WM2610CDT [WOLFSON]

Octal 12-bit, Serial Input, Voltage Output DAC with Power Down; 八通道12位,串行输入,电压输出DAC,具有掉电
WM2610CDT
型号: WM2610CDT
厂家: WOLFSON MICROELECTRONICS PLC    WOLFSON MICROELECTRONICS PLC
描述:

Octal 12-bit, Serial Input, Voltage Output DAC with Power Down
八通道12位,串行输入,电压输出DAC,具有掉电

文件: 总13页 (文件大小:161K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WM2610  
Octal 12-bit, Serial Input, Voltage Output DAC  
with Power Down  
Production Data, February 2001, Rev 1.0  
FEATURES  
DESCRIPTION  
Eight 12-bit DACs in one package  
Dual supply 2.7V to 5.5V operation  
DNL ±0.5 LSBs, INL ±2.0 LSBs typical  
Programmable settling time / power  
(1.0µs typ. in fast mode)  
Microcontroller compatible Serial Interface  
Power Down Mode ( < 0.1µA)  
Monotonic over Temperature  
The WM2610 is an octal, 12-bit, resistor string digital-to-  
analogue converter. The eight individual DACs contained in the  
IC can be switched in pairs between fast and slow (low power)  
operation modes, or powered down, under software control.  
Alternatively, the whole device can be powered down, reducing  
current consumption to less than 0.1µA.  
The DAC outputs are buffered by a rail-to-rail amplifier with a  
gain of two, which is configurable as Class A (fast mode) or  
Class AB (for low-power mode).  
Data Output for Daisy Chaining  
The WM2610 has been designed to interface directly to industry  
standard microprocessors and DSPs, and can operate on two  
separate analogue and digital power supplies. It is programmed  
with a 16-bit serial word comprising 4 address bits and up to 12  
DAC or control register data bits. All eight DACs can be  
simultaneously forced to a preset value using a preset input pin.  
APPLICATIONS  
Battery powered test instruments  
Digital offset and gain adjustment  
Battery operated / remote industrial controls  
Programmable Loop Controllers  
CNC Machine Tools  
Machine and motion control devices  
Wireless telephone and communication systems  
Robotics  
A daisy-chain data output makes it possible to control several of  
Wolfson’s octal DACs from the same interface, without  
increasing the number of control lines.  
The device is available in  
a 20-pin TSSOP package.  
Commercial temperature (0° to 70°C) and Industrial  
temperature (-40° to 85°C) variants are supported.  
ORDERING INFORMATION  
DEVICE  
TEMP. RANGE  
0° to 70°C  
PACKAGE  
20-pin TSSOP  
20-pin TSSOP  
WM2610CDT  
WM2610IDT  
-40° to 85°C  
BLOCK DIAGRAM  
TYPICAL PERFORMANCE  
REF  
(16)  
AVDD  
(11)  
DVDD  
(20)  
1
0.75  
0.5  
DAC A  
DIN (2)  
SCLK (3)  
FS (4)  
RESISTOR  
STRING  
0.25  
0
(12) OUT A  
SERIAL  
INTERFACE  
AND  
CONTROL  
LOGIC  
LATCH  
MODE (17)  
PREB (5)  
DOUT (19)  
POWER/SPEED  
CONTROL  
-0.25  
-0.5  
-0.75  
-1  
VREF/2  
DACs B, C, D, E, F, G, H  
as DAC A  
(6-9, 13-15)  
OUT B to H  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
LOADB  
(18)  
AGND  
(10)  
DGND  
(1)  
DIGITAL CODE  
WOLFSON MICROELECTRONICS LTD  
Bernard Terrace, Edinburgh, EH8 9NX, UK  
Tel: +44 (0) 131 667 9386  
Production Data datasheets contain final  
specifications current on publication date.  
Supply of products conforms to Wolfson  
Microelectronics’ Terms and Conditions.  
Fax: +44 (0) 131 667 5176  
Email: sales@wolfson.co.uk  
www.wolfsonmicro.co.uk  
2001 Wolfson Microelectronics Ltd.  
WM2610  
Production Data  
PIN CONFIGURATION  
DGND  
DIN  
1
2
3
4
5
6
7
8
20  
19  
18  
17  
16  
15  
14  
13  
DVDD  
DOUT  
LOADB  
MODE  
REF  
SCLK  
FS  
PREB  
OUTE  
OUTF  
OUTG  
OUTD  
OUTC  
OUTB  
OUTH  
AGND  
9
12  
11  
OUTA  
AVDD  
10  
PIN DESCRIPTION  
PIN NO  
1
