W681512S [WINBOND]

SINGLE-CHANNEL VOICEBAND CODEC; 单通道语音频带编解码器
W681512S
型号: W681512S
厂家: WINBOND    WINBOND
描述:

SINGLE-CHANNEL VOICEBAND CODEC
单通道语音频带编解码器

解码器 编解码器
文件: 总38页 (文件大小:317K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W681512  
SINGLE-CHANNEL VOICEBAND CODEC  
Data Sheet  
Publication Release Date: September, 2007  
Revision C14  
- 1 -  
W681512  
1. GENERAL DESCRIPTION  
The W681512 is a general-purpose single channel PCM CODEC with pin-selectable μ-Law or A-Law  
companding. The device is compliant with the ITU G.712 specification. It operates from a single +5V  
power supply and is available in 20-pin SOG (SOP), SSOP and TSSOP package. Functions  
performed include digitization and reconstruction of voice signals, and band limiting and smoothing  
filters required for PCM systems. The filters are compliant with ITU G.712 specification. W681512  
performance is specified over the industrial temperature range of –40°C to +85°C.  
The W681512 includes an on-chip precision voltage reference and an additional power amplifier,  
capable of driving 300Ω loads differentially up to a level of 6.3V peak-to-peak. The analog section is  
fully differential, reducing noise and improving the power supply rejection ratio. The data transfer  
protocol supports both long-frame and short-frame synchronous communications for PCM  
applications, and IDL and GCI communications for ISDN applications. W681512 accepts seven  
master clock rates between 256 kHz and 4.096 MHz, and an on-chip pre-scaler automatically  
determines the division ratio for the required internal clock.  
ApplIcations  
2. FEATURES  
VoIP, Voice over Networks equipment  
Single +5V power supply  
Digital telephone and communication  
systems  
Typical power dissipation of 30 mW,  
power-down mode of 0.5 μW  
Wireless Voice devices  
DECT/Digital Cordless phones  
Broadband Access Equipment  
Bluetooth Headsets  
Fully-differential analog circuit design and  
output signals  
Differential Analog Outputs  
On-chip precision reference of 1.575 V for  
a 0 dBm TLP at 600 Ω (775mVRMS  
Fiber-to-curb equipment  
Enterprise phones  
)
Push-pull power amplifiers with external  
gain adjustment with 300 Ω load capability  
Digital Voice Recorders  
Seven master clock rates of 256 kHz to  
4.096 MHz  
Pin-selectable  
companding (compliant with ITU G.711)  
μ-Law  
and  
A-Law  
CODEC A/D and D/A filtering compliant  
with ITU G.712  
Industrial temperature range (–40°C to  
+85°C)  
Packages: 20-pin SOG (SOP), SSOP and  
TSSOP  
Pb-Free package options available  
- 2 -  
 
W681512  
3. BLOCK DIAGRAM  
BCLKR  
FSR  
PAO+  
PAO-  
PAI  
RO-  
RO+  
PCMR  
G.712 CODEC  
BCLKT  
G.711 /A-Law  
μ
AO  
FST  
AI+  
AI-  
PCMT  
/A-Law  
μ
256 kHz  
VAG  
MCLK  
Voltage reference  
Pre-Scaler  
8 kHz  
256 kHz,  
512 kHz,  
1536 kHz,  
1544 kHz,  
2048 kHz,  
2560 kHz  
& 4096 kHz  
Power Conditioning  
Publication Release Date: April, 2007  
Revision C14  
- 3 -  
 
W681512  
4. TABLE OF CONTENTS  
1. GENERAL DESCRIPTION.................................................................................................................. 2  
2. FEATURES ......................................................................................................................................... 2  
3. BLOCK DIAGRAM .............................................................................................................................. 3  
4. TABLE OF CONTENTS ...................................................................................................................... 4  
5. PIN CONFIGURATION ....................................................................................................................... 6  
6. PIN DESCRIPTION............................................................................................................................. 7  
7. FUNCTIONAL DESCRIPTION............................................................................................................ 8  
7.1. Transmit Path ................................................................................................................................8  
7.2. Receive Path .................................................................................................................................9  
7.3. Power Management.....................................................................................................................10  
7.3.1. Analog and Digital Supply.....................................................................................................10  
7.3.2. Analog Ground Reference Voltage Output...........................................................................10  
7.4. PCM Interface..............................................................................................................................10  
7.4.1. Long Frame Sync..................................................................................................................10  
7.4.2. Short Frame Sync .................................................................................................................11  
7.4.3. General Circuit Interface (GCI) .............................................................................................11  
7.4.4. Interchip Digital Link (IDL).....................................................................................................12  
7.4.5. System Timing ......................................................................................................................12  
8. TIMING DIAGRAMS.......................................................................................................................... 13  
9. ABSOLUTE MAXIMUM RATINGS.................................................................................................... 20  
9.1. Absolute Maximum Ratings.........................................................................................................20  
9.2. Operating Conditions...................................................................................................................20  
10. ELECTRICAL CHARACTERISTICS............................................................................................... 21  
10.1. General Parameters ..................................................................................................................21  
10.2. Analog Signal Level and Gain Parameters ...............................................................................22  
10.3. Analog Distortion and Noise Parameters ..................................................................................23  
10.4. Analog Input and Output Amplifier Parameters.........................................................................24  
10.5. Digital I/O ...................................................................................................................................26  
10.5.1. μ-Law Encode Decode Characteristics...............................................................................26  
10.5.2. A-Law Encode Decode Characteristics ..............................................................................27  
10.5.3. PCM Codes for Zero and Full Scale ...................................................................................28  
10.5.4. PCM Codes for 0dBm0 Output ...........................................................................................28  
11. TYPICAL APPLICATION CIRCUIT................................................................................................. 29  
12. PACKAGE SPECIFICATION .......................................................................................................... 31  
12.1. 20L SOG (SOP)-300mil.............................................................................................................31  
- 4 -  
 
W681512  
12.2. 20L SSOP-209 mil.....................................................................................................................33  
12.3. 20L TSSOP - 4.4X6.5mm..........................................................................................................35  
13. ORDERING INFORMATION........................................................................................................... 36  
14. VERSION HISTORY ....................................................................................................................... 37  
Publication Release Date: April, 2007  
- 5 -  
Revision C14  
W681512  
5. PIN CONFIGURATION  
VAG  
AI+  
AI-  
RO+  
RO-  
PAI  
PAO-  
PAO+  
VDD  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
3
AO  
4
SINGLE  
CHANNEL  
CODEC  
/A-Law  
5
μ
VSS  
6
FST  
PCMT  
BCLKT  
MCLK  
FSR  
7
PCMR  
BCLKR  
PUI  
8
9
10  
SOG/SSOP/TSSOP  
- 6 -  
 
