WM8750CLSEFL [WOLFSON]

Stereo CODEC for Portable Audio Applications; 立体声编解码器用于便携式音频应用
WM8750CLSEFL
型号: WM8750CLSEFL
厂家: WOLFSON MICROELECTRONICS PLC    WOLFSON MICROELECTRONICS PLC
描述:

Stereo CODEC for Portable Audio Applications
立体声编解码器用于便携式音频应用

解码器 编解码器 便携式
文件: 总65页 (文件大小:733K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WM8750L  
w
Stereo CODEC for Portable Audio Applications  
DESCRIPTION  
FEATURES  
DAC SNR 98dB (‘A’ weighted), THD -84dB at 48kHz, 3.3V  
ADC SNR 95dB (‘A’ weighted), THD -82dB at 48kHz, 3.3V  
Complete Stereo / Mono Microphone Interface  
The WM8750L is a low power, high quality stereo CODEC  
designed for portable digital audio applications.  
The device integrates complete interfaces to stereo or mono  
microphones and a stereo headphone. External component  
requirements are drastically reduced as no separate  
microphone or headphone amplifiers are required.  
Advanced on-chip digital signal processing performs graphic  
equaliser, 3-D sound enhancement and automatic level  
control for the microphone or line input.  
-
Programmable ALC / Noise Gate  
On-chip 400mW BTL Speaker Driver (mono)  
On-chip Headphone Driver  
-
-
-
>40mW output power on 16/ 3.3V  
THD –80dB at 20mW, SNR 90dB with 16load  
No DC blocking capacitors required (capless mode)  
Separately mixed mono output  
Digital Graphic Equaliser  
Low Power  
The WM8750L can operate as a master or a slave, with  
various master clock frequencies including 12 or 24MHz for  
USB devices, or standard 256fs rates like 12.288MHz and  
24.576MHz. Different audio sample rates such as 96kHz,  
48kHz, 44.1kHz are generated directly from the master  
clock without the need for an external PLL.  
-
-
7mW stereo playback (1.8V / 1.5V supplies)  
14mW record & playback (1.8V / 1.5V supplies)  
Low Supply Voltages  
-
-
-
Analogue 1.8V to 3.6V  
Digital core: 1.42V to 3.6V  
Digital I/O: 1.8V to 3.6V  
The WM8750L operates at supply voltages down to 1.8V,  
although the digital core can operate at voltages down to  
1.42V to save power, and the maximum for all supplies is  
3.6 Volts. Different sections of the chip can also be powered  
down under software control.  
256fs / 384fs or USB master clock rates: 12MHz, 24MHz  
Audio sample rates: 8, 11.025, 16, 22.05, 24, 32, 44.1, 48,  
88.2, 96kHz generated internally from master clock  
5x5x0.9mm QFN package  
The WM8750L is supplied in a very small and thin 5x5mm  
QFN package, ideal for use in hand-held and portable  
systems.  
APPLICATIONS  
MP3 Player / Recorder  
AAC/WMA/Multi-Format Player / Recorder  
Minidisc Player / Recorder  
Portable Digital Music Systems  
BLOCK DIAGRAM  
DGND  
DCVDD  
DBVDD  
HPGND  
HPVDD  
LMIXSEL  
M
U
X
VREF  
ROUT1  
M
U
X
-1  
OUT3  
MONOOUT  
W
WM8750L  
LEFT  
MIXER  
LI2LO  
DC MEASUREMENT  
LD2LO  
RD2LO  
LINPUT1  
LINPUT2  
LINPUT3  
LOUT1  
M
U
X
PGA  
+ MIC  
BOOST  
LOUT1VOL  
MONOVOL  
ROUT1VOL  
RI2LO  
LI2MO  
DIGITAL  
ADC  
ADC  
DAC  
DAC  
FILTERS  
DIGITAL  
FILTERS  
MONO  
MIXER  
LINSEL  
LD2MO  
-6dB  
DIFF.  
