SI1401EDH-T1-GE3 [VISHAY]

P-CHANNEL 12-V (D-S) MOSFET - Tape and Reel;
SI1401EDH-T1-GE3
型号: SI1401EDH-T1-GE3
厂家: VISHAY    VISHAY
描述:

P-CHANNEL 12-V (D-S) MOSFET - Tape and Reel

开关 光电二极管 晶体管
文件: 总12页 (文件大小:269K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
New Product  
Si1401EDH  
Vishay Siliconix  
P-Channel 12 V (D-S) MOSFET  
FEATURES  
PRODUCT SUMMARY  
Halogen-free According to IEC 61249-2-21  
VDS (V)  
RDS(on) ()  
ID (A)a  
- 4  
Qg (Typ.)  
Definition  
TrenchFET® Power MOSFET  
Typical ESD Performance 1500 V  
0.034 at VGS = - 4.5 V  
0.046 at VGS = - 2.5 V  
0.070 at VGS = - 1.8 V  
0.110 at VGS = - 1.5 V  
- 4  
- 12  
14.1 nC  
100 % R Tested  
- 4  
g
Compliant to RoHS Directive 2002/95/EC  
- 4  
APPLICATIONS  
Load Switch, PA Switch and Battery Switch for Portable  
Devices  
SOT-363  
SC-70 (6-LEADS)  
S
- Cellular Phone  
- DSC  
D
D
G
1
2
3
6
D
D
S
- Portable Game Console  
- MP3  
- GPS  
5
4
Marking Code  
G
R
B P X  
X X X  
Part # code  
Lot Traceability  
and Date code  
D
Top View  
Ordering Information: Si1401EDH-T1-GE3 (Lead (Pb)-free and Halogen-free)  
P-Channel MOSFET  
ABSOLUTE MAXIMUM RATINGS T = 25 °C, unless otherwise noted  
A
Parameter  
Symbol  
Limit  
- 12  
Unit  
VDS  
Drain-Source Voltage  
Gate-Source Voltage  
V
VGS  
10  
- 4a  
T
C = 25 °C  
- 4a  
TC = 70 °C  
TA = 25 °C  
TA = 70 °C  
Continuous Drain Current (TJ = 150 °C)  
ID  
- 4a, b, c  
- 4a, b, c  
- 25  
A
Pulsed Drain Current  
IDM  
IS  
- 2.3  
TC = 25 °C  
Continuous Source-Drain Diode Current  
- 1.3b, c  
2.8  
T
A = 25 °C  
C = 25 °C  
T
TC = 70 °C  
TA = 25 °C  
TA = 70 °C  
1.8  
Maximum Power Dissipation  
PD  
W
1.6b, c  
1.0b, c  
- 55 to 150  
260  
Operating Junction and Storage Temperature Range  
Soldering Recommendations (Peak Temperature)  
TJ, Tstg  
°C  
THERMAL RESISTANCE RATINGS  
Parameter  
Maximum Junction-to-Ambientb, d  
Symbol  
RthJA  
Typical  
Maximum  
Unit  
t 5 s  
60  
34  
80  
45  
°C/W  
Maximum Junction-to-Foot (Drain)  
Steady State  
RthJF  
Notes:  
a. Package limited.  
b. Surface mounted on 1" x 1" FR4 board.  
c. t = 5 s.  
d. Maximum under steady state conditions is 125 °C/W.  
Document Number: 70080  
S10-1537-Rev. A, 19-Jul-10  
www.vishay.com  
1
New Product  
Si1401EDH  
Vishay Siliconix  
SPECIFICATIONS T = 25 °C, unless otherwise noted  
J
Parameter  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
Static  
Drain-Source Breakdown Voltage  
VDS Temperature Coefficient  
VDS  
VGS = 0 V, ID = - 250 µA  
ID = - 250 µA  
- 12  
V
mV/°C  
V
VDS/TJ  
VGS(th)/TJ  
VGS(th)  
- 5.2  
2.5  
VGS(th) Temperature Coefficient  
Gate-Source Threshold Voltage  
VDS = VGS, ID = - 250 µA  
- 0.4  
- 1  
5
VDS = 0 V, VGS  
VDS = 0 V, VGS  
=
8 V  
Gate-Source Leakage  
IGSS  
=
4.5 V  
1
µA  
A
VDS = - 12 V, VGS = 0 V  
VDS = - 12 V, VGS = 0 V, TJ = 55 °C  
VDS - 5 V, VGS = - 10 V  
VGS = - 4.5 V, ID = - 5.5 A  
VGS = - 2.5 V, ID = - 4.8 A  
VGS = - 1.8 V, ID = - 1.4 A  
VGS = - 1.5 V, ID = - 0.9 A  
VDS = - 6 V, ID = - 5.5 A  
- 1  
- 10  
Zero Gate Voltage Drain Current  
On-State Drain Currenta  
IDSS  
ID(on)  
- 15  
0.028  
0.038  
0.053  
0.072  
16  
0.034  
0.046  
0.070  
0.110  
Drain-Source On-State Resistancea  
RDS(on)  
S
Forward Transconductancea  
Dynamicb  
gfs  
Total Gate Charge  
VDS = - 6 V, VGS = - 8 V, ID = - 5.5 A  
24  
14.1  
1.9  
36  
22  
Qg  
Gate-Source Charge  
nC  
Qgs  
Qgd  
Rg  
V
DS = - 6 V, VGS = - 4.5 V, ID = - 5.5 A  
f = 1 MHz  
Gate-Drain Charge  
Gate Resistance  
Turn-On Delay Time  
Rise Time  
4
0.08  
0.42  
160  
420  
1325  
985  
72  
0.84  
240  
k  
td(on)  
tr  
td(off)  
tf  
td(on)  
tr  
td(off)  
tf  
630  
V
DD = - 6 V, RL = 1.4   
ID - 4.4 A, VGEN = - 4.5 V, Rg = 1   
Turn-Off Delay Time  
Fall Time  
1990  
1480  
110  
ns  
Turn-On Delay Time  
Rise Time  
210  
2100  
1015  
320  
V
DD = - 6 V, RL = 1.4   
ID - 4.4 A, VGEN = - 8 V, Rg = 1   
Turn-Off Delay Time  
Fall Time  
3150  
1525  
Drain-Source Body Diode Characteristics  
Continuous Source-Drain Diode Current  
Pulse Diode Forward Current  
IS  
ISM  
VSD  
trr  