W681512  
6. PIN DESCRIPTION  
Pin  
Name  
Pin Functionality  
No.  
RO+  
1
Non-inverting output of the receive smoothing filter. This pin can typically drive a 2 kΩ load to  
1.575 volt peak referenced to the analog ground level.  
RO-  
2
Inverting output of the receive smoothing filter. This pin can typically drive a 2 kΩ load to 1.575  
volt peak referenced to the analog ground level.  
PAI  
3
4
This pin is the inverting input to the power amplifier. Its DC level is at the VAG voltage.  
PAO-  
Inverting power amplifier output. This pin can drive a 300 Ω load to 1.575 volt peak referenced  
to the VAG voltage level.  
PAO+  
5
Non-inverting power amplifier output. This pin can drive a 300 Ω load to 1.575 volt peak  
referenced to the VAG voltage level.  
VDD  
6
7
Power supply. This pin should be decoupled to VSS with a 0.1μF ceramic capacitor.  
FSR  
8 kHz Frame Sync input for the PCM receive section. This pin also selects channel 0 or  
channel 1 in the GCI and IDL modes. It can also be connected to the FST pin when transmit  
and receive are synchronous operations.  
PCMR  
8
9
PCM input data receive pin. The data needs to be synchronous with the FSR and BCLKR pins.  
BCLKR  
PCM receive bit clock input pin. This pin also selects the interface mode. The GCI mode is  
selected when this pin is tied to VSS. The IDL mode is selected when this pin is tied to VDD  
.
This pin can also be tied to the BCLKT when transmit and receive are synchronous operations.  
PUI  
10  
11  
Power up input signal. When this pin is tied to VDD, the part is powered up. When tied to VSS,  
the part is powered down.  
MCLK  
System master clock input. Possible input frequencies are 256 kHz, 512 kHz, 1536 kHz, 1544  
kHz, 2048 kHz, 2560 kHz & 4096 kHz. For a better performance, it is recommended to have  
the MCLK signal synchronous and aligned to the FST signal. This is a requirement in the  
case of 256 and 512 kHz frequency.  
BCLKT  
PCMT  
FST  
12  
13  
14  
15  
16  
PCM transmit bit clock input pin.  
PCM output data transmit pin. The output data is synchronous with the FST and BCLKT pins.  
8 kHz transmit frame sync input. This pin synchronizes the transmit data bytes.  
This is the supply ground. This pin should be connected to 0V.  
VSS  
μ/A-Law  
Compander mode select pin. μ-Law companding is selected when this pin is tied to VDD. A-Law  
companding is selected when this pin is tied to VSS.  
AO  
AI-  
17  
18  
19  
20  
Analog output of the first gain stage in the transmit path.  
Inverting input of the first gain stage in the transmit path.  
Non-inverting input of the first gain stage in the transmit path.  
AI+  
VAG  
Mid-Supply analog ground pin, which supplies a 2.4 Volt reference voltage for all-analog signal  
processing. This pin should be decoupled to VSS with a 0.01μF to 0.1 μF capacitor. This pin  
becomes high impedance when the chip is powered down.  
Publication Release Date: April, 2007  
- 7 -  
Revision C14  
 
W681512  
7. FUNCTIONAL DESCRIPTION  
W681512 is a single-rail, single channel PCM CODEC for voiceband applications. The CODEC  
complies with the specifications of the ITU-T G.712 recommendation. The CODEC also includes a  
complete μ-Law and A-Law compander. The μ-Law and A-Law companders are designed to comply  
with the specifications of the ITU-T G.711 recommendation.  
The block diagram in section 3 shows the main components of the W681512. The chip consists of a  
PCM interface, which can process long and short frame sync formats, as well as GCI and IDL formats.  
The pre-scaler of the chip provides the internal clock signals and synchronizes the CODEC sample  
rate with the external frame sync frequency. The power conditioning block provides the internal  
power supply for the digital and the analog section, while the voltage reference block provides a  
precision analog ground voltage for the analog signal processing. The main CODEC block diagram  
is shown in section 3.  
+
-
-
VAG  
PAO+  
+
-
PAO  
PAI  
Receive Path  
8
+
-
+
-
RO  
RO  
D/A  
Converter  
fC  
= 3400Hz  
Smoothing  
Smoothing  
/A-  
μ
Filter  
Filter  
Control  
Transmit Path  
AO  
AI+  
8
A/D  
+
Converter  
-
f
C
f
C
= 3400Hz  
= 200Hz  
-
AI  
μ
-
/A  
HighPass  
Filter  
Ant
-Aliasing  
Ant  
-Aliasing  
Control  
Filter  
Filter  
Figure 7.1 The W681512 Signal Path  
7.1. Transmit Path  
The A-to-D path of the CODEC contains an analog input amplifier with externally configurable gain  
setting (see application examples in section 11). The device has an input operational amplifier whose  
output is the input to the encoder section. If the input amplifier is not required for operation it can be  
powered down and bypassed. In that case a single ended input signal can be applied to the AO pin or  
the AI- pin. The AO pin becomes high input impedance when the input amplifier is powered down. The  
input amplifier can be powered down by connecting the AI+ pin to VDD or VSS. The AO pin is selected  
- 8 -  
 
W681512  
as an input when AI+ is tied to VDD and the AI- pin is selected as an input when AI+ is tied to VSS (see  
Table 7.1).  
AI+  
Input Amplifier  
Input  
VDD  
Powered Down  
Powered Up  
AO  
1.2 to VDD-1.2  
VSS  
AI+, AI-  
AI-  
Powered Down  
Table 7.1 Input Amplifier Modes of operation  
When the input amplifier is powered down, the input signal at AO or AI- needs to be referenced to the  
analog ground voltage VAG  
.
The output of the input amplifier is fed through a low-pass filter to prevent aliasing at the switched  
capacitor 3.4 kHz low pass filter. The 3.4 kHz switched capacitor low pass filter prevents aliasing of  
input signals above 4 kHz, due to the sampling at 8 kHz. The output of the 3.4 kHz low pass filter is  
filtered by a high pass filter with a 200 Hz cut-off frequency. The filters are designed according to the  
recommendations in the G.712 ITU-T specification. From the output of the high pass filter the signal is  
digitized. The signal is converted into a compressed 8-bit digital representation with either μ-Law or A-  
Law format. The μ-Law or A-Law format is pin-selectable through the μ/A-Law pin. The compression  
format can be selected according to Table 7.2.  
Format  
μ/A-Law Pin  
VSS  
VDD  
A-Law  
μ-Law  
Table 7.2. Pin-selectable Compression Format  
The digital 8-bit μ-Law or A-Law samples are fed to the PCM interface for serial transmission at the  
data rate supplied by the external BCLKT.  
7.2. Receive Path  
The 8-bit digital input samples for the D-to-A path are serially shifted in by the PCM interface and  
converted to parallel data bits. During every cycle of the frame sync FSR, the parallel data bits are fed  
through the pin-selectable μ-Law or A-Law expander and converted to analog samples. The mode of  
expansion is selected by the μ/A-Law pin as shown in Table 7.2. The analog samples are filtered by a  
low-pass smoothing filter with a 3.4 kHz cut-off frequency, according to the ITU-T G.712 specification.  
A sin(x)/x compensation is integrated with the low pass smoothing filter. The output of this filter is  
buffered to provide the differential receive output signals RO+ and RO-. The RO+ or RO- outputs can  
be externally connected to the PAI pin to provide a differential output with high driving capability at the  
PAO+ and PAO- pins. By using external resistors (see section 11 for examples), various gain settings  
Publication Release Date: April, 2007  
- 9 -  
Revision C14  
 