INPUT  
L1-R1 OR  
L2-R2  
VOLUME  
MONOOUT  
(phone TX)  
ANALOGUE  
MONO MIX  
GRAPHIC  
DIGITAL  
EQUALISER  
MONO MIX  
RD2MO  
BASS  
RINSEL  
RI2MO  
LI2RO  
3D  
BOOST  
RINPUT3/  
HPDETECT  
RIGHT  
MIXER  
ENHANCE  
M
U
X
PGA  
+ MIC  
BOOST  
LD2RO  
RD2RO  
RINPUT2  
RINPUT1  
ROUT1  
DC MEASUREMENT  
RI2RO  
M
U
X
LOUT2  
ROUT2  
RMIXSEL  
L - (-R)  
= L+R  
LOUT2VOL  
ROUT2VOL  
ROUT2  
INV  
-1  
MICBIAS  
AUDIO  
INTERFACE  
CLOCK  
CIRCUITRY  
CONTROL  
INTERFACE  
50K  
50K  
Production Data, August 2012, Rev 4.4  
WOLFSON MICROELECTRONICS plc  
To receive regular email updates, sign up at http://www.wolfsonmicro.com/enews  
Copyright 2012 Wolfson Microelectronics plc  
WM8750L  
Production Data  
TABLE OF CONTENTS  
DESCRIPTION....................................................................................................... 1  
FEATURES............................................................................................................ 1  
APPLICATIONS..................................................................................................... 1  
BLOCK DIAGRAM ................................................................................................ 1  
TABLE OF CONTENTS......................................................................................... 2  
PIN CONFIGURATION.......................................................................................... 4  
ORDERING INFORMATION.................................................................................. 4  
PIN DESCRIPTION................................................................................................ 5  
ABSOLUTE MAXIMUM RATINGS........................................................................ 6  
RECOMMENDED OPERATION CONDITIONS..................................................... 6  
ELECTRICAL CHARACTERISTICS ..................................................................... 7  
OUTPUT PGA’S LINEARITY ........................................................................................... 9  
HEADPHONE OUTPUT THD VERSUS POWER .......................................................... 10  
SPEAKER THD AND NOISE VERSUS POWER........................................................... 11  
POWER CONSUMPTION.................................................................................... 12  
SIGNAL TIMING REQUIREMENTS .................................................................... 13  
SYSTEM CLOCK TIMING.............................................................................................. 13  
AUDIO INTERFACE TIMING – MASTER MODE .......................................................... 13  
AUDIO INTERFACE TIMING – SLAVE MODE.............................................................. 14  
CONTROL INTERFACE TIMING – 3-WIRE MODE....................................................... 15  
CONTROL INTERFACE TIMING – 2-WIRE MODE....................................................... 16  
INTERNAL POWER ON RESET CIRCUIT.......................................................... 17  
DEVICE DESCRIPTION ...................................................................................... 18  
INTRODUCTION............................................................................................................ 18  
