-11-30  
TB2923HQ  
2. Mute Function (pin 22)  
The audio mute function is enabled by setting pin 22 Low. R and C determine the time constant of the  
1
4
mute function. The time constant affects pop noise generated when power or the mute function is turned on  
or off; thus, it must be determined on a per-application basis. (Refer to Figures 4 and 5.)  
The value of the external pull-up resistor is determined, based on pop noise value.  
For example, when the control voltage is changed from 5 V to 3.3 V, the pull-up resistor should be:  
3.3 V/5 V × 47 kΩ = 31 kΩ  
ATT – V  
MUTE  
20  
0
V
= 13.2 V  
CC  
f = 1 kHz  
R
= 4 Ω  
L
V
= 20dBm  
O
20  
40  
60  
BW = 400 Hz to 30 kHz  
5 V  
1 kΩ  
22  
80  
100  
120  
R
1
C
4
Mute On/Off  
control  
0
0.5  
1
1.5  
2
2.5  
3
Pin 22 control voltage: V  
(V)  
MUTE  
Figure 3 Mute Function  
Figure 4 Mute Attenuation V  
(V)  
MUTE  
4
2006-11-30  
TB2923HQ  
3. DC Offset Detection  
The purpose of the integrated DC offset detector is to avoid an anomalous DC offset on the outputs,  
produced by the input capacitor due to leakage current or short-circuit.  
Positive DC offset (+)  
(caused by R  
V
)
S1  
/2 (normal DC voltage)  
V
CC  
Leakage current  
or short-circuit  
V
Negative DC offset ()  
(caused by R  
ref  
)
S2  
+
R
S1  
Elec. vol  
5 V  
V
V
bias  
ref/2  
25  
LPF  
To a microcontroller  
A
B
The microcontroller shuts down the  
system if the output is lower than  
the specified voltage.  
Figure 5 DC Offset Detection Mechanism  
OUT(+)  
Amp output  
V
/2  
CC  
Offset detection  
threshold (R  
)
S2  
OUT(-)  
Time  
GND  
Voltage at (A)  
(pin 25)  
GND  
Time  
Voltage at (B)  
(LPF output)  
GND  
Time  
5
2006-11-30  
TB2923HQ  
4. Layer Short Detection  
The TB2923HQ may be properly connected to a load such as a 4-speaker, but one of the speaker lines may  
be shorted to ground through a low-impedance path. The TB2923HQ can detect such a condition.  
V
CC  
IC  
out  
out  
SP = 4 Ω  
GND  
The negative () speaker connection is shorted to ground  
through a low-impedance path due to some irregularities.  
Figure 6 Layer Short  
As is the case with output DC offset detection, pin 25 is also activated when there is a short on one of the  
speaker lines as shown above. The detection impedance is 2.5 (typ.).  
This feature allows detection of a short-circuit through a low-impedance path other than the speaker  
impedance. It helps to avoid speaker damage in case of anomalous system conditions and improve system  
reliability.  
6
2006-11-30  
TB2923HQ  
5. Pop Noise Suppression  
Since the TB2923HQ uses the AC-GND pin (pin 16) as the common input reference voltage pin for all  
amplifiers, the ratio of the input capacitance (C1) to the AC-to-GND capacitance (C6) should be 1:4.  
Also, if power is removed before C1 and C6 are completely charged, pop noise will be generated because of  
unbalanced DC currents.  
To avoid this problem, it is recommended to use a larger capacitor as C2 to increase the charging times of C1  
and C6. Note, however, that C2 also affects the time required from power-on to audio output.  
The pop noise generated by the muting and unmuting of the audio output varies with the time constant of  
C4. A larger capacitance reduces the pop noise, but increases the time from when the mute control signal is  
applied to C4 to when the mute function is enabled.  
6. External Component Constants  
Effects  
Recommended  
Component  
Purpose  
Notes  
When lower than  
When higher than  
Value  
recommended value  
recommended value  
Pop noise is  
generated  
Cut-off frequency is  
increased.  
C1  
0.22 µF  
To eliminate DC  
To reduce ripple  
Cut-off frequency is reduced.  
Powering on/off is slower.  
when V  
is  
CC  
turned on.  
C2  
C3  
47 µF  
Powering on/off is faster.  
To provide  
sufficient  
0.1 µF  
Reduces noise and provides sufficient oscillation margin  