TC = 25 °C  
- 2.3  
- 25  
- 1.2  
50  
A
Body Diode Voltage  
IS = - 5.5 A, VGS = 0 V  
- 0.85  
27  
V
Body Diode Reverse Recovery Time  
Body Diode Reverse Recovery Charge  
Reverse Recovery Fall Time  
ns  
nC  
Qrr  
ta  
12  
25  
IF = - 5.5 A, dI/dt = 100 A/µs, TJ = 25 °C  
10  
ns  
Reverse Recovery Rise Time  
tb  
17  
Notes:  
a. Pulse test; pulse width 300 µs, duty cycle 2 %.  
b. Guaranteed by design, not subject to production testing.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
www.vishay.com  
2
Document Number: 70080  
S10-1537-Rev. A, 19-Jul-10  
New Product  
Si1401EDH  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
10-3  
10-4  
10-5  
10-6  
10-7  
10-8  
10-9  
0.1  
0.08  
0.06  
0.04  
0.02  
0
TJ = 150 °C  
TJ = 25 °C  
10-10  
0
0
0
3
6
9
12  
15  
2.0  
25  
0
0
0
3
6
9
12  
15  
1.6  
25  
VGS - Gate-Source Voltage (V)  
Gate Current vs. Gate-Source Voltage  
VGS - Gate-Source Voltage (V)  
Gate Current vs. Gate-Source Voltage  
25  
20  
15  
10  
5
5
4
3
2
1
0
VGS = 5 V thru 3 V  
VGS = 2.5 V  
TC = 25 °C  
VGS = 2 V  
TC = 125 °C  
VGS = 1.5 V  
1.5  
TC = - 55 °C  
1.2  
0
0.5  
1.0  
0.4  
0.8  
VDS - Drain-to-Source Voltage (V)  
VGS - Gate-to-Source Voltage (V)  
Output Characteristics  
Transfer Characteristics  
8
6
4
2
0
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
VGS = 1.5 V  
ID = 5.5 A  
VGS = 1.8 V  
VDS = 3 V  
VDS = 6 V  
VGS = 2.5 V  
VDS = 9.6 V  
VGS = 4.5 V  
5
10  
15  
20  
5
10  
15  
20  
Qg - Total Gate Charge (nC)  
ID - Drain Current (A)  
On-Resistance vs. Drain Current  
Gate Charge  
Document Number: 70080  
S10-1537-Rev. A, 19-Jul-10  
www.vishay.com  
3
New Product  
Si1401EDH  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
1.5  
100  
10  
V
= - 4.5 V; I = - 5.5 A  
D
GS  
1.3  
1.1  
0.9  
0.7  
1
TJ = 150 °C  
TJ = 25 °C  
0.1  
TJ = - 50 °C  
0.01  
0.001  
V
= - 2.5 V; I = - 4.8 A  
D
GS  
- 50 - 25  
0
25  
50  
75  
100 125 150  
0.0  
0.2  
0.4  
VSD - Source-to-Drain Voltage (V)  
Source-Drain Diode Forward Voltage  
0.6  
0.8  
1.0  
1.2  
TJ - Junction Temperature (°C)  
On-Resistance vs. Junction Temperature  
30  
24  
18  
12  
6
0.12  
0.09  
0.06  
0.03  
0.00  
ID = 5.5 A  
TJ = 125 °C  
TJ = 25 °C  
0
1
2
3
4
5
0.001  
0.01  
0.1  
1
10  
Time (s)  
V
- Gate-to-Source Voltage (V)  
GS  
Single Pulse Power, Junction-to-Ambient  
On-Resistance vs. Gate-to-Source Voltage  
0.80  
0.65  
0.50  
0.35  
0.20  
100  
Limited by RDS(on)  
*
100 μs  
10  
ID = - 250 μA  
1 ms  
1
10 ms  
100 ms  
1 s  
10 s  
0.1  
DC  
BVDSS Limited  
TA = 25 °C  
Single Pulse  
0.01  
0.1  
- 50 - 25  
0
25  
50  
75  
100 125 150  
1
10  
100  
TJ - Junction Temperature (°C)  
VDS - Drain-to-Source Voltage (V)  
* VGS > minimum VGS at which RDS(on) is specified  
Threshold Voltage  
Safe Operating Area, Junction-to-Ambient  
www.vishay.com  
4
Document Number: 70080  
S10-1537-Rev. A, 19-Jul-10  
New Product  
Si1401EDH  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
10  
8
6
Package Limited  
4
2
0
0
25  
50  
75  
100  
125  
150  
TC - Case Temperature (°C)  
Current Derating*  
1.2  
0.9  
0.6  
0.3  
0
4
3
2
1
0
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
TA - Ambient Temperature (°C)  
Power Derating, Junction-to-Ambient  
TC - Case Temperature (°C)  
Power Derating, Junction-to-Foot  
* The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper  
dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package  
limit.  
Document Number: 70080  
S10-1537-Rev. A, 19-Jul-10  
www.vishay.com  
5
New Product  
Si1401EDH  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
1
Duty Cycle = 0.5  
0.2  
Notes:  
PDM  
0.1  
0.1  
0.05  
t1  
t2  
0.02  
t1  
t2  
1. Duty Cycle, D =  
2. Per Unit Base = RthJA = 125 °C/W  
(t)  
3. TJM - TA = PDMZthJA  
Single Pulse  
0.01  
4. Surface Mounted  
10-4  
10-3  
10-2  
10-1  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Ambient  
1
10  
100  
1000  
1
Duty Cycle = 0.5  
0.2  
0.1  
0.1  
0.05  
0.02  
Single Pulse  
0.01  
10-4  
10-3  
10-2  
10-1  
1