W681512  
of this output amplifier can be achieved. If the transmit power amplifier is not in use, it can be powered  
down by connecting PAI to VDD  
.
7.3. POWER MANAGEMENT  
7.3.1. Analog and Digital Supply  
The power supply for the analog and digital parts of the W681512 must be 5V +/- 10%. This supply  
voltage is connected to the VDD pin. The VDD pin needs to be decoupled to ground through a 0.1 μF  
ceramic capacitor.  
7.3.2. Analog Ground Reference Voltage Output  
The analog ground reference voltage is available for external reference at the VAG pin. This voltage  
needs to be decoupled to VSS through a 0.01 μF to a 0.1 μF ceramic capacitor.  
7.4. PCM INTERFACE  
The PCM interface is controlled by pins BCLKR, FSR, BCLKT & FST. The input data is received  
through the PCMR pin and the output data is transmitted through the PCMT pin. The modes of  
operation of the interface are shown in Table 7.3.  
BCLKR  
FSR  
Interface Mode  
64 kHz to 4.096 MHz 8 kHz  
Long or Short Frame Sync  
VSS  
VSS  
VDD  
VDD  
VSS  
VDD  
VSS  
VDD  
ISDN GCI with active channel B1  
ISDN GCI with active channel B2  
ISDN IDL with active channel B1  
ISDN IDL with active channel B2  
Table 7.3 PCM Interface mode selections  
7.4.1. Long Frame Sync  
The Long Frame Sync or Short Frame Sync interface mode can be selected by connecting the  
BCLKR or BCLKT pin to a 64 kHz to 4.096 MHz clock and connecting the FSR or FST pin to the 8  
kHz frame sync. The device synchronizes the data word for the PCM interface and the CODEC  
sample rate on the positive edge of the Frame Sync signal. It recognizes a Long Frame Sync when  
the FST pin is held HIGH for two consecutive falling edges of the bit-clock at the BCLKT pin. The  
length of the Frame Sync pulse can vary from frame to frame, as long as the positive frame sync edge  
occurs every 125 μsec. During data transmission in the Long Frame Sync mode, the transmit data pin  
- 10 -  
 
W681512  
PCMT will become low impedance when the Frame Sync signal FST is HIGH or when the 8 bit data  
word is being transmitted. The transmit data pin PCMT will become high impedance when the Frame  
Sync signal FST becomes LOW while the data is transmitted or when half of the LSB is transmitted.  
The internal decision logic will determine whether the next frame sync is a long or a short frame sync,  
based on the previous frame sync pulse. To avoid bus collisions, the PCMT pin will be high  
impedance for two frame sync cycles after every power down state. More detailed timing information  
can be found in the interface timing section.  
7.4.2. Short Frame Sync  
The W681512 operates in the Short Frame Sync Mode when the Frame Sync signal at pin FST is  
HIGH for one and only one falling edge of the bit-clock at the BCLKT pin. On the following rising edge  
of the bit-clock, the W681512 starts clocking out the data on the PCMT pin, which will also change  
from high to low impedance state. The data transmit pin PCMT will go back to the high impedance  
state halfway through the LSB. The Short Frame Sync operation of the W681512 is based on an 8-bit  
data word. When receiving data on the PCMR pin, the data is clocked in on the first falling edge after  
the falling edge that coincides with the Frame Sync signal. The internal decision logic will determine  
whether the next frame sync is a long or a short frame sync, based on the previous frame sync pulse.  
To avoid bus collisions, the PCMT pin will be high impedance for two frame sync cycles after every  
power down state. More detailed timing information can be found in the interface timing section.  
7.4.3. General Circuit Interface (GCI)  
The GCI interface mode is selected when the BCLKR pin is connected to VSS for two or more frame  
sync cycles. It can be used as a 2B+D timing interface in an ISDN application. The GCI interface  
consists of 4 pins : FSC (FST), DCL (BCLKT), Dout (PCMT) & Din (PCMR). The FSR pin selects  
channel B1 or B2 for transmit and receive. Data transitions occur on the positive edges of the data  
clock DCL. The Frame Sync positive edge is aligned with the positive edge of the data clock DCLK.  
The data rate is running half the speed of the bit-clock. The channels B1 and B2 are transmitted  
consecutively. Therefore, channel B1 is transmitted on the first 16 clock cycles of DCL and B2 is  
transmitted on the second 16 clock cycles of DCL. For more timing information, see the timing section.  
Publication Release Date: April, 2007  
- 11 -  
Revision C14  
 
W681512  
7.4.4. Interchip Digital Link (IDL)  
The IDL interface mode is selected when the BCLKR pin is connected to VDD for two or more frame  
sync cycles. It can be used as a 2B+D timing interface in an ISDN application. The IDL interface  
consists of 4 pins : IDL SYNC (FST), IDL CLK (BCLKT), IDL TX (PCMT) & IDL RX (PCMR). The FSR  
pin selects channel B1 or B2 for transmit and receive. The data for channel B1 is transmitted on the  
first positive edge of the IDL CLK after the IDL SYNC pulse. The IDL SYNC pulse is one IDL CLK  
cycle long. The data for channel B2 is transmitted on the eleventh positive edge of the IDL CLK after  
the IDL SYNC pulse. The data for channel B1 is received on the first negative edge of the IDL CLK  
after the IDL SYNC pulse. The data for channel B2 is received on the eleventh negative edge of the  
IDL CLK after the IDL SYNC pulse. The transmit signal pin IDL TX becomes high impedance when  
not used for data transmission and also in the time slot of the unused channel. For more timing  
information, see the timing section.  
7.4.5. System Timing  
The system can work at 256 kHz, 512 kHz, 1536 kHz, 1544 kHz, 2048 kHz, 2560 kHz & 4096 kHz  
master clock rates. The system clock is supplied through the master clock input MCLK and can be  
derived from the bit-clock if desired. An internal pre-scaler is used to generate a fixed 256 kHz and 8  
kHz sample clock for the internal CODEC. The pre-scaler measures the master clock frequency  
versus the Frame Sync frequency and sets the division ratio accordingly. If the Frame Sync is LOW  
for the entire frame sync period while the MCLK and BCLK pin clock signals are still present, the  
W681512 will enter the low power standby mode. Another way to power down is to set the PUI pin to  
LOW. When the system needs to be powered up again, the PUI pin needs to be set to HIGH and the  
Frame Sync pulse needs to be present. It will take two Frame Sync cycles before the pin PCMT will  
become low impedance.  
- 12 -  
 
W681512  
8. TIMING DIAGRAMS  
TFTRHM  
TFTRSM  
TMCKL  
TMCKH  
TRISE  
TFALL  
MCLK  
TMCK  
TFS  
TFSL  
FST  
TFTRH  
TFTRS  
TFTFH  
TBCKH  
TBCKL  
BCLKT  
PCMT  
0
1
2
3
4
5
6
7
8
0
1
TFDTD  
TBDTD  
THID  
THID  
TBCK  
D7 D6 D5 D4 D3 D2 D1 D0  
MSB  
LSB  
TFS  
TFSL  
FSR  
TFRRH  
TFRRS  
TFRFH  
TBCKH  
TBCKL  
BCLKR  
PCMR  
0
1
2
3
4
5
6
7
8
0
1
TBCK  
D7 D6 D5 D4 D3 D2 D1 D0  
LSB  
MSB  
TDRH  
TDRS  
Figure 8.1 Long Frame Sync PCM Timing  
Publication Release Date: April, 2007  
Revision C14  
- 13 -  
 
