SIP21110 [VISHAY]

250-mA Adjustable, Low Dropout Regulator;
SIP21110
型号: SIP21110
厂家: VISHAY    VISHAY
描述:

250-mA Adjustable, Low Dropout Regulator

文件: 总12页 (文件大小:452K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SiP21110  
Vishay Siliconix  
250-mA Adjustable, Low Dropout Regulator  
DESCRIPTION  
FEATURES  
TSOT23-5L (3.05 mm x 2.85 mm x 1.0 mm)  
1.0 % output voltage accuracy at 25 °C  
Low dropout voltage: 225 mV at 250 mA  
35 µA (typical) ground current in 1 mA load  
1 µA maximum shutdown current at 85 °C  
Output auto discharge in shutdown mode  
The SiP21110 BiCMOS 250 mA LDO voltage regulators are  
the perfect choice for low battery operated low powered  
applications. An ultra low ground current and low dropout  
voltage of 225 mV at 250 mA load helps to extend battery life  
for portable electronics.  
RoHS  
COMPLIANT  
The SiP21110 output is adjusted with an external resistor  
network.  
Built-in short circuit (500 mA typical) and thermal  
protection (160 °C typical)  
The regulator allows stable operation with very small ceramic  
output capacitors, reducing board space and component  
cost. It is designed to maintain regulation while delivering  
330 mA typical peak current upon turn-on. During start-up,  
an active pull-down circuit improves the output transient  
response and regulation. In shutdown mode, the output  
automatically discharges to ground through a 100 Ω NMOS.  
- 40 °C to + 125 °C junction temperature range for  
operation  
Uses low ESR ceramic capacitors  
Compliant to RoHS Directive 2002/95/EC  
APPLICATIONS  
Cellular phones, wireless handsets  
PDAs  
MP3 players  
Digital cameras  
Pagers  
The SiP21110 are available in TSOT23-5L packages for  
operation over the industrial operation range (- 40 °C to  
+ 85 °C).  
Wireless modem  
Noise-sensitive electronic systems  
TYPICAL APPLICATION CIRCUIT  
1
2
3
5
VIN  
VOUT  
VIN  
VOUT  
CIN = 1 µF  
COUT =1µF  
GND  
EN  
SiP21110  
EN  
4
Adj  
TSOT23-5L Package  
Document Number: 69921  
S09-1046-Rev. C, 08-Jun-09  
www.vishay.com  
1
SiP21110  
Vishay Siliconix  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Limit  
- 0.3 to 6.5  
- 0.3 to 6.5  
Short Circuit Protected  
- 0.3 to VIN + 0.3  
305  
Unit  
Input Voltage, VIN to GND  
V
V
EN (See Detailed Description)  
Output Current (IOUT  
Output Voltage (VOUT  
)
V
)
Package Power Dissipation (PD)a  
mW  
°C/W  
b
Package Thermal Resistance (θJA  
)
180  
Maximum Junction Temperature, TJ(max)  
Storage Temperature, TSTG  
125  
- 65 to 150  
260  
°C  
c
Lead Temperature, TL  
Notes:  
a. Derate 5.5 mW/°C above TA = 70 °C.  
b. Device mounted with all leads soldered or welded to multilayer 1S2P PC board.  
c. Soldering for 5 s.  
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating/conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING RANGE  
Parameter  
Limit  
2.2 to 6  
- 40 to 85  
Unit  
V
Input Voltage, VIN  
Operating Ambient Temperature TA  
°C  
www.vishay.com  
2
Document Number: 69921  
S09-1046-Rev. C, 08-Jun-09  
SiP21110  
Vishay Siliconix  
SPECIFICATIONS  
Test Conditions Unless Specified  
IN = VOUT(nom) + 1 V = VEN  
V
VOUT = 2.8 V, CIN = 1 µF, COUT = 1 µF  
- 40 °C < TA < 85 °C for Full Temp.  
Parameter  
Symbol  
Temp.a Min.b Typ.c Max.b Unit  
Input Voltage Range  
VIN  
Full  
2.2  
6
1.212  
1.23  
5
Room 1.188  
1.2  
Feedback Voltage  
VAdj  
VOUTR  
VOUT  
V
Full  
Full  
1.170  
1.3  
Output Voltage Rangef  
Output Voltage Accuracy  
Room  
Full  
- 1  
1
VOUT = 2.8 V, IL = 1 mA  
%
- 2.5  
2.5  
0.2  
Line Regulation  
Load Regulation  
LNR  
LDR  
VIN range 3.8 V to 6 V, IL = 1 mA  
VIN 3.8 V, IL step 1 mA to 250 mA  
Room  
Room  
Room  
Full  
0.025  
0.001  
225  
%/V  
%/mA  
180  
300  
390  
75  
85  
75  
85  
1
Dropout Voltaged  
VDO  
IL = 250 mA  
mV  
Room  
Full  
35  
39  
VIN 3.8 V, IL = 1 mA  
