BCM6123XD1E2663YZZ [VICOR]

Isolated Fixed Ratio DC-DC Converter;
BCM6123XD1E2663YZZ
型号: BCM6123XD1E2663YZZ
厂家: VICOR CORPORATION    VICOR CORPORATION
描述:

Isolated Fixed Ratio DC-DC Converter

文件: 总28页 (文件大小:851K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BCM® Bus Converter  
BCM6123xD1E2663yzz  
S
®
C
NRTL US  
C
US  
Isolated Fixed Ratio DC-DC Converter  
Features & Benefits  
Product Ratings  
Up to 62.5A continuous secondary current  
Up to 2352W/in3 power density  
97.4% peak efficiency  
VPRI = 384V (260 – 410V)  
ISEC = up to 62.5A  
K = 1/16  
VSEC = 24V (16.3 – 25.6V)  
(no load)  
4242VDC isolation  
Product Description  
Parallel operation for multi-kW arrays  
OV, OC, UV, short circuit and thermal protection  
6123 through-hole ChiP package  
The BCM6123xD1E2663yzz is a high efficiency Bus Converter  
operating from a 260 to 410VDC primary bus to deliver an isolated,  
ratiometric secondary voltage from 16.3 to 25.6VDC  
.
2.402” x 0.990” x 0.284”  
The BCM6123xD1E2663yzz offers low noise, fast transient  
response, and industry leading efficiency and power density. In  
addition, it provides an AC impedance beyond the bandwidth of  
most downstream regulators, allowing input capacitance normally  
located at the input of a POL regulator to be located at the primary  
side of the BCM. With a primary to secondary K factor of 1/16, that  
capacitance value can be reduced by a factor of 256x, resulting in  
savings of board area, material and total system cost.  
(61.00mm x 25.14mm x 7.21mm)  
PMBusTM management interface *  
Typical Applications  
380VDC Power Distribution  
High End Computing Systems  
Automated Test Equipment  
Industrial Systems  
Leveraging the thermal and density benefits of Vicor’s ChiP  
packaging technology, the BCM offers flexible thermal  
management options with very low top and bottom side thermal  
impedances. Thermally-adept ChiP-based power components  
enable customers to achieve low cost power system solutions  
with previously unattainable system size, weight and efficiency  
attributes quickly and predictably.  
High Density Power Supplies  
Communications Systems  
Transportation  
*When used with D44TL1A0 and I13TL1A0 chipset  
BCM® Bus Converter  
Page 1 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
Typical Applications  
BCM  
TM  
EN  
enable/disable  
switch  
VAUX  
F1  
+VPRI  
–VPRI  
+VSEC  
VPRI  
CPRI  
POL  
–VSEC  
GND  
PRIMARY  
SECONDARY  
ISOLATION BOUNDARY  
BCM6123xD1E2663y00 at point of load  
BCM  
SER-OUT  
SER-OUT  
EN  
SER-IN  
enable/disable  
switch  
SER-IN  
FUSE  
+VPRI  
–VPRI  
+VSEC  
VPRI  
C
POL  
I_BCM_ELEC  
–VSEC  
PRIMARY  
SECONDARY  
SOURCE_RTN  
Digital  
Supervisor  
D44TL1A0  
ISOLATION BOUNDARY  
Digital Isolator  
Host µC  
I13TL1A0  
NC  
PRI_OUT_A  
SEC_IN_A  
SEC_IN_B  
SEC_OUT_C  
SEC_COM  
VDDB  
t
SER-IN  
+
V
EXT  
VDD  
TXD  
PRI_OUT_B  
PRI_IN_C  
SER-OUT  
SGND  
RXD  
PRI_COM  
SGND  
PMBus  
PMBus  
SGND  
SGND  
SGND  
BCM6123xD1E2663y01 at point of load  
BCM® Bus Converter  
Page 2 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
Typical Applications (Cont.)  
3 phase AIM  
BCM ChiP  
+
-
+VPRI  
+VSEC  
TM/SER-OUT  
EN  
VAUX/SER-IN  
L
O
A
D
L1  
L2  
L3  
-VPRI  
-VSEC  
ISOLATION BOUNDARY  
3 phase AC to point of load (3 phase AIM + BCM6123xD1E2663yzz)  
BCM® Bus Converter  
Page 3 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
Pin Configuration  
TOP VIEW  
2
1
A’ +VSEC  
A
B
C
D
E
+VSEC  
-VSEC  
2
B’  
C’  
-VSEC1  
-VSEC  
2
-VSEC  
1
+VSEC  
+VSEC  
D’ +VSEC  
E’ +VSEC  
-VSEC  
2
2
F’  
-VSEC  
1
1
F
G
H
G’  
-VSEC  
-VSEC  
+VSEC  
H’ +VSEC  
+VPRI  
+VPRI  
+VPRI  
I’  
J’  
K’  
I
J
TM/SER-OUT  
EN  
VAUX/SER-IN  
K
-VPRI  
+VPRI  
L’  
L
6123 ChiP Package  
Pin Descriptions  
Power Pins  
Pin Number  
Signal Name  
Type  
Function  
I1, J1, K1, L1  
+VPRI  
PRIMARY POWER  
Positive primary transformer power terminal  
Negative primary transformer power terminal  
PRIMARY POWER  
RETURN  
L’2  
-VPRI  
A1, D1, E1, H1, A’2,  
D’2, E’2, H’2  
SECONDARY  
POWER  
+VSEC  
Positive secondary transformer power terminal  
Negative secondary transformer power terminal  
B1, C1, F1, G1  
B’2, C’2, F’2, G’2  
SECONDARY  
POWER RETURN  
-VSEC  
*
Analog Control Signal Pins  
Pin Number  
Signal Name  
Type  
Function  
I’2  
J’2  
TM  
EN  
OUTPUT  
INPUT  
Temperature Monitor; primary side referenced signals  
Enables and disables power supply; primary side referenced signals  
Auxiliary Voltage Source; primary side referenced signals  
K’2  
VAUX  
OUTPUT  
PMBus Control Signal Pins  
Pin Number  
Signal Name  
Type  
Function  
I’2  
J’2  
SER-OUT  
EN  
OUTPUT  
INPUT  
UART transmit pin; Primary side referenced signals  
Enables and disables power supply; Primary side referenced signals  
UART receive pin; Primary side referenced signals  
K’2  
SER-IN  
INPUT  
*For proper operation an external low impedance connection must be made between listed -VSEC1 and -VSEC2 terminals.  
BCM® Bus Converter  
Page 4 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
Part Ordering Information  
Max  
Secondary  
Voltage  
Secondary  
Output  
Current  
Product  
Function  
Package Package  
Max Primary  
Range  
Identifier  
Temperature  
Option  
Size  
Mounting Input Voltage  
Grade  
BCM  
6123  
x
D1  
E
26  
63  
y
zz  
00 = Analog Ctrl  
01 = PMBus Ctrl  
T = -40°C – 125°C  
Bus Converter  
Module  
61 = L  
23 = W  
25.6V  
No Load  
T = TH  
410V  
260 – 410V  
62.5A  
M = -55°C – 125°C 0R = Reversible Analog Ctrl  
0P = Reversible PMBus Ctrl  
All products shipped in JEDEC standard high profile (0.400” thick) trays (JEDEC Publication 95, Design Guide 4.10).  
Standard Models  
Max  
Secondary  
Voltage  
Secondary  
Output  
Current  
Product  
Function  
Package  
Size  
Package  
Mounting  
Max Primary  
Input Voltage  
Range  
Identifier  
Temperature  
Grade  
Option  
BCM  
BCM  
BCM  
BCM  
6123  
6123  
6123  
6123  
T
T
T
T
D1  
D1  
D1  
D1  
E
E
E
E
26  
26  
26  
26  
63  
63  
63  
63  
M
T
00  
00  
01  
01  
M
T
Absolute Maximum Ratings  
The absolute maximum ratings below are stress ratings only. Operation at or beyond these maximum ratings can cause permanent damage to the device.  
Parameter  
Comments  
Min  
Max  
Unit  
+VPRI_DC to –VPRI_DC  
-1  
480  
V
VPRI_DC or VSEC_DC Slew Rate  