INPUT SIGNAL PATH.................................................................................................... 18  
AUTOMATIC LEVEL CONTROL (ALC) ......................................................................... 25  
OUTPUT SIGNAL PATH................................................................................................ 29  
ANALOGUE OUTPUTS ................................................................................................. 34  
ENABLING THE OUTPUTS........................................................................................... 36  
HEADPHONE SWITCH.................................................................................................. 37  
THERMAL SHUTDOWN ................................................................................................ 38  
HEADPHONE OUTPUT................................................................................................. 38  
DIGITAL AUDIO INTERFACE........................................................................................ 40  
AUDIO INTERFACE CONTROL .................................................................................... 44  
CLOCKING AND SAMPLE RATES................................................................................ 47  
CONTROL INTERFACE................................................................................................. 49  
POWER SUPPLIES ....................................................................................................... 50  
POWER MANAGEMENT ............................................................................................... 51  
REGISTER MAP.................................................................................................. 54  
DIGITAL FILTER CHARACTERISTICS .............................................................. 55  
TERMINOLOGY............................................................................................................. 55  
DAC FILTER RESPONSES ........................................................................................... 56  
ADC FILTER RESPONSES ........................................................................................... 57  
DE-EMPHASIS FILTER RESPONSES.......................................................................... 58  
HIGHPASS FILTER ....................................................................................................... 59  
APPLICATIONS INFORMATION ........................................................................ 60  
RECOMMENDED EXTERNAL COMPONENTS............................................................ 60  
LINE INPUT CONFIGURATION..................................................................................... 61  
PD, Rev 4.4, August 2012  
w
2
Production Data  
WM8750L  
MICROPHONE INPUT CONFIGURATION.................................................................... 61  
MINIMISING POP NOISE AT THE ANALOGUE OUTPUTS.......................................... 62  
POWER MANAGEMENT EXAMPLES........................................................................... 62  
PACKAGE DIMENSIONS.................................................................................... 63  
IMPORTANT NOTICE ......................................................................................... 64  
