W78LE516P-24 [WINBOND]

8-BIT MICROCONTROLLER; 8位微控制器
W78LE516P-24
型号: W78LE516P-24
厂家: WINBOND    WINBOND
描述:

8-BIT MICROCONTROLLER
8位微控制器

微控制器和处理器 外围集成电路 时钟
文件: 总31页 (文件大小:285K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary W78LE516  
8-BIT MICROCONTROLLER  
GENERAL DESCRIPTION  
The W78LE516 is an 8-bit microcontroller which has an in-system programmable MTP-ROM for  
firmware updating. The instruction set of the W78LE516 is fully compatible with the standard 8052.  
The W78LE516 contains a 64K bytes of main MTP-ROM and a 4K bytes of auxiliary MTP-ROM  
which allows the contents of the 64KB main MTP-ROM to be updated by the loader program located  
at the 4KB auxiliary MTP-ROM; 512 bytes of on-chip RAM; four 8-bit bi-directional and bit-  
addressable I/O ports; an additional 4-bit port P4; three 16-bit timer/counters; a serial port. These  
peripherals are supported by a eight sources two-level interrupt capability. To facilitate programming  
and verification, the MTP-ROM inside the W78LE516 allows the program memory to be programmed  
and read electronically. Once the code is confirmed, the user can protect the code for security.  
The W78LE516 microcontroller has two power reduction modes, idle mode and power-down mode,  
both of which are software selectable. The idle mode turns off the processor clock but allows for  
continued peripheral operation. The power-down mode stops the crystal oscillator for minimum power  
consumption. The external clock can be stopped at any time and in any state without affecting the  
processor.  
FEATURES  
· Fully static design 8-bit CMOS microcontroller  
· 64K bytes of in-system programmable MTP-ROM for Application Program (APROM)  
· 4K bytes of auxiliary MTP-ROM for Loader Program (LDROM)  
· 512 bytes of on-chip RAM. (including 256 bytes of AUX-RAM, software selectable)  
· 64K bytes program memory address space and 64K bytes data memory address space  
· Four 8-bit bi-directional ports  
· One 4-bit multipurpose programmable port  
· Three 16-bit timer/counters  
· One full duplex serial port  
· Eight-sources, two-level interrupt capability  
· Built-in power management  
· Code protection  
· Packaged in  
-
-
-
DIP 40: W78LE516-24  
PLCC 44: W78LE516P-24  
QFP 44: W78LE516F-24  
Publication Release Date: June 2000  
Revision A1  
- 1 -  
Preliminary W78LE516  
PIN CONFIGURATIONS  
40-Pin DIP (W78LE516)  
1
VDD  
T2, P1.0  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
T2EX, P1.1  
2
P0.0, AD0  
P0.1, AD1  
P0.2, AD2  
P0.3, AD3  
P0.4, AD4  
P0.5, AD5  
P0.6, AD6  
P0.7, AD7  
3
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
RST  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RXD, P3.0  
TXD, P3.1  
EA  
ALE  
INT0, P3.2  
PSEN  
P2.7, A15  
INT1, P3.3  
T0, P3.4  
P2.6, A14  
P2.5, A13  
P2.4, A12  
P2.3, A11  
P2.2, A10  
P2.1, A9  
T1, P3.5  
WR, P3.6  
RD, P3.7  
XTAL2  
XTAL1  
VSS  
P2.0, A8  
44-Pin PLCC (W78LE516P)  
44-Pin QFP (W78LE516F)  
/
T
2
E
X
,
I
/
A
D
1
,
A
D
3
,
A
D
0
,
A
D
2
,
N
T
3
,
T
2
E
X
,
I
T
2
,
A
D
1
,
A
D
3
,
N
T
3
,
A
D
0
,
A
D
2
,
T
2
,
P
1
.
P
1
.
P
0
.
P
1
.
P
1
.
P
1
.
P
0
.
P
0
.
P
0
.
P
4
.
V
D
D
P
1
.
P
1
.
P
1
.
P
1
.
P
1
.
P
0
.
P
0
.
P
0
.
P
4
.
P
0
.
V
D
D
3
4
3
2
1
0
0
1
2
2
3
4
3
2
1
0
1
2
2
0
34  
43 42 41 40 39 38 37 36 35  
44  
40  
39  
6
5
4
3
2
1
44 43 42  
41  
1
2
3
4
5
6
7
8
9
33  
P0.4, AD4  
P0.5, AD5  
P0.6, AD6  
P0.7, AD7  
P1.5  
P1.6  
7
8
9
P1.5  
P1.6  
P0.4, AD4  
P0.5, AD5  
P0.6, AD6  
P0.7, AD7  
32  
31  
30  
29  
28  
27  
26  
25  
38  
37  
36  
35  
34  
33  
32  
31  
P1.7  
P1.7  
RST  
10  
11  
12  
13  
14  
15  
RST  
RXD, P3.0  
INT2, P4.3  
TXD, P3.1  
EA  
RXD, P3.0  
EA  
P4.1  
P4.1  
ALE  
INT2, P4.3  
TXD, P3.1  
ALE  
INT0, P3.2  
INT1, P3.3  
T0, P3.4  
PSEN  
P2.7, A15  
INT0, P3.2  
PSEN  
P2.7, A15  
INT1, P3.3  
T0, P3.4  
10  
11  
24  
23  
P2.6, A14  
P2.5, A13  
30  
29  
16  
17  
P2.6, A14  
P2.5, A13  
T1, P3.5  
T1, P3.5  
12 13 14 15 16 17 18 19 20 21 22  
18 19 20 21 22 23 24 25 26 27 28  
P
3
.
6
,
/
P
3
.
7
,
/
R
D
X
T
A
L
2
X
T
A
L
1
V
S
S
P
2
.
3
,
A
1
1
P
3
.
P
3
.
X
T
A
L
2
X
T
A
L
1
V
S
S
P
2
.
P
2
.
P
2
.
P
2
.
P
2
.
P
2
.
P
2
.
P
2
.
P
2
.
P
4
.
P
4
.
0
,
1
,
2
,
4
,
6
,
7
,
0
,
1
,
2
,
3
,
4
,
0
0
A
8
A
9
A
1
0
A
1
2
/
W
R
/
R
D
A
1
1
A
8
A
9
A
1
0
A
1
2
W
R
- 2 -  
Preliminary W78LE516  
PIN DESCRIPTION  
SYMBOL  
TYPE  
DESCRIPTIONS  
I
EXTERNAL ACCESS ENABLE: This pin forces the processor to execute the  
external ROM. The ROM address and data will not be presented on the bus if  
EA  
EA  
the  
pin is high.  
O H  
PSEN  
ALE  
PROGRAM STORE ENABLE: PSEN enables the external ROM data in the  
PSEN  
Port 0 address/data bus. When internal ROM access is performed, no  
strobe signal outputs originate from this pin.  
O H ADDRESS LATCH ENABLE: ALE is used to enable the address latch that  
separates the address from the data on Port 0. ALE runs at 1/6th of the  
oscillator frequency.  
RST  
I L RESET: A high on this pin for two machine cycles while the oscillator is  
running resets the device.  
XTAL1  
XTAL2  
I
CRYSTAL 1: This is the crystal oscillator input. This pin may be driven by an  
external clock.  
O
I
CRYSTAL 2: This is the crystal oscillator output. It is the inversion of XTAL1.  
GROUND: ground potential.  
SS  
V
DD  
V
I
POWER SUPPLY: Supply voltage for operation.  
I/O D PORT 0: Function is the same as that of standard 8052.  
I/O H PORT 1: Function is the same as that of standard 8052.  
-
P0.0 P0.7  
-
P1.0 P1.7  
I/O H PORT 2: Port 2 is a bi-directional I/O port with internal pull-ups. This port also  
provides the upper address bits for accesses to external memory.  
-
P2.0 P2.7  
I/O H PORT 3: Function is the same as that of the standard 8052.  
I/O H PORT 4: A bi-directional I/O. See details below.  
-
P3.0 P3.7  
-
P4.0 P4.3  
* Note:  
I: input, O: output, I/O: bi-directional, H: pull-high, L: pull-low, D: open drain  
TYPE  
PORT4  
Another bit-addressable port P4 is also available and only 4 bits (P4<3:0>) can be used. This port  
address is located at 0D8H with the same function as that of port P1,  
Example:  
P4  
REG 0D8H  
P4, #0AH  
A, P4  
-
MOV  
MOV  
SETB  
CLR  
; Output data "A" through P4.0 P4.3.  
; Read P4 status to Accumulator.  
; Set bit P4.0  
P4.0  
P4.1  
; Clear bit P4.1  
Publication Release Date: June 2000  
Revision A1  
- 3 -  
Preliminary W78LE516  
BLOCK DIAGRAM  
P1.0  
Port 1  
Latch  
Port  
1
P1.7  
ACC  
B
P0.0  
Port 0  
Latch  
Interrupt  
Port  
0
T1  
T2  
Timer  
2
P0.7  
DPTR  
Timer  
0
Stack  
Pointer  
Temp Reg.  
PC  
PSW  
ALU  
Timer  
1
Incrementor  
Addr. Reg.  
UART  
P3.0  
P3.7  
64KB  
Port 3  
Latch  
SFR RAM  
Address  
Port  
3
MTP-ROM  
Instruction  
Decoder  
&
4KB  
MTP-ROM  
Sequencer  
512 bytes  
RAM & SFR  
P2.0  
P2.7  
Port  
2
Port 2  
Latch  
Bus & Clock  
Controller  
Port 4  
Latch  
P4.0  
P4.3  
Port  
4
Oscillator  
Reset Block  
RST  
Power control  
ALE  
XTAL1 XTAL2  
VCC  
Vss  
PSEN  
FUNCTIONAL DESCRIPTION  
The W78LE516 architecture consists of a core controller surrounded by various registers, four general  
purpose I/O ports, one special purpose programmable 4-bits I/O port, 512 bytes of RAM, three  
timer/counters, a serial port. The processor supports 111 different opcodes and references both a 64K  
program address space and a 64K data storage space.  
RAM  
The internal data RAM in the W78LE516 is 512 bytes. It is divided into two banks: 256 bytes of  
scratchpad RAM and 256 bytes of AUX-RAM. These RAMs are addressed by different ways.  
·
-
RAM 0H 7FH can be addressed directly and indirectly as the same as in 8051. Address pointers  
are R0 and R1 of the selected register bank.  
- 4 -  
Preliminary W78LE516  
·
-
RAM 80H FFH can only be addressed indirectly as the same as in 8051. Address pointers are R0,  
R1 of the selected registers bank.  