(Operational)  
1
V/µs  
+VSEC_DC to –VSEC_DC  
TM / SER-OUT to –VPRI_DC  
EN to –VPRI_DC  
-1  
30  
4.6  
5.5  
4.6  
V
V
V
V
-0.3  
VAUX / SER-IN to –VPRI_DC  
BCM® Bus Converter  
Page 5 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
Electrical Specifications  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
-55°C TINTERNAL 125°C (M-Grade); all other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
Max  
Unit  
General Powertrain PRIMARY to SECONDARY Specification (Forward Direction)  
Primary Input Voltage Range  
(Continuous)  
VPRI_DC  
260  
410  
V
V
VPRI_DC voltage where µC is initialized,  
(ie VAUX = Low, powertrain inactive)  
VPRI µController  
VµC_ACTIVE  
130  
Disabled, EN Low, VPRI_DC = 384V  
TINTERNAL 100ºC  
2
PRI to SEC Input Quiescent Current  
IPRI_Q  
mA  
4
VPRI_DC = 384V, TINTERNAL = 25ºC  
VPRI_DC = 384V  
13  
20  
27  
21  
29  
6
PRI to SEC No Load Power  
Dissipation  
PPRI_NL  
W
VPRI_DC = 260V to 410V, TINTERNAL = 25ºC  
VPRI_DC = 260V to 410V  
VPRI_DC = 410V, CSEC_EXT = 1000µF, RLOAD_SEC = 20% of  
full load current  
4
PRI to SEC Inrush Current Peak  
IPRI_INR_PK  
A
TINTERNAL 100ºC  
10  
DC Primary Input Current  
Transformation Ratio  
IPRI_IN_DC  
K
At ISEC_OUT_DC = 62.5A, TINTERNAL 100ºC  
Primary to secondary, K = VSEC_DC / VPRI_DC, at no load  
4.0  
A
1/16  
V/V  
Secondary Output Current  
(Continuous)  
ISEC_OUT_DC  
62.5  
75  
A
A
2ms pulse, 25% duty cycle, ISEC_OUT_AVG 50% rated  
ISEC_OUT_DC  
Secondary Output Current (Pulsed)  
ISEC_OUT_PULSE  
VPRI_DC = 384V, ISEC_OUT_DC = 62.5A  
VPRI_DC = 260V to 410V, ISEC_OUT_DC = 62.5A  
VPRI_DC = 384V, ISEC_OUT_DC = 31.25A  
VPRI_DC = 384V, ISEC_OUT_DC = 62.5A  
96.4  
95.5  
96.5  
96.3  
97.2  
PRI to SEC Efficiency (Ambient)  
PRI to SEC Efficiency (Hot)  
ηAMB  
%
97.3  
96.7  
ηHOT  
η20%  
%
%
PRI to SEC Efficiency  
(Over Load Range)  
12.5A < ISEC_OUT_DC < 62.5A  
90  
RSEC_COLD  
RSEC_AMB  
RSEC_HOT  
FSW  
VPRI_DC = 384V, ISEC_OUT_DC = 62.5A, TINTERNAL = -55°C  
VPRI_DC = 384V, ISEC_OUT_DC = 62.5A  
3
5
7
7
PRI to SEC Output Resistance  
5
9
mΩ  
VPRI_DC = 384V, ISEC_OUT_DC = 62.5A, TINTERNAL = 100°C  
Frequency of the output voltage ripple = 2x FSW  
6.5  
1.00  
8.5  
1.05  
10.5  
1.10  
Switching Frequency  
MHz  
mV  
CSEC_EXT = 0µF, ISEC_OUT_DC = 62.5A, VPRI_DC = 384V,  
20MHz BW  
150  
Secondary Output Voltage Ripple  
VSEC_OUT_PP  
TINTERNAL 100ºC  
250  
Primary Input Leads Inductance  
(Parasitic)  
Frequency 2.5MHz (double switching frequency),  
simulated lead model  
LPRI_IN_LEADS  
LSEC_OUT_LEADS  
LIN_INT  
7
nH  
nH  
µH  
Secondary Output Leads Inductance  
(Parasitic)  
Frequency 2.5MHz (double switching frequency),  
simulated lead model  
0.64  
0.56  
Primary Input Series Inductance  
(Internal)  
Reduces the need for input decoupling inductance  
in BCM arrays  
BCM® Bus Converter  
Page 6 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
Electrical Specifications (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
-55°C TINTERNAL 125°C (M-Grade); all other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
Max  
Unit  
General Powertrain PRIMARY to SECONDARY Specification (Forward Direction) Cont.  
Effective Primary Capacitance  
(Internal)  
CPRI_INT  
CSEC_INT  
Effective value at 384VPRI_DC  
Effective value at 24VSEC_DC  
0.37  
70  
µF  
µF  
µF  
Effective Secondary Capacitance  
(Internal)  
Rated Secondary Output  
Capacitance (External)  
Excessive capacitance may drive module into  
short circuit protection  
CSEC_OUT_EXT  
1000  
Rated Secondary Output  
Capacitance (External),  
Parallel Array Operation  
CSEC_OUT_AEXT Max = N * 0.5 * CSEC_OUT_EXT MAX, where  
N = the number of units in parallel  
CSEC_OUT_AEXT  
Powertrain Protection PRIMARY to SECONDARY (Forward Direction)  
Startup into a persistent fault condition. Non-latching  
fault detection given VPRI_DC > VPRI_UVLO+  
Auto Restart Time  
tAUTO_RESTART  
VPRI_OVLO+  
VPRI_OVLO-  
490  
560  
450  
440  
ms  
V
Primary Overvoltage  
Lockout Threshold  
420  
410  
435  
425  
10  
100  
1
Primary Overvoltage  
Recovery Threshold  
V
Primary Overvoltage  
Lockout Hysteresis  
VPRI_OVLO_HYST  
tPRI_OVLO  
V
Primary Overvoltage  
Lockout Response Time  
µs  
ms  
A
From powertrain active. Fast current limit protection  
disabled during soft-start  
Primary Soft-Start Time  
tPRI_SOFT-START  
ISEC_OUT_OCP  
tSEC_OUT_OCP  
ISEC_OUT_SCP  
tSEC_OUT_SCP  
tOTP+  
Secondary Output Overcurrent  
Trip Threshold  
75  
94  
84  
3
110  
Secondary Output Overcurrent  
Response Time Constant  
Effective internal RC filter  
ms  
A
Secondary Output Short Circuit  
Protection Trip Threshold  
Secondary Output Short Circuit  
Protection Response Time  
1
µs  
°C  
Overtemperature  
Shutdown Threshold  
Temperature sensor located inside controller IC  
125  
BCM® Bus Converter  
Page 7 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
Electrical Specifications (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
-55°C TINTERNAL 125°C (M-Grade); all other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
Max  
Unit  
Powertrain Supervisory Limits PRIMARY to SECONDARY (Forward Direction)  
Primary Overvoltage  
Lockout Threshold  
VPRI_OVLO+  
VPRI_OVLO-  
VPRI_OVLO_HYST  
tPRI_OVLO  
420  
410  
435  
425  
10  
450  
440  
V
V
Primary Overvoltage  
Recovery Threshold  
Primary Overvoltage  
Lockout Hysteresis  
V
Primary Overvoltage  
Lockout Response Time  
100  
225  
240  
15  
µs  
V
Primary Undervoltage  
Lockout Threshold  
VPRI_UVLO-  
200  
220  
250  
259  
Primary Undervoltage  
Recovery Threshold  
VPRI_UVLO+  
VPRI_UVLO_HYST  
tPRI_UVLO  
V
Primary Undervoltage  
Lockout Hysteresis  
V
Primary Undervoltage  
Lockout Response Time  
100  
µs  
From VPRI_DC = VPRI_UVLO+ to powertrain active, EN  
Primary Undervoltage Startup Delay tPRI_UVLO+_DELAY floating (i.e., one time startup delay from application  
of VPRI_DC to VSEC_DC  
20  
ms  
)
Secondary Output Overcurrent  
Trip Threshold  
ISEC_OUT_OCP  
tSEC_OUT_OCP  
tOTP+  
83  
88  
3
93  
A
ms  
°C  
°C  
°C  
s
Secondary Output Overcurrent  
Response Time Constant  
Effective internal RC filter  
Overtemperature  
Shutdown Threshold  
Temperature sensor located inside controller IC  
125  
Overtemperature  
Recovery Threshold  
tOTP–  
105  
110  
3
115  
-45  
Undertemperature  