ADDRESS......................................................................................................................64  
REVISION HISTORY ........................................................................................... 65  
PD, Rev 4.4, August 2012  
w
3
WM8750L  
Production Data  
PIN CONFIGURATION  
32 31 30 29 28 27 26 25  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
LINPUT3  
MCLK  
RINPUT3 /  
DCVDD  
HPDETECT  
MICBIAS  
VMID  
DBVDD  
DGND  
BCLK  
VREF  
DACDAT  
DACLRC  
AGND  
AVDD  
HPVDD  
ADCDAT  
9
10 11 12 13 14 15 16  
ORDERING INFORMATION  
ORDER CODE  
WM8750CLSEFL  
WM8750CLSEFL/R  
TEMPERATURE  
RANGE  
PACKAGE  
MOISTURE  
SENSITIVITY LEVEL  
PEAK SOLDERING  
TEMPERATURE  
-25C to +85C  
32-lead QFN (5x5x0.9mm)  
(Pb-free)  
MSL1  
260oC  
-25C to +85C  
32-lead QFN (5x5x0.9mm)  
(Pb-free, tape and reel)  
MSL1  
260oC  
Note:  
Reel quantity = 3500  
PD, Rev 4.4, August 2012  
4
w
Production Data  
WM8750L  
PIN DESCRIPTION  
PIN NO  
1
NAME  
MCLK  
TYPE  
Digital Input  
DESCRIPTION  
Master Clock  
Supply  
Digital Core Supply  
Digital Buffer (I/O) Supply  
2
DCVDD  
DBVDD  
DGND  
Supply  
3
Supply  
Digital Ground (return path for both DCVDD and DBVDD)  
Audio Interface Bit Clock  
4
Digital Input / Output  
Digital Input  
5
BCLK  
DAC Digital Audio Data  
6
DACDAT  
DACLRC  
ADCDAT  
ADCLRC  
MONOOUT  
OUT3  
Digital Input / Output  
Digital Output  
Digital Input / Output  
Analogue Output  
Analogue Output  
Analogue Output  
Analogue Output  
Supply  
Audio Interface Left / Right Clock/Clock Out  
ADC Digital Audio Data  
7
8
Audio Interface Left / Right Clock  
9
Mono Output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Analogue Output 3 (can be used as Headphone Pseudo Ground)  
Right Output 1 (Line or Headphone)  
Left Output 1 (Line or Headphone)  
ROUT1  
LOUT1  
HPGND  
ROUT2  
LOUT2  
HPVDD  
AVDD  
Supply for Analogue Output Drivers (LOUT1/2, ROUT1/2)  
Right Output 1 (Line or Headphone or Speaker)  
Left Output 1 (Line or Headphone or Speaker)  
Supply for Analogue Output Drivers (LOUT1/2, ROUT1/2, MONOUT)  
Analogue Supply  
Analogue Output  
Analogue Output  
Supply  
Supply  
Supply  
Analogue Ground (return path for AVDD)  
Reference Voltage Decoupling Capacitor  
Midrail Voltage Decoupling Capacitor  
Microphone Bias  
AGND  
Analogue Output  
Analogue Output  
Analogue Output  
Analogue Input  
VREF  
VMID  
MICBIAS  
Right Channel Input 3 or Headphone Plug-in Detection  
RINPUT3 /  
HPDETECT  
Analogue Input  
Analogue Input  
Analogue Input  
Analogue Input  
Analogue Input  
Digital Input  
Left Channel Input 3  
24  
25  
26  
27  
28  
29  
30  
LINPUT3  
RINPUT2  
LINPUT2  
RINPUT1  
LINPUT1  
MODE  
Right Channel Input 2  
Left Channel Input 2  
Right Channel Input 1  
Left Channel Input 1  
Control Interface Selection  
Chip Select / Device Address Selection  
Digital Input  
CSB  
Digital Input/Output  
Digital Input  
Control Interface Data Input / 2-wire Acknowledge output  
Control Interface Clock Input  
31  
32  
SDIN  
SCLK  
Note:  
It is recommended that the QFN ground paddle should be connected to analogue ground on the application PCB.  
PD, Rev 4.4, August 2012  
w
5
WM8750L  
Production Data  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously  
operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given  
under Electrical Characteristics at the test conditions specified.  
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible  
to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage  
of this device.  
Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage  
conditions prior to surface mount assembly. These levels are:  
MSL1 = unlimited floor life at <30C / 85% Relative Humidity. Not normally stored in moisture barrier bag.  
MSL2 = out of bag storage for 1 year at <30C / 60% Relative Humidity. Supplied in moisture barrier bag.  
MSL3 = out of bag storage for 168 hours at <30C / 60% Relative Humidity. Supplied in moisture barrier bag.  
The Moisture Sensitivity Level for each package type is specified in Ordering Information.  
CONDITION  
MIN  
-0.3V  
MAX  
+3.63V  
Supply voltages  
Voltage range digital inputs  
Voltage range analogue inputs  
DGND -0.3V  
AGND -0.3V  
-25C  
DBVDD +0.3V  
AVDD +0.3V  
+85C  
Operating temperature range, TA  
Storage temperature after soldering  
Notes:  
-65C  
+150C  
1. Analogue and digital grounds must always be within 0.3V of each other.  
2. All digital and analogue supplies are completely independent from each other.  
3. DCVDD must be less than or equal to AVDD and DBVDD.  
RECOMMENDED OPERATION CONDITIONS  
PARAMETER  
SYMBOL  
DCVDD  
MIN  
1.42  
1.7  
TYP  
MAX  
3.6  
UNIT  
Digital supply range (Core)  
Digital supply range (Buffer)  
Analogue supplies range  
Ground  
V
V
V
V
DBVDD  
3.6  
AVDD, HPVDD  
DGND,AGND, HPGND  
1.8  
3.6  
0
PD, Rev 4.4, August 2012  
6
w
Production Data  
WM8750L  
ELECTRICAL CHARACTERISTICS  
Test Conditions  
DCVDD = 1.5V, DBVDD = 3.3V, AVDD = HPVDD = 3.3V, TA = +25oC,  
1kHz signal, fs = 48kHz, PGA gain = 0dB, 24-bit audio data unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V rms  
k  
Analogue Inputs (LINPUT1, RINPUT1, LINPUT2, RINPUT2, LINPUT3, RINPUT3) to ADC out  
Full Scale Input Signal Level  
(for ADC 0dB Input at 0dB Gain)  
Input Resistance  
VINFS  
AVDD = 3.3V  
AVDD = 1.8V  
1.0  
0.545  
22  
L/RINPUT1 to ADC,  
PGA gain = 0dB  
L/RINPUT1 to ADC,  
PGA gain = +30dB  
1.5  
16  
L/RINPUT1 unused  
DC Measurement  
L/RINPUT1 unused  
17  
10  
Input Capacitance  
Signal to Noise Ratio  
(A-weighted)  
pF  
dB  
SNR  
THD  
AVDD = 3.3V  
AVDD = 1.8V  
-1dBFs input,  
AVDD = 3.3V  
-1dBFs input,  
AVDD = 1.8V  
1kHz signal  
80  
95  
90  
Total Harmonic Distortion  
-82  
0.008  
-74  
0.02  
85  
dB  
%
ADC Channel Separation  
Channel Matching  
dB  
dB  
1kHz signal  
0.2  
Analogue Outputs (LOUT1/2, ROUT1/2, MONOOUT)  
0dB Full scale output voltage  
AVDD/3.3  
Vrms  
dB  
Mute attenuation  
1kHz, full scale signal  
MONOOUT pin  
analogue in  
90  
81  
85  
Channel Separation  
dB  
to analogue out  
DAC to Line-Out (L/ROUT2 with 10k/ 50pF load)  
Signal to Noise Ratio  
(A-weighted)  
SNR  
AVDD=3.3V  
AVDD=1.8V  
AVDD=3.3V  
AVDD=1.8V  
1kHz signal  
90  
98  
93  
dB  
dB  
dB  
Total Harmonic Distortion  
THD  
-84  
-80  
100  
Channel Separation  
Headphone Output (LOUT1/ROUT1, using capacitors)  
Output Power per channel  
Total Harmonic Distortion  
PO  
Output power is very closely correlated with THD; see below.  
THD  
HPVDD=1.8V, RL=32  
0.016  
-76  
%
PO=5mW  
HPVDD=1.8V, RL=16  
PO=5mW  
dB  
0.022  
-73  