· AUX-RAM 0H- FFH is addressed indirectly as the same way to access external data memory with  
the MOVX instruction. Address pointer are R0 and R1 of the selected register bank and DPTR  
register. An access to external data memory locations higher than FFH will be performed with the  
MOVX instruction in the same way as in the 8051. The AUX-RAM is disable after a reset. Setting  
the bit 4 in CHPCON register will enable the access to AUX-RAM. When AUX-RAM is enabled the  
instructions of "MOVX @Ri" will always access to on-chip AUX-RAM. When executing from internal  
WR  
RD  
.
program memory, an access to AUX-RAM will not affect the Ports P0, P2,  
Example,  
and  
CHPENR  
CHPCON  
MOV  
REG  
REG  
F6H  
BFH  
CHPENR,#87H  
MOV  
CHPENR,#59H  
ORL  
CHPCON,#00010000B ; enable AUX-RAM  
MOV  
CHPENR,#00H  
R0,#12H  
MOV  
MOV  
A,#34H  
MOVX  
@R0,A  
; Write 34h data to 12h address.  
Timers 0, 1, and 2  
Timers 0, 1, and 2 each consist of two 8-bit data registers. These are called TL0 and TH0 for Timer  
0, TL1 and TH1 for Timer 1, and TL2 and TH2 for Timer 2. The TCON and TMOD registers provide  
control functions for timers 0, 1. The T2CON register provides control functions for Timer 2. RCAP2H  
and RCAP2L are used as reload/capture registers for Timer 2. The operations of Timer 0 and Timer  
1 are the same as in the W78C51. Timer 2 is a 16-bit timer/counter that is configured and controlled  
by the T2CON register. Like Timers 0 and 1, Timer 2 can operate as either an external event counter  
or as an internal timer, depending on the setting of bit C/T2 in T2CON. Timer 2 has three operating  
modes: capture, auto-reload, and baud rate generator. The clock speed at capture or auto-reload  
mode is the same as that of Timers 0 and 1.  
Clock  
The W78LE516 is designed with either a crystal oscillator or an external clock. Internally, the clock is  
divided by two before it is used by default. This makes the W78LE516 relatively insensitive to duty  
cycle variations in the clock.  
Crystal Oscillator  
The W78LE516 incorporates a built-in crystal oscillator. To make the oscillator work, a crystal must  
be connected across pins XTAL1 and XTAL2. In addition, a load capacitor must be connected from  
each pin to ground.  
External Clock  
An external clock should be connected to pin XTAL1. Pin XTAL2 should be left unconnected. The  
XTAL1 input is a CMOS-type input, as required by the crystal oscillator.  
Publication Release Date: June 2000  
- 5 -  
Revision A1  
Preliminary W78LE516  
Power Management  
Idle Mode  
Setting the IDL bit in the PCON register enters the idle mode. In the idle mode, the internal clock to  
the processor is stopped. The peripherals and the interrupt logic continue to be clocked. The  
processor will exit idle mode when either an interrupt or a reset occurs.  
Power-down Mode  
When the PD bit in the PCON register is set, the processor enters the power-down mode. In this  
mode all of the clocks are stopped, including the oscillator. To exit from power-down mode is by a  
INT1  
hardware reset or external interrupts INT0 to  
when enabled and set to level triggered.  
Reduce EMI Emission  
The W78LE516 allows user to diminish the gain of on-chip oscillator amplifier by using programmer  
to clear the B7 bit of security register. Once B7 is set to 0, a half of gain will be decreased. Care must  
be taken if user attempts to diminish the gain of oscillator amplifier, reducing a half of gain may affect  
the external crystal operating improperly at high frequency. The value of C1 ana C2 may need some  
adjustment while running at lower gain.  
Reset  
The external RESET signal is sampled at S5P2. To take effect, it must be held high for at least two  
machine cycles while the oscillator is running. An internal trigger circuit in the reset line is used to  
deglitch the reset line when the W78LE516 is used with an external RC network. The reset logic also  
has a special glitch removal circuit that ignores glitches on the reset line. During reset, the ports are  
initialized to FFH, the stack pointer to 07H, PCON (with the exception of bit 4) to 00H, and all of the  
other SFR registers except SBUF to 00H. SBUF is not reset.  
W78LE516 Special Function Registers (SFRs) and Reset Values  
F8  
F0  
E8  
E0  
D8  
D0  
C8  
C0  
B8  
FF  
F7  
EF  
E7  
DF  
D7  
CF  
C7  
BF  
+B  
CHPENR  
00000000  
00000000  
+ACC  
00000000  
+P4  
xxxx1111  
+PSW  
00000000  
+T2CON  
00000000  
XICON  
RCAP2L  
RCAP2H  
00000000  
TL2  
TH2  
00000000  
00000000  
00000000  
P4CONA  
00000000  
P4CONB  
00000000  
SFRAL  
SFRAH  
SFRFD  
SFRCN  
00000000  
CHPCON  
0xx00000  
00000000  
+IP  
00000000  
00000000  
00000000  
00000000  
- 6 -  
Preliminary W78LE516  
Continued  
B0  
+P3  
B7  
AF  
A7  
9F  
97  
8F  
87  
P43AL  
00000000  
P42AL  
P43AH  
00000000  
P42AH  
00000000  
+IE  
A8  
A0  
98  
90  
88  
80  
P2ECON  
0000xx00  
00000000  
+P2  
00000000  
00000000  
11111111  
+SCON  
00000000  
+P1  
SBUF  
xxxxxxxx  
P41AL  
00000000  
TH0  
P41AH  
00000000  
TH1  
11111111  
+TCON  
00000000  
+P0  
TMOD  
00000000  
SP  
TL0  
TL1  
00000000  
DPL  
00000000  
DPH  
00000000  
00000000  
PCON  
P40AL  
P40AH  
11111111  
00000111  
00000000  
00000000  
00110000  
00000000  
00000000  
Notes:  
1.The SFRs marked with a plus sign(+) are both byte- and bit-addressable.  
2. The text of SFR with bold type characters are extension function registers.  
Port 4  
Port 4, address D8H, is a 4-bit multipurpose programmable I/O port. Each bit can be configured  
individually by software. The Port 4 has four different operation modes.  
-
Mode 0: P4.0 P4.3 is a bi-directional I/O port which is same as port 1. P4.2 and P4.3 also serve as  
CLR  
INT2  
if enabled.  
external interrupt  
and  
Mode 1: P4.0 P4.3 are read strobe signals that are synchronized with  
addresses. These signals can be used as chip-select signals for external peripherals.  
WR  
-
RD  
signal at specified  
-
Mode 2: P4.0 P4.3 are write strobe signals that are synchronized with  
signal at specified  
addresses. These signals can be used as chip-select signals for external peripherals.  
RD WR  
signal at  
-
Mode 3: P4.0 P4.3 are read/write strobe signals that are synchronized with  
or  
specified addresses. These signals can be used as chip-select signals for external  
peripherals.  
When Port 4 is configured with the feature of chip-select signals, the chip-select signal address range  
depends on the contents of the SFR P4xAH, P4xAL, P4CONA and P4CONB. The registers P4xAH  
and P4xAL contain the 16-bit base address of P4.x. The registers P4CONA and P4CONB contain the  
control bits to configure the Port 4 operation mode.  
INT2  
/INT3  
INT2  
Two additional external interrupts,  
and INT3 , whose functions are similar to those of external  
interrupt 0 and 1 in the standard 80C52. The functions/status of these interrupts are  
determined/shown by the bits in the XICON (External Interrupt Control) register. The XICON register  
is bit-addressable but is not a standard register in the standard 80C52. Its address is at 0C0H. To  
CLR  
set/clear bits in the XICON register, one can use the "SETB (  
"SETB 0C2H" sets the EX2 bit of XICON.  
) bit" instruction. For example,  
Publication Release Date: June 2000  
Revision A1  
- 7 -  
Preliminary W78LE516  
XICON - external interrupt control (C0H)  
PX3 EX3 IE3 IT3  
PX2  
EX2  
IE2  
IT2  
PX3:External interrupt 3 priority high if set  
EX3:External interrupt 3 enable if set  
IE3:If IT3 = 1, IE3 is set/cleared automatically by hardware when interrupt is detected/serviced  
IT3:External interrupt 3 is falling-edge/low-level triggered when this bit is set/cleared by software  
PX2:External interrupt 2 priority high if set  
EX2:External interrupt 2 enable if set  
IE2:If IT2 = 1, IE2 is set/cleared automatically by hardware when interrupt is detected/serviced  