Shutdown Threshold  
Temperature sensor located inside controller IC;  
Protection not available for M-Grade units.  
tUTP  
Startup into a persistent fault condition. Non-latching  
fault detection given VPRI_DC > VPRI_UVLO+  
Undertemperature Restart Time  
tUTP_RESTART  
BCM® Bus Converter  
Page 8 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
80  
60  
40  
20  
0
20  
40  
60  
80  
100  
120  
140  
Case Temperature (°C)  
Top only at temperature  
Top and leads at  
temperature  
Top, leads, & belly at  
temperature  
Figure 1 — Specified thermal operating area  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
500  
250  
0
260 275 290 305 320 335 350 365 380 395 410  
260 275 290 305 320 335 350 365 380 395 410  
Primary Input Voltage (V)  
Primary Input Voltage (V)  
PSEC_OUT_DC  
PSEC_OUT_PULSE  
ISEC_OUT_DC  
ISEC_OUT_PULSE  
Figure 2 — Specified electrical operating area using rated RSEC_HOT  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
20  
40  
60  
80  
100  
Secondary Output Current (% ISEC_OUT_DC  
)
Figure 3 — Specified primary startup into load current and external capacitance  
BCM® Bus Converter  
Page 9 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
Analog Control Signal Characteristics  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
-55°C TINTERNAL 125°C (M-Grade); all other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Temperature Monitor  
• The TM pin is a standard analog I/O configured as an output from an internal µC.  
• The TM pin monitors the internal temperature of the controller IC within an accuracy of 5°C.  
• µC 250kHz PWM output internally pulled high to 3.3V.  
SIGNAL TYPE  
STATE  
ATTRIBUTE  
SYMBOL  
CONDITIONS / NOTES  
MIN  
TYP MAX UNIT  
Powertrain Active  
to TM Time  
Startup  
tTM  
100  
µs  
TM Duty Cycle  
TM Current  
TMPWM  
ITM  
18.18  
68.18  
4
%
mA  
Recommended External filtering  
TM Capacitance (External)  
TM Resistance (External)  
CTM_EXT  
RTM_EXT  
Recommended external filtering  
Recommended external filtering  
0.01  
1
µF  
DIGITAL  
OUTPUT  
kΩ  
Regular  
Operation  
Specifications using recommended filter  
TM Gain  
ATM  
10  
mV / °C  
V
TM Voltage Reference  
VTM_AMB  
1.27  
RTM_EXT = 1kΩ, CTM_EXT = 0.01µF,  
VPRI_DC = 384V, ISEC_DC = 62.5A  
28  
TM Voltage Ripple  
VTM_PP  
mV  
TINTERNAL 100ºC  
40  
Enable / Disable Control  
• The EN pin is a standard analog I/O configured as an input to an internal µC.  
• It is internally pulled high to 3.3V.  
• When held low, the BCM internal bias will be disabled and the powertrain will be inactive.  
• In an array of BCMs, EN pins should be interconnected to synchronize startup.  
SIGNAL TYPE  
STATE  
ATTRIBUTE  
SYMBOL  
CONDITIONS / NOTES  
MIN  
2.3  
TYP MAX UNIT  
VPRI_DC > VPRI_UVLO+, EN held low both  
conditions satisfied for T > tPRI_UVLO+_DELAY  
EN to Powertrain  
Active Time  
Startup  
tEN_START  
250  
µs  
ANALOG  
INPUT  
EN Voltage Threshold  
EN Resistance (Internal)  
EN Disable Threshold  
VEN_TH  
REN_INT  
V
kΩ  
V
Regular  
Operation  
Internal pull up resistor  
1.5  
VEN_DISABLE_TH  
1
BCM® Bus Converter  
Page 10 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
Analog Control Signal Characteristics (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
-55°C TINTERNAL 125°C (M-Grade); all other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Auxiliary Voltage Source  
• The VAUX pin is a standard analog I/O configured as an output from an internal µC.  
• VAUX is internally connected to µC output and internally pulled high to a 3.3V regulator with 2% tolerance, a 1% resistor of 1.5kΩ.  
• VAUX can be used as a “Ready to process full power” flag. This pin transitions VAUX voltage after a 2ms delay from the start of powertrain activating,  
signaling the end of softstart.  
• VAUX can be used as “Fault flag”. This pin is pulled low internally when a fault protection is detected.  
SIGNAL TYPE  
STATE  
ATTRIBUTE  
SYMBOL  
CONDITIONS / NOTES  
MIN  
2.8  
TYP MAX UNIT  
Powertrain Active  
to VAUX Time  
Startup  
tVAUX  
Powertrain active to VAUX High  
2
ms  
VAUX Voltage  
VVAUX  
IVAUX  
3.3  
4
V
VAUX Available Current  
mA  
50  
ANALOG  
OUTPUT  
Regular  
Operation  
VAUX Voltage Ripple  
VVAUX_PP  
mV  
µF  
TINTERNAL 100ºC  
100  
VAUX Capacitance  
(External)  
CVAUX_EXT  
0.01  
VAUX Resistance (External)  
VAUX Fault Response Time  
RVAUX_EXT  
tVAUX_FR  
VPRI_DC < VµC_ACTIVE  
1.5  
kΩ  
Fault  
From fault to VVAUX = 2.8V, CVAUX = 0pF  
10  
µs  
BCM® Bus Converter  
Page 11 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
PMBus™ Control Signal Characteristics  
Specifications apply over all line, load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
-55°C TINTERNAL 125°C (M-Grade); all other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
UART SER-IN / SER-OUT Pins  
• Universal Asynchronous Receiver/Transmitter (UART) pins.  
• The BCM communication version is not intended to be used without a Digital Supervisor.  
• Isolated I2C communication and telemetry is available when using Vicor Digital Isolator and Vicor Digital Supervisor.  
Please see specific product data sheet for more details.  
• UART SER-IN pin is internally pulled high using a 1.5kΩ to 3.3V.  
SIGNAL TYPE  
GENERAL I/O  
STATE  
ATTRIBUTE  
Baud Rate  
SYMBOL  
CONDITIONS / NOTES  
MIN  
TYP  
750  
MAX UNIT  
BRUART  
Rate  
Kbit/s  
SER-IN Pin  
VSER-IN_IH  
VSER-IN_IL  
2.3  
V
SER-IN Input Voltage Range  
1
V
ns  
ns  
kΩ  
pF  
DIGITAL  
INPUT  
SER-IN Rise Time  
SER-IN Fall Time  
SER-IN RPULLUP  
tSER-IN_RISE 10% to 90%  
tSER-IN_FALL 10% to 90%  
RSER-IN_PLP Pull up to 3.3V  
CSER-IN_EXT  
400  
25  
1.5  
SER-IN External Capacitance  
400  
Regular  
Operation  
SER-OUT Pin  
VSER-OUT_OH 0mA IOH -4mA  
VSER-OUT_OL 0mA IOL 4mA  
2.8  
V
V
SER-OUT  
Output Voltage Range  
0.5  
DIGITAL  
OUTPUT  
SER-OUT Rise Time  
tSER-OUT_RISE 10% to 90%  
tSER-OUT_FALL 10% to 90%  
55  
45  
ns  
ns  
SER-OUT Fall Time  
SER-OUT Source Current  
SER-OUT Output Impedance  
ISER-OUT  
ZSER-OUT  
VSER-OUT = 2.8V  
6
mA  
Ω
120  
Enable / Disable Control  
• The EN pin is a standard analog I/O configured as an input to an internal µC.  
• It is internally pulled high to 3.3V.  
• When held low, the BCM internal bias will be disabled and the powertrain will be inactive.  
