V23990-K237-F40-PM [VINCOTECH]

High speed switching;Low collector emitter saturation voltage;
V23990-K237-F40-PM
型号: V23990-K237-F40-PM
厂家: VINCOTECH    VINCOTECH
描述:

High speed switching;Low collector emitter saturation voltage

文件: 总16页 (文件大小:1139K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
V23990-K237-F40-PM  
MiniSKiiP®2 PACK  
1200V / 25A  
Features  
MiniSKiiP® 2 housing  
Solderless interconnection  
Trench Fieldstop IGBT4 technology  
Target Applications  
Schematic  
Servo Drives  
Industrial Motor Drives  
UPS  
Types  
V23990-K237-F40-PM  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
T1,T2,T3,T4,T5,T6  
VCE  
IC  
ICpulse  
Ptot  
Collector-emitter break down voltage  
DC collector current  
1200  
V
A
Th=80°C  
33  
40  
Tj=Tjmax  
Tc=80°C  
tp limited by Tjmax  
Repetitive peak collector current  
Power dissipation  
75  
A
Th=80°C  
Tc=80°C  
89  
W
V
135  
Tj150°C  
VGE  
Gate-emitter peak voltage  
Short circuit ratings  
±20  
VGE=15V  
tSC  
10  
µs  
V
VCC  
800  
Tjmax  
Maximum Junction Temperature  
175  
°C  
copyright Vincotech  
1
Revision: 1  
V23990-K237-F40-PM  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
D1,D2,D3,D4,D5,D6  
Peak Repetitive Reverse Voltage  
DC forward current  
VRRM  
IF  
IFRM  
Ptot  
1200  
V
A
Th=80°C  
Tc=80°C  
25  
32  
Tj=Tjmax  
tp=10ms half sine  
Tj=Tjmax  
Repetitive peak forward current  
Power dissipation  
160  
A
Th=80°C  
Tc=80°C  
62  
95  
W
°C  
Tjmax  
Maximum Junction Temperature  
175  
Thermal Properties  
Tstg  
Top  
Storage temperature  
-40…+125  
°C  
°C  
Operation temperature under switching condition  
-40…+(Tjmax - 25)  
Insulation Properties  
Insulation voltage  
Creepage distance  
Clearance  
Vis  
t=2s  
DC voltage  
4000  
V
min 12,7  
min 12,7  
mm  
mm  
copyright Vincotech  
2
Revision: 1  
V23990-K237-F40-PM  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
Vr [V] or  
VGE [V] or  
IC [A] or  
IF [A] or  
ID [A]  
VCE [V] or  
Tj  
Min  
Max  
VGS [V]  
VDS [V]  
T1,T2,T3,T4,T5,T6  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
5
5,8  
6,5  
2,15  
0,05  
300  
VGE(th)  
VCE(sat)  
ICES  
IGES  
Rgint  
td(on)  
tr  
VCE=VGE  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current incl. Diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
0,00085  
25  
V
V
1,35  
1,88  
2,2  
15  
0
1200  
0
mA  
nA  
20  
-
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
112  
113  
29,3  
34,7  
231  
303  
91  
137  
1,87  
2,77  
1,49  
2,43  
Rise time  
ns  
td(off)  
tf  
Turn-off delay time  
Rgoff=32  
Rgon=32 Ω  
Fall time  
Eon  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
pF  
Eoff  
Cies  
Coss  
Crss  
QGate  
1430  
115  
85  
Output capacitance  
f=1MHz  
0
25  
Tj=25°C  
Tj=25°C  
Reverse transfer capacitance  
Gate charge  
Vcc=960V  
±15  
40  
120  
nC  
Thermal grease  
thickness50µm  
λ=1W/mK  
RthJH  
K/W  
Thermal resistance chip to heatsink per chip  
1,2  
D1,D2,D3,D4,D5,D6  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
1,5  
2,47  
2,49  
13,5  
18,3  
319  
544  
1,48  
3,69  
174  
64  
2,75  
VF  
IRRM  
trr  
Diode forward voltage  
25  
V
A
Peak reverse recovery current  
Reverse recovery time  
ns  
Qrr  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
µC  
di(rec)max  
/dt  
A/µs  
mWs  
0,52  
1,44  
Erec  
Thermal grease  
thickness50µm  
λ=1W/mK  
RthJH  
K/W  
Thermal resistance chip to heatsink per chip  
1,52  
