V23990-P825-F10-PM [VINCOTECH]

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;
V23990-P825-F10-PM
型号: V23990-P825-F10-PM
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current

文件: 总17页 (文件大小:609K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
V23990-P825-F10-PM  
datasheet  
flow PACK 1 3rd gen  
600 V / 100 A  
Features  
flow 1 housing  
Compact flow1 housing  
Compact and Low Inductance Design  
Built-in NTC  
Target Applications  
Schematic  
Motor Drive  
Power Generation  
UPS  
Types  
V23990-P825-F10-PM  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Inverter Transistor  
Collector-emitter break down voltage  
DC collector current  
VCE  
IC  
ICpulse  
Ptot  
600  
70  
V
A
Th=80°C  
Tj=Tjmax  
Tc=80°C  
Th=80°C  
Tc=80°C  
Th=80°C  
Tc=80°C  
300  
107  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak collector current  
Power dissipation  
A
W
V
VGE  
Gate-emitter peak voltage  
Short circuit ratings  
±20  
tSC  
Tj150°C  
6
µs  
V
VCC  
VGE=15V  
360  
Tjmax  
Maximum Junction Temperature  
175  
°C  
Inverter Diode  
VRRM  
IF  
IFRM  
Ptot  
Peak Repetitive Reverse Voltage  
DC forward current  
600  
59  
V
A
Th=80°C  
Tc=80°C  
Th=80°C  
Tc=80°C  
Th=80°C  
Tc=80°C  
Tj=Tjmax  
300  
72  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak forward current  
Power dissipation  
A
W
°C  
Tjmax  
Maximum Junction Temperature  
175  
Thermal Properties  
Tstg  
Top  
Storage temperature  
-40…+125  
-40…+150  
°C  
°C  
Operation temperature under switching condition  
copyright Vincotech  
1
19 Nov 2014 / Revision: 3  
V23990-P825-F10-PM  
datasheet  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Insulation Properties  
Insulation voltage  
Creepage distance  
Clearance  
Vis  
VDC  
mm  
mm  
t=1min  
4000  
min 12,7  
min 12,7  
copyright Vincotech  
2
19 Nov 2014 / Revision: 3  
V23990-P825-F10-PM  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
Vr [V] or  
VGE [V] or  
IC [A] or  
IF [A] or  
ID [A]  
VCE [V] or  
Tj  
Min  
Max  
VGS [V]  
VDS [V]  
Inverter Transistor  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current incl. Diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
5
5,8  
6,5  
2,25  
0,66  
650  
VGE(th)  
VCE(sat)  
ICES  
IGES  
Rgint  
td(on)  
tr  
VCE=VGE  
0,0016  
100  
V
V
1,1  
1,54  
1,76  
15  
0
600  
0
mA  
nA  
20  
2
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
151  
157  
19  
Rise time  
25  
ns  
205  
232  
89  
101  
1,34  
2,00  
2,35  
3,11  
td(off)  
tf  
Turn-off delay time  
Rgoff=4  
Rgon=4 ꢀ  
±15  
300  
100  
Fall time  
Eon  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
pF  
Eoff  
Cies  
Coss  
Crss  
QGate  
6160  
384  
183  
625  
Output capacitance  
f=1MHz  
0
25  
Tj=25°C  
Tj=25°C  
Reverse transfer capacitance  
Gate charge  
Vcc=480V  
±15  
100  
nC  
Thermal grease  
thickness50um  
λ = 1 W/mK  
RthJH  
Thermal resistance chip to heatsink  
0,89  
K/W  
Inverter Diode  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
1,2  
1,65  
1,53  