NAME  
DGND  
DIN  
TYPE  
DESCRIPTION  
Supply  
Digital Ground  
2
Digital input  
Digital input  
Digital input  
Digital input  
Digital serial data input  
Serial clock input  
Frame sync input  
Preset input  
3
SCLK  
FS  
4
5
PREB  
OUTE  
OUTF  
OUTG  
OUTH  
AGND  
AVDD  
OUTA  
OUTB  
OUTC  
OUTD  
REF  
6
Analogue output DAC Output E  
Analogue output DAC Output F  
Analogue output DAC Output G  
Analogue output DAC Output H  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Supply  
Supply  
Analogue Ground  
Analogue positive power supply  
Analogue output DAC Output A  
Analogue output DAC Output B  
Analogue output DAC Output C  
Analogue output DAC Output D  
Analogue I/O  
Digital input  
Digital input  
Digital output  
Supply  
Voltage reference input / output  
MODE  
LOADB  
DOUT  
DVDD  
Input mode  
Load DAC  
Data serial data output  
Digital positive power supply  
WOLFSON MICROELECTRONICS LTD  
PD Rev 1.0 February 2001  
2
Production Data  
WM2610  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at  
or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical  
Characteristics at the test conditions specified.  
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to  
damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of  
this device.  
CONDITION  
MIN  
MAX  
7V  
Digital supply voltages, AVDD or DVDD to GND  
Reference voltage  
-0.3V  
-0.3V  
AVDD + 0.3V  
DVDD + 0.3V  
Digital input voltage range to GND  
Operating temperature range, TA  
WM2610CDT  
WM2610IDT  
0°C  
70°C  
85°C  
-40°C  
-65°C  
Storage temperature  
150°C  
Soldering temperature, 1.6mm (1/16 inch) from package body for 10  
seconds  
260°C  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Supply voltage  
AVDD,  
DVDD  
VIH  
2.7  
2
5.5  
V
High-level digital input voltage  
Low-level digital input voltage  
Reference voltage to REF  
V
V
VIL  
0.8  
VREF  
AVDD = 5V  
AVDD = 3V  
GND  
GND  
2
4.096  
2.048  
AVDD  
AVDD  
V
Output Load Resistance  
Load capacitance  
RL  
CL  
TA  
kΩ  
pF  
°C  
°C  
100  
70  
Operating free-air temperature  
WM2610CDT  
0
WM2610IDT  
-40  
85  
WOLFSON MICROELECTRONICS LTD  
PD Rev 1.0 February 2001  
3
WM2610  
Production Data  
ELECTRICAL CHARACTERISTICS  
Test Characteristics:  
Over recommended operating conditions (unless noted otherwise).  
TEST  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
Static DAC Specifications  
Resolution  
12  
±2  
bits  
LSB  
Integral non-linearity  
Differential non-linearity  
Zero code error  
INL  
DNL  
ZCE  
GE  
Code 40 to 4095 (see Note 1)  
Code 40 to 4095 (see Note 2)  
See Note 3  
±6  
±1  
±0.5  
LSB  
±30  
±0.6  
mV  
Gain error  
See Note 4  
% FSR  
dB  
DC power supply rejection ratio  
PSRR  
See Note 5  
-60  
30  
Zero code error temperature  
coefficient  
See Note 6  
µV/°C  
Gain error temperature coefficient  
DAC Output Specifications  
Output voltage range  
See Note 6  
10  
ppm/°C  
10kLoad  
0
AVDD-0.4  
±0.3  
V
Output load regulation  
2kto 10kload  
% Full  
Scale  
See Note 7  
Power Supplies  
Active supply current  
IDD  
No load, VIH=DVDD, VIL=0V  
AVDD = DVDD = 5V,  
V
REF = 2.048V  
Slow  
6
8
mA  
mA  
Fast  
16  
21  
See Note 8  
Power down supply current  
No load, all inputs 0V  
or DVDD  
0.1  
µA  
Dynamic DAC Specifications  
Slew rate  
DAC code 10%-90%  
Load = 10k, 100pF  
Fast  
4
1
10  
3
V/µs  
V/µs  
Slow  
See Note 9  
Settling time  
DAC code 10%-90%  
Load = 10k, 100pF  
Fast  
1
3
3
7
µs  
µs  
Slow  
See Note 10  
Code 2047 to code 2048  
Glitch energy  
4
nV-s  
dB  
Channel Crosstalk  
10kHz sine wave, 4V pk-pk  
-90  