Thermistor  
Rated resistance  
Deviation of R100  
R100  
R
T=25°C  
T=100°C  
T=100°C  
T=25°C  
T=25°C  
T=25°C  
1000  
%
R/R R100=1670 Ω  
-3  
3
P
1670,313  
Power dissipation constant  
A-value  
mW/K  
1/K  
1/K²  
B(25/50) Tol. %  
B(25/100) Tol. %  
7,635*10-3  
1,731*10-5  
B-value  
Vincotech NTC Reference  
E
copyright Vincotech  
3
Revision: 1  
V23990-K237-F40-PM  
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6  
Figure 1  
T1,T2,T3,T4,T5,T6 IGBT  
Figure 2  
T1,T2,T3,T4,T5,T6 IGBT  
Typical output characteristics  
Typical output characteristics  
IC = f(VCE  
)
IC = f(VCE)  
75  
75  
60  
45  
30  
15  
60  
45  
30  
15  
0
0
0
0
VCE (V)  
VCE (V)  
1
2
3
4
5
1
2
3
4
5
At  
At  
tp =  
tp =  
250  
25  
µs  
250  
150  
µs  
Tj =  
Tj =  
°C  
°C  
VGE from  
VGE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
Figure 3  
T1,T2,T3,T4,T5,T6 IGBT  
Figure 4  
D1,D2,D3,D4,D5,D6 FWD  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
IF = f(VF)  
IC = f(VGE  
)
25  
75  
60  
45  
30  
15  
0
Tj = 25°C  
20  
15  
10  
5
Tj = Tjmax-25°C  
Tj = Tjmax-25°C  
Tj = 25°C  
0
0
VGE (V)  
VF (V)  
2
4
6
8
10  
12  
0
1
2
3
4
5
At  
At  
tp =  
tp =  
250  
10  
µs  
250  
µs  
VCE  
=
V
copyright Vincotech  
4
Revision: 1  
V23990-K237-F40-PM  
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6  
Figure 5  
T1,T2,T3,T4,T5,T6 IGBT  
Figure 6  
T1,T2,T3,T4,T5,T6 IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(IC)  
Typical switching energy losses  
as a function of gate resistor  
E = f(RG)  
8
6
4
2
0
8
6
4
2
0
Eon High T  
Eon High T  
Eon Low T  
Eon Low T  
Eoff High T  
Eoff High T  
Eoff Low T  
Eoff Low T  
I C (A)  
R G ( )  
0
10  
20  
30  
40  
50  
0
30  
60  
90  
120  
150  
With an inductive load at  
With an inductive load at  
Tj =  
Tj =  
°C  
V
°C  
V
25/150  
25/150  
VCE  
VGE  
=
=
VCE  
VGE  
IC =  
=
=
600  
±15  
32  
600  
±15  
25  
V
V
Rgon  
Rgoff  
=
=
A
32  
Figure 7  
T1,T2,T3,T4,T5,T6 IGBT  
Figure 8  
T1,T2,T3,T4,T5,T6 IGBT  
Typical reverse recovery energy loss  
as a function of collector current  
Erec = f(IC)  
Typical reverse recovery energy loss  
as a function of gate resistor  
Erec = f(RG)  
2
2
Erec  
Tj = Tjmax -25°C  
1,6  
1,6  
Tj = Tjmax -25°C  
1,2  
1,2  
0,8  
0,4  
0
Erec  
0,8  
Erec  
Tj = 25°C  
Tj = 25°C  
Erec  
0,4  
0
I C (A)  
R G ( )  
0
10  
20  
30  
40  
50  
0
30  
60  
90  
120  
150  
With an inductive load at  
With an inductive load at  
Tj =  
Tj =  
°C  
V
°C  
V
25/150  
25/150  
VCE  
VGE  
=
=
VCE  
VGE  
IC =  
=
=
600  
±15  
32  
600  
±15  
25  
V
V
Rgon  
=
A
copyright Vincotech  
5
Revision: 1  
V23990-K237-F40-PM  
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6  
Figure 9  
T1,T2,T3,T4,T5,T6 IGBT  
Figure 10  
T1,T2,T3,T4,T5,T6 IGBT  
Typical switching times as a  
function of collector current  
t = f(IC)  
Typical switching times as a  
function of gate resistor  
t = f(RG)  
1
1
tdoff  
tdoff  
tdon  
tf  
tf  
0,1  
0,1  
tdon  
tr  
tr  
0,01  
0,01  
0,001  
0,001  
I C (A)  
R G ( )  
0
10  
20  
30  
40  
50  
0
30  
60  
90  
120  
150  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
IC =  
150  
600  
±15  
32  
°C  
V
150  
600  
±15  
25  
°C  
V
=
=
=
=
V
V
Rgon  
Rgoff  
=
=
A
32  
Figure 11  
D1,D2,D3,D4,D5,D6 FWD  
Figure 12  
D1,D2,D3,D4,D5,D6 FWD  
Typical reverse recovery time as a  
function of collector current  
trr = f(IC)  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