IT2:External interrupt 2 is falling-edge/low-level triggered when this bit is set/cleared by software  
Eight-source interrupt information:  
INTERRUPT  
SOURCE  
VECTOR  
POLLING  
ENABLE  
INTERRUPT  
TYPE  
ADDRESS SEQUENCE WITHIN REQUIRED  
PRIORITY LEVEL  
SETTINGS  
IE.0  
EDGE/LEVEL  
External Interrupt 0  
Timer/Counter 0  
External Interrupt 1  
Timer/Counter 1  
Serial Port  
03H  
0BH  
13H  
1BH  
23H  
2BH  
33H  
3BH  
0 (highest)  
TCON.0  
1
IE.1  
-
2
IE.2  
TCON.2  
3
IE.3  
-
4
IE.4  
-
Timer/Counter 2  
External Interrupt 2  
External Interrupt 3  
5
IE.5  
-
6
XICON.2  
XICON.6  
XICON.0  
XICON.3  
7 (lowest)  
P4CONB (C3H)  
BIT  
NAME  
FUNCTION  
7, 6  
P43FUN1 00: Mode 0. P4.3 is a general purpose I/O port which is the same as Port1.  
P43FUN0 01: Mode 1. P4.3 is a Read Strobe signal for chip select purpose. The address  
range depends on the SFR P43AH, P43AL, P43CMP1 and P43CMP0.  
10: Mode 2. P4.3 is a Write Strobe signal for chip select purpose. The address  
range depends on the SFR P43AH, P43AL, P43CMP1 and P43CMP0.  
11: Mode 3. P4.3 is a Read/Write Strobe signal for chip select purpose. The  
address range depends on the SFR P43AH, P43AL, P43CMP1, and  
P43CMP0.  
- 8 -  
Preliminary W78LE516  
P4CONB (C3H), continued  
BIT  
NAME  
FUNCTION  
5, 4  
P43CMP1 Chip-select signals address comparison:  
P43CMP0 00: Compare the full address (16 bits length) with the base address register  
P43AH, P43AL.  
-
01: Compare the 15 high bits (A15 A1) of address bus with the base address  
register P43AH, P43AL.  
-
10: Compare the 14 high bits (A15 A2) of address bus with the base address  
register P43AH, P43AL.  
-
11: Compare the 8 high bits (A15 A8) of address bus with the base address  
register P43AH, P43AL.  
3, 2  
1, 0  
P42FUN1 The P4.2 function control bits which are the similar definition as P43FUN1,  
P43FUN0.  
P42FUN0  
P42CMP1 The P4.2 address comparator length control bits which are the similar  
definition as P43CMP1, P43CMP0.  
P42CMP0  
P4CONA (C2H)  
BIT  
NAME  
FUNCTION  
7, 6  
P41FUN1 The P4.1 function control bits which are the similar definition as P43FUN1,  
P43FUN0.  
P41FUN0  
5, 4  
3, 2  
1, 0  
P41CMP1 The P4.1 address comparator length control bits which are the similar  
definition as P43CMP1, P43CMP0.  
P41CMP0  
P40FUN1 The P4.0 function control bits which are the similar definition as P43FUN1,  
P43FUN0.  
P40FUN0  
P40CMP1 The P4.0 address comparator length control bits which are the similar  
definition as P43CMP1, P43CMP0.  
P40CMP0  
P2ECON (AEH)  
BIT  
NAME  
FUNCTION  
7
P43CSINV The active polarity of P4.3 when pin P4.3 is defined as read and/or write  
strobe signal.  
= 1 : P4.3 is active high when pin P4.3 is defined as read and/or write strobe  
signal.  
= 0 : P4.3 is active low when pin P4.3 is defined as read and/or write strobe  
signal.  
6
5
P42CSINV The similarity definition as P43SINV.  
P41CSINV The similarity definition as P43SINV.  
Publication Release Date: June 2000  
- 9 -  
Revision A1  
Preliminary W78LE516  
P2ECON (AEH), continued  
BIT  
5
NAME  
FUNCTION  
P41CSINV The similarity definition as P43SINV.  
P40CSINV The similarity definition as P43SINV.  
4
3
-
-
-
-
Reserve  
2
Reserve  
1
0
0
0
Port 4 Base Address Registers  
P40AH, P40AL:  
The Base address register for comparator of P4.0. P40AH contains the high-order byte of address,  
P40AL contains the low-order byte of address.  
P41AH, P41AL:  
The Base address register for comparator of P4.1. P41AH contains the high-order byte of address,  
P41AL contains the low-order byte of address.  
P42AH, P42AL:  
The Base address register for comparator of P4.2. P42AH contains the high-order byte of address,  
P42AL contains the low-order byte of address.  
P43AH, P43AL:  
The Base address register for comparator of P4.3. P43AH contains the high-order byte of address,  
P43AL contains the low-order byte of address.  
P4 (D8H)  
BIT  
NAME  
FUNCTION  
7
-
-
-
-
Reserve  
6
5
4
3
2
1
0
Reserve  
Reserve  
Reserve  
P43  
Port 4 Data bit which outputs to pin P4.3 at mode 0.  
Port 4 Data bit. which outputs to pin P4.2 at mode 0.  
Port 4 Data bit. which outputs to pin P4.1at mode 0.  
Port 4 Data bit which outputs to pin P4.0 at mode 0.  
P42  
P41  
P40  
- 10 -  
Preliminary W78LE516  
Here is an example to program the P4.0 as a write strobe signal at the I/O port address  
-
-
1234H 1237H and positive polarity, and P4.1 P4.3 are used as general I/O ports.  
MOV P40AH,#12H  
MOV P40AL,#34H  
; Base I/O address 1234H for P4.0  
MOV P4CONA,#00001010B  
MOV P4CONB,#00H  
MOV P2ECON,#10H  
; P4.0 a write strobe signal and address line A0 and A1 are masked.  
; P4.1- P4.3 as general I/O port which are the same as PORT1  
; Write the P40SINV = 1 to inverse the P4.0 write strobe polarity  
; default is negative.  
MOV CHPENR,#00H  
; Disable CHPCON write attribute.  
-
Then any instruction MOVX @DPTR,A (with DPTR = 1234H 1237H) will generate the positive  
polarity write strobe signal at pin P4.0. And the instruction MOV P4,#XX will output the bit3 to bit1 of  
-
data #XX to pin P4.3 P4.1.  
P4xCSINV  
P4 REGISTER  
P4.x  
DATA I/O  
RD_CS  
MUX 4->1  
WR_CS  
READ  
WRITE  
RD/WR_CS  
PIN  
P4.x  
ADDRESS BUS  
P4xFUN0  
P4xFUN1  
EQUAL  
REGISTER  
P4xAL  
P4xAH  
Bit Length  
P4.x INPUT DATA BUS  
Selectable  
comparator  
REGISTER  
P4xCMP0  
P4xCMP1  
In-System Programming (ISP) Mode  
The W78LE516 equips one 64K byte of main MTP-ROM bank for application program (called  
APROM) and one 4K byte of auxiliary MTP-ROM bank for loader program (called LDROM). In the  
normal operation, the microcontroller executes the code in the APROM. If the content of APROM  
needs to be modified, the W78LE516 allows user to activate the In-System Programming (ISP) mode  
The CHPCON is read-only by default, software must write two  
by setting the CHPCON register.  
specific values 87H, then 59H sequentially to the CHPENR register to enable the CHPCON  
write attribute. Writing CHPENR register with the values except 87H and 59H will close  
CHPCON register write attribute.  
The W78LE516 achieves all in-system programming operations  
including enter/exit ISP Mode, program, erase, read ... etc, during device in the idle mode. Setting the  
Publication Release Date: June 2000  
- 11 -  
Revision A1  
Preliminary W78LE516  
bit CHPCON.0 the device will enter in-system programming mode after a wake-up from idle mode.  
Because device needs proper time to complete the ISP operations before awaken from idle mode,  
software may use timer interrupt to control the duration for device wake-up from idle mode. To  
perform ISP operation for revising contents of APROM, software located at APROM setting the  
CHPCON register then enter idle mode, after awaken from idle mode the device executes the  
corresponding interrupt service routine in LDROM. Because the device will clear the program counter  
while switching from APROM to LDROM, the first execution of RETI instruction in interrupt service  
routine will jump to 00H at LDROM area. The device offers a software reset for switching back to  
Setting CHPCON register bit 0,  
APROM while the content of APROM has been updated completely.  
1 and 7 to logic-1 will result a software reset to reset the CPU  
. The software reset serves as a  
external reset. This in-system programming feature makes the job easy and efficient in which the  
application needs to update firmware frequently. In some applications, the in-system programming  
feature make it possible to easily update the system firmware without opening the chassis.  
Note: The ISP Mode operates by supply voltage from 3.3V to 5.5V.  
SFRAH, SFRAL:  
The objective address of on-chip MTP-ROM in the in-system programming mode.  
SFRAH contains the high-order byte of address, SFRAL contains the low-order  