10  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Foot  
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon  
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and  
reliability data, see www.vishay.com/ppg?70080.  
www.vishay.com  
6
Document Number: 70080  
S10-1537-Rev. A, 19-Jul-10  
Package Information  
Vishay Siliconix  
SCĆ70: 6ĆLEADS  
MILLIMETERS  
INCHES  
Dim Min  
Nom Max Min Nom Max  
6
1
5
2
4
3
0.90  
1.10  
0.10  
1.00  
0.30  
0.25  
2.20  
2.40  
1.35  
0.035  
0.043  
0.004  
0.039  
0.012  
0.010  
0.087  
0.094  
0.053  
A
E
E
1
A1  
0.80  
0.031  
0.006  
0.004  
0.071  
0.071  
0.045  
A2  
0.15  
b
-B-  
0.10  
c
e
b
1.80  
2.00  
2.10  
1.25  
0.65BSC  
1.30  
0.20  
7_Nom  
0.079  
0.083  
0.049  
0.026BSC  
0.051  
0.008  
7_Nom  
D
e
1
1.80  
E
-A-  
D
1.15  
E1  
c
e
1.20  
1.40  
0.30  
0.047  
0.004  
0.055  
0.012  
A
e1  
A
2
1
0.10  
L
L
A
ECN: S-03946—Rev. B, 09-Jul-01  
DWG: 5550  
Document Number: 71154  
06-Jul-01  
www.vishay.com  
1
AN815  
Vishay Siliconix  
Single-Channel LITTLE FOOTR SC-70 6-Pin MOSFET  
Copper Leadframe Version  
Recommended Pad Pattern and Thermal Performance  
INTRODUCTION  
EVALUATION BOARDS ꢀ SINGLE SC70-6  
The new single 6-pin SC-70 package with a copper leadframe  
enables improved on-resistance values and enhanced  
thermal performance as compared to the existing 3-pin and  
6-pin packages with Alloy 42 leadframes. These devices are  
intended for small to medium load applications where a  
miniaturized package is required. Devices in this package  
come in a range of on-resistance values, in n-channel and  
p-channel versions. This technical note discusses pin-outs,  
package outlines, pad patterns, evaluation board layout, and  
thermal performance for the single-channel version.  
The evaluation board (EVB) measures 0.6 inches by  
0.5 inches. The copper pad traces are the same as in Figure 2.  
The board allows examination from the outer pins to 6-pin DIP  
connections, permitting test sockets to be used in evaluation  
testing. See Figure 3.  
52 (mil)  
BASIC PAD PATTERNS  
6
5
2
4
3
See Application Note 826, Recommended Minimum Pad  
Patterns With Outline Drawing Access for Vishay Siliconix  
MOSFETs, (http://www.vishay.com/doc?72286) for the basic  
pad layout and dimensions. These pad patterns are sufficient  
for the low to medium power applications for which this  
package is intended. Increasing the drain pad pattern yields a  
reduction in thermal resistance and is a preferred footprint.  
The availability of four drain leads rather than the traditional  
single drain lead allows a better thermal path from the package  
to the PCB and external environment.  
96 (mil)  
71 (mil)  
26 (mil)  
1
13 (mil)  
0, 0 (mil)  
18 (mil)  
26 (mil)  
PIN-OUT  
16 (mil)  
Figure  
1 shows the pin-out description and Pin 1  
FIGURE 2.  
SC-70 (6 leads) Single  
identification.The pin-out of this device allows the use of four  
pins as drain leads, which helps to reduce on-resistance and  
junction-to-ambient thermal resistance.  
SOT-363  
SC-70 (6-LEADS)  
The thermal performance of the single 6-pin SC-70 has been  
measured on the EVB, comparing both the copper and  
Alloy 42 leadframes. This test was first conducted on the  
traditional Alloy 42 leadframe and was then repeated using the  
1-inch2 PCB with dual-side copper coating.  
D
D
G
1
2
3
6
5
D
D
S
4
Top View  
FIGURE 1.  
For package dimensions see outline drawing SC-70 (6-Leads)  
(http://www.vishay.com/doc?71154)  
Document Number: 71334  
12-Dec-03  
www.vishay.com  
1
AN815  
Vishay Siliconix  
Front of Board SC70-6  
Back of Board SC70-6  
vishay.com  
FIGURE 3.  
THERMAL PERFORMANCE  
Junction-to-Foot Thermal Resistance  
(Package Performance)  
COOPER LEADFRAME  
Room Ambient 25 _C  
Elevated Ambient 60 _C  
The junction to foot thermal resistance is a useful method of  
comparing different packages thermal performance.  
T
J(max) * TA  
T
J(max) * TA  
PD  
+
PD  
+
RqJA  
RqJA  
150oC * 60oC  
124oCńW  
150oC * 25oC  
124oCńW  
PD  
+
PD  
+
A helpful way of presenting the thermal performance of the  