97  
117  
140  
2,4  
VF  
IRRM  
trr  
Diode forward voltage  
100  
100  
V
A
Peak reverse recovery current  
Reverse recovery time  
ns  
292  
4,87  
10,01  
6149  
3433  
1,03  
2,25  
Qrr  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
Rgon=4 ꢀ  
±15  
300  
nC  
di(rec)max  
/dt  
A/µs  
mWs  
Erec  
Thermal grease  
thickness50um  
λ = 1 W/mK  
RthJH  
Thermal resistance chip to heatsink  
1,31  
K/W  
Thermistor  
R
R/R  
P
kΩ  
%
Rated resistance  
Deviation of R100  
Power dissipation  
Power dissipation constant  
B-value  
Tj=25º  
C
4,7  
R100=401 ꢀ  
Tj=100º  
C
-12,4  
12,4  
mW  
mW/K  
K
Tj=25º  
Tj=25º  
Tj=25º  
Tj=25º  
C
210  
3,5  
C
C
C
B(25/50)  
3590  
3650  
K
B-value  
B(25/100)  
Vincotech NTC Reference  
D
copyright Vincotech  
3
19 Nov 2014 / Revision: 3  
V23990-P825-F10-PM  
datasheet  
Output Inverter  
Figure 1  
Output inverter IGBT  
Figure 2  
Output inverter IGBT  
Typical output characteristics  
Typical output characteristics  
IC = f(VCE  
)
IC = f(VCE)  
300  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
0
0
0
0
VCE (V)  
VCE (V)  
1
2
3
4
5
1
2
3
4
5
At  
At  
tp =  
Tj =  
tp =  
Tj =  
250  
25  
s  
250  
150  
s  
°C  
°C  
VGE from 7 V to 17 V in steps of 1 V  
VGE from 7 V to 17 V in steps of 1 V  
Figure 3  
Output inverter IGBT  
Figure 4  
Output inverter FWD  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
IF = f(VF)  
Ic = f(VGE  
)
100  
300  
250  
80  
60  
40  
20  
Tj = Tjmax-25°C  
200  
150  
100  
50  
Tj = Tjmax-25°C  
Tj = 25°C  
Tj = 25°C  
0
0
0
VF (V)  
VGE (V)  
2
4
6
8
10  
0
0,5  
1
1,5  
2
2,5  
3
At  
At  
tp =  
tp =  
250  
10  
s  
250  
s  
VCE  
=
V
copyright Vincotech  
4
19 Nov 2014 / Revision: 3  
V23990-P825-F10-PM  
datasheet  
Output Inverter  
Figure 5  
Output inverter IGBT  
Figure 6  
Output inverter IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(Ic)  
Typical switching energy losses  
as a function of gate resistor  
E = f(RG)  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Eon  
Eoff  
Eon  
Eoff  
Eoff  
Eon  
Eoff  
Eon:  
R G ( )  
I C (A)  
0
40  
80  
120  
160  
200  
0
4
8
12  
16  
20  
With an inductive load at  
With an inductive load at  
Tj =  
Tj =  
°C  
V
°C  
V
V
A
25/150  
25/150  
VCE  
VGE  
=
=
VCE  
VGE  
IC =  
=
=
300  
±15  
4
300  
±15  
100  
V
Rgon  
Rgoff  
=
=
4
Figure 7  
Output inverter IGBT  
Figure 8  
Output inverter IGBT  
Typical reverse recovery energy loss  
as a function of collector current  
Erec = f(Ic)  
Typical reverse recovery energy loss  
as a function of gate resistor  
Erec = f(RG)  
3,5  
3,5  
Erec  
3
3
2,5  
2
2,5  
2
Erec  
1,5  
1
1,5  
1
Erec  
Erec  
0,5  
0
0,5  
0
R G ( )  
I C (A)  
0
40  
80  
120  
160  
200  
0
4
8
12  
16  
20  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
IC =  
25/150  
300  
±15  
4
°C  
V
25/150  
300  
°C  
V
V
A
=
=
=
=
V
±15  
Rgon  
=
100  
copyright Vincotech  
5
19 Nov 2014 / Revision: 3  
V23990-P825-F10-PM  
datasheet  
Output Inverter  
Figure 9  
Output inverter IGBT  