HPVDD=3.3V, RL=32,  
0.013  
-78  
PO=20mW  
HPVDD=3.3V, RL=16,  
0.018  
-75  
PO=20mW  
Signal to Noise Ratio  
(A-weighted)  
SNR  
HPVDD = 3.3V  
HPVDD = 1.8V  
92  
96  
dB  
96  
PD, Rev 4.4, August 2012  
7
w
WM8750L  
Production Data  
Test Conditions  
DCVDD = 1.5V, DBVDD = 3.3V, AVDD = HPVDD = 3.3V, TA = +25oC,  
1kHz signal, fs = 48kHz, PGA gain = 0dB, 24-bit audio data unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Speaker Output (LOUT2/ROUT2 with 8bridge tied load, ROUT2INV=1)  
Output Power at 1% THD  
Abs. Max Power Ouptut  
Total Harmonic Distortion  
PO  
THD = 1%  
330  
500  
-63  
mW (rms)  
POmax  
THD  
mW (rms)  
Po=200mW, RL=8,  
dB  
%
HPVDD=3.3V  
0.07  
95  
Signal to Noise Ratio  
(A-weighted)  
SNR  
HPVDD=3.3V, RL=8  
dB  
Analogue Reference Levels  
Midrail Reference Voltage  
Buffered Reference Voltage  
Microphone Bias  
Bias Voltage  
VMID  
VREF  
–3%  
–3%  
AVDD/2  
AVDD/2  
+3%  
+3%  
V
V
VMICBIAS  
IMICBIAS  
Vn  
3mA load current  
1K to 20kHz  
–5%  
0.9AVDD  
+ 5%  
3
V
Bias Current Source  
Output Noise Voltage  
Digital Input / Output  
Input HIGH Level  
mA  
15  
nV/Hz  
VIH  
VIL  
0.7DBVDD  
0.9DBVDD  
V
Input LOW Level  
0.3DBVDD  
0.1DBVDD  
V
V
V
Output HIGH Level  
Output LOW Level  
HPDETECT (pin 23)  
Input HIGH Level  
VOH  
VOL  
IOH = +1mA  
IOL = -1mA  
VIH  
VIL  
0.7AVDD  
V
V
Input LOW Level  
0.3AVDD  
PD, Rev 4.4, August 2012  
8
w
Production Data  
WM8750L  
OUTPUT PGA’S LINEARITY  
10.000  
0.000  
Output PGA Gains  
-10.000  
-20.000  
-30.000  
-40.000  
-50.000  
-60.000  
-70.000  
LOUT1  
ROUT1  
LOUT2  
ROUT2  
MONOOUT  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
XXXVOL Register Setting (binary)  
2.000  
1.750  
1.500  
1.250  
1.000  
0.750  
0.500  
0.250  
0.000  
Output PGA Gain Step Size  
LOUT1  
ROUT1  
LOUT2  
ROUT2  
MONOOUT  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
XXXVOL Register Setting (binary)  
PD, Rev 4.4, August 2012  
9
w
WM8750L  
Production Data  
HEADPHONE OUTPUT THD VERSUS POWER  
0
Headphone Pow e r vs THD+N (32Ohm load)  
-20  
-40  
AVDD=1.8V  
AVDD=1.8V, capless  
AVDD=3.3V  
-60  
AVDD=3.3V, capless  
-80  
-100  
0
5
10  
15  
20  
25  
30  
Power (mW)  
0
-20  
Headphone Pow e r vs THD+N (16Ohm load)  
AVDD=1.8V  
-40  
AVDD=1.8V, capless  
AVDD=3.3V  
-60  
AVDD=3.3V, capless  
-80  
-100  
0
10  
20  
30  
40  
50  
60  
Power (mW)  
PD, Rev 4.4, August 2012  
10  
w
Production Data  
WM8750L  
SPEAKER THD AND NOISE VERSUS POWER  
THD referenced  
to 0.95Vrms  
WM8750 L/ROUT2 8R BTL Speaker Load THD+NvPo  
AVDD=HPVDD=DBVDD=3.3V DCVDD=1.42V  
1.013kHz sinewave input signal, A-weighted  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0.00  
50.00  
100.00  
150.00  
200.00  
250.00  
300.00  
350.00  
400.00  
450.00  
500.00  
Output Power (mW)  
PD, Rev 4.4, August 2012  
11  
w
WM8750L  
Production Data  
POWER CONSUMPTION  
The power consumption of the WM8750L depends on the following factors.  
Supply voltages: Reducing the supply voltages also reduces supply currents, and therefore results in significant power  
savings, especially in the digital sections of the WM8750L.  
Operating mode: Significant power savings can be achieved by always disabling parts of the WM8750L that are not  
used (e.g. mic pre-amps, unused outputs, DAC, ADC, etc.)  