6-Pin SC-70 copper leadframe device is to compare it to the  
traditional Alloy 42 version.  
P
D + 726 mW  
P
D + 1.01 W  
As can be seen from the calculations above, the compact 6-pin  
SC-70 copper leadframe LITTLE FOOT power MOSFET can  
handle up to 1 W under the stated conditions.  
Thermal performance for the 6-pin SC-70 measured as  
junction-to-foot thermal resistance, where the “foot” is the  
drain lead of the device at the bottom where it meets the PCB.  
The junction-to-foot thermal resistance is typically 40_C/W in  
the copper leadframe and 163_C/W in the Alloy 42 leadframe  
— a four-fold improvement. This improved performance is  
obtained by the enhanced thermal conductivity of copper over  
Alloy 42.  
Testing  
To further aid comparison of copper and Alloy 42 leadframes,  
Figure 5 illustrates single-channel 6-pin SC-70 thermal  
performance on two different board sizes and two different pad  
patterns. The measured steady-state values of RqJA for the  
two leadframes are as follows:  
LITTLE FOOT 6-PIN SC-70  
Power Dissipation  
Alloy 42  
Copper  
The typical RqJA for the single 6-pin SC-70 with copper  
leadframe is 103_C/W steady-state, compared with 212_C/W  
for the Alloy 42 version. The figures are based on the 1-inch2  
FR4 test board. The following example shows how the thermal  
resistance impacts power dissipation for the two different  
leadframes at varying ambient temperatures.  
1) Minimum recommended pad pattern on  
the EVB board V (see Figure 3.  
329.7_C/W  
208.5_C/W  
2
2) Industry standard 1-inch PCB with  
211.8_C/W  
103.5_C/W  
maximum copper both sides.  
The results indicate that designers can reduce thermal  
resistance (RqJA) by 36% simply by using the copper  
leadframe device rather than the Alloy 42 version. In this  
example, a 121_C/W reduction was achieved without an  
increase in board area. If increasing in board size is feasible,  
a further 105_C/W reduction could be obtained by utilizing a  
1-inch2 square PCB area.  
ALLOY 42 LEADFRAME  
Room Ambient 25 _C  
Elevated Ambient 60 _C  
T
J(max) * TA  
RqJA  
T
J(max) * TA  
RqJA  
PD  
+
PD  
+
The copper leadframe versions have the following suffix:  
150oC * 25oC  
212oCńW  
150oC * 25oC  
212oCńW  
PD  
+
PD  
+
Single:  
Dual:  
Si14xxEDH  
Si19xxEDH  
P
D + 590 mW  
P
D + 425 mW  
Complementary: Si15xxEDH  
Document Number: 71334  
12-Dec-03  
www.vishay.com  
2
AN815  
Vishay Siliconix  
250  
200  
150  
400  
320  
240  
Alloy  
42  
Alloy  
42  
160  
80  
100  
50  
Copper  
100  
Copper  
0
0
-5  
-4  
-3  
-2  
-1  
-5  
-4  
-3  
-2  
-1  
10  
10  
10  
10  
10  
1
10  
1000  
10  
10  
10  
10  
10  
1
10  
100  
1000  
Time (Secs)  
Time (Secs)  
2
FIGURE 4.  
Leadframe Comparison on EVB  
FIGURE 5.  
Leadframe Comparison on Alloy 42 1-inch PCB  
Document Number: 71334  
12-Dec-03  
www.vishay.com  
3
Application Note 826  
Vishay Siliconix  
RECOMMENDED MINIMUM PADS FOR SC-70: 6-Lead  
0.067  
(1.702)  
0.016  
0.026  
0.010  
(0.406)  
(0.648)  
(0.241)  
Recommended Minimum Pads  
Dimensions in Inches/(mm)  
Return to Index  
www.vishay.com  
18  
Document Number: 72602  
Revision: 21-Jan-08  
Legal Disclaimer Notice  
www.vishay.com  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of  
typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding  
statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a  
particular product with the properties described in the product specification is suitable for use in a particular application.  
Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over  
time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s  
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,  
including but not limited to the warranty expressed therein.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk.  
Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for  
such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document  
or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
© 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED  
Revision: 08-Feb-17  
Document Number: 91000  
1