byte of address.  
SFRFD: The programming data for on-chip MTP-ROM in programming mode.  
SFRCN:  
The control byte of on-chip MTP-ROM programming mode.  
SFRCN (C7)  
BIT  
7
NAME  
FUNCTION  
-
Reserve.  
6
WFWIN On-chip MTP-ROM bank select for in-system programming.  
= 0: 64K bytes MTP-ROM bank is selected as destination for re-  
programming.  
= 1: 4K bytes MTP-ROM bank is selected as destination for re-programming.  
5
4
OEN  
CEN  
MTP-ROM output enable.  
MTP-ROM chip enable.  
3, 2, 1, 0 CTRL[3:0] The flash control signals  
MODE  
WFWIN  
CTRL<3:0>  
0010  
OEN CEN SFRAH, SFRAL  
SFRFD  
X
Erase 64KB APROM  
Program 64KB APROM  
Read 64KB APROM  
Erase 4KB LDROM  
Program 4KB LDROM  
Read 4KB LDROM  
0
0
0
1
1
1
1
1
0
1
1
0
0
0
0
0
0
0
X
0001  
Address in  
Address in  
X
Data in  
Data out  
X
0000  
0010  
0001  
Address in  
Address in  
Data in  
Data out  
0000  
- 12 -  
Preliminary W78LE516  
In-System Programming Control Register (CHPCON)  
CHPCON (BFH)  
BIT  
NAME  
FUNCTION  
7
SWRESET When this bit is set to 1, and both FBOOTSL and FPROGEN are set to 1. It  
will enforce microcontroller reset to initial condition just like power on reset.  
This action will re-boot the microcontroller and start to normal operation. To  
read this bit in logic-1 can determine that the F04KBOOT mode is running.  
(F04KMODE)  
6
5
4
-
Reserve.  
-
Reserve.  
ENAUXRAM  
1: Enable on-chip AUX-RAM.  
0: Disable the on-chip AUX-RAM  
Must set to 0.  
3
2
1
0
0
Must set to 0.  
FBOOTSL The Program Location Select.  
0: The Loader Program locates at the 64 KB APROM. 4KB LDROM is  
destination for re-programming.  
1: The Loader Program locates at the 4 KB memory bank. 64KB APROM is  
destination for re-programming.  
0
FPROGEN MTP-ROM Programming Enable.  
= 1: enable. The microcontroller enter the in-system programming mode after  
entering the idle mode and wake-up from interrupt. During in-system  
programming mode, the operation of erase, program and read are  
achieve when device enters idle mode.  
= 0: disable. The on-chip flash memory is read-only. In-system  
programmability is disabled.  
Publication Release Date: June 2000  
- 13 -  
Revision A1  
Preliminary W78LE516  
F04KBOOT Mode (Boot From LDROM)  
By default, the W78LE516 boots from APROM program after a power on reset. On some occasions,  
user can force the W78LE516 to boot from the LDROM program via following settings. The possible  
situation that you need to enter F04KBOOT mode when the APROM program can not run properly  
and device can not jump back to LDROM to execute in-system programming function. Then you can  
use this F04KBOOT mode to force the W78LE516 jumps to LDROM and executes in-system  
programming procedure. When you design your system, you may reserve the pins P2.6, P2.7 to  
switches or jumpers. For example in a CD-ROM system, you can connect the P2.6 and P2.7 to PLAY  
and EJECT buttons on the panel. When the APROM program fails to execute the normal application  
program. User can press both two buttons at the same time and then turn on the power of the  
personal computer to force the W78LE516 to enter the F04KBOOT mode. After power on of personal  
computer, you can release both buttons and finish the in-system programming procedure to update  
EA  
the APROM code. In application system design, user must take care of the P2, P3, ALE,  
and  
PSEN  
pin value at reset to prevent from accidentally activating the programming mode or  
F04KBOOT mode.  
F04KBOOT MODE  
P4.3 P2.7 P2.6  
MODE  
X
L
L
L
FO4KBOOT  
FO4KBOOT  
X
X
The Reset Timing For Entering  
F04KBOOT Mode  
P2.7  
Hi-Z  
Hi-Z  
P2.6  
RST  
30 mS  
10 mS  
- 14 -  
Preliminary W78LE516  
The Algorithm of In-System Programming  
Part 1:64KB APROM  
procedure of entering  
START  
In-System Programming Mode  
Enter In-System  
Programming Mode ?  
(conditions depend on  
user's application)  
No  
Yes  
Setting control registers  
MOV CHPENR,#87H  
MOV CHPENR,#59H  
MOV CHPCON,#03H  
Execute the normal application  
program  
Setting Timer (about 1.5 us)  
and enable timer interrupt  
END  
Start Timer and enter idle Mode.  
(CPU will be wakened from idle mode  
by timer interrupt, then enter In-System  
Programming mode)  
CPU will be wakened by interrupt and  
re-boot from 4KB LDROM to execute  
the loader program.  
Go  
Publication Release Date: June 2000  
Revision A1  
- 15 -  
Preliminary W78LE516  
Part 2: 4KB LDROM  
Go  
Procedure of Updating  
the 64KB APROM  
Timer Interrupt Service Routine:  
Stop Timer & disable interrupt  
PGM  
Yes  
Yes  
Is F04KBOOT Mode?  
(CHPCON.7=1)  
End of Programming ?  
No  
No  
Reset the CHPCON Register:  
MOV CHPENR,#87H  
MOV CHPENR,#59H  
MOV CHPCON,#03H  
Setting Timer and enable Timer  
interrupt for wake-up .  
(50us for program operation)  
Yes  
Is currently in the  
F04KBOOT Mode ?  
No  
Software reset CPU and  
re-boot from the 64KB  
APROM.  
MOV CHPENR,#87H  
MOV CHPENR,#59H  
MOV CHPCON,#83H  
Get the parameters of new code  
(Address and data bytes)  
Setting Timer and enable Timer  
interrupt for wake-up .  
(15 ms for erasing operation)  
through I/O ports, UART or  
other interfaces.  
Setting erase operation mode:  
MOV SFRCN,#22H  
(Erase 64KB APROM)  
Setting control registers for  
programming:  
Hardware Reset  
to re-boot from  
new 64 KB APROM.  
(S/W reset is  
invalid in F04KBOOT  
Mode)  
MOV SFRAH,#ADDRESS_H  
MOV SFRAL,#ADDRESS_L  
MOV SFRFD,#DATA  
Start Timer and enter IDLE  
Mode.  
MOV SFRCN,#21H  
(Erasing...)  
End of erase  
operation. CPU will  
be wakened by Timer  
interrupt.  
END  
Executing new code  
from address  
00H in the 64KB APROM.  
PGM  
- 16 -  
Preliminary W78LE516  
SECURITY  
During the on-chip MTP-ROM programming mode, the MTP-ROM can be programmed and verified  
repeatedly. Until the code inside the MTP-ROM is confirmed OK, the code can be protected. The  
protection of MTP-ROM and those operations on it are described below.  
The W78LE516 has several Special Setting Registers, including the Security Register and  
Company/Device ID Registers, which can not be accessed in programming mode. Those bits of the  
Security Registers can not be changed once they have been programmed from high to low. They can  
only be reset through erase-all operation. The contents of the Company ID and Device ID registers  
have been set in factory. The Security Register is located at the 0FFFFH of the LDROM space.  
D7 D6 D5 D4 D3 D2 D1 D0  
0000h  
0FFFh  
Company ID (#DAH)  
Device ID (#62H)  
Security Bits  
1
1
0
1
1
0
1
0
4KB MTP ROM  
Program Memory  
LDROM  
0
1
1
0
0
0
1
0
64KB MTP ROM  
Program Memory  
APROM  
B2 B1 B0  
B7 Reserved  
B0: Lock bit, logic 0: active  
B1: MOVC inhibit,  
Reserved  
logic 0: the MOVC instruction in external memory  
cannot access the code in internal memory.  
logic 1: no restriction.  
B2: Encryption  
logic 0: the encryption logic enable  
logic 1: the encryption logic disable  
FFFFh  
Security Register  
B07: Osillator Control  
logic 0: 1/2 gain  
logic 1: Full gain  
Default 1 for all security bits.  
Reserved bits must be kept in logic 1.  
Special Setting Registers  
Lock bit  
This bit is used to protect the customer's program code in the W78LE516. It may be set after the  
programmer finishes the programming and verifies sequence. Once this bit is set to logic 0, both the  
MTP ROM data and Special Setting Registers can? be accessed again.  
MOVC Inhibit  
This bit is used to restrict the accessible region of the MOVC instruction. It can prevent the MOVC  
instruction in external program memory from reading the internal program code. When this bit is set  
to logic 0, a MOVC instruction in external program memory space will be able to access code only in  
the external memory, not in the internal memory. A MOVC instruction in internal program memory  