Figure 10  
Output inverter IGBT  
Typical switching times as a  
function of collector current  
t = f(IC)  
Typical switching times as a  
function of gate resistor  
t = f(RG)  
1
1
tdoff  
tdon  
tdoff  
tdon  
0,1  
0,1  
tf  
tf  
tr  
tr  
0,01  
0,01  
0,001  
0,001  
R
G ( )  
I C (A)  
0
40  
80  
120  
160  
200  
0
4
8
12  
16  
20  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
IC =  
150  
300  
±15  
4
°C  
V
150  
300  
±15  
100  
°C  
V
V
A
=
=
=
=
V
Rgon  
Rgoff  
=
=
4
Figure 11  
Output inverter FWD  
Figure 12  
Output inverter FWD  
Typical reverse recovery time as a  
function of collector current  
trr = f(Ic)  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
trr = f(Rgon  
)
0,4  
0,3  
0,2  
0,1  
0
0,4  
trr  
trr  
trr  
0,3  
0,2  
0,1  
trr  
0
0
I C (A)  
R Gon ( )  
20  
0
40  
80  
120  
160  
200  
4
8
12  
16  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
25/150  
300  
±15  
4
°C  
V
25/150  
300  
°C  
V
A
V
=
=
V
100  
Rgon  
=
VGE =  
±15  
copyright Vincotech  
6
19 Nov 2014 / Revision: 3  
V23990-P825-F10-PM  
datasheet  
Output Inverter  
Figure 13  
Output inverter FWD  
Figure 14  
Output inverter FWD  
Typical reverse recovery charge as a  
function of collector current  
Qrr = f(Ic)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Qrr = f(Rgon  
)
15  
12  
9
15  
Qrr  
12  
9
Qrr  
Qrr  
6
6
Qrr  
3
3
0
0
0
I C (A)  
R Gon ( )  
0
40  
80  
120  
160  
200  
4
8
12  
16  
20  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
25/150  
300  
±15  
4
°C  
V
25/150  
300  
°C  
V
A
V
=
=
V
100  
Rgon  
=
VGE =  
±15  
Figure 15  
Output inverter FWD  
Figure 16  
Output inverter FWD  
Typical reverse recovery current as a  
function of collector current  
IRRM = f(Ic)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
IRRM = f(Rgon  
)
200  
160  
120  
80  
200  
160  
120  
80  
IRRM  
IRRM  
IRRM  
IRRM  
40  
40  
0
0
0
I C (A)  
R Gon ( )  
0
40  
80  
120  
160  
200  
4
8
12  
16  
20  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
25/150  
300  
±15  
4
°C  
V
25/150  
300  
°C  
V
A
V
=
=
V
100  
Rgon  
=
VGE =  
±15  
copyright Vincotech  
7
19 Nov 2014 / Revision: 3  
V23990-P825-F10-PM  
datasheet  
Output Inverter  
Figure 17  
Output inverter FWD  
Figure 18  
Output inverter FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI0/dt,dIrec/dt = f(Ic)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI0/dt,dIrec/dt = f(Rgon  
)
8000  
6000  
4000  
2000  
0
12000  
dI0/dt  
dI0/dt  
dIrec/dt  
dIrec/dt  
10000  
8000  
6000  
4000  
2000  
0
0
I C (A)  
R Gon ( )  
20  
0
40  
80  
120  
160  
200  
4
8
12  
16  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
25/150  
300  
±15  
4
°C  
V
25/150  
300  
°C  
V
A
V
=
=
V
100  
Rgon  
=
VGE =  
±15  
Figure 19  
Output inverter IGBT  
Figure 20  
Output inverter FWD  
IGBT transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
FWD transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
101  
101  
100  
100  
D = 0,5  
0,2  
D = 0,5  
0,2  