trr = f(Rgon  
)
1
1
trr  
0,8  
0,8  
0,6  
0,4  
0,2  
trr  
Tj = Tjmax -25°C  
Tj = Tjmax -25°C  
0,6  
0,4  
0,2  
0
trr  
trr  
Tj = 25°C  
Tj = 25°C  
0
0
I C (A)  
R g on ( )  
0
10  
20  
30  
40  
50  
30  
60  
90  
120  
150  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
°C  
V
°C  
V
25/150  
600  
25/150  
600  
=
=
±15  
V
25  
A
Rgon  
=
VGE =  
32  
±15  
V
copyright Vincotech  
6
Revision: 1  
V23990-K237-F40-PM  
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6  
Figure 13  
D1,D2,D3,D4,D5,D6 FWD  
Figure 14  
D1,D2,D3,D4,D5,D6 FWD  
Typical reverse recovery charge as a  
function of collector current  
Qrr = f(IC)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Qrr = f(Rgon  
)
5
5
Qrr  
Tj = Tjmax -25°C  
4
3
2
1
0
4
3
2
1
Tj = Tjmax -25°C  
Qrr  
Qrr  
Tj = 25°C  
Tj = 25°C  
Qrr  
0
0
I C (A)  
R g on ( )  
0
10  
20  
30  
40  
50  
30  
60  
90  
120  
150  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
°C  
V
°C  
V
25/150  
600  
25/150  
600  
=
=
±15  
V
25  
A
Rgon  
=
VGE =  
32  
±15  
V
Figure 15  
D1,D2,D3,D4,D5,D6 FWD  
Figure 16  
D1,D2,D3,D4,D5,D6 FWD  
Typical reverse recovery current as a  
function of collector current  
IRRM = f(IC)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
IRRM = f(Rgon  
)
25  
50  
40  
30  
20  
10  
20  
Tj = Tjmax -25°C  
IRRM  
15  
Tj = 25°C  
IRRM  
10  
5
Tj = Tjmax - 25°C  
Tj = 25°C  
IRRM  
0
0
0
I C (A)  
R gon ( )  
0
10  
20  
30  
40  
50  
30  
60  
90  
120  
150  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
°C  
V
°C  
V
25/150  
600  
25/150  
600  
=
=
±15  
V
25  
A
Rgon  
=
VGE =  
32  
±15  
V
copyright Vincotech  
7
Revision: 1  
V23990-K237-F40-PM  
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6  
Figure 17  
D1,D2,D3,D4,D5,D6 FWD  
Figure 18  
D1,D2,D3,D4,D5,D6 FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI0/dt,dIrec/dt = f(IC)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI0/dt,dIrec/dt = f(Rgon  
)
1000  
1800  
dI0/dt  
dI0/dt  
µ
µ
µ
µ
dIrec/dt  
dIrec/dt  
1500  
1200  
900  
600  
300  
0
800  
600  
400  
200  
0
dIo/dtLow T  
di0/dtHigh T  
dIrec/dtLow T  
dIrec/dtHigh T  
I C (A)  
R gon ( )  
0
10  
20  
30  
40  
50  
0
30  
60  
90  
120  
150  
At  
Tj =  
At  
Tj =  
VR =  
IF =  
°C  
V
°C  
V
25/150  
600  
25/150  
600  
VCE  
VGE  
=
=
±15  
V
25  
A
Rgon  
=
VGE =  
32  
±15  
V
Figure 19  
T1,T2,T3,T4,T5,T6 IGBT  
Figure 20  
D1,D2,D3,D4,D5,D6 FWD  
IGBT transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
FWD transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
101  
101  
100  
100  
D = 0,5  
0,2  
D = 0,5  
0,2  
10-1  
10-1  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,05  
0,02  
0,01  
0,005  
0.000  
10-2  
10-5  
10-2  
10-4  
10-3  
10-2  
10-1  
100  
1011  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
t p (s)  
t p (s)  
1
At  
At  
tp / T  
1,20  
tp / T  
1,52  
D =  
D =  
RthJH  
=
RthJH =  
K/W  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W)  
0,03  
Tau (s)  
5,7E+00  
8,1E-01  
1,6E-01  
4,9E-02  
1,0E-02  
9,8E-04  
R (K/W)  
0,03  
Tau (s)  
9,3E+00  
7,6E-01  
1,5E-01  
3,0E-02  
4,4E-03  
6,5E-04  
0,14  
0,22  
0,51  
0,63  
0,27  
0,37  
0,17  
0,17  
0,07  
0,10  
copyright Vincotech  
8
Revision: 1  
V23990-K237-F40-PM  
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6  
Figure 21  
T1,T2,T3,T4,T5,T6 IGBT  
Figure 22  
T1,T2,T3,T4,T5,T6 IGBT  