W681512  
SYMBOL  
1/TFS  
DESCRIPTION  
MIN  
---  
TYP  
MAX UNIT  
FST, FSR Frequency  
8
---  
kHz  
sec  
TFSL  
FST / FSR Minimum LOW Width 1  
BCLKT, BCLKR Frequency  
BCLKT, BCLKR HIGH Pulse Width  
BCLKT, BCLKR LOW Pulse Width  
TBCK  
64  
1/TBCK  
TBCKH  
TBCKL  
---  
---  
---  
---  
4096 kHz  
50  
---  
---  
---  
ns  
ns  
ns  
50  
TFTRH  
BCLKT 0 Falling Edge to FST Rising  
Edge Hold Time  
20  
TFTRS  
TFTFH  
TFDTD  
TBDTD  
THID  
FST Rising Edge to BCLKT 1 Falling  
edge Setup Time  
80  
50  
---  
---  
10  
---  
---  
---  
---  
---  
---  
---  
60  
60  
60  
ns  
ns  
ns  
ns  
ns  
BCLKT 2 Falling Edge to FST Falling  
Edge Hold Time  
FST Rising Edge to Valid PCMT Delay  
Time  
BCLKT Rising Edge to Valid PCMT  
Delay Time  
Delay Time from the Later of FST  
Falling Edge, or  
BCLKT 8 Falling Edge to PCMT Output  
High Impedance  
TFRRH  
TFRRS  
TFRFH  
TDRS  
BCLKR 0 Falling Edge to FSR Rising  
Edge Hold Time  
20  
80  
50  
0
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
ns  
ns  
ns  
ns  
ns  
FSR Rising Edge to BCLKR 1 Falling  
edge Setup Time  
BCLKR 2 Falling Edge to FSR Falling  
Edge Hold Time  
Valid PCMR to BCLKR Falling Edge  
Setup Time  
TDRH  
PCMR Hold Time from BCLKR Falling  
Edge  
50  
Table 8.1 Long Frame Sync PCM Timing Parameters  
1 TFSL must be at least TBCK  
- 14 -  
 
W681512  
TFTRHM  
TFTRSM  
TMCKL  
TMCKH  
TRISE  
TFALL  
MCLK  
TMCK  
TFS  
TFTFH  
TFTFS  
FST  
TFTRS  
TFTRH  
TBCKH  
TBCKL  
BCLKT  
PCMT  
0
1
-1  
0
1
2
3
4
5
6
7
8
TBCK  
TBDTD  
TBDTD  
THID  
D7 D6 D5 D4 D3 D2 D1 D0  
MSB LSB  
TFS  
TFRFH  
TFRFS  
FSR  
TFRRS  
TFRRH  
TBCKH  
TBCKL  
BCLKR  
PCMR  
0
1
-1  
0
1
2
3
4
5
6
7
8
TBCK  
D7 D6 D5 D4 D3 D2 D1 D0  
MSB  
LSB  
TDRH  
TDRS  
Figure 8.2 Short Frame Sync PCM Timing  
Publication Release Date: April, 2007  
Revision C14  
- 15 -  
W681512  
SYMBOL  
1/TFS  
DESCRIPTION  
MIN  
---  
TYP  
8
MAX UNIT  
FST, FSR Frequency  
---  
kHz  
1/TBCK  
TBCKH  
BCLKT, BCLKR Frequency  
BCLKT, BCLKR HIGH Pulse Width  
BCLKT, BCLKR LOW Pulse Width  
64  
50  
50  
20  
---  
---  
---  
---  
4096 kHz  
---  
---  
---  
ns  
ns  
ns  
TBCKL  
TFTRH  
BCLKT –1 Falling Edge to FST Rising Edge Hold  
Time  
TFTRS  
FST Rising Edge to BCLKT 0 Falling edge Setup  
Time  
80  
---  
---  
ns  
TFTFH  
TFTFS  
BCLKT 0 Falling Edge to FST Falling Edge Hold Time  
50  
50  
---  
---  
---  
---  
ns  
ns  
FST Falling Edge to BCLKT 1 Falling Edge Setup  
Time  
TBDTD  
THID  
BCLKT Rising Edge to Valid PCMT Delay Time  
10  
10  
---  
---  
60  
60  
ns  
ns  
Delay Time from BCLKT 8 Falling Edge to PCMT  
Output High Impedance  
TFRRH  
TFRRS  
BCLKR –1 Falling Edge to FSR Rising Edge Hold  
Time  
20  
80  
---  
---  
---  
---  
ns  
ns  
FSR Rising Edge to BCLKR 0 Falling edge Setup  
Time  
TFRFH  
TFRFS  
BCLKR 0 Falling Edge to FSR Falling Edge Hold Time  
50  
50  
---  
---  
---  
---  
ns  
ns  
FSR Falling Edge to BCLKR 1 Falling Edge Setup  
Time  
TDRS  
TDRH  
Valid PCMR to BCLKR Falling Edge Setup Time  
PCMR Hold Time from BCLKR Falling Edge  
0
---  
---  
---  
---  
ns  
ns  
50  
Table 8.2 Short Frame Sync PCM Timing Parameters  
- 16 -  
W681512  
TFS  
FST  
BCLKT  
PCMT  
TFSFH  
TFSRS  
TFSRH  
-1  
TBCKH  
TBCKL  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
TBCK  
THID  
TBDTD  
TBDTD  
THID  
TBDTD  
TBDTD  
D7 D6 D5  
D4 D3 D2 D1 D0  
LSB  
D7 D6 D5 D4 D3 D2 D1 D0  
MSB  
LSB  
MSB  
TDRS  
TDRH  
TDRS  
TDRH  
D7  
PCMR  
D6 D5  
D4 D3 D2 D1 D0  
LSB  
D7 D6 D5 D4 D3 D2  
MSB  
D1 D0  
MSB  
LSB  
BCH = 0  
BCH = 1  
B1 Channel  
B2 Channel  
Figure 8.3 IDL PCM Timing  
SYMBOL DESCRIPTION  
MIN  
---  
TYP  
MAX  
---  
UNIT  
kHz  
kHz  
ns  
1/TFS  
1/TBCK  
TBCKH  
TBCKL  
TFSRH  
FST Frequency  
8
BCLKT Frequency  
256  
50  
---  
---  
---  
---  
4096  
---  
BCLKT HIGH Pulse Width  
BCLKT LOW Pulse Width  
50  
---  
ns  
BCLKT –1 Falling Edge to FST Rising Edge  
Hold Time  
20  
---  
ns  
TFSRS  
TFSFH  
TBDTD  
THID  
FST Rising Edge to BCLKT 0 Falling edge  
Setup Time  
60  
20  
10  
10  
---  
---  
---  
---  
---  
---  
60  
50  
ns  
ns  
ns  
ns  
BCLKT 0 Falling Edge to FST Falling Edge  
Hold Time  
BCLKT Rising Edge to Valid PCMT Delay  
Time  
Delay Time from the BCLKT 8 Falling Edge  
(B1 channel) or BCLKT 18 Falling Edge (B2  
Channel) to PCMT Output High Impedance  
TDRS  
TDRH  
Valid PCMR to BCLKT Falling Edge Setup  
Time  
20  
75  
---  
---  
---  
---  
ns  
ns  
PCMR Hold Time from BCLKT Falling Edge  
Table 8.3 IDL PCM Timing Parameters  
Publication Release Date: April, 2007  
Revision C14  
- 17 -  
W681512  
TFS  
FST  
BCLKT  
PCMT  
TFSFH  
TFSRS  
TBCKH  
TBCKL  
TFSRH  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34  
THID  
TFDTD  
D7  
TBDTD  
D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2  
MSB  
THID  
TBDTD  
TBDTD  
TBCK  
D6 D5  
D1 D0  
LSB  
MSB  
LSB  
TDRS  
TDRH  
TDRS  
TDRH  
D7  
D6 D5  
PCMR  
D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2  
MSB  
D1 D0  
MSB  
LSB  
LSB  
BCH = 0  
BCH = 1  
B1 Channel  
B2 Channel  
Figure 8.4 GCI PCM Timing  
SYMBOL  
1/TFST  
1/TBCK  
TBCKH  
TBCKL  
DESCRIPTION  
MIN  
---  
TYP  
8
MAX UNIT  
FST Frequency  
---  
kHz  
BCLKT Frequency  
BCLKT HIGH Pulse Width  
BCLKT LOW Pulse Width  
512  
50  
50  
20  
60  
20  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
6176 kHz  
---  
---  
---  
---  
---  
60  
60  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TFSRH  
TFSRS  
TFSFH  
BCLKT 0 Falling Edge to FST Rising Edge Hold Time  
FST Rising Edge to BCLKT 1 Falling edge Setup Time  
BCLKT 1 Falling Edge to FST Falling Edge Hold Time  
FST Rising Edge to Valid PCMT Delay Time  
TFDTD  
TBDTD  
THID  
BCLKT Rising Edge to Valid PCMT Delay Time  
---  
Delay Time from the BCLKT 16 Falling Edge (B1  
channel) or BCLKT 32 Falling Edge (B2 Channel) to  
PCMT Output High Impedance  
10  
TDRS  
TDRH  
Valid PCMR to BCLKT Rising Edge Setup Time  
PCMR Hold Time from BCLKT Rising Edge  
Table 8.4 GCI PCM Timing Parameters  
20  
---  
---  
---  
---  
ns  
ns  
60  
- 18 -  
W681512  
SYMBOL  
DESCRIPTION  
MIN  
TYP  
256  
MAX  
UNIT  
1/TMCK  
Master Clock Frequency  
---  
---  
kHz  
512  
1536  
1544  
2048  
2560  
4096  
TMCKH  
TMCK  
/
MCLK Duty Cycle for 256 kHz  
Operation  
45%  
50  
55%  
---  
TMCKH  
TMCKL  
TFTRHM  
TFTRSM  
Minimum Pulse Width HIGH for  
MCLK(512 kHz or Higher)  
---  
---  
---  
---  
ns  
ns  
ns  
ns  
Minimum Pulse Width LOW for MCLK  
(512 kHz or Higher)  
50  
---  
MCLK falling Edge to FST Rising Edge  
Hold Time  
50  
---  
FST Rising Edge to MCLK Falling edge  
Setup Time  
50  
---  
TRISE  
TFALL  
Rise Time for All Digital Signals  
Fall Time for All Digital Signals  
---  
---  
---  
---  
50  
50  
ns  
ns  
Table 8.5 General PCM Timing Parameters  
Publication Release Date: April, 2007  
Revision C14  
- 19 -  
W681512  
9. ABSOLUTE MAXIMUM RATINGS  
9.1. ABSOLUTE MAXIMUM RATINGS  
Condition  
Junction temperature  
Value  
1500C  
-650C to +1500C  
Storage temperature range  
Voltage Applied to any pin  
(VSS - 0.3V) to (VDD + 0.3V)  
(VSS – 1.0V) to (VDD + 1.0V)  
-0.5V to +6V  
Voltage applied to any pin (Input current limited to +/-20 mA)  
VDD - VSS  
1. Stresses above those listed may cause permanent damage to the device. Exposure to the absolute  
maximum ratings may affect device reliability. Functional operation is not implied at these conditions.  
9.2. OPERATING CONDITIONS  
Condition  
Industrial operating temperature  
Supply voltage (VDD  
Ground voltage (VSS)  
Value  
-400C to +850C  
)
+4.5V to +5.5V  
0V  
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely  
affect the life and reliability of the device.  
- 20 -  
 