10-1  
10-1  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,05  
0,02  
0,01  
0,005  
0.000  
10-2  
10-5  
10-2  
t p (s)  
t p (s)  
10-4  
10-3  
10-2  
10-1  
100  
1012  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
1012  
At  
At  
D =  
RthJH  
tp / T  
0,89  
D =  
tp / T  
1,31  
=
RthJH =  
K/W  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W)  
0,03  
Tau (s)  
R (K/W)  
0,02  
Tau (s)  
9,9E+00  
1,1E+00  
1,9E-01  
3,2E-02  
4,7E-03  
3,9E-04  
9,9E+00  
1,2E+00  
1,8E-01  
4,7E-02  
8,1E-03  
5,3E-04  
0,15  
0,15  
0,51  
0,59  
0,14  
0,35  
0,03  
0,13  
0,03  
0,07  
copyright Vincotech  
8
19 Nov 2014 / Revision: 3  
V23990-P825-F10-PM  
datasheet  
Output Inverter  
Figure 21  
Output inverter IGBT  
Figure 22  
Output inverter IGBT  
Power dissipation as a  
function of heatsink temperature  
Ptot = f(Th)  
Collector current as a  
function of heatsink temperature  
IC = f(Th)  
200  
160  
120  
80  
125  
100  
75  
50  
25  
0
40  
0
Th  
(
o C)  
Th (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
VGE =  
175  
°C  
175  
15  
°C  
V
Figure 23  
Power dissipation as a  
Output inverter FWD  
Figure 24  
Forward current as a  
Output inverter FWD  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
160  
120  
80  
100  
75  
50  
25  
0
40  
0
Th  
(
o C)  
Th (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
175  
°C  
175  
°C  
copyright Vincotech  
9
19 Nov 2014 / Revision: 3  
V23990-P825-F10-PM  
datasheet  
Output Inverter  
Figure 25  
Output inverter IGBT  
Figure 26  
Output inverter IGBT  
Gate voltage vs Gate charge  
Safe operating area as a function  
of collector-emitter voltage  
IC = f(VCE  
)
VGE = f(Qg)  
20  
103  
10u  
100u  
1m  
102  
101  
100  
15  
10  
5
10m  
100m  
DC  
120V  
480V  
0
10-1  
100  
0
100  
200  
300  
400  
500  
600  
700  
Qg (nC)  
101  
102  
VCE (V)  
103  
At  
At  
IC  
=
D =  
Th =  
100  
A
single pulse  
80  
ºC  
VGE  
Tj =  
=
±15  
V
Tjmax  
ºC  
Figure 27  
Output inverter IGBT  
Figure 28  
Output inverter IGBT  
Short circuit withstand time as a function of  
gate-emitter voltage  
Typical short circuit collector current as a function of  
gate-emitter voltage  
tsc = f(VGE  
)
VGE = f(QGE  
)
12  
1750  
11  
10  
9
1500  
1250  
1000  
750  
8
7
6
5
4
500  
3
2
250  
1
0
0
10  
10,5  
11  
11,5  
12  
12,5  
13  
13,5  
14  
14,5  
VGE (V)  
15  
12  
13  
14  
15  
16  
17  
18  
19  
20  
GE (V)  
V
At  
At  
VCE  
=
VCE ≤  
600  
150  
V
400  
150  
V
Tj ≤  
Tj ≤  
ºC  
ºC  
copyright Vincotech  
10  
19 Nov 2014 / Revision: 3  
V23990-P825-F10-PM  
datasheet  
Figure 29  
IGBT  
Reverse bias safe operating area  
IC = f(VCE  
220  
)
200  
180  
160  
140  
120  
100  
80  
IC MAX  
60  
40  
20  
0
0
100  
200  
ºC  
300  
400  
500  
600  
700  
VCE (V)  
At  
Tj =  
Tjmax-25  
3phase SPWM  
Switching mode :  
copyright Vincotech  
11  
19 Nov 2014 / Revision: 3  
V23990-P825-F10-PM  
datasheet  
Thermistor  
Figure 1  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
