SQ1421EEH [VISHAY]

Automotive P-Channel 60 V (D-S) 175 °C MOSFET; 汽车P沟道60 V (D -S ) 175℃ MOSFET
SQ1421EEH
型号: SQ1421EEH
厂家: VISHAY    VISHAY
描述:

Automotive P-Channel 60 V (D-S) 175 °C MOSFET
汽车P沟道60 V (D -S ) 175℃ MOSFET

文件: 总12页 (文件大小:244K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SQ1421EEH  
Vishay Siliconix  
www.vishay.com  
Automotive P-Channel 60 V (D-S) 175 °C MOSFET  
FEATURES  
Halogen-free According to IEC 61249-2-21  
Definition  
• TrenchFET® Power MOSFET  
• AEC-Q101 Qualifiedd  
PRODUCT SUMMARY  
VDS (V)  
- 60  
0.290  
0.395  
- 1.6  
RDS(on) () at VGS = - 10 V  
RDS(on) () at VGS = - 4.5 V  
ID (A)  
• 100 % Rg and UIS Tested  
• Typical ESD Protection: 800 V  
• Compliant to RoHS Directive 2002/95/EC  
Configuration  
Single  
SOT-363  
SC-70 (6-LEADS)  
(1, 2, 5, 6) D  
D
D
G
D
D
S
1
2
3
6
(3) G  
Marking Code  
9B XX  
5
4
Lot Traceability  
and Date Code  
Part # Code  
Top View  
(4) S  
P-Channel MOSFET  
ORDERING INFORMATION  
Package  
SC-70  
SQ1421EEH-T1-GE3  
Lead (Pb)-free and Halogen-free  
ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted)  
PARAMETER  
SYMBOL  
LIMIT  
UNIT  
Drain-Source Voltage  
VDS  
- 60  
V
Gate-Source Voltage  
VGS  
20  
- 1.6  
TC = 25 °Ca  
TC = 125 °C  
Continuous Drain Current  
ID  
- 1.4  
Continuous Source Current (Diode Conduction)a  
Pulsed Drain Currentb  
IS  
- 1.6  
A
IDM  
IAS  
EAS  
- 6.7  
Single Pulse Avalanche Current  
Single Pulse Avalanche Energy  
- 8  
L = 0.1 mH  
TC = 25 °C  
3.2  
mJ  
W
3.3  
Maximum Power Dissipationb  
PD  
T
C = 125 °C  
1.1  
Operating Junction and Storage Temperature Range  
TJ, Tstg  
- 55 to + 175  
°C  
THERMAL RESISTANCE RATINGS  
PARAMETER  
SYMBOL  
RthJA  
LIMIT  
125  
45  
UNIT  
Junction-to-Ambient  
PCB Mountc  
°C/W  
Junction-to-Foot (Drain)  
RthJF  
Notes  
a. Package limited.  
b. Pulse test; pulse width 300 μs, duty cycle 2 %.  
c. When mounted on 1" square PCB (FR-4 material).  
d. Parametric verification ongoing.  
S11-2128 Rev. B, 31-Oct-11  
Document Number: 67057  
1
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SQ1421EEH  
Vishay Siliconix  
www.vishay.com  
SPECIFICATIONS (TC = 25 °C, unless otherwise noted)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
Static  
Drain-Source Breakdown Voltage  
Gate-Source Threshold Voltage  
VDS  
VGS = 0 V, ID = - 250 μA  
VDS = VGS, ID = - 250 μA  
- 60  
-
-
V
VGS(th)  
- 1.5  
- 2.0  
- 2.5  
VDS = 0 V, VGS  
=
=
12 V  
20 V  
-
-
-
5
5
μA  
Gate-Source Leakage  
IGSS  
VDS = 0 V, VGS  
-
mA  
VGS = 0 V  
VDS = - 60 V  
VDS = - 60 V, TJ = 125 °C  
VDS = - 60 V, TJ = 175 °C  
VDS- 5 V  
-
-
- 1  
Zero Gate Voltage Drain Current  
On-State Drain Currenta  
IDSS  
VGS = 0 V  
-
-
- 50  
- 150  
-
μA  
A
VGS = 0 V  
-
-
ID(on)  
VGS = - 10 V  
VGS = - 10 V  
VGS = - 10 V  
VGS = - 10 V  
VGS = - 4.5 V  
- 5  
-
-
ID = - 2 A  
0.230  
0.290  
0.470  
0.566  
0.395  
-
ID = - 2 A, TJ = 125 °C  
ID = - 2 A, TJ = 175 °C  
ID = - 1 A  
-
-
Drain-Source On-State Resistancea  
RDS(on)  
-
-
0.305  
3
-
Forward Transconductanceb  
Dynamicb  
gfs  
VDS = - 10 V, ID = - 1.5 A  
-
S
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
Total Gate Chargec  
Gate-Source Chargec  
Gate-Drain Chargec  
Gate Resistance  
Turn-On Delay Timec  
Rise Timec  
Turn-Off Delay Timec  
Fall Timec  
Ciss  
Coss  
Crss  
Qg  
-
-
284  
36  
355  
45  
35  
5.4  
-
VGS = 0 V  
VDS = - 25 V, f = 1 MHz  
pF  
-
28  
-
3.6  
1.2  
1.7  
6.05  
44  
Qgs  
Qgd  
Rg  
VGS = - 4.5 V  
VDS = - 30 V, ID = - 1 A  
f = 1 MHz  
-
nC  
-
-
3.1  
-
9
td(on)  
tr  
td(off)  
tf  
66  
38  
20  
14  
-
25  