W681512  
10. ELECTRICAL CHARACTERISTICS  
10.1. GENERAL PARAMETERS  
Symbol Parameters  
Conditions  
Min (2) Typ (1)  
Max (2)  
Units  
VIL  
Input LOW Voltage  
0.6  
V
V
V
V
VIH  
VOL  
VOH  
Input HIGH Voltage  
2.4  
PCMT Output LOW Voltage  
PCMT Output HIGH Voltage  
IOL = 3 mA  
0.4  
IOL = -3 mA  
VDD  
0.4  
V
DD Current (Operating) - ADC + DAC  
6
8
mA  
IDD  
ISB  
No Load  
VDD Current (Standby)  
FST & FSR =Vss ;  
PUI=VDD  
10  
100  
μA  
Ipd  
IIL  
VDD Current (Power Down)  
Input Leakage Current  
PUI= Vss  
0.1  
10  
μA  
μA  
μA  
VSS<VIN<VDD  
+/-10  
+/-10  
VSS<PCMT<VDD  
High Z State  
IOL  
PCMT Output Leakage Current  
CIN  
Digital Input Capacitance  
10  
15  
pF  
pF  
COUT  
PCMT Output Capacitance  
PCMT High Z  
1. Typical values: TA = 25°C , VDD = 5.0 V  
2. All min/max limits are guaranteed by Winbond via electrical testing or characterization. Not all  
specifications are 100 percent tested.  
Publication Release Date: April, 2007  
- 21 -  
Revision C14  
 
W681512  
10.2. ANALOG SIGNAL LEVEL AND GAIN PARAMETERS  
VDD=5V ±10%; VSS=0V; TA=-40°C to +85°C; all analog signals referred to VAG  
MCLK=BCLK= 2.048MHz; FST=FSR=8kHz synchronous operation  
;
PARAMETER SYM.  
CONDITION  
TYP.  
TRANSMIT  
(A/D)  
RECEIVE  
(D/A)  
UNIT  
MIN.  
MAX.  
MIN.  
MAX.  
Absolute  
Level  
LABS  
1.096  
0.775  
---  
---  
---  
---  
VPK  
0 dBm0 = 0dBm @ 600Ω  
VRMS  
Max. Transmit TXMAX  
Level  
1.579  
1.573  
---  
---  
---  
---  
---  
---  
---  
---  
VPK  
VPK  
3.17 dBm0 for μ-Law  
3.14 dBm0 for A-Law  
Absolute Gain GABS  
(0 dBm0 @  
1020 Hz;  
0 dBm0 @ 1020 Hz;  
TA=+25°C  
0
-0.25  
+0.25 -0.25 +0.25 dB  
TA=+25°C)  
Absolute Gain GABST  
variation with  
Temperature  
0
-0.03  
-0.05  
+0.03 -0.03 +0.03 dB  
+0.05 -0.05 +0.05  
TA=0°C to TA=+70°C  
TA=-40°C to TA=+85°C  
Frequency  
Response,  
GRTV  
15 Hz  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
-40  
-30  
-26  
-0.4  
-0.5  
-0.5  
-0.5  
-0.5  
0
0
0
0
dB  
50 Hz  
Relative to  
0dBm0 @  
1020 Hz  
60 Hz  
---  
200 Hz  
-1.0  
-0.20  
-0.35  
-0.8  
---  
300 to 3000 Hz  
3300 Hz  
+0.15 -0.20 +0.15  
+0.15 -0.35 +0.15  
3400 Hz  
0
-0.8  
---  
0
3600 Hz  
0
0
4000 Hz  
---  
-14  
-32  
+0.3  
+0.6  
+1.6  
---  
-14  
-30  
+0.2  
+0.4  
+1.6  
4600 Hz to 100 kHz  
+3 to –40 dBm0  
-40 to –50 dBm0  
-50 to –55 dBm0  
---  
---  
Gain Variation GLT  
vs. Level Tone  
-0.3  
-0.6  
-1.6  
-0.2  
-0.4  
-1.6  
dB  
(1020 Hz  
relative to –10  
dBm0)  
- 22 -  
 