Ground Currente  
IGND  
Room  
Full  
µA  
V
IN 3.8 V, IL = 250 mA  
Shutdown Current  
Output Current Limit  
EN Input Current  
IVINLKG  
IO-Limit  
IEN  
Full  
0.035  
500  
VO = 0 V  
Room  
Full  
275  
1.2  
800  
1
mA  
µA  
EN = VIN = 6 V  
0.004  
VENH  
VENL  
minimum VEN output on  
Full  
EN Pin Input Voltage  
V
maximum VEN output off  
VOUT = 2 V  
Full  
Room  
Full  
0.4  
Auto Discharge Resistance  
Thermal Shutdown Junction Temperature  
Thermal Hysteresis  
RDIS  
TJSD  
100  
160  
20  
Ω
minimum VEN output on  
maximum VEN output off  
°C  
THYST  
Full  
BW = 10 Hz to 100 kHz,  
1 mA < IOUT < 250 mA  
Output Noise Voltage (RMS)  
eN  
Room  
350  
µV  
f = 1 kHz, IOUT = 10 mA  
f = 10 kHz, IOUT = 10 mA  
f = 100 kHz, IOUT = 10 mA  
EN to VOUT delay; IOUT = 1 mA  
72  
53  
38  
70  
Ripple Rejection  
PSRR  
ton  
dB  
µs  
Output Voltage Turn-On Time  
Notes:  
Room  
a. Room = 25 °C, Full = - 40 °C to 85 °C. Derate 5.5 mW/°C for SiP21110 above TA = 70 °C.  
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum.  
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.  
d. Dropout voltage is defined as the input-to-output differential voltage at which the output voltage drops 2 % below its nominal value with  
constant load. For outputs = 2.2 V, dropout voltage is not applicable due to 2.2 V minimum input voltage requirement.  
e. Ground current is specified for normal operation as well as “drop-out” operation.  
f. The LDO output range is confined to 2.5 V minimum and 5.0 V maximum as a result of min VIN is 2.2 V. For linear regulator outputs where the  
output voltages is less than 2.5 V the dropout voltage does not apply.  
Document Number: 69921  
S09-1046-Rev. C, 08-Jun-09  
www.vishay.com  
3
SiP21110  
Vishay Siliconix  
TIMING WAVEFORMS  
V
V
IN  
V
EN  
t
r
1 µs  
0 V  
t
ON  
NOM  
0.95 V  
NOM  
V
OUT  
Figure 1.  
PIN CONFIGURATION  
V
1
V
IN  
V
V
5
5
1
2
IN  
OUT  
OUT  
2
3
GND  
EN  
GND  
EN  
4
4
3
Adj  
Adj  
TOP VIEW  
BOTTOM VIEW  
TSOT23-5L Package  
Figure 2.  
PIN DESCRIPTION  
Pin Number  
Name  
Function  
By applying less than 0.4 V to this pin, the device will be turned off. Connect this pin to VIN if unused.  
Do not leave floating.  
EN  
3
2
1
5
4
GND  
VIN  
Ground pin. For better thermal capability, directly connected to large ground plane.  
Input supply pin. Bypass this pin with a 1 µF ceramic or tantalum capacitor to ground.  
VOUT  
Adj  
Output voltage. Connect COUT between this pin and ground.  
Adjust input pin. Connect feedback resistors to program the output voltage for trim value of 1.2 V.  
ORDERING INFORMATION  
Part Number  
Marking  
Temperature Range  
Package  
SiP21110DT-T1-E3  
AC  
- 40 °C to 85 °C  
TSOT23-5L  
www.vishay.com  
4
Document Number: 69921  
S09-1046-Rev. C, 08-Jun-09  
SiP21110  
Vishay Siliconix  
TYPICAL CHARACTERISTICS  
2.84  
1.210  
1.205  
2.83  
2.82  
ILOAD = 1 mA  
2.81  
2.80  
1.200  
1.195  
2.79  
2.78  
2.77  
2.76  
ILOAD = 250 mA  
1.190  
VIN = 3.8 V  
75 100  
1.185  
- 50  
- 25  
0
25  
50  
125  
- 50  
- 25  
0
25  
Temperature (°C)  
VADJ vs. Temperature  
50  
75  
100  
125  
Temperature (°C)  
VOUT vs. ILOAD vs. Temperature  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
TA = 85 °C  
IOUT  
= 250 mA  
TA = 25 °C  
IOUT  
= 150 mA  
TA = - 40 °C  
IOUT  
= 50 mA  
0
0
2
3
4
5
0
50  
100  
150  
200  
250  
VIN (V)  
ILOAD (mA)  
VDO vs. ILOAD  
VDO vs. VIN  
300  
250  
200  
150  
100  
50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
ILOAD = 250 mA  
IOUT = 0 mA  
ILOAD = 150 mA  
IOUT = 250 mA  
ILOAD = 50 mA  
V
OUT = 2.8 V  
0
- 40  
- 15  
10  
35  
60  
85  
0.00  
1.00  
2.00  
3.00  
4.00 5.00  
6.00  
Temperature (°C)  
VIN (V)  
VDO vs. Temperature  
VOUT vs. VIN  
Document Number: 69921  
S09-1046-Rev. C, 08-Jun-09  
www.vishay.com  
5
SiP21110  