VDD = - 30 V, RL = 30   
ID - 1 A, VGEN = - 4.5 V, Rg = 1   
ns  
-
13  
-
9
Source-Drain Diode Ratings and Characteristicsb  
Pulsed Currenta  
ISM  
-
-
-
- 6.7  
- 1.2  
A
V
Forward Voltage  
VSD  
IF = - 0.5 A, VGS = 0 V  
- 0.8  
Notes  
a. Pulse test; pulse width 300 μs, duty cycle 2 %.  
b. Guaranteed by design, not subject to production testing.  
c. Independent of operating temperature.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
S11-2128 Rev. B, 31-Oct-11  
Document Number: 67057  
2
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SQ1421EEH  
Vishay Siliconix  
www.vishay.com  
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)  
10  
0.005  
10-1  
10-2  
10-3  
10-4  
10-5  
10-6  
10-7  
10-8  
10-9  
10-10  
0.004  
0.003  
0.002  
0.001  
0.000  
TJ = 150 °C  
TJ = 25 °C  
TJ = 25 °C  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
VGS - Gate-Source Voltage (V)  
VGS - Gate-Source Voltage (V)  
Gate Current vs. Gate-Source Voltage  
VGS = 10 V thru 6 V  
Gate Current vs. Gate-Source Voltage  
8
6
4
2
0
10  
8
VGS = 5 V  
6
TC = 25 °C  
4
VGS = 4 V  
2
TC = 125 °C  
TC = - 55 °C  
VGS = 3 V  
0
0
2
4
6
8
10  
0
2
4
6
8
10  
VGS - Gate-to-Source Voltage (V)  
VDS - Drain-to-Source Voltage (V)  
Output Characteristics  
Transfer Characteristics  
5
4
3
2
1
0
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
TC = - 55 °C  
TC = 25 °C  
VGS = 4.5 V  
TC = 125 °C  
VGS = 10 V  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
0
2
4
6
8
10  
ID - Drain Current (A)  
ID - Drain Current (A)  
Transconductance  
On-Resistance vs. Drain Current  
S11-2128 Rev. B, 31-Oct-11  
Document Number: 67057  
3
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SQ1421EEH  
Vishay Siliconix  
www.vishay.com  
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)  
500  
6
5
4
3
2
1
0
ID = 1 A  
VDS = 30 V  
400  
Ciss  
300  
200  
100  
Coss  
Crss  
0
0
10  
20  
30  
40  
50  
60  
0
1
2
3
4
5
VDS - Drain-to-Source Voltage (V)  
Qg - Total Gate Charge (nC)  
Capacitance  
Gate Charge  
100  
10  
1.0  
0.7  
TJ = 150 °C  
ID = 250 μA  
1
0.4  
ID = 5 mA  
0.1  
0.1  
TJ = 25 °C  
0.01  
- 0.2  
0.001  
- 0.5  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
- 50 - 25  
0
25  
50  
75 100 125 150 175  
VSD - Source-to-Drain Voltage (V)  
TJ - Temperature (°C)  
Threshold Voltage  
Source Drain Diode Forward Voltage  
1.0  
2.5  
2.1  
1.7  
1.3  
0.9  
0.5  
ID = 2 A  
0.8  
0.6  
0.4  
0.2  
0.0  
VGS = 10 V  
TJ = 150 °C  
VGS = 4.5 V  
TJ = 25 °C  
0
2
4
6
8
10  
- 50 - 25  
0
25  
50  
75 100 125 150 175  
TJ - Junction Temperature (°C)  
VGS - Gate-to-Source Voltage (V)  
On-Resistance vs. Gate-to-Source Voltage  
On-Resistance vs. Junction Temperature  
S11-2128 Rev. B, 31-Oct-11  
Document Number: 67057  
4
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SQ1421EEH  
Vishay Siliconix  
www.vishay.com  
TYPICAL CHARACTERISTICS (TA = 25 °C, unless otherwise noted)  
- 60  
ID = 1 mA  
- 64  
- 68  
- 72  
- 76  
- 80  
- 50 - 25  
0
25  
50  
75 100 125 150 175  
TJ - Junction Temperature (°C)  
Drain Source Breakdown vs. Junction Temperature  
IDM Limited  
ID Limited  
10  
1
100 μs  
Limited by RDS(on)  
*
1 ms  
10 ms  
0.1  
100 ms  
1 s,10 s, DC  
TC = 25 °C  
Single Pulse  
BVDSS Limited  
0.01  
0.01  
0.1  
1
10  
100  
VDS - Drain-to-Source Voltage (V)  
* VGS > minimum VGS at which RDS(on) is specified  
Safe Operating Area  
S11-2128 Rev. B, 31-Oct-11  
Document Number: 67057  
5
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
SQ1421EEH  
Vishay Siliconix  
www.vishay.com  
THERMAL RATINGS (TA = 25 °C, unless otherwise noted)  