Reference Input  
Reference input resistance  
Reference input capacitance  
Reference feedthrough  
RREF  
CREF  
100  
5
kΩ  
pF  
dB  
V
REF=2VPP at 1kHz  
-84  
+ 2.048V DC, DAC code 0  
Reference input bandwidth  
V
REF= 0.4VPP + 2.048V DC,  
DAC code 2048  
Slow  
1.9  
2.2  
MHz  
MHz  
Fast  
Digital Inputs  
WOLFSON MICROELECTRONICS LTD  
PD Rev 1.0 February 2001  
4
Production Data  
WM2610  
Test Characteristics:  
Over recommended operating conditions (unless noted otherwise).  
TEST  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
High level input current  
Low level input current  
Input capacitance  
IIH  
IIL  
CI  
Input voltage = DVDD  
1
µA  
µA  
pF  
Input voltage = 0V  
-1  
8
Digital Output  
High level digital output voltage  
Low level digital output voltage  
Output voltage rise time  
VOH  
VOL  
Load = 10kΩ  
Load = 10kΩ  
2.6  
V
V
0.4  
20  
Load = 10k, 20pF, includes  
7
ns  
propagation delay  
Notes:  
1. Integral non-linearity (INL) is the maximum deviation of the output from the line between zero and full scale excluding  
the effects of zero code and full scale errors).  
2. Differential non-linearity (DNL) is the difference between the measured and ideal 1LSB amplitude change  
of any adjacent two codes. A guarantee of monotonicity means the output voltage changes in the same  
direction (or remains constant) as a change in digital input code.  
3. Zero code error is the voltage output when the DAC input code is zero.  
4. Gain error is the deviation from the ideal full-scale output excluding the effects of zero code error.  
5. Power supply rejection ratio is measured by varying AVDD from 4.5V to 5.5V and measuring the  
proportion of this signal imposed on the zero code error and the gain error.  
6. Zero code error and Gain error temperature coefficients are normalised to full-scale voltage.  
7. Output load regulation is the difference between the output voltage at full scale with a 10kload and 2kΩ  
load. It is expressed as a percentage of the full scale output voltage with a 10kload.  
8.  
I
DD is measured while continuously writing code 2048 to the DAC. For VIH < DVDD - 0.7V and VIL > 0.7V  
supply current will increase.  
9. Slew rate results are for the lower value of the rising and falling edge slew rates.  
10. Settling time is the time taken for the signal to settle to within 0.5LSB of the final measured value for both rising and  
falling edges. Limits are ensured by design and characterisation, but are not production tested.  
WOLFSON MICROELECTRONICS LTD  
PD Rev 1.0 February 2001  
5
WM2610  
Production Data  
SERIAL INTERFACE  
tWL tWH  
3
SCLK  
X
tSUD  
X
1
2
4
16  
X
tHD  
DIN  
D15  
D15 *  
D14  
D14 *  
D13  
D1  
D0  
D0 *  
X
X
2
DOUT  
X
D13 *  
D12 *  
D1 *  
tWHFS tSUFSCLK  
tSUC16-FS  
* DIN data from previous word  
(delayed by 16 clock cycles)  
FS  
(
µ
C MODE)  
tWLFS  
FS  
No high to low transitions  
(DSP MODE)  
Figure 1 Timing Diagram  
SYMBOL  
TEST  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
tSUFSCLK  
tC16-FS  
Setup time, FS pin low before first falling edge of SCLK  
8
ns  
ns  
Setup time, 16th falling clock edge after FS low to rising edge of FS  
(only used in microcontroller mode)  
10  
tWLOADB  
tWH  
Pulse duration, LOADB low  
10  
16  
16  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Pulse duration, SCLK high  
tWL  
Pulse duration, SCLK low  
tSUD  
tHD  
Setup time, data ready before SCLK falling edge  
Hold time, data held valid after SCLK falling edge  
Pulse duration, FS high  
5
tWHFS  
tWLFS  
ts  
10  
10  
Pulse duration, FS low  
DAC Output settling time  