space will always be able to access the ROM data in both internal and external memory. If this bit is  
logic 1, there are no restrictions on the MOVC instruction.  
Encryption  
This bit is used to enable/disable the encryption logic for code protection. Once encryption feature is  
enabled, the data presented on port 0 will be encoded via encryption logic. Only whole chip erase will  
reset this bit.  
Publication Release Date: June 2000  
- 17 -  
Revision A1  
Preliminary W78LE516  
Oscillator Control  
W78LE516/E516 allow user to diminish the gain of on-chip oscillator amplifier by using programmer  
to set the bit B7 of security register. Once B7 is set to 0, a half of gain will be decreased. Care must  
be taken if user attempts to diminish the gain of oscillator amplifier, reducing a half of gain may  
improperly affect the external crystal operation at high frequency. The value of C1 and C2 may need  
some adjustment while running at lower gain.  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
DC Power Supply  
SYMBOL  
MIN.  
-0.3  
SS  
MAX.  
+6.0  
DD  
UNIT  
V
DD  
V
SS  
V
-
IN  
V
Input Voltage  
V
-0.3  
V
+0.3  
V
A
Operating Temperature  
Storage Temperature  
T
0
60  
°
C
C
ST  
T
-55  
+150  
°
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability  
of the device.  
DC CHARACTERISTICS  
SS  
A
= 0V, T = 25 C, unless otherwise specified.  
°
V
PARAMETER  
SYM.  
SPECIFICATION  
UNIT  
TEST CONDITIONS  
MIN.  
MAX.  
5.5  
5.5  
20  
DD  
Operating Voltage  
Operating Current  
Idle Current  
V
2.4  
V
Without I.S.P.  
With I.S.P.  
3.3  
V
DD  
DD  
I
-
mA  
mA  
mA  
mA  
No load V = 5.5V  
DD  
-
3
No load V = 2.4V  
IDLE  
DD  
I
-
6
V
V
V
V
= 5.5V, Fosc = 20 MHz  
= 2.4V, Fosc = 12 MHz  
= 5.5V, Fosc = 20 MHz  
= 2.4V, Fosc = 12 MHz  
DD  
DD  
DD  
-
-
1.5  
50  
PWDN  
I
Power Down Current  
m
A
-
20  
m
A
IN1  
IN2  
LK  
DD  
Input Current  
P1, P2, P3, P4  
Input Current  
RST  
I
I
-50  
+10  
V
V
V
= 5.5V  
m
A
IN  
DD  
= 0V or V  
DD  
-10  
-10  
+300  
+10  
= 5.5V  
m
A
IN  
DD  
0 < V < V  
DD  
V
Input Leakage Current  
I
= 5.5V  
m
A
IN  
DD  
0V < V < V  
EA  
P0,  
TL  
DD  
Logic 1 to 0 Transition  
Current  
I
[*4]  
-500  
-
V
= 5.5V  
m
A
IN  
V
= 2.0V  
P1, P2, P3, P4  
IL1  
IL2  
DD  
DD  
Input Low Voltage  
V
0
0
0.8  
0.5  
V
V
= 4.5V  
= 2.4V  
V
V
EA  
P0, P1, P2, P3, P4,  
Input Low Voltage  
RST[*1]  
DD  
DD  
V
0
0
0.8  
0.3  
V
V
V
= 4.5V  
= 2.4V  
V
- 18 -  
Preliminary W78LE516  
DC Characteristics, continued  
PARAMETER  
SYM.  
SPECIFICATION  
UNIT  
TEST CONDITIONS  
MIN.  
0
MAX.  
0.8  
IL3  
DD  
DD  
DD  
DD  
Input Low Voltage  
XTAL1 [*3]  
V
V
V
V
V
V
V
V
V
= 4.5V  
= 2.4V  
= 5.5V  
= 2.4V  
0
0.4  
IH1  
DD  
+0.2  
Input High Voltage  
V
2.4  
1.4  
V
DD  
V
+0.2  
EA  
P0, P1, P2, P3, P4,  
Input High Voltage  
RST[*1]  
IH2  
DD  
DD  
DD  
DD  
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
V
3.5  
1.7  
3.5  
2.4  
-
V
V
V
V
+0.2  
+0.2  
+0.2  
+0.2  
V
V
V
V
V
V
V
V
= 5.5V  
= 2.4V  
= 5.5V  
= 2.4V  
IH3  
Input High Voltage  
XTAL1 [*3]  
V
OL1  
OL  
Output Low Voltage  
P1, P2, P3, P4  
Output Low Voltage  
V
0.45  
= 4.5V, I = +2 mA  
OL  
-
0.25  
0.45  
0.25  
= 2.4V, I = +1 mA  
OL2  
OL  
V
-
= 4.5V, I = +4 mA  
OL  
-
= 2.4V, I = +2 mA  
PSEN  
P0, ALE,  
[*2]  
SK1  
DD  
V
DD  
V
DD  
V
DD  
V
Sink Current  
P1, P2, P3, P4  
Sink Current  
I
4
12  
5.4  
16  
9
mA  
mA  
mA  
mA  
= 4.5V, Vin = 0.45V  
= 2.4V, Vin = 0.45V  
= 4.5V, Vin = 0.45V  
= 2.4V, Vin = 0.4V  
1.8  
8
SK2  
I
4.5  
PSEN  
P0, ALE,  
OH1  
Output High Voltage  
P1, P2, P3, P4  
V
2.4  
1.4  
2.4  
1.4  
-
-
-
-
V
V
V
V
DD  
DD  
DD  
DD  
OH  
m
= 4.5V, I = -100 A  
V
V
V
V
OH  
m
= 2.4V, I = -8 A  
OH2  
V
Output High Voltage  
OH  
m
= 4.5V, I = -400 A  
OH  
m
= 2.4V, I = -200 A  
P0, ALE, PSEN [*2]  
Source Current  
P1, P2, P3, P4  
SR1  
DD  
V
DD  
V
DD  
V
DD  
V
I
-100  
-20  
-8  
-250  
-50  
= 4.5V, Vin = 2.4V  
= 2.4V, Vin = 1.4V  
= 4.5V, Vin = 2.4V  
= 2.4V, Vin = 1.4V  
m
A
m
A
SR2  
Source Current  
I
-14  
mA  
mA  
-1.9  
-3.8  
P0, ALE, PSEN  
Notes:  
*1. RST pin is a Schmitt trigger input.  
*2. P0, ALE and  
are tested in the external access mode.  
PSEN  
*3. XTAL1 is a CMOS input.  
*4. Pins of P1, P2, P3, P4 can source a transition current when they are being externally driven from 1 to 0.  
Publication Release Date: June 2000  
Revision A1  
- 19 -  
Preliminary W78LE516  
AC CHARACTERISTICS  
The AC specifications are a function of the particular process used to manufacture the part, the  
ratings of the I/O buffers, the capacitive load, and the internal routing capacitance. Most of the  
CP  
specifications can be expressed in terms of multiple input clock periods (T ), and actual parts will  
±
usually experience less than a 20 nS variation. The numbers below represent the performance  
expected from a 0.6 micron CMOS process when using 2 and 4 mA output buffers.  
Clock Input Waveform  
XTAL1  
TCH  
TCL  
FOP,  
TCP  
PARAMETER  
Operating Speed  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
MHz  
nS  
NOTES  
OP  
F
0
-
-
-
-
24  
-
1
2
3
3
CP  
T
Clock Period  
Clock High  
Clock Low  
25  
10  
10  
CH  
T
-
nS  
CL  
T
-
nS  
Notes:  
1. The clock may be stopped indefinitely in either state.  
2. The TCP specification is used as a reference in other specifications.  
3. There are no duty cycle requirements on the XTAL1 input.  
Program Fetch Cycle  
PARAMETER  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
nS  
NOTES  
AAS  
T
Address Valid to ALE Low  
Address Hold from ALE Low  
-
-
-
-
-
-
4
1, 4  
4
CP  
1 T  
D
D
D
-
-
-
AAH  
T
CP  
nS  
1 T  
1 T  
APL  
T
nS  
CP  
PSEN  
ALE Low to  
Low  
PDA  
CP  
T
-
-
2 T  
nS  
nS  
nS  
nS  
nS  
2
3
PSEN  
Low to Data Valid  
PDH  
CP  
1 T  
T
0
-
PSEN  
PSEN  
Data Hold after  
Data Float after  
High  
High  
PDZ  
T
CP  
1 T  
0
-
ALW  
CP  
ALE Pulse Width  
PSEN  
T
2 T  
3 T  
-
-
4
4
CP  
D
2 T  
-
PSW  
CP  
T
CP  
3 T -D  
Pulse Width  
Notes:  
1. P0.0 P0.7, P2.0 P2.7 remain stable throughout entire memory cycle.  
-
-
2. Memory access time is 3 TCP.  
3. Data have been latched internally prior to  
going high.  
PSEN  
4. " " (due to buffer driving delay and wire loading) is 20 nS.  
D
- 20 -  
Preliminary W78LE516  
Data Read Cycle  
PARAMETER  
RD  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
nS  
NOTES  
1, 2  
DAR  
T
-
-
-
-
CP  
3 T  
CP+  
D
D
D
-
3 T  
ALE Low to  
Low  
DDA  
T
CP  
CP  
CP  
-
4 T  
nS  
1
RD  
Low to Data Valid  
DDH  
T
0
2 T  
2 T  
-
nS  
RD  
RD  
Data Hold from  
Data Float from  
High  
High  
DDZ  
T
0
nS  
DRD  
T
CP  
6 T  
nS  
2
CP  
6 T  
-
RD  
Pulse Width  
Notes:  
1. Data memory access time is 8 TCP.  
2. " " (due to buffer driving delay and wire loading) is 20 nS.  
D
Data Write Cycle  
PARAMETER  
WR  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
nS  
DAW  
T
-
-
-
CP  
CP  
D
+
D
D
D
D
3 T  
-
3 T  
ALE Low to  
Low  
WR  
DAD  
T
-
-
-
nS  
CP  
1 T  
1 T  
6 T  
-
Data Valid to  
Low  
WR  
DWD  
T
CP  
nS  
-
Data Hold from  
High  
DWR  
T
CP  
CP  
6 T  
nS  
-
WR  
Pulse Width  
Note: " " (due to buffer driving delay and wire loading) is 20 nS.  
D
Port Access Cycle  
PARAMETER  
Port Input Setup to ALE Low  
Port Input Hold from ALE Low  
Port Output to ALE  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
nS  
PDS  
T
1 TCP  
0
-
-
-
-
-
-
PDH  
T
nS  
PDA  
T
1 TCP  
nS  
Note: Ports are read during S5P2, and output data becomes available at the end of S6P2. The timing data are referenced to  
ALE, since it provides a convenient reference.  
Publication Release Date: June 2000  
- 21 -  
Revision A1  
Preliminary W78LE516  
TIMING WAVEFORMS  
Program Fetch Cycle  
S1  
S2  
S3  
S4  
S5  
S6  
S1  
S2  
S3  
S4  
S5  
S6  
XTAL1  
ALE  
T
ALW  
T
APL  
PSEN  
T
PSW  
T
AAS  
PORT 2  
PORT 0  
T
PDA  
T
AAH  
T
T