RT = f(T)  
NTC-typical temperature characteristic  
5000  
4000  
3000  
2000  
1000  
0
T (°C)  
25  
50  
75  
100  
125  
copyright Vincotech  
12  
19 Nov 2014 / Revision: 3  
V23990-P825-F10-PM  
datasheet  
Switching Definitions Output Inverter  
General conditions  
Tj  
=
=
=
150 °C  
4  
Rgon  
Rgoff  
4 Ω  
Figure 1  
Output inverter IGBT  
Figure 2  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tdoff, tEoff  
Turn-on Switching Waveforms & definition of tdon, tEon  
(tEoff = integrating time for Eoff  
)
(tEon = integrating time for Eon)  
280  
140  
tdoff  
Ic  
120  
240  
200  
Uce  
100  
Uce 90%  
Uge 90%  
80  
160  
Ic  
60  
%
Uce  
120  
%
tEoff  
40  
20  
0
80  
tdon  
Uge  
Ic 1%  
40  
Ic10%  
Uge  
0,4  
Uce3%  
Uge10%  
-20  
0
tEon  
3,1  
-40  
-40  
-0,2  
0
0,2  
0,6  
0,8  
2,8  
2,95  
3,25  
3,4  
3,55  
time (us)  
time(us)  
VGE (0%) =  
VGE (0%) =  
-15  
15  
V
-15  
15  
V
VGE (100%) =  
VC (100%) =  
IC (100%) =  
VGE (100%) =  
VC (100%) =  
IC (100%) =  
V
V
300  
99  
V
300  
99  
V
A
A
tdoff  
tEoff  
=
=
tdon  
tEon  
=
=
0,23  
0,51  
s  
s  
0,16  
0,32  
s  
s  
Figure 3  
Output inverter IGBT  
Figure 4  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tf  
Turn-on Switching Waveforms & definition of tr  
140  
260  
fitted  
120  
Uce  
220  
180  
100  
Ic  
Ic 90%  
80  
140  
%
Ic 60%  
%
60  
Ic90%  
100  
Uce  
Ic 40%  
40  
20  
0
tr  
60  
Ic10%  
20  
tf  
Ic10%  
Ic  
-20  
-20  
0,15  
0,2  
0,25  
0,3  
0,35  
0,4  
2,9  
3
3,1  
3,2  
3,3  
3,4  
time (us)  
time(us)  
VC (100%) =  
IC (100%) =  
tf =  
VC (100%) =  
IC (100%) =  
tr =  
300  
99  
V
300  
99  
V
A
A
0,10  
s  
0,03  
s  
copyright Vincotech  
13  
19 Nov 2014 / Revision: 3  
V23990-P825-F10-PM  
datasheet  
Switching Definitions Output Inverter  
Figure 5  
Output inverter IGBT  
Figure 6  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tEoff  
Turn-on Switching Waveforms & definition of tEon  
120  
130  
Eoff  
Poff  
Pon  
Eon  
100  
100  
80  
70  
60  
%
%
40  
40  
20  
Uge10%  
Uce3%  
10  
0
Uge90%  
tEon  
Ic 1%  
tEoff  
-20  
-20  
2,95  
3,05  
3,15  
3,25  
3,35  
3,45  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
time (us)  
time(us)  
Poff (100%) =  
Eoff (100%) =  
Pon (100%) =  
Eon (100%) =  
29,79  
kW  
mJ  
s  
29,79  
kW  
mJ  
s  
3,11  
0,51  
2,00  
0,32  
tEoff  
=
tEon =  
Figure 7  
Output inverter FWD  
Figure 8  
Output inverter IGBT  
Gate voltage vs Gate charge (measured)  
Turn-off Switching Waveforms & definition of trr  
20  
120  
Id  
15  
10  
5
80  
trr  
40  
0
Ud  
%
0
IRRM10%  
-40  
fitted  
-5  
-80  
-120  
-160  
-10  
-15  
-20  
IRRM90%  
IRRM100%  
-150  
50  
250  
450  
650  
850  
1050  
3,08  
3,18  
3,28  
3,38  
3,48  
3,58  
Qg (nC)  
time(us)  
VGEoff  
VGEon  
=
=
Vd (100%) =  
Id (100%) =  
-15  
V
300  
99  
V
15  
V
A
VC (100%) =  
IC (100%) =  
Qg =  
IRRM (100%) =  
300  
99  
V
-117  
0,29  
A
trr  
=
A
s  
979,79  
nC  
copyright Vincotech  
14  
19 Nov 2014 / Revision: 3  