see Dynamic DAC Specifications  
WOLFSON MICROELECTRONICS LTD  
PD Rev 1.0 February 2001  
6
Production Data  
WM2610  
TYPICAL PERFORMANCE GRAPHS  
4
3
2
1
0
-1  
-2  
-3  
-4  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
DIGITAL CODE  
Figure 2 Integral Non-Linearity  
1
0.8  
0.6  
0.4  
0.2  
0
1
VDD = 3V  
VREF = 1.024V  
VDD = 5V  
Slow  
Fast  
Slow  
Fast  
VREF = 2.048V  
Input Code = 0  
0.8  
Input Code = 0  
0.6  
0.4  
0.2  
0
0
0.5  
1
1.5  
2
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
Sink Current (mA)  
Sink Current (mA)  
Figure 3 Output Load Regulation (Sink) AVDD = 3V  
Figure 4 Output Load Regulation (Sink) AVDD = 5V  
2.1  
4.15  
VDD=3V  
VREF=1.024V  
VDD=5V  
VREF=2.048V  
Slow  
Slow  
Fast  
Input Code = 4095  
Fast  
Input Code = 4095  
2.08  
2.06  
2.04  
2.02  
2
4.13  
4.11  
4.09  
4.07  
4.05  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-3.5  
-4  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-3.5  
-4  
Sourcing Current (mA)  
Sourcing Current (mA)  
Figure 5 Output Load Regulation (Source) AVDD = 3V  
WOLFSON MICROELECTRONICS LTD  
Figure 6 Output Load Regulation (Source) AVDD = 5V  
PD Rev 1.0 February 2001  
7
WM2610  
Production Data  
DEVICE DESCRIPTION  
GENERAL FUNCTION  
The WM2610 is an octal 12-bit, voltage output DAC. It contains a serial interface, control logic for  
speed and power down, a programmable voltage reference, and eight digital to analogue converters.  
Each converter uses a resistor string network buffered with an op amp to convert 12-bit digital data to  
analogue voltage levels (see Block Diagram). The output voltage is determined by the reference  
input voltage and the input code according to the following relationship:  
CODE  
Output voltage = V  
×
REF  
4096  
INPUT  
OUTPUT  
4095  
1111  
1111  
1111  
V
V
×
REF  
4096  
:
:
1000  
1000  
0000  
0001  
2049  
4096  
×
REF  
0000  
1111  
0000  
1111  
V
2048  
4096  
REF  
V
×
=
REF  
2
0111  
2047  
4096  
V
×
REF  
:
:
0000  
0000  
0000  
0001  
0000  
V
REF  
4096  
0V  
0000  
Table 1 Binary Code Table  
POWER ON RESET  
An internal power-on-reset circuit resets the DAC register to all 0s on power-up.  
BUFFER AMPLIFIER  
The output buffer has a near rail-to-rail output with short circuit protection and can reliably drive a  
2kload with a 100pF load capacitance.  
WOLFSON MICROELECTRONICS LTD  
PD Rev 1.0 February 2001  
8
Production Data  
WM2610  
SERIAL INTERFACE  
INTERFACE MODES  
The control interface can operate in two different modes:  
In the microcontroller mode, FS needs to be held low until all 16 data bits have been  
transferred. If FS is driven high before the 16th falling clock edge, the data transfer is cancelled.  
The DAC is updated after a rising edge on FS.  
In DSP mode, FS only needs to stay low for 20ns, and can go high before the 16th falling clock  
edge.  
SCLK  
FS  
DIN  
X
D15 D14  
D1  
D0  
X
E15 E14  
E1  
E0  
X
X
F15 F14  
Figure 7 Interface Timing in Microcontroller Mode  
SCLK  
FS  
DIN  
X
D15 D14  
D1  
D0 E15 E14  
E1  
E0  
X
X
X
F15 F14  
Figure 8 Interface Timing in DSP Mode  
The operating mode is selected using pin 17 (MODE).  
MODE PIN (17)  
HIGH  
INTERFACE MODE  
Microcontroller  
DSP mode  
LOW or unconnected  
Table 2 Interface Mode Selection  
SERIAL CLOCK AND UPDATE RATE  
Figure 1 shows the interface timing. The maximum serial clock rate is:  
1
fSCLK max  
=
= 31MHz  
tWH min + tWLmin  
Since a data word contains 16 bits, the sample rate is limited to  
1
fs max  
=
=1.95MHz  
16(  
tWH min + tWL min  
)
However, the DAC settling time to 12 bits accuracy limits the response time of the analogue output  