oscillation margin  
High pop noise. Duration until Low pop noise. Duration until  
mute function is turned on/off mute function is turned on/off  
To reduce pop  
noise  
C4  
C5  
1 µF  
is short.  
is long.  
3900 µF  
Ripple filter  
Common  
Power supply humming and ripple filtering.  
Pop noise is  
generated  
C6  
1 µF  
reference voltage Pop noise is suppressed when C1: C6 = 1:4.  
for all input  
when V  
is  
CC  
turned on.  
7
2006-11-30  
TB2923HQ  
Absolute Maximum Ratings (Ta = 25°C)  
Characteristics  
Symbol  
(surge)  
Rating  
Unit  
Peak supply voltage (0.2 s)  
DC supply voltage  
V
50  
V
V
CC  
V
(DC)  
(opr)  
25  
18  
CC  
CC  
Operating supply voltage  
Output current (peak)  
Power dissipation  
V
V
I
(peak)  
9
A
O
P
(Note 7)  
125  
W
°C  
°C  
D
Operating temperature  
Storage temperature  
T
opr  
40 to 85  
55 to 150  
T
stg  
Note 5: Package thermal resistance θ = 1°C/W (typ.) (Ta = 25°C, with infinite heat sink)  
j-T  
The absolute maximum ratings of a semiconductor device are a set of specified parameter values that must  
not be exceeded during operation, even for an instant.  
If any of these ratings are exceeded during operation, the electrical characteristics of the device may be  
irreparably altered and the reliability and lifetime of the device can no longer be guaranteed.  
Moreover, any exceeding of the ratings during operation may cause breakdown, damage and/or degradation  
in other equipment. Applications using the device should be designed so that no absolute maximum rating  
will ever be exceeded under any operating conditions.  
Before using, creating and/or producing designs, refer to and comply with the precautions and conditions set  
forth in this document.  
Electrical Characteristics  
(V = 13.2 V, f = 1 kHz, R = 4 , Ta = 25°C unless otherwise specified)  
CC  
L
Test  
Circuit  
Characteristics  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
mA  
Quiescent supply current  
Output power  
I
V
V
V
V
= 0  
180  
50  
300  
CCQ  
IN  
P
P
MAX (1)  
MAX (2)  
= 15.2 V, max POWER  
= 13.7 V, max POWER  
= 14.4 V, RL=2Ω, max  
OUT  
OUT  
CC  
CC  
CC  
43  
W
P
MAX (3)  
80  
OUT  
POWER  
P
P
(1)  
(2)  
V
= 14.4 V, THD = 10%  
23  
29  
25  
OUT  
OUT  
CC  
THD = 10%  
Total harmonic distortion  
Voltage gain  
THD  
P
V
V
= 5 W  
0.005  
26  
0.07  
27  
%
OUT  
OUT  
OUT  
G
V
= 0.775 Vrms  
= 0.775 Vrms  
= 0 , DIN45405  
= 0 ,  
25  
dB  
dB  
Channel-to-channel voltage gain  
G  
1.0  
0
1.0  
V
V
(1)  
R
R
60  
NO  
g
Output noise voltage  
µVrms  
g
V
(2)  
50  
55  
65  
80  
70  
NO  
BW = 20 Hz to 20 kHz  
f
= 100 Hz, R = 620 Ω  
rip  
g
Ripple rejection ratio  
Crosstalk  
R.R.  
C.T.  
dB  
dB  
V
= 0.775 Vrms  
rip  
R
P
= 620 Ω  
g
= 4 W  
OUT  
Output offset voltage  
Input resistance  
Standby current  
V
−90  
2.9  
0
0
90  
mV  
kΩ  
µA  
OFFSET  
R
IN  
90  
0.1  
I
Standby condition, V4=0,V22=0  
POWER: ON  
1
SB  
V
H
L
VCC  
0.9  
VCC  
0.9  
SB  
Standby control voltage  
Mute control voltage  
V
V
V
POWER: OFF  
SB  
V
H
MUTE: OFF  
2.9  
0
M
V
L
MUTE: ON, R = 47 kΩ  
1
M
8
2006-11-30  
TB2923HQ  
Test  
Circuit  
Characteristics  
Mute attenuation  
Symbol  
ATT M  
Test Condition  
Min  
Typ.  
Max  
Unit  
MUTE: ONDIN_AUDIO  
85  
100  
250  
±1.5  
dB  
kHz  
V
V
= 7.75 Vrms Mute: OFF  
OUT  
G = 26dB, 3dB  
V
Upper cut-off frequency  
F
th  
Rpull-up = 10 k, +V = 5.0 V  
OUT(+)-OUT(-)  
DC offset threshold voltage  
V
±1.0  
±2.0  
off-set  
Rpull-up = 10 k, +V = 5.0 V  
channel (+) or () shorted to  
Layer short detection impedance  
R half-short  
P25-Sat  
2.5  
GND, when between R  
s
impedance output to GND.  
Pin 25 saturation voltage  
(at each detector ON condition)  
Rpull-up = 10 k, +V = 5.0 V  
(pin 25 = low)  
100  
500  
mV  
Test Circuit  
+B  
10  
1
6
20  
Ripple  
TAB  
V
V
CC1  
CC2  
C1: 0.22 µF  
11  
IN1  
Out1 (+)  
9
8
7