W681512  
10.3. ANALOG DISTORTION AND NOISE PARAMETERS  
VDD=5V ±10%; VSS=0V; TA=-40°C to +85°C; all analog signals referred to VAG  
MCLK=BCLK= 2.048MHz; FST=FSR=8kHz synchronous operation  
;
PARAMETER  
SYM.  
CONDITION  
TRANSMIT (A/D)  
MIN. TYP. MAX.  
RECEIVE (D/A)  
TYP. MAX.  
UNIT  
MIN.  
34  
36  
30  
25  
34  
36  
30  
25  
---  
Total Distortion vs.  
Level Tone (1020 Hz,  
μ-Law, C-Message  
Weighted)  
+3 dBm0  
36  
36  
29  
25  
36  
36  
29  
25  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
-47  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
dBC  
DLTμ  
0 dBm0 to -30 dBm0  
-40 dBm0  
---  
-45 dBm0  
---  
Total Distortion vs.  
Level Tone (1020 Hz,  
A-Law, Psophometric  
Weighted)  
DLTA  
+3 dBm0  
---  
dBp  
dB  
0 dBm0 to -30 dBm0  
-40 dBm0  
---  
---  
-45 dBm0  
---  
Spurious Out-Of-Band DSPO  
at RO+ (300 Hz to  
3400 Hz @ 0dBm0)  
4600 Hz to 7600 Hz  
7600 Hz to 8400 Hz  
8400 Hz to 100000 Hz  
300 to 3000 Hz  
-30  
-40  
-30  
-47  
---  
---  
Spurious In-Band (700 DSPI  
Hz to 1100 Hz @  
0dBm0)  
---  
dB  
dB  
Intermodulation  
Distortion (300 Hz to  
3400 Hz –4 to –21  
dBm0  
DIM  
Two tones  
---  
---  
-41  
---  
---  
-41  
Crosstalk (1020 Hz @ DXT  
0dBm0)  
---  
---  
---  
---  
-75  
---  
---  
---  
---  
-75  
dBm0  
Absolute Group Delay  
1200Hz  
360  
240  
μsec  
μsec  
τABS  
Group Delay  
500 Hz  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
750  
380  
130  
130  
750  
18  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
750  
370  
120  
120  
750  
13  
τD  
Distortion (relative to  
group delay @ 1200  
Hz)  
600 Hz  
1000 Hz  
2600 Hz  
2800 Hz  
Idle Channel Noise  
NIDL  
dBrnc0  
dBm0p  
μ-Law; C-message  
-68  
-78  
A-Law; Psophometric  
Publication Release Date: April, 2007  
Revision C14  
- 23 -  
 
W681512  
10.4. ANALOG INPUT AND OUTPUT AMPLIFIER PARAMETERS  
VDD=5V ±10%; VSS=0V; TA=-40°C to +85°C; all analog signals referred to VAG  
;
PARAMETER  
AI Input Offset Voltage  
AI Input Current  
SYM.  
VOFF,AI  
CONDITION  
MIN.  
---  
TYP.  
MAX.  
UNIT.  
mV  
μA  
AI+, AI-  
AI+, AI-  
---  
±0.1  
---  
±25  
±1.0  
---  
IIN,AI  
---  
AI Input Resistance  
AI Input Capacitance  
RIN,AI  
CIN,AI  
VCM,AI  
AI+, AI- to VAG  
AI+, AI-  
10  
MΩ  
pF  
---  
---  
10  
AI Common Mode Input Voltage  
Range  
AI+, AI-  
1.2  
---  
VDD-1.2  
V
AI Common Mode Rejection Ratio  
AI Amp Gain Bandwidth Product  
AI Amp DC Open Loop Gain  
AI Amp Equivalent Input Noise  
AO Output Voltage Range  
CMRRTI  
GBWTI  
GTI  
AI+, AI-  
---  
---  
---  
60  
2150  
95  
---  
---  
---  
dB  
kHz  
dB  
AO, RLD10kΩ  
AO, RLD10kΩ  
C-Message Weighted  
RLD=10kΩ to VAG  
RLD=2kΩ to VAG  
AO, RO to VAG  
AO  
NTI  
---  
-24  
---  
---  
dBrnC  
V
VTG  
0.5  
1.0  
VDD-0.5  
VDD-1.0  
---  
Load Resistance  
RLDTGRO  
CLDTGAO  
CLDTGRO  
IOUT1  
2
---  
---  
---  
---  
---  
---  
100  
500  
---  
kΩ  
pF  
Load Capacitance  
Load Capacitance  
AO & RO Output Current  
RO  
---  
pF  
mA  
0.5 AO,RO+, RO-VDD  
0.5  
-
±1.0  
RO+, RO- Output Resistance  
RO+, RO- Output Offset Voltage  
Analog Ground Voltage  
RRO+, RO-  
VOFF,RO+,RO-  
VAG  
RO+, RO-, 0 to 3400 Hz  
RO+ to VAG  
---  
---  
1
---  
±25  
2.6  
Ω
mV  
V
---  
Relative to VSS  
2.2  
---  
2.4  
2.5  
VAG Output Resistance  
RVAG  
12.5  
Within ±25mV change  
Transmit  
Ω
Power Supply Rejection Ratio (0 to PSRR  
100 kHz to VDD, C-message)  
30  
30  
---  
80  
75  
---  
---  
---  
dBC  
Receive  
PAI Input Offset Voltage  
PAI Input Current  
VOFF,PAI  
IIN,PAI  
PAI  
mV  
μA  
±25  
±1.0  
---  
PAI  
---  
10  
±0.05  
---  
PAI Input Resistance  
PAI Amp Gain Bandwidth Product  
Output Offset Voltage  
Load Resistance  
RIN,PAI  
GBWPI  
VOFF,PO  
RLDPO  
CLDPO  
IOUTPO  
PAI to VAG  
PAO- no load  
PAO+ to PAO-  
MΩ  
kHz  
mV  
Ω
---  
1000  
---  
---  
---  
±50  
---  
PAO+, PAO- differentially  
PAO+, PAO- differentially  
300  
---  
---  
Load Capacitance  
---  
1000  
---  
pF  
PO Output Current  
---  
mA  
V
SS + 0.7 PAO- or PAO+≤  
±10.0  
VDD-0.7  
PO Output Resistance  
RPO  
PAO+ to PAO-  
---  
1
---  
Ω
- 24 -  
 
W681512  
PARAMETER  
PO Differential Gain  
SYM.  
CONDITION  
MIN.  
TYP.  
MAX.  
UNIT.  
GPO  
-0.2  
0
+0.2  
dB  
RLD=300Ω, +3dBm0, 1 kHz,  
PAO+ to PAO-  
PO Differential Signal to Distortion  
C-Message weighted  
DPO  
45  
---  
---  
60  
40  
40  
---  
---  
---  
dBC  
dB  
ZLD=300Ω  
ZLD=100nF + 100Ω  
ZLD=100nF + 20Ω  
0 to 4 kHz  
PO Power Supply Rejection Ratio  
(0 to 25 kHz to VDD, Differential  
out)  
PSRRPO  
40  
---  
55  
40  
---  
---  
4 to 25 kHz  
Publication Release Date: April, 2007  
Revision C14  
- 25 -  
W681512  
10.5. DIGITAL I/O  
10.5.1. μ-Law Encode Decode Characteristics  
Normalized  
Normalized  
Encode  
Decision  
Levels  
Digital Code  
Decode  
Levels  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Sign  
Chord  
Chord  
Chord  
Step  
0
Step  
Step  
Step  
8159  
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
0
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
8031  
:
7903  
:
4319  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4191  
:
4063  
:
2143  
2079  
:
2015  
:
1055  
1023  
:
991  
:
511  
495  
:
479  
:
239  
231  
:
223  
:
103  
99  
:
95  
:
35  
33  
:
31  
:
3
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
2
0
Notes:  
Sign bit = 0 for negative values, sign bit = 1 for positive values  
- 26 -  
 