PDH, PDZ  
A0-A7  
A0-A7  
Code  
A0-A7  
Code  
Data  
Data  
A0-A7  
Data Read Cycle  
S4  
S5  
S6  
S1  
S2  
S3  
S4  
S5  
S6  
S1  
S2  
S3  
XTAL1  
ALE  
PSEN  
PORT 2  
A8-A15  
DATA  
A0-A7  
PORT 0  
RD  
T
T
DDA  
DAR  
T
T
DDH, DDZ  
T
DRD  
- 22 -  
Preliminary W78LE516  
Timing Waveforms, continued  
Data Write Cycle  
S4  
S5  
S6  
S1  
S2  
S3  
S4  
S5  
S6  
S1  
S2  
S3  
XTAL1  
ALE  
PSEN  
A8-A15  
PORT 2  
PORT 0  
WR  
A0-A7  
DATA OUT  
T
DWD  
T
DAD  
T
T
DWR  
DAW  
Port Access Cycle  
S5  
S6  
S1  
XTAL1  
ALE  
T
PDS  
T
PDA  
T
PDH  
PORT  
DATA OUT  
INPUT  
SAMPLE  
Publication Release Date: June 2000  
Revision A1  
- 23 -  
Preliminary W78LE516  
TYPICAL APPLICATION CIRCUIT  
Expanded External Program Memory and Crystal  
V
DD  
AD0  
38 AD1  
37 AD2  
31  
19  
39  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
3
4
11  
12  
13  
15  
16  
17  
18  
19  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8 25  
A9 24  
A10 21  
A11 23  
2
5
6
9
A0  
A1  
A2  
A3  
10  
9
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
A0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
EA  
A1  
7
8
A2  
XTAL1  
AD3  
AD4  
AD5  
36  
35  
34  
8
13  
14  
7
10 u  
A3  
12 A4  
15 A5  
6
A4  
R
18  
9
5
XTAL2  
A5  
CRYSTAL  
33 AD6  
32 AD7  
A6  
A7  
AD6 17  
AD7 18  
16  
19  
4
A6  
3
A7  
8.2 K  
RST  
INT0  
A8  
GND  
1
21  
22  
23  
24  
25  
26  
27  
28  
A8  
A9  
OC  
G
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
A9  
C1  
C2  
11  
A10  
A11  
A12  
A13  
A14  
A15  
12  
13  
14  
15  
A10  
A11  
A12  
A13  
A14  
A15  
2
A12  
INT1  
T0  
T1  
74LS373  
A13 26  
A14 27  
A15  
1
1
2
3
4
5
6
7
8
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
20  
22  
GND  
CE  
OE  
RD  
17  
16  
29  
30  
11  
10  
WR  
27512  
PSEN  
ALE  
TXD  
RXD  
W78LE516  
Figure A  
CRYSTAL  
6 MHz  
C1  
C2  
R
-
47P  
47P  
30P  
10P  
16 MHz  
24 MHz  
30P  
15P  
-
-
Above table shows the reference values for crystal applications.  
Notes:  
1. C1, C2, R components refer to Figure A  
2. Crystal layout must get close to XTAL1 and XTAL2 pins on user's application board.  
- 24 -  
Preliminary W78LE516  
Tipical Application Circuit, continued  
Expanded External Data Memory and Oscillator  
V
DD  
V
DD  
31  
19  
10  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
3
4
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
39  
38  
37  
36  
35  
34  
33  
32  
2
5
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
11  
12  
13  
15  
16  
17  
18  
19  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
EA  
9
8
6
7
XTAL1  
8
13  
14  
9
7
OSCILLATOR  
10 u  
12  
15  
16  
19  
6
18  
9
5
XTAL2  
4
AD6 17  
AD7 18  
3
8.2 K  
25  
24  
21  
23  
2
RST  
INT0  
GND  
1
A8  
A9  
A10  
A11  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
21  
22  
23  
24  
OC  
G
11  
A10  
A11  
A12  
A13  
12  
A11  
A12  
A13  
A14  
13  
14  
15  
74LS373  
INT1  
T0  
T1  
26  
1
25 A12  
26  
27  
28  
A13  
A14  
A14  
CE  
1
GND 20  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
22  
27  
2
3
4
5
6
7
8
OE  
RD  
17  
16  
29  
30  
11  
10  
WR  
WR  
20256  
PSEN  
ALE  
TXD  
RXD  
W78LE516  
Figure B  
PACKAGE DIMENSIONS  
40-pin DIP  
Dimension in inch  
Dimension in mm  
Symbol  
A
Min. Nom. Max. Min. Nom. Max.  
5.334  
0.210  
0.010  
0.150 0.155 0.160  
0.254  
3.81  
1
A
3.937 4.064  
A
B
2
0.016 0.018  
0.406 0.457 0.559  
0.022  
0.054  
0.050  
1.219 1.27  
1.372  
0.356  
0.048  
0.008  
1
B
c
0.203  
0.010 0.014  
2.055 2.070  
0.254  
52.20  
15.24  
D
52.58  
D
E
E
e
L
a
40  
21  
15.494  
0.610  
0.590 0.600  
14.986  
13.72  
0.540  
13.84 13.97  
2.54 2.794  
0.545  
0.550  
0.110  
1
1
0.090 0.100  
2.286  
3.048  
0
0.120 0.130 0.140  
3.302 3.556  
15  
1
E
0
15  
0.630  
0.670 16.00  
0.090  
17.01  
2.286  
0.650  
16.51  
e
S
A
20  
1
Notes:  
E
1. Dimension D Max. & S include mold flash or  
tie bar burrs.  
S
c
2. Dimension E1 does not include interlead flash.  
3. Dimension D & E1 include mold mismatch and  
are determined at the mold parting line.  
4. Dimension B1 does not include dambar  
protrusion/intrusion.  
5. Controlling dimension: Inches.  
A2  
A
L
Base Plane  
1
A
.
Seating Plane  
B
e1  
eA  
a
B 1  
6. General appearance spec. should be based on  
final visual inspection spec.  
Publication Release Date: June 2000  
Revision A1  
- 25 -  
Preliminary W78LE516  
Package Dimensions, continued  
44-pin PLCC  
H D  
D
6
1
44  
40  
Dimension in inch  
Min. Nom. Max. Min. Nom. Max.  
Dimension in mm  
Symbol  
A
0.185  
7
39  
4.699  
0.020  
0.145  
0.508  
0.155 3.683  
A
A
b
1
2
1
0.150  
3.81  
0.711  
0.457  
3.937  
0.813  
0.559  
0.356  
0.026 0.028  
0.016 0.018  
0.032  
0.022  
0.66  
0.406  
b
c
H E  
GE  
E
0.008 0.010 0.014 0.203 0.254  
16.46 16.59 16.71  
16.59  
1.27 BSC  
0.648 0.653 0.658  
0.653  
BSC  
D
E
e
16.46  
16.71  
0.648  
0.050  
0.658  
0.590  
0.590  
0.680  
0.680  
0.090  
14.99 15.49 16.00  
14.99 15.49 16.00  
17.27 17.53 17.78  
17.27 17.53 17.78  
0.610 0.630  
0.610 0.630  
0.690 0.700  
0.690 0.700  
17  
29  
GD  
G
H
H
E
18  
28  
D
c
E
0.100  
2.54  
0.110 2.296  
0.004  
2.794  
0.10  
L
y
L
Notes:  
A2  
A
1. Dimension D & E do not include interlead  
flash.  
2. Dimension b1 does not include dambar  
protrusion/intrusion.  
q
e
b
A1  
3. Controlling dimension: Inches  
4. General appearance spec. should be based  
b 1  
Seating Plane  
y
G D  
on final visual inspection spec.  
44-pin PQFP  
H D  
D
Dimension in inch  
Dimension in mm  
Symbol  
A
Nom.  
---  
Nom.  
---  
Min.  
---  
Max. Min.  
Max.  
---  
34  
44  
---  
---  
0.002  
0.075  
0.01  
0.01  
0.02  
0.25  
2.05  
0.05  
1.90  
0.25  
0.5  
1
A
0.081 0.087  
2.20  
0.45  
A
b
c
2
33  
1
0.014  
0.006  
0.018  
0.010  
0.35  
0.101 0.152 0.254  
0.004  
0.390  
0.394 0.398  
0.394 0.398  
0.031 0.036  
10.00  
10.00  
0.80  
9.9  
9.9  
10.1  
10.1  
D
E
e
0.390  
0.025  
0.510  
E
HE  
0.952  
13.45  
13.45  
0.95  
0.635  
12.95  
0.520  
0.530  
13.2  
13.2  
0.8  
D
E
H
0.520  
0.510  
0.530 12.95  
H
L
L
y
11  
0.025 0.031  
0.65  
0.037  
0.051 0.063 0.075 1.295  
1.6  
1.905  
0.08  
7
1
0.003  
7
12  
22  
e
b
q
0
0
Notes:  
1. Dimension D & E do not include interlead  
flash.  
c
2. Dimension b does not include dambar  
protrusion/intrusion.  
A
A2  
3. Controlling dimension: Millimeter  
4. General appearance spec. should be based  
q
A1  
L
See Detail F  
y
Seating Plane  
on final visual inspection spec.  
L 1  
Detail F  
- 26 -  
Preliminary W78LE516  
Application Note: In-system Programming Software Examples  
This application note illustrates the in-system programmability of the Winbond W78LE516 MTP-ROM  
microcontroller. In this example, microcontroller will boot from 64 KB APROM bank and waiting for a  
key to enter in-system programming mode for re-programming the contents of 64 KB APROM. While  
entering in-system programming mode, microcontroller executes the loader program in 4KB LDROM  
bank. The loader program erases the 64 KB APROM then reads the new code data from external  
SRAM buffer (or through other interfaces) to update the 64KB APROM.  
EXAMPLE 1:  
;*******************************************************************************************************************  
;* Example of 64K APROM program: Program will scan the P1.0. if P1.0 = 0, enters in-system  
;* programming mode for updating the content of APROM code else executes the current ROM code.  
;* XTAL = 16 MHz  
;*******************************************************************************************************************  
.chip 8052  
.RAMCHK OFF  
.symbols  
CHPCON EQU  
CHPENR EQU  
BFH  
F6H  
C4H  
SFRAL  
SFRAH  
SFRFD  
SFRCN  
EQU  
EQU C5H  
EQU  
EQU  
C6H  
C7H  
ORG 0H  
LJMP 100H  
; JUMP TO MAIN PROGRAM  