Power dissipation as a  
function of heatsink temperature  
Ptot = f(Th)  
Collector current as a  
function of heatsink temperature  
IC = f(Th)  
160  
120  
80  
40  
30  
20  
10  
0
40  
0
T h  
(
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
VGE  
175  
°C  
175  
15  
°C  
V
=
Figure 23  
Power dissipation as a  
D1,D2,D3,D4,D5,D6 FWD  
Figure 24  
Forward current as a  
D1,D2,D3,D4,D5,D6 FWD  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
120  
90  
60  
30  
0
40  
30  
20  
10  
0
T h  
(
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
175  
°C  
175  
°C  
copyright Vincotech  
9
Revision: 1  
V23990-K237-F40-PM  
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6  
Figure 25  
T1,T2,T3,T4,T5,T6 IGBT  
Figure 26  
T1,T2,T3,T4,T5,T6 IGBT  
Gate voltage vs Gate charge  
Safe operating area as a function  
of collector-emitter voltage  
IC = f(VCE  
)
VGE = f(QGE  
16  
)
103  
100uS  
1mS  
14  
12  
10  
8
240V  
960V  
102  
101  
100  
10mS  
100mS  
DC  
6
4
2
0
0
10-1  
100  
20  
40  
60  
80  
100  
120  
103  
101  
102  
VCE (V)  
Q g (nC)  
At  
At  
IC  
=
D =  
Th =  
25  
A
single pulse  
80  
ºC  
VGE  
Tj =  
=
±15  
V
Tjmax  
ºC  
copyright Vincotech  
10  
Revision: 1  
V23990-K237-F40-PM  
Thermistor  
Figure 1  
Thermistor  
Typical PTC characteristic  
as a function of temperature  
RT = f(T)  
PTC-typical temperature characteristic  
2000  
1800  
1600  
1400  
1200  
1000  
T (°C)  
25  
50  
75  
100  
125  
copyright Vincotech  
11  
Revision: 1  
V23990-K237-F40-PM  
Switching Definitions Output Inverter  
General conditions  
Tj  
=
=
=
150 °C  
32  
Rgon  
Rgoff  
32 Ω  
Figure 1  
Output inverter IGBT  
Figure 2  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tdoff, tEoff  
Turn-on Switching Waveforms & definition of tdon, tEon  
(tEoff = integrating time for Eoff  
)
(tEon = integrating time for Eon  
)
180  
%
130  
%
tdoff  
IC  
110  
VCE  
150  
VGE 90%  
90  
VCE 90%  
120  
VCE  
70  
90  
IC  
50  
VGE  
tdon  
tEoff  
60  
30  
10  
IC 1%  
30  
IC10%  
VCE 3%  
VGE10%  
VGE  
-10  
0
tEon  
-30  
-30  
-0,2  
-0,05  
0,1  
0,25  
0,4  
0,55  
0,7  
0,85  
time (us)  
5,9  
6
6,1  
6,2  
6,3  
6,4  
6,5  
6,6  
6,7  
time(us)  
VGE (0%) =  
VGE (0%) =  
-15  
V
V
V
A
-15  
15  
V
VGE (100%) =  
VC (100%) =  
IC (100%) =  
VGE (100%) =  
VC (100%) =  
IC (100%) =  
15  
V
600  
25  
600  
25  
V
A
tdoff  
tEoff  
=
=
tdon  
tEon  
=
=
0,30  
0,68  
µs  
µs  
0,11  
0,42  
µs  
µs  
Figure 3  
Output inverter IGBT  
Figure 4  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tf  
Turn-on Switching Waveforms & definition of tr  
140  
180  
%
%
Ic  
120  
VCE  
150  
100  
120  
VCE  
IC  
IC 90%  
80  
60  
40  
20  
0
90  
60  
30  
0
IC90%  
IC  
60%  
tr  
IC 40%  
IC10%  
IC10%  
tf  
fitted  
-20  
-30  
0,2  
0,25  
0,3  
0,35  
0,4  
0,45  
0,5  
0,55  
time (us)  
6,1  
6,2  
6,3  
6,4  
6,5  
6,6  
time(us)  
VC (100%) =  
IC (100%) =  
tf =  
VC (100%) =  
IC (100%) =  
tr =  
600  
V
600  
25  
V
25  
A
A
0,14  
µs  
0,03  
µs  
copyright Vincotech  
12  
Revision: 1  
V23990-K237-F40-PM  
Switching Definitions Output Inverter  
Figure 5  
Output inverter IGBT  
Figure 6  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tEoff  
Turn-on Switching Waveforms & definition of tEon  
120  
180  
%
Poff  
100  
%
Pon  
Eoff  
140  
100  
60  
80  
60  
40  
20  
Eon  
VGE 10%  
20  
VCE  
3%  
0
tEoff  