Control Register  
R25 (19h)  
R26 (1Ah)  
R24 R23  
Other settings  
AVDD  
DCVDD  
DBVDD  
HPVDD  
Tot. Power  
Bit  
V
I (mA)  
V
I (mA)  
V
I (mA)  
V
I (mA)  
mW  
OFF  
00  
10  
01  
01  
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
0
0
0
1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
1
0
0
0
0
1
1
0
0
1
0
0
0
0
0
1
0
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
11  
01  
00  
11  
01  
00  
11  
01  
00  
11  
01  
00  
11  
01  
00  
11  
01  
00  
11  
01  
00  
Clocks stopped  
3.3 0.000 3.3 0.011 3.3 0.000 3.3 0.000  
2.5 0.000 2.5 0.009 2.5 0.000 2.5 0.000  
1.8 0.000 1.5 0.007 1.8 0.000 1.8 0.000  
3.3 0.341 3.3 0.011 3.3 0.000 3.3 0.000  
2.5 0.282 2.5 0.009 2.5 0.000 2.5 0.000  
1.8 0.194 1.5 0.007 1.8 0.000 1.8 0.000  
3.3 4.007 3.3 5.380 3.3 0.301 3.3 0.748  
2.5 3.025 2.5 3.687 2.5 0.215 2.5 0.723  
1.8 2.449 1.5 2.029 1.8 0.147 1.8 0.427  
3.3 3.796 3.3 4.541 3.3 0.302 3.3 0.744  
2.5 2.870 2.5 3.093 2.5 0.215 2.5 0.722  
1.8 2.338 1.5 1.691 1.8 0.147 1.8 0.427  
3.3 3.997 3.3 5.380 3.3 0.301 3.3 0.748  
2.5 3.026 2.5 3.687 2.5 0.215 2.5 0.723  
1.8 2.451 1.5 2.029 1.8 0.147 1.8 0.427  
3.3 3.998 3.3 6.430 3.3 0.301 3.3 2.142  
2.5 3.029 2.5 4.462 2.5 0.215 2.5 2.132  
1.8 2.454 1.5 2.475 1.8 0.147 1.8 1.977  
3.3 3.980 3.3 6.481 3.3 0.301 3.3 12.558  
2.5 3.028 2.5 4.503 2.5 0.215 2.5 12.604  
1.8 2.450 1.5 2.503 1.8 0.147 1.8 12.275  
0.0363  
0.0225  
0.0105  
1.1616  
0.7275  
Standby  
(500 KOhm VMID string)  
Interface Stopped  
0.3597  
Playback to Line-out  
34.4388  
19.1250  
8.4849  
30.9639  
17.2500  
7.7781  
34.4058  
19.1275  
8.4885  
42.4743  
24.5950  
11.9529  
76.9560  
50.8750  
30.5241  
36.2571  
20.1000  
9.0285  
34.4388  
19.0725  
8.5011  
8.0025  
4.9750  
2.3397  
9.3819  
5.9150  
2.9985  
52.9914  
32.2050  
15.6369  
37.5243  
21.2100  
10.0377  
39.1677  
22.5000  
10.2444  
40.3755  
23.1500  
10.5534  
80.6223  
47.4125  
22.1400  
62.1390  
34.9375  
15.8832  
Playback to Line-out  
(64x oversampling mode)  
Playback to 16 Ohm Headphone 01  
Playback to 16 Ohm Headphone 01  
0.1mW / channel into load  
(JEITA CP-2905B)  
Playback to 16 Ohm Headphone 01  
5mW / channel into load  
-27.959 dBFS  
-25.547 dBFS  
-22.694 dBFS  
-10.969 dBFS  
-8.558 dBFS  
-5.704 dBFS  
Playback to 16 Ohm Headphone 01  
(capless mode using OUT3)  
11 R24, OUT3SW=00 3.3 3.986 3.3 5.567 3.3 0.301 3.3 1.133  
01  
00  
2.5 3.027 2.5 3.688 2.5 0.215 2.5 1.110  
1.8 2.452 1.5 2.029 1.8 0.147 1.8 0.726  
Playback to 8 Ohm BTL Speaker 01  
11 R24, ROUT2INV=1 3.3 4.151 3.3 5.381 3.3 0.301 3.3 0.603  
01  
00  
11  
01  
00  
11  
2.5 3.151 2.5 3.688 2.5 0.215 2.5 0.575  
1.8 2.533 1.5 2.029 1.8 0.147 1.8 0.352  
3.3 1.665 3.3 0.011 3.3 0.000 3.3 0.749  