W681512  
10.5.2. A-Law Encode Decode Characteristics  
Normalized  
Digital Code  
Normalized  
Encode  
Decision  
Levels  
Decode  
Levels  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Sign  
Chord  
Chord  
Chord  
Step  
1
Step  
Step  
Step  
4096  
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
0
1
0
1
0
0
1
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
4032  
3968  
:
:
2048  
0
0
0
0
0
0
0
2112  
:
2048  
:
1088  
1056  
:
1024  
:
544  
528  
:
512  
:
272  
264  
:
256  
:
136  
132  
:
128  
:
68  
66  
:
64  
:
2
0
1
Notes:  
1. Sign bit = 0 for negative values, sign bit = 1 for positive values  
2. Digital code includes inversion of all even number bits  
Publication Release Date: April, 2007  
Revision C14  
- 27 -  
 
W681512  
10.5.3. PCM Codes for Zero and Full Scale  
A-Law  
μ-Law  
Level  
Sign bit  
Chord bits  
Step bits  
Sign bit  
Chord bits  
(D6,D5,D4)  
010  
Step bits  
(D3,D2,D1,D0)  
1010  
(D7)  
(D6,D5,D4) (D3,D2,D1,D0)  
(D7)  
+ Full Scale  
+ Zero  
1
1
0
0
000  
111  
111  
000  
0000  
1111  
1111  
0000  
1
1
0
0
101  
0101  
- Zero  
101  
0101  
- Full Scale  
010  
1010  
10.5.4. PCM Codes for 0dBm0 Output  
A-Law  
Chord bits  
(D6,D5,D4)  
011  
μ-Law  
Sample  
Sign bit Chord bits  
Step bits  
Sign bit  
Step bits  
(D3,D2,D1,D0)  
0100  
(D7)  
0
(D6,D5,D4) (D3,D2,D1,D0)  
(D7)  
0
1
2
3
4
5
6
7
8
001  
000  
000  
001  
001  
000  
000  
001  
1110  
1011  
1011  
1110  
1110  
1011  
1011  
1110  
0
0
010  
0001  
0
0
010  
0001  
0
0
011  
0100  
1
1
011  
0100  
1
1
010  
0001  
1
1
010  
0001  
1
1
011  
0100  
- 28 -  
 
W681512  
11. TYPICAL APPLICATION CIRCUIT  
VDD  
0.1 uF  
U2  
27K  
17  
18  
19  
AO  
AI-  
AI+  
1.0 uF  
27K  
14  
12  
13  
8 KHz Frame Sy nc  
FST  
BCLKT  
PCMT  
-
DIFFERENTIAL  
AUDIO IN  
+
2.048 MHz  
Bit Clock  
27K  
11  
MCLK  
1.0 uF 27K  
20  
2
PCM OUT  
PCM IN  
VAG  
RO-  
8
9
7
PCMR  
BCLKR  
FSR  
1
3
4
5
RO+  
PAI  
0.01 uF  
VDD  
16  
10  
MODE SELECT  
POWER CONTROL  
PAO-  
u/A  
PUI  
PAO+  
-
DIFFERENTIAL  
W681512  
AUDIO OUT  
RL > 2K ohms  
+
Figure 11.1 Typical circuit for Differential Analog I/O’s  
VDD  
0.1 uF  
U3  
27K  
17  
AO  
1.0 uF  
27K  
27K  
14  
12  
13  
8 KHz Frame Sync  
FST  
BCLKT  
PCMT  
18  
19  
AI-  
AUDIO IN  
2.048 MHz  
Bit Clock  
AI+  
27K  
11  
MCLK  
1.0 uF  
20  
2
PCM OUT  
PCM IN  
VAG  
RO-  
8
9
7
PCMR  
BCLKR  
FSR  
1
3
4
5
RO+  
PAI  
0.01 uF  
27K  
27K  
AUDIO OUT  
RL > 2K ohms  
16  
10  
MODE SELECT  
POWER CONTROL  
PAO-  
u/A  
PUI  
PAO+  
AUDIO OUT  
RL > 150 ohms  
100 uF  
W681512  
Figure 11.2 Typical circuit for Single Ended Analog I/O’s  
Publication Release Date: April, 2007  
Revision C14  
- 29 -  
 
W681512  
VDD  
1.5K  
1K  
0.1 uF  
22 uF  
62K  
U4  
17  
18  
19  
AO  
AI-  
AI+  
+
1.0 uF  
1.0 uF  
14  
12  
13  
8 KHz Frame Sy nc  
FST  
BCLKT  
PCMT  
3.9K  
100pF  
100pF  
2.048 MHz  
Bit Clock  
3.9K  
11  
MCLK  
ELECTRET  
MICROPHONE  
20  
2
PCM OUT  
PCM IN  
VAG  
RO-  
62K  
8
9
7
PCMR  
BCLKR  
FSR  
0.01 uF  
1
3
4
5
RO+  
PAI  
27K  
27K  
27K  
1.5K  
16  
10  
MODE SELECT  
POWER CONTROL  
PAO-  
u/A  
PUI  
PAO+  
W681512  
SPEAKER  
Figure 11.3 Handset Interface  
VDD  
0.1 uF  
U5  
27K  
17  
AO  
27K  
14  
12  
13  
8 KHz Frame Sync  
FST  
BCLKT  
PCMT  
18  
AI-  
2.048 MHz  
Bit Clock  
1.0 uF  
19  
AI+  
11  
MCLK  
20  
PCM OUT  
PCM IN  
VAG  
2
8
9
7
RO-  
PCMR  
BCLKR  
FSR  
600  
27K  
27K  
1
3
4
5
RO+  
PAI  
0.01 uF  
TRANSFORMER  
600 OHM 1:1  
B1/B2 SELECT  
MODE SELECT  
16  
10  
PAO-  
u/A  
PUI  
POWER CONTROL  
PAO+  
W681512  
Figure 11.4 Transformer Interface Circuit in GCI mode  
- 30 -  
W681512  
12. PACKAGE SPECIFICATION  
12.1. 20L SOG (SOP)-300MIL  
SMALL OUTLINE PACKAGE (SAME AS SOG & SOIC) DIMENSIONS  
11  
c
20  
E
H
E
L
1
10  
O
D
0.25  
A
Y
SEATING PLANE  
e
GAUGE PLANE  
A1  
b
Publication Release Date: September, 2005  
Revision C13  
- 31 -  
 