2
1
Duty Cycle = 0.5  
0.2  
Notes:  
0.1  
0.1  
P
DM  
0.05  
t
1
t
2
t
t
1
2
0.02  
1. Duty Cycle, D =  
2. Per Unit Base = R  
= 125 °C/W  
thJA  
(t)  
3. T  
- T = P  
Z
JM  
A
DM thJA  
Single Pulse  
0.01  
4. Surface Mounted  
-4  
-3  
-2  
-1  
10  
10  
10  
10  
1
10  
100  
600  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Ambient  
2
1
Duty Cycle = 0.5  
0.2  
0.1  
0.05  
0.02  
0.1  
Single Pulse  
0.01  
-4  
-3  
-2  
-1  
10  
10  
10  
10  
1
10  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Foot  
Note  
The characteristics shown in the two graphs  
- Normalized Transient Thermal Impedance Junction-to-Ambient (25 °C)  
- Normalized Transient Thermal Impedance Junction-to-Foot (25 °C)  
are given for general guidelines only to enable the user to get a “ball park” indication of part capabilities. The data are extracted from single  
pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part  
mounted on printed circuit board - FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities  
can widely vary depending on actual application parameters and operating conditions.  
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon  
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and  
reliability data, see www.vishay.com/ppg?67057.  
S11-2128 Rev. B, 31-Oct-11  
Document Number: 67057  
6
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Package Information  
Vishay Siliconix  
SCĆ70: 6ĆLEADS  
MILLIMETERS  
INCHES  
Dim Min  
Nom Max Min Nom Max  
6
1
5
2
4
3
0.90  
1.10  
0.10  
1.00  
0.30  
0.25  
2.20  
2.40  
1.35  
0.035  
0.043  
0.004  
0.039  
0.012  
0.010  
0.087  
0.094  
0.053  
A
E
E
1
A1  
0.80  
0.031  
0.006  
0.004  
0.071  
0.071  
0.045  
A2  
0.15  
b
-B-  
0.10  
c
e
b
1.80  
2.00  
2.10  
1.25  
0.65BSC  
1.30  
0.20  
7_Nom  
0.079  
0.083  
0.049  
0.026BSC  
0.051  
0.008  
7_Nom  
D
e
1
1.80  
E
-A-  
D
1.15  
E1  
c
e
1.20  
1.40  
0.30  
0.047  
0.004  
0.055  
0.012  
A
e1  
A
2
1
0.10  
L
L
A
ECN: S-03946—Rev. B, 09-Jul-01  
DWG: 5550  
Document Number: 71154  
06-Jul-01  
www.vishay.com  
1
AN815  
Vishay Siliconix  
Single-Channel LITTLE FOOTR SC-70 6-Pin MOSFET  
Copper Leadframe Version  
Recommended Pad Pattern and Thermal Performance  
INTRODUCTION  
EVALUATION BOARDS ꢀ SINGLE SC70-6  
The new single 6-pin SC-70 package with a copper leadframe  
enables improved on-resistance values and enhanced  
thermal performance as compared to the existing 3-pin and  
6-pin packages with Alloy 42 leadframes. These devices are  
intended for small to medium load applications where a  
miniaturized package is required. Devices in this package  
come in a range of on-resistance values, in n-channel and  
p-channel versions. This technical note discusses pin-outs,  
package outlines, pad patterns, evaluation board layout, and  
thermal performance for the single-channel version.  
The evaluation board (EVB) measures 0.6 inches by  
0.5 inches. The copper pad traces are the same as in Figure 2.  
The board allows examination from the outer pins to 6-pin DIP  
connections, permitting test sockets to be used in evaluation  
testing. See Figure 3.  
52 (mil)  
BASIC PAD PATTERNS  
6
5
2
4
3
See Application Note 826, Recommended Minimum Pad  
Patterns With Outline Drawing Access for Vishay Siliconix  
MOSFETs, (http://www.vishay.com/doc?72286) for the basic  
pad layout and dimensions. These pad patterns are sufficient  
for the low to medium power applications for which this  
package is intended. Increasing the drain pad pattern yields a  
reduction in thermal resistance and is a preferred footprint.  