• In an array of BCMs, EN pins should be interconnected to synchronize startup.  
• Enable / disable command will have no effect if the EN pin is disabled.  
SIGNAL TYPE  
STATE  
ATTRIBUTE  
SYMBOL  
CONDITIONS / NOTES  
MIN  
2.3  
TYP  
250  
MAX UNIT  
VPRI_DC > VPRI_UVLO+  
,
Startup  
EN to Powertrain Active Time  
tEN_START  
EN held low both conditions satisfied  
for t > tPRI_UVLO+_DELAY  
µs  
ANALOG  
INPUT  
EN Voltage Threshold  
EN Resistance (Internal)  
EN Disable Threshold  
VENABLE  
REN_INT  
V
Regular  
Operation  
Internal pull up resistor  
1.5  
kΩ  
VEN_DISABLE_TH  
1
V
BCM® Bus Converter  
Page 12 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
PMBus™ Reported Characteristics  
Specifications apply over all line, load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
-55°C TINTERNAL 125°C (M-Grade); all other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Monitored Telemetry  
• The BCM communication version is not intended to be used without a Digital Supervisor.  
DIGITAL SUPERVISOR  
ACCURACY  
(RATED RANGE)  
FUNCTIONAL  
REPORTING RANGE  
UPDATE  
RATE  
ATTRIBUTE  
REPORTED UNITS  
PMBusTM READ COMMAND  
Input Voltage  
(88h) READ_VIN  
(89h) READ_IIN  
5% (LL - HL)  
5% (10 - 133% of FL)  
5% (LL - HL)  
130V to 450V  
-5.9A to 5.9A  
100µs  
100µs  
100µs  
100µs  
100ms  
100ms  
VACTUAL = VREPORTED x 10-1  
IACTUAL = IREPORTED x 10-3  
VACTUAL = VREPORTED x 10-1  
IACTUAL = IREPORTED x 10-2  
RACTUAL = RREPORTED x 10-5  
TACTUAL = TREPORTED  
Input Current  
Output Voltage [1]  
Output Current  
Output Resistance  
Temperature [2]  
(8Bh) READ_VOUT  
8.0V to 28.0V  
-87.5A to 87.5A  
0.5mΩ to 15mΩ  
-55ºC to 130ºC  
(8Ch) READ_IOUT  
5% (10 - 133% of FL)  
5% (50 - 100% of FL)  
7°C (Full Range)  
(D4h) READ_ROUT  
(8Dh) READ_TEMPERATURE_1  
[1] Default READ Output Voltage returned when unit is disabled = -300V.  
[2] Default READ Temperature returned when unit is disabled = -273°C.  
Variable Parameter  
• Factory setting of all below Thresholds and Warning limits are 100% of listed protection values.  
• Variables can be written only when module is disabled either EN pulled low or VIN < VIN_UVLO-  
.
• Module must remain in a disabled mode for 3ms after any changes to the below variables allowing ample time to commit changes to EEPROM.  
FUNCTIONAL  
REPORTING  
RANGE  
DIGITAL SUPERVISOR  
ACCURACY  
(RATED RANGE)  
DEFAULT  
VALUE  
ATTRIBUTE  
CONDITIONS / NOTES  
PMBusTM COMMAND [3]  
Input / Output Overvoltage  
Protection Limit  
VIN_OVLO- is automatically 3%  
lower than this set point  
(55h) VIN_OV_FAULT_LIMIT  
(57h) VIN_OV_WARN_LIMIT  
(D7h) DISABLE_FAULTS  
(5Bh) IIN_OC_FAULT_LIMIT  
(5Dh) IIN_OC_WARN_LIMIT  
(4Fh) OT_FAULT_LIMIT  
5% (LL - HL)  
5% (LL - HL)  
130V to 435V  
130V to 435V  
130V or 260V  
0 to 5.5A  
100%  
100%  
100%  
100%  
100%  
100%  
100%  
0ms  
Input / Output Overvoltage  
Warning Limit  
Input / Output Undervoltage  
Protection Limit  
Can only be disabled to a preset  
default value  
5% (LL - HL)  
Input Overcurrent  
Protection Limit  
5% (10 - 133% of FL)  
5% (10 - 133% of FL)  
7°C (Full Range)  
7°C (Full Range)  
50µs  
Input Overcurrent  
Warning Limit  
0 to 5.5A  
Overtemperature  
Protection Limit  
0 to 125°C  
0 to 125°C  
0 to 100ms  
Overtemperature  
Warning Limit  
(51h) OT_WARN_LIMIT  
(60h) TON_DELAY  
Additional time delay to the  
undervoltage startup delay  
Turn On Delay  
[3] Refer to Digital Supervisor datasheet for complete list of supported commands.  
BCM® Bus Converter  
Page 13 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
BCM Timing Diagram  
BCM® Bus Converter  
Page 14 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
High Level Functional State Diagram  
Conditions that cause state transitions are shown along arrows. Sub-sequence activities listed inside the state bubbles.  
VµC_ACTIVE < VPRI_DC < VPRI_UVLO+  
STARTUP SEQUENCE  
VPRI_DC > VPRI_UVLO+  
STANDBY SEQUENCE  
TM Low  
TM Low  
EN High  
EN High  
VAUX Low  
VAUX Low  
Powertrain Stopped  
Powertrain Stopped  
ENABLE falling edge,  
or OTP detected  
tPRI_UVLO+_DELAY  
expired  
Input OVLO or UVLO,  
Output OCP,  
ONE TIME DELAY  
Fault  
Auto-  
recovery  
INITIAL STARTUP  
or UTP detected  
ENABLE falling edge,  
or OTP detected  
FAULT  
SEQUENCE  
TM Low  
SUSTAINED  
OPERATION  
TM PWM  
Input OVLO or UVLO,  
Output OCP,  
EN High  
EN High  
or UTP detected  
VAUX Low  
VAUX High  
Powertrain Stopped  
Powertrain Active  
Short Circuit detected  
BCM® Bus Converter  
Page 15 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
Application Characteristics  
Temperature controlled via top side cold plate, unless otherwise noted. All data presented in this section are collected from units processing power in the  
forward direction (primary side to secondary side). See associated figures for general trend data.  
30  
27  
24  
21  
18  
15  
12  
9
98.0  
97.5  
97.0  
96.5  
96.0  
95.5  
95.0  
94.5  
94.0  
6
3
0
260 275 290 305 320 335 350 365 380 395 410  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Primary Input Voltage (V)  
Case Temperature (ºC)  
TCASE  
:
-55°C  
25°C  
80°C  
VPRI_DC  
:
260V  
384V  
410V  
Figure 4 — No load power dissipation vs. VPRI_DC  
Figure 5 — Full load efficiency vs. temperature; VPRI_DC  
99  
97  
95  
93  
91  
89  
87  
85  
83  
81  
79  
80  
72  
64  
56  
48  
40  
32  
24  
16  
8
0
0
7
14  
21  
28  
35  
42  
49  
56  
63  
0
7
14  
21  
28  
35  
42  
49  
56  
63  
Secondary Output Current (A)  
Secondary Output Current (A)  
VPRI_DC  
:
VPRI_DC:  
260V  
384V  
410V  
260V  
384V  
410V  
Figure 6 — Efficiency at TCASE = -55°C  
Figure 7 — Power dissipation at TCASE = -55°C  
99  
97  
95  
93  
91  
89  
87  
85  
83  
81  
79  
80  
72  
64  
56  
48  
40  
32  
24  
16  
8
0
0
7
14  
21  
28  
35  
42  
49  
56  
63  
0
7
14  
21  
28  
35  
42  
49  
56  
63  
Secondary Output Current (A)  
Secondary Output Current (A)  
260V  
384V  
410V  
260V  
384V  
410V  
VPRI_DC  
:
VPRI_DC :  
Figure 8 — Efficiency at TCASE = 25°C  
Figure 9 — Power dissipation at TCASE = 25°C  
BCM® Bus Converter  
Page 16 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
99  
97  
95  
93  
91  
89  
87  
85  
83  
81  
79  
80  
72  
64  
56  
48  
40  
32  
24  
16  
8
0
0
7
14  
21  
28  
35  
42  
49  
56  
63  
0
7
14  