V23990-P825-F10-PM  
datasheet  
Switching Definitions Output Inverter  
Figure 9  
Output inverter FWD  
Figure 10  
Output inverter FWD  
Turn-on Switching Waveforms & definition of tQrr  
(tQrr = integrating time for Qrr)  
Turn-on Switching Waveforms & definition of tErec  
(tErec= integrating time for Erec  
)
150  
120  
Erec  
Id  
Qrr  
100  
80  
100  
50  
tQint  
tErec  
60  
%
0
%
40  
20  
0
-50  
-100  
-150  
Prec  
-20  
2,9  
3,15  
3,4  
3,65  
3,9  
4,15  
2,9  
3,15  
3,4  
3,65  
3,9  
4,15  
time(us)  
time(us)  
Id (100%) =  
Prec (100%) =  
Erec (100%) =  
99  
A
29,79  
2,25  
0,60  
kW  
mJ  
s  
Qrr (100%) =  
10,01  
0,60  
C  
s  
tQint  
=
tErec =  
copyright Vincotech  
15  
19 Nov 2014 / Revision: 3  
V23990-P825-F10-PM  
datasheet  
Ordering Code and Marking - Outline - Pinout  
Ordering Code & Marking  
Version  
Ordering Code  
in DataMatrix as  
in packaging barcode as  
V23990-P825-F10-PM  
without thermal paste 17mm housing  
P825-F10  
P825-F10  
Outline  
Pin table  
Pin  
X
Y
1
52,6  
49,9  
42,65  
39,65  
35,15  
28,4  
24  
0
0
2
3
0
4
0
5
2,8  
0
6
7
2,8  
0
8
21  
9
12,2  
9,2  
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
0
2,7  
0
0
0
0
14,65  
14,65  
28,6  
28,6  
28,6  
28,6  
28,6  
28,6  
28,6  
28,6  
28,6  
28,6  
28,6  
28,6  
28,6  
28,6  
28,6  
2,7  
0
2,7  
5,4  
9,6  
19 12,6  
20 19,6  
21 22,3  
22  
25  
23 29,7  
24 32,7  
25 39,7  
26 42,7  
27 42,2  
28 49,9  
29 52,6  
30 52,6  
31 49,9  
14,56  
14,56  
Pinout  
copyright Vincotech  
16  
19 Nov 2014 / Revision: 3  
V23990-P825-F10-PM  
datasheet  
DISCLAIMER  
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested  
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve  
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit  
described herein; neither does it convey any license under its patent rights, nor the rights of others.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written  
approval of Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or  
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be  
reasonably expected to result in significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
17  
19 Nov 2014 / Revision: 3  

相关型号:

V23990-P828-F-PM

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

V23990-P828-F10-PM

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

V23990-P828-F10Y-PM

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

V23990-P828-FY-PM

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

V23990-P829-F-PM

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

V23990-P829-F08-3-PM

Trench Fieldstop IGBT4 technology
VINCOTECH

V23990-P829-F08-PM

Trench Fieldstop IGBT4 technology
VINCOTECH

V23990-P829-F08Y-3-PM

Trench Fieldstop IGBT4 technology
VINCOTECH

V23990-P829-F08Y-PM

Trench Fieldstop IGBT4 technology
VINCOTECH

V23990-P829-F10

Compact and Low Inductance Design
VINCOTECH

V23990-P829-F10-PM

Compact and Low Inductance Design
VINCOTECH

V23990-P829-F108

Compact and Low Inductance Design
VINCOTECH