The availability of four drain leads rather than the traditional  
single drain lead allows a better thermal path from the package  
to the PCB and external environment.  
96 (mil)  
71 (mil)  
26 (mil)  
1
13 (mil)  
0, 0 (mil)  
18 (mil)  
26 (mil)  
PIN-OUT  
16 (mil)  
Figure  
1 shows the pin-out description and Pin 1  
FIGURE 2.  
SC-70 (6 leads) Single  
identification.The pin-out of this device allows the use of four  
pins as drain leads, which helps to reduce on-resistance and  
junction-to-ambient thermal resistance.  
SOT-363  
SC-70 (6-LEADS)  
The thermal performance of the single 6-pin SC-70 has been  
measured on the EVB, comparing both the copper and  
Alloy 42 leadframes. This test was first conducted on the  
traditional Alloy 42 leadframe and was then repeated using the  
1-inch2 PCB with dual-side copper coating.  
D
D
G
1
2
3
6
5
D
D
S
4
Top View  
FIGURE 1.  
For package dimensions see outline drawing SC-70 (6-Leads)  
(http://www.vishay.com/doc?71154)  
Document Number: 71334  
12-Dec-03  
www.vishay.com  
1
AN815  
Vishay Siliconix  
Front of Board SC70-6  
Back of Board SC70-6  
vishay.com  
FIGURE 3.  
THERMAL PERFORMANCE  
Junction-to-Foot Thermal Resistance  
(Package Performance)  
COOPER LEADFRAME  
Room Ambient 25 _C  
Elevated Ambient 60 _C  
The junction to foot thermal resistance is a useful method of  
comparing different packages thermal performance.  
T
J(max) * TA  
T
J(max) * TA  
PD  
+
PD  
+
RqJA  
RqJA  
150oC * 60oC  
124oCńW  
150oC * 25oC  
124oCńW  
PD  
+
PD  
+
A helpful way of presenting the thermal performance of the  
6-Pin SC-70 copper leadframe device is to compare it to the  
traditional Alloy 42 version.  
P
D + 726 mW  
P
D + 1.01 W  
As can be seen from the calculations above, the compact 6-pin  
SC-70 copper leadframe LITTLE FOOT power MOSFET can  
handle up to 1 W under the stated conditions.  
Thermal performance for the 6-pin SC-70 measured as  
junction-to-foot thermal resistance, where the “foot” is the  
drain lead of the device at the bottom where it meets the PCB.  
The junction-to-foot thermal resistance is typically 40_C/W in  
the copper leadframe and 163_C/W in the Alloy 42 leadframe  
— a four-fold improvement. This improved performance is  
obtained by the enhanced thermal conductivity of copper over  
Alloy 42.  
Testing  
To further aid comparison of copper and Alloy 42 leadframes,  
Figure 5 illustrates single-channel 6-pin SC-70 thermal  
performance on two different board sizes and two different pad  
patterns. The measured steady-state values of RqJA for the  
two leadframes are as follows:  
LITTLE FOOT 6-PIN SC-70  
Power Dissipation  
Alloy 42  
Copper  
The typical RqJA for the single 6-pin SC-70 with copper  
leadframe is 103_C/W steady-state, compared with 212_C/W  
for the Alloy 42 version. The figures are based on the 1-inch2  
FR4 test board. The following example shows how the thermal  
resistance impacts power dissipation for the two different  
leadframes at varying ambient temperatures.  
1) Minimum recommended pad pattern on  
the EVB board V (see Figure 3.  
329.7_C/W  
208.5_C/W  
2
2) Industry standard 1-inch PCB with  
211.8_C/W  
103.5_C/W  
maximum copper both sides.  
The results indicate that designers can reduce thermal  
resistance (RqJA) by 36% simply by using the copper  
leadframe device rather than the Alloy 42 version. In this  
example, a 121_C/W reduction was achieved without an  
increase in board area. If increasing in board size is feasible,  
a further 105_C/W reduction could be obtained by utilizing a  
1-inch2 square PCB area.  