PW-GND1  
R
L
R
L
R
L
R
L
= 4 ohm  
Out1 ()  
C1: 0.22 µF  
IN2  
Out2 (+)  
PW-GND2  
Out2 ()  
12  
5
2
3
= 4 ohm  
= 4 ohm  
= 4 ohm  
13 Pre-GND  
C1: 0.22 µF  
IN3  
15  
Out3 (+)  
17  
18  
19  
PW-GND3  
C6: 1 µF  
Out3 ()  
16 AC-GND  
C1: 0.22 µF  
IN4  
14  
Out4 (+)  
PW-GND4  
Out4 ()  
21  
24  
23  
5 V  
4 Stby  
Play  
Mute  
R1: 47 kΩ  
22 Mute  
25  
Offset/short  
Components in the test circuit are only used to determine the device characteristics.  
It is not guaranteed that the system will work properly with these components.  
9
2006-11-30  
TB2923HQ  
THD – P  
(ch1)  
THD – P  
(ch2)  
OUT  
OUT  
100  
100  
V
= 13.2 V  
CC  
V
= 13.2 V  
CC  
50  
30  
50  
30  
R
= 4 Ω  
L
R
= 4 Ω  
L
Filter  
100 Hz : to 30 kHz  
Filter  
100 Hz : to 30 kHz  
1kHz : 400 Hz to 30 kHz  
10 kHz : 400 Hz to  
1kHz : 400 Hz to 30 kHz  
10 kHz : 400 Hz to  
10  
10  
20 kHz : 400 Hz to  
20 kHz : 400 Hz to  
5
3
5
3
20 kHz  
10 kHz  
20 kHz  
10 kHz  
1
1
0.5  
0.3  
0.5  
0.3  
0.1  
0.1  
0.05  
0.03  
0.05  
0.03  
1 kHz  
1 kHz  
0.01  
0.01  
f = 100 Hz  
f = 100 Hz  
0.005  
0.003  
0.005  
0.003  
0.001  
0.001  
0.1  
0.3 0.5  
1
3
5
10  
30 50 100  
0.1  
0.3 0.5  
1
3
5
10  
30 50 100  
Output power  
P
(W)  
Output power  
P
(W)  
OUT  
OUT  
THD – P  
(ch3)  
OUT  
THD – P  
(ch4)  
OUT  
100  
100  
V
= 13.2 V  
V
= 13.2 V  
CC  
CC  
R = 4 Ω  
L
50  
30  
50  
30  
R
= 4 Ω  
L
Filter  
100 Hz : to 30 kHz  
Filter  
100 Hz : to 30 kHz  
1kHz : 400 Hz to 30 kHz  
10 kHz : 400 Hz to  
1kHz : 400 Hz to 30 kHz  
10 kHz : 400 Hz to  
10  
10  
20 kHz : 400 Hz to  
20 kHz : 400 Hz to  
5
3
5
3
20 kHz  
10 kHz  
20 kHz  
10 kHz  
1
1
0.5  
0.3  
0.5  
0.3  
0.1  
0.1  
0.05  
0.03  
0.05  
0.03  
1 kHz  
1 kHz  
0.01  
0.01  
f = 100 Hz  
f = 100 Hz  
0.005  
0.003  
0.005  
0.003  
0.001  
0.001  
0.1  
0.3 0.5  
1
3
5
10  
30 50 100  
0.1  
0.3 0.5  
1
3
5
10  
30 50 100  
Output power  
P
(W)  
Output power  
P
(W)  
OUT  
OUT  
10  
2006-11-30  
TB2923HQ  
THD – P  
(ch1)  
THD – P  
(ch2)  
OUT  
OUT  
100  
100  
V
= 13.2 V  
V
= 13.2 V  
CC  
CC  
R = 4 Ω  
L
50  
30  
50  
30  
R
= 4 Ω  
L
f = 1 kHz  
f = 1 kHz  
13.2 V  
13.2 V  
Filter  
Filter  
400 Hz to 30 kHz  
400 Hz to 30 kHz  
10  
10  
5
3
5
3
V
= 9 V  
16 V  
V
= 9 V  
CC  
16 V  
CC  
1
1
0.5  
0.3  
0.5  
0.3  
0.1  
0.1  
0.05  
0.03  
0.05  
0.03  
0.01  
0.01  
0.005  
0.003  
0.005  
0.003  
0.001  
0.001  
0.1  
0.3 0.5  
1
3
5
10  
30 50 100  
0.1  
0.3 0.5  
1
3
5
10  
30 50 100  
Output power  
P
(W)  
OUT  
Output power  
P
(W)  
OUT  
THD – P  
(ch3)  
THD – P  
(ch4)  
OUT  
OUT  
100  
100  
V
= 13.2 V  
V
= 13.2 V  
CC  
CC  
R = 4 Ω  
L
50  
30  
50  
30  
R
= 4 Ω  
L
f = 1 kHz  
f = 1 kHz  
13.2 V  
13.2 V  
Filter  
Filter  
400 Hz to 30 kHz  
400 Hz to 30 kHz  
10  
10  
5
3
5
3
V
= 9 V  
16 V  
V
= 9 V  
CC  
16 V  
CC  
1
1
0.5  
0.3  
0.5  
0.3  
0.1  
0.1  
0.05  
0.03  
0.05  
0.03  
0.01  
0.01  
0.005  
0.003  
0.005  
0.003  
0.001  
0.001  
0.1  
0.3 0.5  
1
3
5
10  
30 50 100  
0.1  
0.3 0.5  
1
3
5
10  
30 50 100  
Output power  
P
(W)  
Output power  
P
(W)  
OUT  
OUT  
11  
2006-11-30  
TB2923HQ  
muteATT – f  
THD – f  
0
20  
3
1
V = 13.2 V  
CC  
V
= 13.2 V  
CC  
R
= 4 Ω  
R
L
= 4 Ω  
L
V
= 7.75 Vrms (20dBm)  
OUT  
P
= 5 W  
OUT  
No filter  
0.3  
0.1  
40  
60  
0.03  
0.01  
1 ch~3 ch  
80  
1 ch~4 ch  
100  
120  
2 ch  
0.003  
0.001  
10  
100  
1 k  
10 k  
100 k  
0.01  
0.1  
1
10  
100  
frequency  
f
(Hz)  
frequency  
f
(Hz)  
G
V
– f  
R.R. – f  
40  
30  
20  
10  
0
0
20  
40  
60  
80  
V
= 13.2 V  
CC  
R
= 4 Ω  
L
Vrip = 0.775 Vrms (0dBm)  
1 ch~4 ch  
1 ch~4 ch  
V
= 13.2 V  
CC  
R
= 4 Ω  
L
V
= 0.775 Vrms (0dBm)  
OUT  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
frequency  
f
(Hz)  
frequency  
f
(Hz)  
12  
2006-11-30  
TB2923HQ  
V
– P  
(ch1)  
V
– P  
(ch2)  
OUT  
IN  
OUT  
IN  
100Hz,-20kHz  