21  
28  
35  
42  
49  
56  
63  
Secondary Output Current (A)  
Secondary Output Current (A)  
VPRI_DC:  
260V  
384V  
410V  
VPRI_DC:  
260V  
384V  
410V  
Figure 10 — Efficiency at TCASE = 80°C  
Figure 11 — Power dissipation at TCASE = 80°C  
10  
9
8
7
6
5
4
3
2
1
0
300  
270  
240  
210  
180  
150  
120  
90  
60  
30  
0
-55  
-35  
-15  
5
25  
45  
65  
85  
105  
0
7
14  
21  
28  
35  
42  
49  
56  
63  
Case Temperature (°C)  
Secondary Output Current (A)  
VPRI_DC  
:
384V  
ISEC_DC  
:
62.5A  
Figure 12 — RSEC vs. temperature; Nominal VPRI_DC  
Figure 13 — VSEC_OUT_PP vs. ISEC_DC ; No external CSEC_OUT_EXT  
.
ISEC_DC = 62.5A at TCASE = 80°C  
Board mounted module, scope setting:  
20MHz analog BW  
BCM® Bus Converter  
Page 17 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
Figure 14 — Full load secondary voltage ripple, 10µF CPRI_IN_EXT  
;
Figure 15 — 0A– 62.5A transient response: CPRI_IN_EXT = 10µF,  
No external CSEC_OUT_EXT Board mounted module,  
no external CSEC_OUT_EXT  
.
scope setting: 20MHz analog BW  
Figure 16 — 62.5A – 0A transient response: CPRI_IN_EXT = 10µF,  
Figure 17 — Startup from application of VPRI_DC = 384V,  
no external CSEC_OUT_EXT  
20% ISEC_OUT_DC, 100% CSEC_OUT_EXT  
Figure 18 — Startup from application of EN with pre-applied  
VPRI_DC = 384V, 20% ISEC_OUT_DC, 100% CSEC_OUT_EXT  
BCM® Bus Converter  
Page 18 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
General Characteristics  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
-55°C TINTERNAL 125°C (M-Grade); all other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Mechanical  
Min  
Typ  
Max  
Unit  
Length  
Width  
L
W
H
60.87 / [2.396] 61.00 / [2.402] 61.13 / [2.407] mm/[in]  
24.76 / [0.975] 25.14 / [0.990] 25.52 / [1.005] mm/[in]  
Height  
Volume  
Weight  
7.11 / [0.280] 7.21 / [0.284] 7.31 / [0.288]  
mm/[in]  
cm3/[in3]  
g/[oz]  
Vol  
W
Without heatsink  
11.06 / [0.675]  
41 / [1.45]  
Nickel  
0.51  
0.02  
2.03  
0.15  
Lead Finish  
Palladium  
Gold  
µm  
0.003  
0.051  
Thermal  
T-Grade  
-40  
-55  
125  
125  
°C  
°C  
Operating Temperature  
TINTERNAL  
M-Grade  
Estimated thermal resistance to maximum  
temperature internal component from  
isothermal top  
Thermal Resistance Top Side  
θINT-TOP  
1.45  
1.77  
°C/W  
°C/W  
Estimated thermal resistance to  
θINT-LEADS maximum temperature internal  
Thermal Resistance Leads  
component from isothermal leads  
Estimated thermal resistance to  
θINT-BOTTOM maximum temperature internal  
component from isothermal bottom  
Thermal Resistance Bottom Side  
Thermal Capacity  
1.67  
34  
°C/W  
Ws/°C  
Assembly  
T-Grade  
-55  
-65  
125  
125  
°C  
°C  
Storage Temperature  
ESD Withstand  
M-Grade  
ESDHBM  
ESDCDM  
Human Body Model, “ESDA / JEDEC JDS-001-2012” Class I-C (1kV to < 2kV)  
Charge Device Model, “JESD 22-C101-E” Class II (200V to < 500V)  
BCM® Bus Converter  
Page 19 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
General Characteristics (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
-55°C TINTERNAL 125°C (M-Grade); all other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Soldering [1]  
Min  
Typ  
Max  
Unit  
Peak Temperature Top Case  
135  
°C  
Safety  
PRIMARY to SECONDARY  
4242  
2121  
2121  
620  
Isolation Voltage / Dielectric Test  
VHIPOT  
PRIMARY to CASE  
SECONDARY to CASE  
Unpowered Unit  
At 500VDC  
VDC  
Isolation Capacitance  
Insulation Resistance  
CPRI_SEC  
RPRI_SEC  
780  
940  
pF  
10  
MΩ  
MIL-HDBK-217Plus Parts Count - 25°C  
Ground Benign, Stationary, Indoors /  
Computer  
2.31  
3.41  
MHrs  
MHrs  
MTBF  
Telcordia Issue 2 - Method I Case III; 25°C  
Ground Benign, Controlled  
cTUVus EN 60950-1  
UL 60950-1  
Agency Approvals / Standards  
CE Marked for Low Voltage Directive and RoHS Recast Directive, as applicable  
[1] Product is not intended for reflow solder attach.  
BCM® Bus Converter  
Page 20 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
PMBus™ System Diagram  
-OUT  
BCM  
EN Control  
3.3V, at least 20mA  
SCL  
Digital Isolator  
when using 4xDISO  
Ref to Digital Isolator  
datasheet for more details  
I13TL1A0  
3 kΩ  
VDD  
3 kΩ  
BCM EN  
5V EXT  
VDDB  
VDD  
NC  
SEC-IN-A  
SEC-IN-B  
PRI-OUT-A  
PRI-OUT-B  
PRI-IN-C  
SER-IN  
SER-OUT  
-IN BCM  
TXD1’  
RXD1  
RXD4  
RXD3  
RXD2  
RXD1  
TXD4  
TXD3  
SEC-OUT-C  
CP  
D
Q
VCC  
Digital  
Supervisor  
D44TL1A0  
PRI-COM  
SEC-COM  
SD  
RD  
Q
D
NC  
NC  
SSTOP  
Flip-flop  
VDD  
Host  
µc  
PMBus  
SGND  
SDA  
SCL  
74LVC1G74DC  
10 kΩ  
FDG6318P  
R1  
R2  
10 kΩ  
SGND  
The PMBus communication enabled bus converter provides accurate telemetry monitoring and reporting, threshold and warning  
limits adjustment, in addition to corresponding status flags.  
The BCM internal µC is referenced to primary ground. The Digital Isolator allows UART communication interface with the host Digital  
Supervisor at typical speed of 750kHz across the isolation barrier. One of the advantages of the Digital Isolator is its low power  
consumption. Each transmission channel is able to draw its internal bias circuitry directly from the input signal being transmitted to  
the output with minimal to no signal distortion.  
The Digital Supervisor provides the host system µC with access to an array of up to 4 BCMs. This array is constantly polled for status  
by the Digital Supervisor. Direct communication to individual BCM is enabled by a page command. For example, the page (0x00)  
prior to a telemetry inquiry points to the Digital Supervisor data and pages (0x01 – 0x04) prior to a telemetry inquiry points to the  
array of BCMs connected data. The Digital Supervisor constantly polls the BCM data through the UART interface.  
The Digital Supervisor enables the PMBus compatible host interface with an operating bus speed of up to 400kHz. The Digital  
Supervisor follows the PMBus command structure and specification.  
Please refer to the Digital Supervisor data sheet for more details.  
BCM® Bus Converter  
Page 21 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
BCM in a ChiP  
R
SEC  
0.124nH  
7mΩ  
= 0.64nH  
ISEC
lSEC_OUT_LEADS  
= 7nH  
lPRI_IN_LEADS  
+
+
CPRI_INT_ESR  
21.5mΩ  
CSEC_INT_ESR  
130µΩ  
122mΩ  
V•I  
K
1/16 • ISEC  
1/16 • VPRI  
CPRI_INT  
IN  
+
+
CSEC_INT  
70µF  
C
VSEC  
0.37µF  
V
I
PRI  
PRI_Q  
34mA  