Vishay Siliconix  
TYPICAL CHARACTERISTICS  
40  
50  
45  
40  
35  
30  
25  
VIN = 6 V  
39  
ILOAD = 250 mA  
38  
37  
36  
35  
34  
33  
VIN = 3.8 V  
ILOAD = 1 mA  
V
OUT = 2.8 V  
V
OUT = 2.8 V  
- 40  
- 15  
10  
35 60  
85  
0
50  
100  
150  
200  
250  
Temperature (°C)  
ILOAD (mA)  
IGND vs. ILOAD  
IGND vs. Temperature  
50  
40  
30  
20  
10  
0
2.800  
2.799  
2.798  
2.797  
2.796  
2.795  
2.794  
2.793  
2.792  
2.791  
IOUT = 250 mA  
IOUT = 1 mA  
V
OUT = 2.8 V  
0.0  
1.0  
2.0  
3.0  
4.0 5.0  
6.0  
0
50  
100  
IOUT (mA)  
Load Regulation  
150  
200  
250  
VIN (V)  
IGND vs. VIN  
2.800  
2.799  
2.798  
2.797  
2.796  
2.795  
3.8  
4.35  
4.9  
VIN (V)  
5.45  
6
Line Regulation  
www.vishay.com  
6
Document Number: 69921  
S09-1046-Rev. C, 08-Jun-09  
SiP21110  
Vishay Siliconix  
TYPICAL OPERATING WAVEFORMS  
V
(50 mV/div)  
OUT  
V
(100 mV/div)  
OUT  
I
(100 mA/div)  
I
(100 mA/div)  
OUT  
OUT  
100 µs/div  
100 µs/div  
V
OUT = 1.2 V, VIN = 2.2 V, IOUT = 10 mA to 150 mA  
Load Transient Response  
V
OUT = 3.3 V, VIN = 4.3 V, IOUT = 10 mA to 250 mA  
Load Transient Response  
V
(50 mV/div)  
OUT  
V
(100 mV/div)  
OUT  
I
(100 mA/div)  
OUT  
I
(100 mA/div)  
OUT  
100 µs/div  
100 µs/div  
V
OUT = 1.2 V, VIN = 2.2 V, IOUT = 10 mA to 250 mA  
Load Transient Response  
V
OUT = 1.2 V, VIN = 2.2 V, IOUT = 50 mA to 250 mA  
Load Transient Response  
V
(50 mV/div)  
OUT  
V
(50 mV/div)  
OUT  
I
(100 mA/div)  
I
(100 mA/div)  
OUT  
OUT  
100 µs/div  
100 µs/div  
V
OUT = 3.3 V, VIN = 4.3 V, IOUT = 10 mA to 150 mA  
Load Transient Response  
V
OUT = 4.5 V, VIN = 5.5 V, IOUT = 10 mA to 150 mA  
Load Transient Response  
Document Number: 69921  
S09-1046-Rev. C, 08-Jun-09  
www.vishay.com  
7
SiP21110  
Vishay Siliconix  
TYPICAL OPERATING WAVEFORMS  
V
(50 mV/div)  
V
(50 mV/div)  
OUT  
OUT  
I
(100 mA/div)  
I
(100 mA/div)  
OUT  
OUT  
100 µs/div  
100 µs/div  
V
OUT = 4.5 V, VIN = 5.5 V, IOUT = 150 mA to 250 mA  
Load Transient Response  
V
OUT = 3.3 V, VIN = 4.3 V, IOUT = 150 mA to 250 mA  
Load Transient Response  
V
(100 mV/div)  
OUT  
I
(100 mA/div)  
OUT  
100 µs/div  
V
OUT = 4.5 V, VIN = 5.5 V, IOUT = 10 mA to 250 mA  
Load Transient Response  
www.vishay.com  
8
Document Number: 69921  
S09-1046-Rev. C, 08-Jun-09  
SiP21110  
Vishay Siliconix  
TYPICAL OPERATING WAVEFORMS  
V
(1 V/div)  
IN  
V
(500 mV/div)  
(10 mV/div)  
IN  
V
(10 mV/div)  
V
OUT  
OUT  
100 µs/div  
500 µs/div  
V
OUT = 1.2 V, IOUT = 250 mA, VIN = 2.2 V to 2.7 V  
Line Transient Response  
V
OUT = 4.5 V, IOUT = 250 mA, VIN = 5.5 V to 6 V  
Line Transient Response  
V
(1 V/div)  
IN  
V
(1 V/div)  
IN  
V
(10 mV/div)  
OUT  
V
(10 mV/div)  
OUT  
500 µs/div  
500 µs/div  
V
OUT = 1.2 V, IOUT = 250 mA, VIN = 2.2 V to 3.2 V  
Line Transient Response  
VOUT = 3.3 V, IOUT = 250 mA, VIN = 4.3 V to 4.8 V  
Line Transient Response  
V
(1 V/div)  
IN  
V
(10 mV/div)  
OUT  
500 µs/div  
V
OUT = 3.3 V, IOUT = 250 mA, VIN = 4.3 V to 5.3 V  
Line Transient Response  
Document Number: 69921  
S09-1046-Rev. C, 08-Jun-09  
www.vishay.com  
9
SiP21110  
Vishay Siliconix  
FUNCTIONAL BLOCK DIAGRAM  
VIN  
EN  
Enable  
Error-Amp  
Bandgap  
Reference  
Adj  
VOUT  
Current Limit and  
Thermal  
GND  
Figure 3.  
DETAILED DESCRIPTION  
As shown in the block diagram, the circuit consists of a  
bandgap reference, error amplifier, P-channel pass  
transistor and an internal feedback resistor voltage divider,  
which is used to monitor and control the output voltage.  
A constant 1.2 V bandgap reference voltage is applied to the  
non-inverting input of the error amplifier. The error amplifier  
compares this reference with the feedback voltage on its  
inverting input and amplifies the difference. If the feedback  
voltage is lower than the reference voltage, the pass-  
transistor gate is pulled low. This increases the PMOS's gate  