100Hz,-20kHz  
40  
30  
40  
30  
20  
20  
V
= 13.2 V  
V
= 13.2 V  
CC  
CC  
10  
0
10  
0
R
= 4 Ω  
R = 4 Ω  
L
L
No filter  
No filter  
0
2
4
6
8
10  
10  
25  
0
2
4
6
8
10  
Input voltage  
V
(Vrms)  
Input voltage  
V
(Vrms)  
IN  
IN  
V
– P  
(ch3)  
V
– P  
(ch4)  
OUT  
IN  
OUT  
IN  
100Hz,-20kHz  
100Hz,-20kHz  
40  
30  
40  
30  
20  
20  
V
= 13.2 V  
V
= 13.2 V  
CC  
CC  
R = 4 Ω  
L
10  
0
10  
0
R
L
= 4 Ω  
No filter  
No filter  
0
2
4
6
8
0
2
4
6
8
10  
Input voltage  
V
IN  
(Vrms)  
Input voltage  
V
IN  
(Vrms)  
I
– V  
P MAX Ta  
D
CCQ  
CC  
200  
160  
120  
80  
120  
100  
80  
60  
40  
20  
0
(1) INFINITE HEAT SINK  
R
= ∞  
L
RθJC = 1°C/W  
V
= 0 V  
IN  
(2) HEAT SINK (RθHS = 3.5°C/W  
RθJC + RθHS = 4.5°C/W  
(3) NO HEAT SINK  
RθJA = 39°C/W  
(1)  
40  
(2)  
(3)  
0
0
5
10  
15  
20  
0
25  
50  
75  
100  
125  
150  
Supply voltage  
V
CC  
(V)  
Ambient temperature Ta (°C)  
13  
2006-11-30  
TB2923HQ  
C.T. – f (ch1)  
C.T. – f (ch2)  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
V
R
V
R
= 13.2 V  
= 4 Ω  
V
R
V
R
= 13.2 V  
CC  
CC  
L
= 4 Ω  
L
= 0.775 Vrms (0dBm)  
= 0.775 Vrms (0dBm)  
OUT  
OUT  
= 620 Ω  
= 620 Ω  
G
G
CT (1-2)  
CT (2-1)  
CT (1-3)  
CT (2-4)  
CT (2-3)  
CT (1-4)  
10 k  
10  
100  
1 k  
100 k  
10  
100  
1 k  
10 k  
100 k  
frequency  
f
(Hz)  
frequency  
f
(Hz)  
C.T. – f (ch3)  
C.T. – f (ch4)  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
V
R
V
R
= 13.2 V  
= 4 Ω  
V
R
V
R
= 13.2 V  
CC  
CC  
L
= 4 Ω  
L
= 0.775 Vrms (0dBm)  
= 0.775 Vrms (0dBm)  
OUT  
OUT  
= 620 Ω  
= 620 Ω  
G
G
CT (4-1)  
CT (3-4)  
CT (4-2)  
CT (3-1)  
CT (3-2)  
10 k  
CT (4-3)  
10  
100  
1 k  
100 k  
10  
100  
1 k  
10 k  
100 k  
frequency  
f
(Hz)  
frequency  
f
(Hz)  
V
– R  
P – P  
D OUT  
NO  
g
300  
200  
100  
0
80  
60  
40  
20  
0
V
= 13.2 V  
f = 1 kHz  
CC  
R
= 4 Ω  
R
L
= 4 Ω  
L
Filter:  
20 Hz~20 kHz  
4ch drive  
18 V  
13.2 V  
1ch~4ch  
V
= 9.0 V  
CC  
10  
100  
1 k  
10 k  
100 k  
0
5
10  
15  
20  
25  
30  
Signal source resistance  
R
g
()  
Output power  
P
(W)  
OUT  
14  
2006-11-30  
TB2923HQ  
Package Dimensions  
Weight: 7.7 g (typ.)  
15  
2006-11-30  
TB2923HQ  
Use an appropriate power supply fuse to ensure that a large current does not continuously flow in case of over  
current and/or IC failure. The IC will fully break down when used under conditions that exceed its absolute  
maximum ratings, when the wiring is routed improperly or when an abnormal pulse noise occurs from the wiring or  
load, causing a large current to continuously flow and the breakdown can lead smoke or ignition. To minimize the  
effects of the flow of a large current in case of breakdown, appropriate settings, such as fuse capacity, fusing time  
and insertion circuit location, are required.  
If your design includes an inductive load such as a motor coil, incorporate a protection circuit into the design to  
prevent device malfunction or breakdown caused by the current resulting from the inrush current at power ON or  
the negative current resulting from the back electromotive force at power OFF. For details on how to connect a  
protection circuit such as a current limiting resistor or back electromotive force adsorption diode, refer to individual  
IC datasheets or the IC databook. IC breakdown may cause injury, smoke or ignition.  
Use a stable power supply with ICs with built-in protection functions. If the power supply is unstable, the protection  
function may not operate, causing IC breakdown. IC breakdown may cause injury, smoke or ignition.  
Carefully select external components (such as inputs and negative feedback capacitors) and load components  
(such as speakers), for example, power amp and regulator. If there is a large amount of leakage current such as  
input or negative feedback condenser, the IC output DC voltage will increase. If this output voltage is connected to  