for large input step transitions.  
WOLFSON MICROELECTRONICS LTD  
PD Rev 1.0 February 2001  
9
WM2610  
Production Data  
DAISY CHAINING MULTIPLE DEVICES  
The DOUT output (pin 19) provides the data sampled on DIN with a delay of 16 clock cycles. This  
signal can be used to control another WM2610 or similar device in a daisy-chain type circuit.  
OCTAL DAC #1  
OCTAL DAC #2  
OCTAL DAC #3  
Figure 9 Daisy Chaining  
SOFTWARE CONFIGURATION OPTIONS  
DATA FORMAT  
The WM2610 is controlled with a 16-bit code consisting of four address bits, A0-A3, and 12 data bits.  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
A3  
A2  
A1  
A0  
Data  
Table 3 Input Data Format  
Using the four address bits, 16 different registers can be addressed.  
A3  
A2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
A1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
REGISTER  
DAC A Code  
0
0
DAC B Code  
0
DAC C Code  
0
DAC D Code  
0
DAC E Code  
0
DAC F Code  
0
DAC G Code  
0
DAC H Code  
1
Control Register 0  
Control Register 1  
Preset all DACs  
RESERVED  
1
1
1
1
DAC A and complement B  
DAC C and complement D  
DAC E and complement F  
DAC G and complement H  
1
1
1
Table 4 Register Map  
WOLFSON MICROELECTRONICS LTD  
PD Rev 1.0 February 2001  
10  
Production Data  
WM2610  
DAC A TO H CODE REGISTERS  
Addresses 0 to 7 are the DAC registers. The data written to these registers is transferred to the  
respective DAC when the LOADB input (pin 18) is low. For instantaneous updating, LOADB can be  
held low permanently.  
CONTROL REGISTER 0  
Control register 0 (address 8) is used to select functions that apply to the whole IC, such as Power  
Down and Data Input Format.  
BIT  
D11  
X
D10  
X
D9 D8 D7 D6 D5  
D4  
PD  
0
D3  
DO  
0
D2  
X
D1  
X
D0  
IM  
0
Function  
Default  
X
X
X
X
X
X
X
X
X
X
X
X
0
0
Table 5 Register Map  
BIT  
DESCRIPTION  
0
1
PD  
Full device Power Down  
DOUT Enable  
Input Mode  
Normal  
Disabled  
Power Down  
Enabled  
DO  
IM  
Straight Binary  
Twos Complement  
X
Reserved  
Table 6 Register Map  
CONTROL REGISTER 1  
Control register 1 (address 9) is used to power down individual pairs of DACs and select their settling  
time. Powering down a pair of DACs disables their amplifiers and reduces the power consumption of  
the device. The settling time in fast mode is typically 1µs. In slow mode, the settling time is typically  
3µs and power consumption is reduced.  
BIT  
D11  
X
D10  
X
D9 D8 D7 D6 D5  
D4  
D3  
SGH  
0
D2  
SEF  
0
D1  
SCD  
0
D0  
SAB  
0
Function  
Default  
X
X
X
X
PGH PEF PCD PAB  
X
X
0
0
0
0
Table 7 Register Map  
BIT  
DESCRIPTION  
Power Down DACs X and Y  
Speed Setting for DACs X and Y  
0
1
PXY  
Normal  
Slow  
Power Down  
Fast  
SXY  
Table 8 Register Map  
DAC PRESET REGISTER  
The Preset register (address 10) makes it possible to update all eight DACs at the same time. The  
value stored in this register becomes the digital input to all the DACs when the asynchronous PREB  
input (pin 5) is driven low. If no data has previously been written to the preset register, all DACs are  
set to zero scale.  
TWO-CHANNEL REGISTERS  
The two-channel registers (addresses 12 to 15) provide a differential outputfunction where writing  
data to one DAC will automatically write the complement to the other DAC in the pair. For example,  
writing a hexadecimal value of FFFF to address 12 will set DAC A to full scale and DAC B to zero  
scale.  
WOLFSON MICROELECTRONICS LTD  
PD Rev 1.0 February 2001  
11  
WM2610  
Production Data  
APPLICATIONS INFORMATION  
LINEARITY, OFFSET, AND GAIN ERROR  