to source voltage and allows more current to pass through  
the transistor to the output which increases the output  
voltage. Conversely, if the feedback voltage is higher than  
the reference voltage, the pass transistor gate is pulled high,  
decreasing the gate-to-source voltage, thereby allowing less  
current to pass to the output and causing it to drop.  
Shutdown and Auto-Dischage/No-Discharge  
Bringing the EN voltage low will place the part in shutdown  
mode where the device output enters a high-impedance  
state and the quiescent current is reduced to below 1 µA,  
reducing the drain on the battery in standby mode and  
increasing standby time. Connect EN pin to input for normal  
operation. The output has an internal pull down to discharge  
the output to ground when the EN pin is low. The internal pull  
down is a 100 Ω typical resistor, which can discharge a 1 µF  
in less than 1 ms. Refer to Typical Operating Waveforms for  
turn-off waveforms.  
Output Voltage Selection  
V
IN  
1.2 V  
+
Reference  
Error-Amp  
Internal P-Channel Pass Transistor  
V
OUT  
-
A 0.9 Ω (typical) P-channel MOSFET is used as the pass  
transistor for SiP21110. The MOSFET transistor offers many  
advantages over the more, formerly, common PNP pass  
transistor designs, which ultimately result in longer battery  
lifetime. The main disadvantage of PNP pass transistors is  
that they require a certain base current to stay on, which  
significantly increases under heavy load conditions. In  
addition, during dropout, when the pass transistor saturates,  
the PNP regulators waste considerable current. In contrast,  
P-channel MOSFETS require virtually zero-base drive and  
do not suffer from the stated problems. These savings in  
base drive current translate to lower quiescent current which  
is typical around 35 µA as shown in the Typical  
Characteristics.  
R
R
1
2
Figure 4.  
www.vishay.com  
10  
Document Number: 69921  
S09-1046-Rev. C, 08-Jun-09  
SiP21110  
Vishay Siliconix  
The SiP21110 has a user-adjustable output that can be set  
through the resistor feedback network consisting of R1 and  
R2. R2 range of 100K to 400K is recommended to be  
consistent with ground current specification. R1 can then be  
determined by the following equation:  
such as the Z5U and Y5V exhibit large capacitance and ESR  
variation over temperature. If such capacitors are used, a 2.2  
µF or larger value may be needed to ensure stability over the  
industrial temperature range. If using higher quality ceramic  
capacitors, such as those with X7R and Y7R dielectrics, a  
1 µF capacitor will be sufficient at all operating temperatures.  
VOUT  
(
)
- 1  
R1 = R2  
x
V
ref  
Operating Region and Power Dissipation  
Where Vref is typically 1.2 V. Use 1 % or better resistors for  
better output voltage accuracy (see Figure 4).  
An important consideration when designing power supplies  
is the maximum allowable power dissipation of a part. The  
maximum power dissipation in any application is dependant  
on the maximum junction temperature, TJ(max) = 125 °C, the  
ambient temperature, TA, and the junction-to-ambient ther-  
mal resistance for the package, which is the summation of  
Current Limit  
The SiP21110 includes a current limit block which monitors  
the current passing through the pass transistor through a  
current mirror and controls the gate voltage of the MOSFET,  
limiting the output current to 330 mA (typical). This current  
limit feature allows for the output to be shorted to ground for  
an indefinite amount of time without damaging the device.  
θJ-C, the thermal resistance of the package, and θC-A, the  
thermal resistance through the PC board and copper traces.  
Power dissipation may be expressed as:  
T
- T  
A
(max)  
J
Thermal-Overload Protection  
P
=
(max)  