W681512  
DIMENSION (MM)  
DIMENSION (INCH)  
SYMBOL  
MIN.  
2.35  
0.10  
0.33  
0.23  
7.40  
12.60  
MAX.  
2.65  
0.30  
0.51  
0.32  
7.60  
13.00  
MIN.  
MAX.  
0.104  
0.012  
0.020  
0.013  
0.299  
0.512  
A
A1  
b
0.093  
0.004  
0.013  
0.009  
0.291  
0.496  
c
E
D
e
1.27 BSC  
0.050 BSC  
HE  
Y
10.00  
-
10.65  
0.10  
1.27  
8º  
0.394  
-
0.419  
0.004  
0.050  
8º  
L
0.40  
0º  
0.016  
0º  
0
- 32 -  
W681512  
12.2. 20L SSOP-209 MIL  
SHRINK SMALL OUTLINE PACKAGE DIMENSIONS  
D
11  
20  
DTEAIL A  
HE  
E
1
10  
b
A
A2  
SEATING PLANE  
SEATING PLANE  
θ
L
Y
L1  
e
b
A1  
DETAIL A  
Publication Release Date: September, 2005  
Revision C13  
- 33 -  
 
W681512  
DIMENSION (MM)  
DIMENSION (INCH)  
SYMBOL  
MIN.  
-
NOM.  
MAX.  
2.00  
-
MIN.  
-
NOM.  
MAX.  
0.079  
A
A1  
A2  
b
-
-
0.05  
1.65  
0.22  
0.09  
6.90  
5.00  
7.40  
-
-
0.002  
0.065  
0.009  
0.004  
0.272  
0.197  
0.291  
-
-
0.069  
-
-
1.75  
-
1.85  
0.38  
0.25  
7.50  
5.60  
8.20  
-
-
0.015  
0.010  
0.295  
0.220  
0.323  
-
c
-
-
D
7.20  
5.30  
7.80  
0.65  
0.75  
1.25  
-
0.283  
0.209  
0.307  
0.0256  
0.030  
0.050  
-
E
HE  
e
L
0.55  
-
0.95  
-
0.021  
-
0.037  
-
L1  
Y
-
0.10  
8º  
-
0.004  
8º  
0
0º  
-
0
-
- 34 -  
W681512  
12.3. 20L TSSOP - 4.4X6.5MM  
PLASTIC THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) DIMENSIONS  
DIMENSION (MM)  
DIMENSION (INCH)  
SYMBOL  
MIN.  
-
NOM.  
-
MAX.  
1.20  
MIN.  
-
NOM.  
-
MAX.  
A
A1  
A2  
E
0.047  
0.006  
0.041  
0.177  
0.05  
0.80  
4.30  
-
0.15  
1.05  
4.50  
0.002  
0.031  
0.169  
-
0.035  
0.90  
4.40  
0.173  
HE  
D
6.40 BSC  
.252 BSC  
0.256  
6.40  
0.50  
6.50  
6.60  
0.75  
0.252  
0.020  
0.260  
0.030  
L
0.60  
0.024  
L1  
b
1.00 REF  
0.039 REF  
-
0.19  
-
0.30  
0.007  
0.012  
e
0.65 BSC  
0.026 BSC  
-
c
0.09  
0º  
-
0.20  
8º  
0.004  
0º  
0.008  
8º  
0
-
-
Y
0.10 BASIC  
0.004 BASIC  
Publication Release Date: September, 2005  
Revision C13  
- 35 -  
 
W681512  
13. ORDERING INFORMATION  
Winbond Part Number Description  
W681512_ _  
Product Family  
W681512 Product  
Package Material:  
Blank  
=
=
Standard Package  
Pb-free Package  
G
Package Type:  
S
=
=
=
20-Lead Plastic Small Outline Package (SOG/SOP)  
R
20-Lead Plastic Shrink Small Outline Package (SSOP)  
WG  
20-Lead Free Plastic Thin Shrink Small Outline Package (TSSOP)  
When ordering W681512 series devices, please refer to the following part numbers.  
Part Number  
W681512S*  
W681512R*  
W681512SG  
W681512RG  
W681512WG  
*All Pb packages will be available for a limited time. Thus, Pb-free  
packages are strongly recommended.  
- 36 -  
 
W681512  
14. VERSION HISTORY  
VERSION  
DATE  
PAGE  
DESCRIPTION  
A10  
March 25,  
2003  
First revision  
A11  
B11  
April 2,  
2003  
7
VAG: fixed the voltage value from 2.5V to 2.4V  
July, 2004  
2
6
Added reference to SSOP package. Revised Applications  
section.  
Added reference to SSOP package.  
32  
33  
Added description of SSOP package.  
Added R package ordering code.  
C11  
November,  
2004  
2
Added reference to TSSOP package and Pb-free packaging.  
Added reference to TSSOP package.  
Added description of TSSOP package.  
Added W and G package ordering code.  
Extended conditions on Table 10.2.  
6
32  
33  
22  
23  
Extended conditions on Table 10.3.  
Corrected Idle Channel Noise min/max and units.  
29  
30  
Improved Application Diagram.  
Improved Application Diagram.  
Add Important Notice  
C12  
C13  
April 2005  
37  
September  
, 2005  
29, 30  
Improved Applications Diagram  
Various Capilatized Logic HIGH/LOW  
2, 22  
31  
Added reference to VRMS  
C14  
April, 2007  
SOP Package diagram legible  
SSOP Package diagram legible  
TSSOP Package diagram legible  
Removed Pb TSSOP Package  
Footnote on Pb parts limited availability  
33  
35  
36  
36  
Important Notice  
Winbond products are not designed, intended, authorized or warranted for use as components  
in systems or equipment intended for surgical implantation, atomic energy control  
instruments, airplane or spaceship instruments, transportation instruments, traffic signal  
Publication Release Date: September, 2005  
- 37 -  
Revision C13  
 
W681512  
instruments, combustion control instruments, or for other applications intended to support or  
sustain life. Further more, Winbond products are not intended for applications wherein failure  
of Winbond products could result or lead to a situation wherein personal injury, death or  
severe property or environmental damage could occur.  
Winbond customers using or selling these products for use in such applications do so at their  
own risk and agree to fully indemnify Winbond for any damages resulting from such improper  
use or sales.  
The information contained in this datasheet may be subject to change without  
notice. It is the responsibility of the customer to check the Winbond USA website  
(www.winbond-usa.com) periodically for the latest version of this document, and  
any Errata Sheets that may be generated between datasheet revisions.  
- 38 -  

相关型号:

W681512SG

SINGLE-CHANNEL VOICEBAND CODEC
WINBOND

W681512WG

SINGLE-CHANNEL VOICEBAND CODEC
WINBOND

W681513

5V SINGLE-CHANNEL VOICEBAND CODEC FOR USB APPLICATIONS
WINBOND

W681513S

5V SINGLE-CHANNEL VOICEBAND CODEC FOR USB APPLICATIONS
WINBOND

W681513SG

5V SINGLE-CHANNEL VOICEBAND CODEC FOR USB APPLICATIONS
WINBOND

W681513_05

5V SINGLE-CHANNEL VOICEBAND CODEC FOR USB APPLICATIONS
WINBOND

W682310

DUAL-CHANNEL VOICEBAND CODECS
WINBOND

W682310S

PCM Codec, A/MU-Law, 1-Func, PDSO24, 0.300 INCH, PLASTIC, SOP-24
WINBOND

W682388

Pro-X⑩ CODEC Layout Guideline
WINBOND

W682388D

Analog Transmission Interface,
WINBOND

W682388DG

Dual Programmable Extended CODEC/SLIC
WINBOND

W682388YG

Dual Programmable Extended CODEC/SLIC
WINBOND