LPRI_INT = 0.56µH  
Figure 19 — BCM AC model  
The BCM uses a high frequency resonant tank to move energy  
from primary to secondary and vice versa. The resonant LC tank,  
The effective DC voltage transformer action provides additional  
interesting attributes. Assuming that RSEC = 0Ω and IPRI_Q = 0A,  
Eq. (3) now becomes Eq. (1) and is essentially load independent,  
operated at high frequency, is amplitude modulated as a function  
of the primary voltage and the secondary current. A small amount  
of capacitance embedded in the primary and secondary stages of  
the module is sufficient for full functionality and is key to achieving  
high power density.  
resistor R is now placed in series with VPRI  
.
R
The BCM6123xD1E2663yzz can be simplified into the model  
shown in Figure 19.  
BCM  
V
SEC
+
K = 1/16  
VPRI  
At no load:  
(1)  
VSEC = VPRI • K  
K represents the “turns ratio” of the BCM.  
Rearranging Eq (1):  
Figure 20 — K = 1/16 BCM with series primary resistor  
The relationship between VPRI and VSEC becomes:  
VSEC = VPRI – IPRI • R • K  
VSEC  
(2)  
(3)  
(4)  
K =  
VPRI  
(5)  
(
)
In the presence of a load, VSEC is represented by:  
Substituting the simplified version of Eq. (4)  
(IPRI_Q is assumed = 0A) into Eq. (5) yields:  
VSEC = VPRI • K – ISEC • RSEC  
and ISEC is represented by:  
IPRI – IPRI_Q  
2
(6)  
VSEC = VPRI • K – ISEC • R • K  
This is similar in form to Eq. (3), where RSEC is used to represent the  
characteristic impedance of the BCM. However, in this case a real  
resistor, R, on the primary side of the BCM is effectively scaled by  
K2 with respect to the secondary.  
ISEC  
=
K
RSEC represents the impedance of the BCM, and is a function of the  
RDS_ON of the primary and secondary MOSFETs and the winding  
resistance of the power transformer. IPRI_Q represents the quiescent  
current of the BCM controller, gate drive circuitry, and core losses.  
Assuming that R = 1Ω, the effective R as seen from the secondary  
side is 3.91mΩ, with K = 1/16.  
BCM® Bus Converter  
Page 22 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
A similar exercise can be performed with the additon of a capacitor  
or shunt impedance at the primary of the BCM. A switch in series  
with VPRI is added to the circuit. This is depicted in Figure 21.  
Low impedance is a key requirement for powering a high-  
current, low-voltage load efficiently. A switching regulation stage  
should have minimal impedance while simultaneously providing  
appropriate filtering for any switched current. The use of a BCM  
between the regulation stage and the point of load provides a  
dual benefit of scaling down series impedance leading back to  
the source and scaling up shunt capacitance or energy storage  
as a function of its K factor squared. However, these benefits are  
not achieved if the series impedance of the BCM is too high. The  
impedance of the BCM must be low, i.e., well beyond the crossover  
frequency of the system.  
S
BCM  
V
+
K = 1/16  
SEC  
C
V
PRI  
A solution for keeping the impedance of the BCM low involves  
switching at a high frequency. This enables the use of small  
magnetic components because magnetizing currents remain low.  
Small magnetics mean small path lengths for turns. Use of low loss  
core material at high frequencies also reduces core losses.  
Figure 21 — BCM with primary capacitor  
A change in VPRI with the switch closed would result in a change in  
capacitor current according to the following equation:  
The two main terms of power loss in the BCM are:  
nNo load power dissipation (PPRI_NL): defined as the power used to  
power up the module with an enabled powertrainat no load.  
dVPRI  
dt  
(7)  
IC (t) = C  
nResistive loss (PRSEC): refers to the power loss across the BCM  
modeled as pure resistive impedance.  
Assume that with the capacitor charged to VPRI, the switch is  
opened and the capacitor is discharged through the idealized  
BCM. In this case,  
(10)  
PDISSIPATED = PPRI_NL + PR  
SEC  
(8)  
IC = ISEC • K  
Therefore,  
(11)  
PSEC_OUT = PPRI_IN – PDISSIPATED = PPRI_IN – PPRI_NL – PR  
substituting Eq. (1) and (8) into Eq. (7) reveals:  
SEC  
C
dVSEC  
dt  
The above relations can be combined to calculate the overall  
module efficiency:  
ISEC(t) =  
(9)  
K2  
The equation in terms of the secondary has yielded a K2 scaling  
factor for C, specified in the denominator of the equation.  
PSEC_OUT  
PPRI_IN  
PPRI_IN – PPRI_NL – PR  
PPRI_IN  
SEC  
(12)  
η =  
=
A K factor less than unity results in an effectively larger capacitance  
on the secondary when expressed in terms of the primary. With a  
K= 1/16 as shown in Figure 21, C = 1µF would appear as  
2
C = 256µF when viewed from the secondary.  
VPRI • IPRI – PPRI_NL – I  
• RSEC  
(
)
SEC  
=
=
VPRI • IPRI  
2
PPRI_NL + I  
• RSEC  
(
)
SEC  
1 –  
( )  
VPRI • IPRI  
BCM® Bus Converter  
Page 23 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
Input and Output Filter Design  
Thermal Considerations  
The ChiP module provides a high degree of flexibility in that it  
presents three pathways to remove heat from the internal power  
dissipating components. Heat may be removed from the top  
surface, the bottom surface and the leads. The extent to which  
these three surfaces are cooled is a key component in determining  
the maximum current that is available from a ChiP, as can be  
seen from Figure 1.  
A major advantage of BCM systems versus conventional PWM  
converters is that the transformer based BCM does not require  
external filtering to function properly. The resonant LC tank,  
operated at extreme high frequency, is amplitude modulated as a  
function of primary voltage and secondary current and efficiently  
transfers charge through the isolation transformer. A small amount  
of capacitance embedded in the primary and secondary stages  
of the module is sufficient for full functionality and is key to  
achieving power density.  
Since the ChiP has a maximum internal temperature rating, it  
is necessary to estimate this internal temperature based on a  
system-level thermal solution. Given that there are three pathways  
to remove heat from the ChiP, it is helpful to simplify the thermal  
solution into a roughly equivalent circuit where power dissipation  
is modeled as a current source, isothermal surface temperatures  