θ J-C + θ C-A  
The thermal overload protection limits the total power  
dissipation and protects the device from being damaged.  
When the junction temperature exceeds TJ = 150 °C, the  
device turns the P-Channel pass transistor off allowing the  
device to cool down. Once the temperature drops by about  
20 °C, the thermal sensor turns the pass transistor on again  
and resumes normal operation. Consequently, a continuous  
thermal overload condition will result in a pulsed output. It is  
generally recommended to not exceed the junction  
temperature rating of 125 °C for continuous operation.  
The GND pin of the SiP21110 acts as both the electrical  
connection to GND as well as a path for channeling away  
heat. Connect this pin to a GND plane to maximize heat  
dissipation. Once maximum power dissipation is calculated  
using the equation above, the maximum allowable output  
current for any input/output potential can be calculated as  
P(max)  
IOUT(max)  
=
V - VOUT  
IN  
APPLICATION INFORMATION  
PCB Layout  
Input/Output Capacitor Selection and Regulator Stability  
It is recommended that a low ESR 1 µF capacitor be used on  
the SiP21110 input. A larger input capacitance with lower  
ESR would improve noise rejection and line-transient  
response. A larger input bypass capacitor may be required in  
applications involving long inductive traces between the  
source and LDO. The circuit is stable with only a small output  
capacitor equal to 6 nF/mA (1 µF at 150 mA) of load. Since  
the bandwidth of the error amplifier is around 1 MHz to 3 MHz  
and the dominant pole is at the output node, the capacitor  
should be capacitive in this range, i.e., for 150 mA load  
current, an ESR < 0.4 Ω is necessary. Parasitic inductance  
of about 10 nH can be tolerated. Applying a larger output  
capacitor would increase power supply rejection and  
improve load-transient response. Some ceramic dielectrics  
The component placement around the LDO should be done  
carefully to achieve good dynamic line and load response.  
The input and noise capacitor should be kept close to the  
LDO. The rise in junction temperature depends on how  
efficiently the heat is carried away from junction-to-ambient.  
The junction-to-lead thermal impedance is a characteristic of  
the package and is fixed. The thermal impedance between  
lead-to-ambient can be reduced by increasing the copper  
area on PCB. Increase the input, output and ground trace  
area to reduce the junction-to-ambient thermal impedance.  
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon  
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and  
reliability data, see www.vishay.com/ppg?69921.  
Document Number: 69921  
S09-1046-Rev. C, 08-Jun-09  
www.vishay.com  
11  
Legal Disclaimer Notice  
Vishay  
Disclaimer  
All product specifications and data are subject to change without notice.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf  
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein  
or in any other disclosure relating to any product.  
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any  
information provided herein to the maximum extent permitted by law. The product specifications do not expand or  
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed  
therein, which apply to these products.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this  
document or by any conduct of Vishay.  
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless  
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such  
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting  
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding  
products designed for such applications.  
Product names and markings noted herein may be trademarks of their respective owners.  
Document Number: 91000  
Revision: 18-Jul-08  
www.vishay.com  
1