a speaker with low input withstand voltage, overcurrent or IC failure can cause smoke or ignition. (The over current  
can cause smoke or ignition from the IC itself.) In particular, please pay attention when using a Bridge Tied Load  
(BTL) connection type IC that inputs output DC voltage to a speaker directly.  
Over current Protection Circuit  
Over current protection circuits (referred to as current limiter circuits) do not necessarily protect ICs under all  
circumstances. If the Over current protection circuits operate against the over current, clear the over current status  
immediately. Depending on the method of use and usage conditions, such as exceeding absolute maximum ratings  
can cause the over current protection circuit to not operate properly or IC breakdown before operation. In addition,  
depending on the method of use and usage conditions, if over current continues to flow for a long time after  
operation, the IC may generate heat resulting in breakdown.  
Thermal Shutdown Circuit  
Thermal shutdown circuits do not necessarily protect ICs under all circumstances. If the Thermal shutdown circuits  
operate against the over temperature, clear the heat generation status immediately. Depending on the method of  
use and usage conditions, such as exceeding absolute maximum ratings can cause the thermal shutdown circuit to  
not operate properly or IC breakdown before operation.  
Heat Radiation Design  
When using an IC with large current flow such as power amp, regulator or driver, please design the device so that  
heat is appropriately radiated, not to exceed the specified junction temperature (Tj) at any time and condition.  
These ICs generate heat even during normal use. An inadequate IC heat radiation design can lead to decrease in  
IC life, deterioration of IC characteristics or IC breakdown. In addition, please design the device taking into  
considerate the effect of IC heat radiation with peripheral components.  
Installation to Heat Sink  
Please install the power IC to the heat sink not to apply excessive mechanical stress to the IC. Excessive  
mechanical stress can lead to package cracks, resulting in a reduction in reliability or breakdown of internal IC chip.  
In addition, depending on the IC, the use of silicon rubber may be prohibited. Check whether the use of silicon  
rubber is prohibited for the IC you intend to use, or not. For details of power IC heat radiation design and heat sink  
installation, refer to individual technical datasheets or IC databooks.  
16  
2006-11-30  
TB2923HQ  
RESTRICTIONS ON PRODUCT USE  
060116EBA  
The information contained herein is subject to change without notice. 021023_D  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety  
in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such  
TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc. 021023_A  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this  
document shall be made at the customer’s own risk. 021023_B  
The products described in this document shall not be used or embedded to any downstream products of which  
manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q  
The information contained herein is presented only as a guide for the applications of our products. No responsibility  
is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from  
its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.  
021023_C  
The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E  
About solderability, following conditions were confirmed  
Solderability  
(1) Use of Sn-37Pb solder Bath  
· solder bath temperature = 230°C  
· dipping time = 5 seconds  
· the number of times = once  
· use of R-type flux  
(2) Use of Sn-3.0Ag-0.5Cu solder Bath  
· solder bath temperature = 245°C  
· dipping time = 5 seconds  
· the number of times = once  
· use of R-type flux  
17  
2006-11-30  