tEon  
VGE 90%  
IC 1%  
-20  
-20  
5,85  
6
6,15  
6,3  
6,45  
6,6  
6,75  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
1
time(us)  
time (us)  
Poff (100%) =  
Eoff (100%) =  
Pon (100%) =  
Eon (100%) =  
14,95  
2,43  
0,68  
kW  
mJ  
µs  
14,95  
2,77  
0,42  
kW  
mJ  
µs  
tEoff  
=
tEon =  
Figure 7  
Output inverter FWD  
Turn-off Switching Waveforms & definition of trr  
120  
%
Id  
80  
trr  
40  
Vd  
0
IRRM10%  
-40  
IRRM90%  
IRRM100%  
-80  
fitted  
-120  
6
6,2  
6,4  
6,6  
6,8  
7
time(us)  
Vd (100%) =  
Id (100%) =  
600  
25  
V
A
IRRM (100%) =  
18  
A
trr  
=
0,54  
µs  
copyright Vincotech  
13  
Revision: 1  
V23990-K237-F40-PM  
Switching Definitions Output Inverter  
Figure 8  
Output inverter FWD  
Figure 9  
Output inverter FWD  
Turn-on Switching Waveforms & definition of tQrr  
(tQrr = integrating time for Qrr)  
Turn-on Switching Waveforms & definition of tErec  
(tErec= integrating time for Erec  
)
150  
120  
%
Erec  
%
Qrr  
100  
100  
Id  
80  
60  
40  
20  
0
50  
tErec  
tQrr  
0
-50  
Prec  
-100  
-20  
6
6,2  
6,4  
6,6  
6,8  
7
7,2  
6
6,2  
6,4  
6,6  
6,8  
7
7,2  
time(us)  
time(us)  
Id (100%) =  
Prec (100%) =  
Erec (100%) =  
25  
A
14,95  
1,44  
0,90  
kW  
mJ  
µs  
Qrr (100%) =  
3,69  
0,90  
µC  
µs  
tQrr  
=
tErec =  
copyright Vincotech  
14  
Revision: 1  
V23990-K237-F40-PM  
Ordering Code and Marking - Outline - Pinout  
Ordering Code & Marking  
Version  
Ordering Code  
in DataMatrix as  
in packaging barcode as  
with std lid (black V23990-K22-T-PM)  
V23990-K237-F40-/0A/-PM  
K237F40  
K237F40  
K237F40  
K237F40  
K237F40-/0A/  
K237F40-/1A/  
K237F40-/0B/  
K237F40-/1B/  
with std lid (black V23990-K22-T-PM) and P12 V23990-K237-F40-/1A/-PM  
with thin lid (white V23990-K23-T-PM) V23990-K237-F40-/0B/-PM  
with thin lid (white V23990-K23-T-PM) and P12 V23990-K237-F40-/1B/-PM  
Outline  
Pinout  
copyright Vincotech  
15  
Revision: 1  
V23990-K237-F40-PM  
DISCLAIMER  
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested  
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve  
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit  
described herein; neither does it convey any license under its patent rights, nor the rights of others.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written  
approval of Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or  
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be  
reasonably expected to result in significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
16  
Revision: 1  

相关型号:

V23990-K238-F40-PM

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

V23990-K239-F40-PM

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

V23990-K242-A-0A-PM

Solderless spring contact mounting system
VINCOTECH

V23990-K242-A-0B-PM

Solderless spring contact mounting system
VINCOTECH

V23990-K242-A-1A-PM

Solderless spring contact mounting system
VINCOTECH

V23990-K242-A-1B-PM

Solderless spring contact mounting system
VINCOTECH

V23990-K242-A-PM

Solderless spring contact mounting system
VINCOTECH

V23990-K243-A-0A-PM

IGBT3 technology for low saturation losses
VINCOTECH

V23990-K243-A-0B-PM

IGBT3 technology for low saturation losses
VINCOTECH

V23990-K243-A-1A-PM

IGBT3 technology for low saturation losses
VINCOTECH

V23990-K243-A-1B-PM

IGBT3 technology for low saturation losses
VINCOTECH

V23990-K243-A-PM

IGBT3 technology for low saturation losses
VINCOTECH