;************************************************************************  
;* TIMER0 SERVICE VECTOR ORG = 000BH  
;************************************************************************  
ORG 00BH  
CLR  
TR0  
; TR0 = 0, STOP TIMER0  
MOV TL0,R6  
MOV TH0,R7  
RETI  
;************************************************************************  
;* 64K APROM MAIN PROGRAM  
;************************************************************************  
ORG 100H  
MAIN_64K:  
MOV A,P1  
; SCAN P1.0  
ANL A,#01H  
CJNE A,#01H,PROGRAM_64K ; IF P1.0 = 0, ENTER IN-SYSTEM PROGRAMMING MODE  
JMP NORMAL_MODE  
PROGRAM_64K:  
MOV CHPENR,#87H  
; CHPENR = 87H, CHPCON REGISTER WRTE ENABLE  
; CHPENR = 59H, CHPCON REGISTER WRITE ENABLE  
; CHPCON = 03H, ENTER IN-SYSTEM PROGRAMMING MODE  
; TR = 0 TIMER0 STOP  
MOV CHPENR,#59H  
MOV CHPCON,#03H  
MOV TCON,#00H  
MOV IP,#00H  
; IP = 00H  
Publication Release Date: June 2000  
- 27 -  
Revision A1  
Preliminary W78LE516  
MOV IE,#82H  
MOV R6,#FEH  
MOV R7,#FFH  
MOV TL0,R6  
; TIMER0 INTERRUPT ENABLE FOR WAKE-UP FROM IDLE MODE  
; TL0 = FEH  
; TH0 = FFH  
MOV TH0,R7  
MOV TMOD,#01H  
MOV TCON,#10H  
MOV PCON,#01H  
; TMOD = 01H, SET TIMER0 A 16-BIT TIMER  
; TCON = 10H, TR0 = 1,GO  
; ENTER IDLE MODE FOR LAUNCHING THE IN-SYSTEM  
; PROGRAMMING  
;********************************************************************************  
;* Normal mode 64KB APROM program: depending user's application  
;********************************************************************************  
NORMAL_MODE:  
.
; User's application program  
.
.
.
EXAMPLE 2:  
;*****************************************************************************************************************************  
;* Example of 4 KB LDROM program: This loader program will erase the 64KB APROM first, then reads the new  
;* code from external SRAM and program them into 64 KB APROM bank. XTAL = 16 MHz  
;*****************************************************************************************************************************  
.chip 8052  
.RAMCHK OFF  
.symbols  
CHPCON  
CHPENR  
SFRAL  
EQU  
EQU  
EQU  
BFH  
F6H  
C4H  
SFRAH  
SFRFD  
SFRCN  
EQU C5H  
EQU  
EQU  
C6H  
C7H  
ORG 000H  
LJMP 100H  
; JUMP TO MAIN PROGRAM  
;************************************************************************  
;* 1. TIMER0 SERVICE VECTOR ORG = 0BH  
;************************************************************************  
ORG 000BH  
CLR TR0  
MOV TL0,R6  
MOV TH0,R7  
RETI  
; TR0 = 0, STOP TIMER0  
;************************************************************************  
;* 4KB LDROM MAIN PROGRAM  
;************************************************************************  
ORG 100H  
- 28 -  
Preliminary W78LE516  
MAIN_4K:  
MOV CHPENR,#87H ; CHPENR = 87H, CHPCON WRITE ENABLE.  
MOV CHPENR,#59H ; CHPENR = 59H, CHPCON WRITE ENABLE.  
MOV A,CHPCON  
ANL A,#80H  
CJNE A,#80H,UPDATE_64K ; CHECK F04KBOOT MODE ?  
MOV CHPCON,#03H ; CHPCON = 03H, ENABLE IN-SYSTEM PROGRAMMING.  
MOV CHPENR,#00H ; DISABLE CHPCON WRITE ATTRIBUTE  
MOV TCON,#00H  
MOV TMOD,#01H  
MOV IP,#00H  
; TCON = 00H, TR = 0 TIMER0 STOP  
; TMOD = 01H, SET TIMER0 A 16BIT TIMER  
; IP = 00H  
MOV IE,#82H  
; IE = 82H, TIMER0 INTERRUPT ENABLED  
MOV R6,#FEH  
MOV R7,#FFH  
MOV TL0,R6  
MOV TH0,R7  
MOV TCON,#10H  
MOV PCON,#01H  
; TCON = 10H, TR0 = 1, GO  
; ENTER IDLE MODE  
UPDATE_64K:  
MOV CHPENR,#00H ; DISABLE CHPCON WRITE-ATTRIBUTE  
MOV TCON,#00H  
MOV IP,#00H  
; TCON = 00H , TR = 0 TIM0 STOP  
; IP = 00H  
MOV IE,#82H  
MOV TMOD,#01H  
MOV R6,#E0H  
; IE = 82H, TIMER0 INTERRUPT ENABLED  
; TMOD = 01H, MODE1  
; SET WAKE-UP TIME FOR ERASE OPERATION, ABOUT 15 mS.  
DEPENDING  
; ON USER'S SYSTEM CLOCK RATE.  
MOV R7,#B1H  
MOV TL0,R6  
MOV TH0,R7  
ERASE_P_4K:  
MOV SFRCN,#22H  
MOV TCON,#10H  
MOV PCON,#01H  
; SFRCN(C7H) = 22H ERASE 64K  
; TCON = 10H, TR0 = 1,GO  
; ENTER IDLE MODE (FOR ERASE OPERATION)  
;*********************************************************************  
;* BLANK CHECK  
;*********************************************************************  
MOV SFRCN,#0H  
MOV SFRAH,#0H  
MOV SFRAL,#0H  
MOV R6,#FEH  
MOV R7,#FFH  
MOV TL0,R6  
; READ 64KB APROM MODE  
; START ADDRESS = 0H  
; SET TIMER FOR READ OPERATION, ABOUT 1.5 mS.  
MOV TH0,R7  
BLANK_CHECK_LOOP:  
SETB TR0  
; ENABLE TIMER 0  
MOV PCON,#01H  
; ENTER IDLE MODE  
Publication Release Date: June 2000  
Revision A1  
- 29 -  
Preliminary W78LE516  
MOV A,SFRFD  
; READ ONE BYTE  
CJNE A,#FFH,BLANK_CHECK_ERROR  
INC SFRAL  
; NEXT ADDRESS  
MOV A,SFRAL  
JNZ BLANK_CHECK_LOOP  
INC SFRAH  
MOV A,SFRAH  
CJNE A,#0H,BLANK_CHECK_LOOP ; END ADDRESS = FFFFH  
JMP PROGRAM_64KROM  
BLANK_CHECK_ERROR:  
MOV P1,#F0H  
MOV P3,#F0H  
JMP $  
;*******************************************************************************  
;* RE-PROGRAMMING 64KB APROM BANK  
;*******************************************************************************  
PROGRAM_64KROM:  
MOV DPTR,#0H  
MOV R2,#00H  
MOV R1,#00H  
MOV DPTR,#0H  
MOV SFRAH,R1  
MOV SFRCN,#21H  
MOV R6,#BEH  
MOV R7,#FFH  
MOV TL0,R6  
; THE ADDRESS OF NEW ROM CODE  
; TARGET LOW BYTE ADDRESS  
; TARGET HIGH BYTE ADDRESS  
; EXTERNAL SRAM BUFFER ADDRESS  
; SFRAH, TARGET HIGH ADDRESS  
; SFRCN(C7H) = 21 (PROGRAM 64K)  
; SET TIMER FOR PROGRAMMING, ABOUT 50 mS.  
MOV TH0,R7  
PROG_D_64K:  
MOV SFRAL,R2  
MOVX A,@DPTR  
; SFRAL(C4H) = LOW BYTE ADDRESS  
; READ DATA FROM EXTERNAL SRAM BUFFER. BY ACCORDING USER?  
; CIRCUIT, USER MUST MODIFY THIS INSTRUCTION TO FETCH CODE.  
; SFRFD(C6H) = DATA IN  
; TCON = 10H, TR0 = 1,GO  
; ENTER IDLE MODE (PRORGAMMING)  
MOV SFRFD,A  
MOV TCON,#10H  
MOV PCON,#01H  
INC DPTR  
INC R2  
CJNE R2,#0H,PROG_D_64K  
INC R1  
MOV SFRAH,R1  
CJNE R1,#0H,PROG_D_64K  
;*****************************************************************************  
; * VERIFY 64KB APROM BANK  
;*****************************************************************************  
MOV R4,#03H  
MOV R6,#FEH  
MOV R7,#FFH  
MOV TL0,R6  
MOV TH0,R7  
MOV DPTR,#0H  
MOV R2,#0H  
; ERROR COUNTER  
; SET TIMER FOR READ VERIFY, ABOUT 1.5 mS.  
; The start address of sample code  
; Target low byte address  
- 30 -  
Preliminary W78LE516  
MOV R1,#0H  
; Target high byte address  
MOV SFRAH,R1  
MOV SFRCN,#00H  
; SFRAH, Target high address  
; SFRCN = 00 (Read Flash code)  
READ_VERIFY_64K:  
MOV SFRAL,R2  
MOV TCON,#10H  
MOV PCON,#01H  
INC R2  
; SFRAL(C4H) = LOW ADDRESS  
; TCON = 10H, TR0 = 1,GO  
MOVX A,@DPTR  
INC DPTR  
CJNE A,SFRFD,ERROR_64K  
CJNE R2,#0H,READ_VERIFY_64K  
INC R1  
MOV SFRAH,R1  
CJNE R1,#0H,READ_VERIFY_64K  
;******************************************************************************  
;* PROGRAMMING COMPLETLY, SOFTWARE RESET CPU  
;******************************************************************************  
MOV CHPENR,#87H  
MOV CHPENR,#59H  
MOV CHPCON,#83H  
; CHPENR = 87H  
; CHPENR = 59H  
; CHPCON = 83H, SOFTWARE RESET.  
ERROR_64K:  
DJNZ R4,UPDATE_64K ; IF ERROR OCCURS, REPEAT 3 TIMES.  
; IN-SYSTEM PROGRAMMING FAIL, USER'S PROCESS TO DEAL WITH IT.  
.
.
.
.
Winbond Electronics (H.K.) Ltd.  
Winbond Electronics North America Corp.  
Winbond Memory Lab.  
Winbond Microelectronics Corp.  
Winbond Systems Lab.  
Headquarters  
Unit 9 -15, 22F, Millennium City,  
No. 378 Kwun Tong Rd;  
Kowloon, Hong Kong  
TEL: 852 -27513100  
No. 4, Creation Rd. III,  
Science -Based Industrial Park,  
Hsinchu, Taiwan  
TEL: 886 -3-5770066  
FAX: 886 -3-5792766  
2727 N. First Street, San Jose,  
FAX: 852 -27552064  
CA 95134, U.S.A.  
http://www.winbond.com.tw/  
TEL: 408 -9436666  
FAX: 408 -5441798  
Voice & Fax -on-demand: 886 -2-27197006  
Taipei Office  
11F, No. 115, Sec. 3, Min -Sheng East Rd.,  
Taipei, Taiwan  
TEL: 886 -2-27190505  
FAX: 886 -2-27197502  
Note: All data and specifications are subject to change withou t notice.  
Publication Release Date: June 2000  
Revision A1  
- 31 -  