相关型号:

SI1402DH

N-Channel 30-V (D-S) MOSFET
VISHAY

SI1402DH-T1-E3

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
VISHAY

SI1402DH-T1-GE3

Power Field-Effect Transistor,
VISHAY

SI1403BDL

P-Channel 2.5-V (G-S) MOSFET
VISHAY

SI1403BDL-T1-E3

P-Channel 2.5-V (G-S) MOSFET
VISHAY

SI1403CDL

P-Channel 20 V (D-S) MOSFET
VISHAY

SI1403CDL-T1-GE3

TRANSISTOR 2100 mA, 20 V, P-CHANNEL, Si, SMALL SIGNAL, MOSFET, HALOGEN FREE AND ROHS COMPLIANT, SC-70, 6 PIN, FET General Purpose Small Signal
VISHAY

SI1403DL

P-Channel 2.5-V (G-S) MOSFET
VISHAY

SI1403DL-E3

Transistor
VISHAY

SI1403DL-T1

Small Signal Field-Effect Transistor, 1.4A I(D), 20V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, SC-70, 6 PIN
VISHAY

SI1403DL-T1-E3

Small Signal Field-Effect Transistor, 1.4A I(D), 20V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, SC-70, 6 PIN
VISHAY

SI1404BDH-T1-E3

TRANSISTOR 1900 mA, 30 V, N-CHANNEL, Si, SMALL SIGNAL, MOSFET, ROHS COMPLIANT, SC-70, 6 PIN, FET General Purpose Small Signal
VISHAY