相关型号:

TB2924AFG

IC 21 W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO36, 0.65 MM PITCH, PLASTIC, HSOP-36, Audio/Video Amplifier
TOSHIBA

TB2924FG

Class D, 20 W 】 2-channel (BTL) Low-Frequency Power Amplifier IC
TOSHIBA

TB2926HQ

IC 26 W, 4 CHANNEL, AUDIO AMPLIFIER, PZFM25, 1 MM PITCH, PLASTIC, HZIP-25, Audio/Video Amplifier
TOSHIBA

TB2929HQ

45W × 4-ch BTL Audio Power IC,The TB2929HQ is a four-channel BTL power amplifier for car audio applications.
TOSHIBA

TB2932HQ

Maximum Power 49 W BTL × 4-ch Audio Power IC
TOSHIBA

TB2933HQ

4×45W四声道晶体管功放厚膜电路
TOSHIBA

TB2934HQ

IC 41 W, 4 CHANNEL, AUDIO AMPLIFIER, PZFM25, 1 MM PITCH, PLASTIC, HZIP-25, Audio/Video Amplifier
TOSHIBA

TB2936HQ

IC 26 W, 2 CHANNEL, AUDIO AMPLIFIER, PZFM25, 1 MM PITCH, PLASTIC, HZIP-25, Audio/Video Amplifier
TOSHIBA

TB2946HQ

IC 26 W, 2 CHANNEL, AUDIO AMPLIFIER, PZFM25, 1 MM PITCH, PLASTIC, HZIP-25, Audio/Video Amplifier
TOSHIBA

TB2S

Silicon Bridge Rectifiers
COMCHIP

TB2S

SILICON BRIDGE RECTIFIERS
BL Galaxy Ele

TB2S

Voltage 200V ~ 1000V 1.0 Amp Silicon Bridge Rectifiers
SECOS