相关型号:

SiP21110DT-T1-E3

250-mA Adjustable, Low Dropout Regulator
VISHAY

SIP21301LH-15-E3

Analog Circuit, CMOS, PDSO8
VISHAY

SIP21301LH-AD-E3

Analog Circuit, CMOS, PDSO8
VISHAY
VISHAY

SIP2210DMP-DD-E3

IC VREG DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO10, 3 X 3 MM, LEAD FREE, MLP-10, Fixed Positive Multiple Output LDO Regulator
VISHAY

SIP2210DMP-DE-E3

IC VREG DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO10, 3 X 3 MM, LEAD FREE, MLP-10, Fixed Positive Multiple Output LDO Regulator
VISHAY

SIP2210DMP-DF-E3

IC VREG DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO10, 3 X 3 MM, LEAD FREE, MLP-10, Fixed Positive Multiple Output LDO Regulator
VISHAY
VISHAY

SIP2210DMP-DG-E3

IC VREG DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO10, 3 X 3 MM, LEAD FREE, MLP-10, Fixed Positive Multiple Output LDO Regulator
VISHAY
VISHAY

SIP2210DMP-DK-E3

IC VREG DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO10, 3 X 3 MM, LEAD FREE, MLP-10, Fixed Positive Multiple Output LDO Regulator
VISHAY
VISHAY