are represented as voltage sources and the thermal resistances are  
represented as resistors. Figure 22 shows the “thermal circuit” for a  
6123 ChiP BCM in an application where the top, bottom, and leads  
are cooled. In this case, the BCM power dissipation is PDTOTAL and  
the three surface temperatures are represented as TCASE_TOP, TCASE_  
BOTTOM, and TLEADS. This thermal system can now be very easily  
analyzed using a SPICE simulator with simple resistors, voltage  
sources, and a current source. The results of the simulation provide  
an estimate of heat flow through the various dissipation pathways  
as well as internal temperature.  
This paradigm shift requires system design to carefully evaluate  
external filters in order to:  
nGuarantee low source impedance:  
To take full advantage of the BCM’s dynamic response, the  
impedance presented to its primary terminals must be low from  
DC to approximately 5MHz. The connection of the bus converter  
module to its power source should be implemented with  
minimal distribution inductance. If the interconnect inductance  
exceeds 100nH, the primary should be bypassed with a RC  
damper to retain low source impedance and stable operation.  
With an interconnect inductance of 200nH, the RC damper may  
be as high as 1µF in series with 0.3Ω. A single electrolytic or  
equivalent low-Q capacitor may be used in place of the  
series RC bypass.  
nFurther reduce primary and/or secondary voltage ripple  
Thermal Resistance Top  
MAX INTERNAL TEMP  
θINT-TOP  
without sacrificing dynamic response:  
Given the wide bandwidth of the module, the source response  
is generally the limiting factor in the overall system response.  
Anomalies in the response of the primary source will appear at  
the secondary of the module multiplied by its K factor.  
Thermal Resistance Bottom  
Thermal Resistance Leads  
θINT-BOTTOM  
θINT-LEADS  
+
+
+
T
CASE_BOTTOM(°C)  
TLEADS(°C)  
TCASE_TOP(°C)  
Power Dissipation (W)  
nProtect the module from overvoltage transients imposed  
by the system that would exceed maximum ratings and  
induce stresses:  
Figure 22 — Top case, Bottom case and leads thermal model  
The module primary/secondary voltage ranges shall not be  
exceeded. An internal overvoltage lockout function prevents  
operation outside of the normal operating primary range. Even  
when disabled, the powertrain is exposed to the applied voltage  
and the power MOSFETs must withstand it.  
Alternatively, equations can be written around this circuit and  
analyzed algebraically:  
TINT – PD1 • θINT-TOP = TCASE_TOP  
TINT – PD2 • θINT-BOTTOM = TCASE_BOTTOM  
TINT – PD3 • θINT-LEADS = TLEADS  
PD
TOTAL
= PD
1
+ PD
2
+ PD
3  
Total load capacitance at the secondary of the BCM shall not  
exceed the specified maximum. Owing to the wide bandwidth and  
low secondary impedance of the module, low-frequency bypass  
capacitance and significant energy storage may be more densely  
and efficiently provided by adding capacitance at the primary of  
the module. At frequencies <500kHz the module appears as an  
impedance of RSEC between the source and load.  
Where TINT represents the internal temperature and PD1, PD2, and  
PD3 represent the heat flow through the top side, bottom side, and  
leads, respectively.  
Within this frequency range, capacitance at the primary appears  
as effective capacitance on the secondary per the relationship  
defined in Eq. (13).  
Thermal Resistance Top  
MAX INTERNAL TEMP  
CPRI_EXT  
θINT-TOP  
(13)  
CSEC_EXT  
=
K2  
Thermal Resistance Bottom  
Thermal Resistance Leads  
θINT-BOTTOM  
θINT-LEADS  
This enables a reduction in the size and number of capacitors used  
in a typical system.  
+
+
TCASE_BOTTOM(°C)  
TLEADS(°C)  
TCASE_TOP(°C)  
Power Dissipation (W)  
Figure 23 — Top case and leads thermal model  
BCM® Bus Converter  
Page 24 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
Figure 23 shows a scenario where there is no bottom side cooling.  
In this case, the heat flow path to the bottom is left open and the  
equations now simplify to:  
ZPRI_EQ1  
ZSEC_EQ1  
BCM®1  
R0_1  
VPRI  
VSEC  
TINT – PD1 • θINT-TOP = TCASE_TOP  
TINT – PD3 • θINT-LEADS = TLEADS  
PDTOTAL = PD1+ PD3  
ZSEC_EQ2  
ZPRI_EQ2  
BCM®2  
R0_2  
+
Load  
DC  
Thermal Resistance Top  
MAX INTERNAL TEMP  
θINT-TOP  
Thermal Resistance Bottom  
Thermal Resistance Leads  
θINT-BOTTOM  
θINT-LEADS  
ZSEC_EQn  
BCM®n  
R0_n  
ZPRI_EQn  
+
T
CASE_BOTTOM(°C)  
TLEADS(°C)  
TCASE_TOP(°C)  
Power Dissipation (W)  
Figure 25 — BCM array  
Figure 24 — Top case thermal model  
Figure 24 shows a scenario where there is no bottom side and  
leads cooling. In this case, the heat flow paths to the bottom and  
leads are left open and the equations now simplify to:  
Fuse Selection  
In order to provide flexibility in configuring power systems, ChiP  
modules are not internally fused. Input line fusing of ChiP products  
is recommended at the system level to provide thermal protection  
in case of catastrophic failure.  
TINT – PD1 • θINT-TOP = TCASE_TOP  
PDTOTAL = PD1  
Please note that Vicor has a suite of online tools, including a  
simulator and thermal estimator that greatly simplify the task of  
determining whether or not a BCM thermal configuration is valid  
for a given condition. These tools can be found at:  
The fuse shall be selected by closely matching system requirements  
with the following characteristics:  
nCurrent rating  
(usually greater than maximum current of BCM)  
http://www.vicorpower.com/powerbench.  
nMaximum voltage rating  
(usually greater than the maximum possible input voltage)  
Current Sharing  
nAmbient temperature  
nNominal melting I2t  
The performance of the BCM topology is based on efficient  
transfer of energy through a transformer without the need of  
closed loop control. For this reason, the transfer characteristic  
can be approximated by an ideal transformer with a positive  
temperature coefficient series resistance.  
nRecommend fuse: 5A Bussmann PC-Tron (primary side)  
This type of characteristic is close to the impedance characteristic  
of a DC power distribution system both in dynamic (AC) behavior  
and for steady state (DC) operation.  
When multiple BCMs of a given part number are connected in an  
array, they will inherently share the load current according to the  