Amplifiers operating from a single supply can have positive or negative voltage offsets. With a  
positive offset, the output voltage changes on the first code transition. However, if the offset is  
negative, the output voltage may not change with the first code, depending on the magnitude of the  
offset voltage. This is because with the most negative supply rail being ground, any attempt to drive  
the output amplifier below ground will clamp the output at 0 V. The output voltage then remains at  
zero until the input code is sufficiently high to overcome the negative offset voltage, resulting in the  
transfer function shown in Figure 10.  
Output  
Voltage  
0 V  
Negative  
DAC code  
Offset  
Figure 10 Effect of Negative Offset  
This offset error, not the linearity error, produces the breakpoint. The transfer function would follow  
the dotted line if the output buffer could drive below the ground rail.  
DAC linearity is measured between zero-input code (all input bits at 0) and full-scale code (all inputs  
at 1), disregarding offset and full-scale errors. However, due to the breakpoint in the transfer function,  
single supply operation does not allow for adjustment when the offset is negative. In such cases, the  
linearity is therefore measured between full-scale and the lowest code that produces a positive (non-  
zero) output voltage.  
POWER SUPPLY DECOUPLING AND GROUNDING  
Printed circuit boards with separate analogue and digital ground planes deliver the best system  
performance. The two ground planes should be connected together at the low impedance power  
supply source. Ground currents should be managed so as to minimise voltage drops across the  
ground planes.  
A 0.1µF decoupling capacitor should be connected between the positive supply and ground pins of  
the DAC, with short leads as close as possible to the device. Use of ferrite beads may further isolate  
the system analogue supply from the digital supply.  
WOLFSON MICROELECTRONICS LTD  
PD Rev 1.0 February 2001  
12  
Production Data  
WM2610  
PACKAGE DIMENSIONS  
DT: 20 PIN TSSOP (6.5 x 4.4 x 1.0 mm)  
DM008.D  
b
e
20  
11  
E1  
E
GAUGE  
PLANE  
θ
1
10  
D
0.25  
c
L
A1  
A
A2  
-C-  
0.1  
C
SEATING PLANE  
Dimensions  
(mm)  
NOM  
-----  
Symbols  
MIN  
-----  
MAX  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A
A1  
A2  
b
c
D
e
E
E1  
L
0.05  
0.80  
0.19  
0.09  
6.40  
-----  
1.00  
-----  
-----  
6.50  
0.65 BSC  
6.4 BSC  
4.40  
4.30  
0.45  
0o  
4.50  
0.75  
8o  
0.60  
-----  
θ
REF:  
JEDEC.95, MO-153  
NOTES:  
A. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS.  
B. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION, NOT TO EXCEED 0.25MM.  
D. MEETS JEDEC.95 MO-153, VARIATION = AC. REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.  
WOLFSON MICROELECTRONICS LTD  
PD Rev 1.0 February 2001  
13  

相关型号:

WM2610IDT

Octal 12-bit, Serial Input, Voltage Output DAC with Power Down
WOLFSON

WM2613

Byte-wide Parallel Input, 12-bit Voltage Output DAC
WOLFSON

WM2613CDT

Byte-wide Parallel Input, 12-bit Voltage Output DAC
WOLFSON

WM2613IDT

Byte-wide Parallel Input, 12-bit Voltage Output DAC
WOLFSON

WM2614

Quad 12-bit Serial Input Voltage Output DAC
WOLFSON

WM2614CDT

Quad 12-bit Serial Input Voltage Output DAC
WOLFSON

WM2614IDT

Quad 12-bit Serial Input Voltage Output DAC
WOLFSON

WM2616

12-bit Serial Input Voltage Output DAC
WOLFSON

WM2616CD

12-bit Serial Input Voltage Output DAC
WOLFSON

WM2616ID

12-bit Serial Input Voltage Output DAC
WOLFSON

WM2617

Dual 10-Bit Serial DAC with Power Down
WOLFSON

WM2617CD

Dual 10-Bit Serial DAC with Power Down
WOLFSON