ALLOY 42 LEADFRAME  
Room Ambient 25 _C  
Elevated Ambient 60 _C  
T
J(max) * TA  
RqJA  
T
J(max) * TA  
RqJA  
PD  
+
PD  
+
The copper leadframe versions have the following suffix:  
150oC * 25oC  
212oCńW  
150oC * 25oC  
212oCńW  
PD  
+
PD  
+
Single:  
Dual:  
Si14xxEDH  
Si19xxEDH  
P
D + 590 mW  
P
D + 425 mW  
Complementary: Si15xxEDH  
Document Number: 71334  
12-Dec-03  
www.vishay.com  
2
AN815  
Vishay Siliconix  
250  
200  
150  
400  
320  
240  
Alloy  
42  
Alloy  
42  
160  
80  
100  
50  
Copper  
100  
Copper  
0
0
-5  
-4  
-3  
-2  
-1  
-5  
-4  
-3  
-2  
-1  
10  
10  
10  
10  
10  
1
10  
1000  
10  
10  
10  
10  
10  
1
10  
100  
1000  
Time (Secs)  
Time (Secs)  
2
FIGURE 4.  
Leadframe Comparison on EVB  
FIGURE 5.  
Leadframe Comparison on Alloy 42 1-inch PCB  
Document Number: 71334  
12-Dec-03  
www.vishay.com  
3
Application Note 826  
Vishay Siliconix  
RECOMMENDED MINIMUM PADS FOR SC-70: 6-Lead  
0.067  
(1.702)  
0.016  
0.026  
0.010  
(0.406)  
(0.648)  
(0.241)  
Recommended Minimum Pads  
Dimensions in Inches/(mm)  
Return to Index  
www.vishay.com  
18  
Document Number: 72602  
Revision: 21-Jan-08  
Legal Disclaimer Notice  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical  
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements  
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular  
product with the properties described in the product specification is suitable for use in a particular application. Parameters  
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All  
operating parameters, including typical parameters, must be validated for each customer application by the customer’s  
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,  
including but not limited to the warranty expressed therein.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree  
to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and  
damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay  
or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to  
obtain written terms and conditions regarding products designed for such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by  
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
Document Number: 91000  
Revision: 11-Mar-11  
www.vishay.com  
1

相关型号:

SQ1431EH

Automotive P-Channel 30 V (D-S) 175 °C MOSFET

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SQ1431EH-T1-GE3

SMALL SIGNAL, FET

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SQ1431EH-T1_GE3

Small Signal Field-Effect Transistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SQ143N31

Flexible Small Channel Count Switch Module

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
JDSU

SQ143N32

Flexible Small Channel Count Switch Module

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
JDSU

SQ143N37

Flexible Small Channel Count Switch Module

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
JDSU

SQ143N41

Flexible Small Channel Count Switch Module

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
JDSU

SQ143N42

Flexible Small Channel Count Switch Module

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
JDSU

SQ143N47

Flexible Small Channel Count Switch Module

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
JDSU

SQ143Y31

Flexible Small Channel Count Switch Module

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
JDSU

SQ143Y32

Flexible Small Channel Count Switch Module

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
JDSU

SQ143Y37

Flexible Small Channel Count Switch Module

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
JDSU