相关型号:

W78LE516_06

8-BIT MICROCONTROLLER
WINBOND

W78LE51C

8-BIT MICROCONTROLLER
WINBOND

W78LE51C-24

Microcontroller, 8-Bit, FLASH, 8051 CPU, 20MHz, CMOS, PDIP40, DIP-40
WINBOND

W78LE51CF-24

Microcontroller, 8-Bit, FLASH, 8051 CPU, 20MHz, CMOS, PQFP44, PLASTIC, QFP-44
WINBOND

W78LE51CP-24

Microcontroller, 8-Bit, FLASH, 8051 CPU, 20MHz, CMOS, PQCC44, PLASTIC, LCC-44
WINBOND

W78LE51F-24

8-BIT MTP MICROCONTROLLER
WINBOND

W78LE51P-24

8-BIT MTP MICROCONTROLLER
WINBOND

W78LE51_06

8-BIT MICROCONTROLLER
WINBOND

W78LE52

8-BIT MTP MICROCONTROLLER
WINBOND

W78LE52-24

8-BIT MTP MICROCONTROLLER
WINBOND

W78LE52C

8-BIT MICROCONTROLLER
WINBOND

W78LE52C-24

Microcontroller, 8-Bit, FLASH, 8051 CPU, 20MHz, CMOS, PDIP40, DIP-40
WINBOND