equivalent impedance divider that the system implements from the  
power source to the point of load. Ensuring equal current sharing  
among modules requires that BCM array impedances be matched.  
Some general recommendations to achieve matched array  
impedances include:  
nDedicate common copper planes within the PCB to deliver and  
return the current to the modules.  
nProvide as symmetric a PCB layout as possible among modules  
nA dedicated input filter for each BCM in an array is required to  
prevent circulating currents.  
For further details see:  
AN:016 Using BCM Bus Converters in High Power Arrays.  
BCM® Bus Converter  
Page 25 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
BCM Through Hole Package Mechanical Drawing and Recommended Land Pattern  
25.14 .ꢀ3  
.990 .015  
12.57  
.495  
11.4ꢀ  
.450  
2.0ꢀ  
.030  
(9) PL.  
2.0ꢀ  
.030  
(9) PL.  
27.21  
1.071  
(2) PL.  
21.94  
.364  
17.09  
.67ꢀ  
(2) PL.  
(2) PL.  
ꢀ0.50  
1.201  
12.52  
.49ꢀ  
7.94  
.ꢀ12  
(2) PL.  
(2) PL.  
ꢀ.ꢀ7  
.1ꢀ2  
1.49  
.053  
(2) PL.  
0
0
0
0
(2) PL.  
6.76  
.266  
61.00 .1ꢀ  
2.402 .005  
(2) PL.  
1.02  
.040  
1.02  
.040  
(ꢀ) PL.  
(ꢀ) PL.  
13.05  
.710  
20.34  
.320  
(2) PL.  
(2) PL.  
2ꢀ.64  
.9ꢀ1  
(2) PL.  
27.55  
1.035  
(2) PL.  
TOP VIEW (COMPONENT SIDE)  
BOTTOM VIEW  
.05 [.002]  
NOTES:  
1- RoHS COMPLIANT PER CST-0001 LATEST REVISION.  
7.21 .10  
.284 .004  
SEATING  
PLANE  
2- UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE : MM / [INCH]  
4.17  
.164  
.41  
.016  
(24) PL.  
(24) PL.  
27.21 .08  
1.071 .00ꢀ  
(2) PL.  
+VSEC  
-VSEC1  
+VSEC  
21.94 .08  
.864 .00ꢀ  
(2) PL.  
-VSEC2  
17.09 .08  
.67ꢀ .00ꢀ  
(2) PL.  
-VSEC1  
+VSEC  
+VSEC  
-VSEC1  
-VSEC2  
+VSEC  
+VSEC  
-VSEC2  
12.52 .08  
.49ꢀ .00ꢀ  
(2) PL.  
7.94 .08  
.ꢀ12 .00ꢀ  
(2) PL.  
ꢀ.ꢀ7 .08  
.1ꢀ2 .00ꢀ  
(2) PL.  
1.49 .08  
.058 .00ꢀ  
(2) PL.  
0
0
-VSEC1  
+VSEC  
-VSEC2  
+VSEC  
6.76 .08  
.266 .00ꢀ  
(2) PL.  
1.52 .08  
.060 .00ꢀ  
PLATED THRU  
.25 [.010]  
ANNULAR RING  
(6) PL.  
2.54 .08  
.100 .00ꢀ  
PLATED THRU  
.ꢀ8 [.015]  
ANNULAR RING  
(18) PL.  
+VPRI TM/SER-OUT  
+VPRI EN  
+VPRI VAUX/SER-IN  
+VPRI -VPRI  
18.05 .08  
.710 .00ꢀ  
(2) PL.  
20.84 .08  
.820 .00ꢀ  
(2) PL.  
2ꢀ.64 .08  
.9ꢀ1 .00ꢀ  
(2) PL.  
27.55 .08  
1.085 .00ꢀ  
(2) PL.  
RECOMMENDED HOLE PATTERN  
(COMPONENT SIDE)  
BCM® Bus Converter  
Page 26 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
Revision History  
Revision  
1.0  
Date  
Description  
Page Number(s)  
n/a  
02/01/17  
07/28/17  
Initial Release  
1.1  
Updated height specification  
1, 19, 26  
BCM® Bus Converter  
Page 27 of 28  
Rev 1.1  
07/2017  
BCM6123xD1E2663yzz  
Vicor’s comprehensive line of power solutions includes high density AC-DC and DC-DC modules and  
accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom  
power systems.  
Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor  
makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication. Vicor reserves  
the right to make changes to any products, specifications, and product descriptions at any time without notice. Information published by  
Vicor has been checked and is believed to be accurate at the time it was printed; however, Vicor assumes no responsibility for inaccuracies.  
Testing and other quality controls are used to the extent Vicor deems necessary to support Vicor’s product warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
Specifications are subject to change without notice.  
Visit http://www.vicorpower.com/dc-dc/isolated-fixed-ratio/hv-bus-converter-module for the latest product information.  
Vicor’s Standard Terms and Conditions and Product Warranty  
All sales are subject to Vicor’s Standard Terms and Conditions of Sale, and Product Warranty which are available on Vicor’s webpage  
(http://www.vicorpower.com/termsconditionswarranty) or upon request.  
Life Support Policy  
VICOR’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE  
EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF VICOR CORPORATION. As used  
herein, life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to  
result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform  
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. Per Vicor Terms  
and Conditions of Sale, the user of Vicor products and components in life support applications assumes all risks of such use and indemnifies  
Vicor against all liability and damages.  
Intellectual Property Notice  
Vicor and its subsidiaries own Intellectual Property (including issued U.S. and Foreign Patents and pending patent applications) relating to the  
products described in this data sheet. No license, whether express, implied, or arising by estoppel or otherwise, to any intellectual property  
rights is granted by this document. Interested parties should contact Vicor’s Intellectual Property Department.  
The products described on this data sheet are protected by the following U.S. Patents Numbers:  
6,911,848; 6,930,893; 6,934,166; 7,145,786; 7,782,639; 8,427,269 and for use under 6,975,098 and 6,984,965.  
Contact Us: http://www.vicorpower.com/contact-us  
Vicor Corporation  
25 Frontage Road  
Andover, MA, USA 01810  
Tel: 800-735-6200  
Fax: 978-475-6715  
www.vicorpower.com  
email  
Customer Service: custserv@vicorpower.com  
Technical Support: apps@vicorpower.com  
©2017 Vicor Corporation. All rights reserved. The Vicor name is a registered trademark of Vicor Corporation.  
All other trademarks, product names, logos and brands are property of their respective owners.  
BCM® Bus Converter  
Page 28 of 28  
Rev 1.1  
07/2017  

相关型号:

BCM6123XD1E2663YZZ_17

Isolated Fixed Ratio DC-DC Converter
VICOR

BCM6123XD1E5117YZZ

Isolated Fixed-Ratio DC-DC Converter
VICOR

BCM6123XD1E5117YZZ_17

Isolated Fixed-Ratio DC-DC Converter
VICOR

BCM6123XD1E5126YZZ

Isolated Fixed-Ratio DC-DC Converter
VICOR

BCM6123XD1E5126YZZ_17

Isolated Fixed-Ratio DC-DC Converter
VICOR

BCM6123XD1E5135YZZ

Isolated Fixed-Ratio DC-DC Converter
VICOR

BCM6123XD1E5135YZZ_17

Isolated Fixed-Ratio DC-DC Converter
VICOR

BCM61B

Low VCEsat (BISS) transistors
NXP

BCM61B

NPN/NPN matched double transistorProduction
NEXPERIA

BCM61B,215

TRANS NPN DBL 45V 100MA SOT143B
ETC

BCM62B

Low VCEsat (BISS) transistors
NXP

BCM62B

PNP/PNP matched double transistorProduction
NEXPERIA