2.5 1.256 2.5 0.009 2.5 0.000 2.5 0.725  
1.8 0.865 1.5 0.007 1.8 0.000 1.8 0.429  
3.3 1.857 3.3 0.011 3.3 0.000 3.3 0.975  
Headphone Amp  
(line-in to 16 Ohm headphone)  
01  
01  
01  
01  
Clocks Stopped  
Speaker Amp  
(line-in to 8 Ohm speaker)  
Clocks Stopped  
01 R24, ROUT2INV=1 2.5 1.372 2.5 0.009 2.5 0.000 2.5 0.985  
00  
11  
01  
00  
11  
01  
00  
1.8 0.928 1.5 0.007 1.8 0.000 1.8 0.732  
3.3 9.240 3.3 6.493 3.3 0.325 3.3 0.000  
2.5 8.407 2.5 4.243 2.5 0.232 2.5 0.000  
1.8 6.744 1.5 2.141 1.8 0.159 1.8 0.000  
3.3 5.223 3.3 5.822 3.3 0.326 3.3 0.000  
2.5 4.512 2.5 3.740 2.5 0.232 2.5 0.000  
1.8 3.834 1.5 1.899 1.8 0.160 1.8 0.000  
Record from Line-in  
Record from Line-in  
(64x oversampling mode)  
Record from mono microphone 01  
11 R32, LMICBOOST=11; 3.3 5.207 3.3 6.337 3.3 0.325 3.3 0.000  
01  
00  
R23, DATSEL=01  
2.5 4.630 2.5 4.139 2.5 0.231 2.5 0.000  
1.8 3.755 1.5 2.128 1.8 0.163 1.8 0.000  
Record from mono microphone 01  
(differential)  
11 R32, LMICBOOST=11; 3.3 5.561 3.3 6.349 3.3 0.325 3.3 0.000  
01  
00  
11  
01  
00  
11  
01  
00  
R23, DATSEL=01; 2.5 4.890 2.5 4.139 2.5 0.231 2.5 0.000  
R32, LINSEL=11  
1.8 3.925 1.5 2.130 1.8 0.163 1.8 0.000  
3.3 12.778 3.3 10.650 3.3 0.323 3.3 0.680  
2.5 11.070 2.5 7.095 2.5 0.231 2.5 0.569  
1.8 8.585 1.5 3.846 1.8 0.159 1.8 0.351  
3.3 8.570 3.3 9.237 3.3 0.325 3.3 0.698  
2.5 7.061 2.5 6.101 2.5 0.232 2.5 0.581  
1.8 5.601 1.5 3.258 1.8 0.160 1.8 0.348  
Stereo Record & Playback  
01  
01  
Stereo Record & Playback  
(64x oversampling mode)  
Table 1 Supply Current Consumption  
Note: All figures are at TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 12.288 MHz (256fs), with zero signal (quiescent)  
unless otherwise noted.  
PD, Rev 4.4, August 2012  
12  
w
Production Data  
WM8750L  
SIGNAL TIMING REQUIREMENTS  
SYSTEM CLOCK TIMING  
Figure 1 System Clock Timing Requirements  
Test Conditions  
CLKDIV2=0, DCVDD = 1.42V, DBVDD = 3.3V, DGND = 0V, TA = +25oC,  
Slave Mode fs = 48kHz, MCLK = 384fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
System Clock Timing Information  
MCLK System clock pulse width high  
MCLK System clock pulse width low  
MCLK System clock cycle time  
MCLK duty cycle  
TMCLKL  
TMCLKH  
TMCLKY  
TMCLKDS  
21  
21  
ns  
ns  
ns  
54  
60:40  
40:60  
Test Conditions  
CLKDIV2=1, DCVDD = 1.42V, DBVDD = 3.3V, DGND = 0V, TA = +25oC,  
Slave Mode fs = 48kHz, MCLK = 384fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
System Clock Timing Information  
MCLK System clock pulse width high  
MCLK System clock pulse width low  
MCLK System clock cycle time  
TMCLKL  
TMCLKH  
TMCLKY  
10  
10  
27  
ns  
ns  
ns  
AUDIO INTERFACE TIMING – MASTER MODE  
BCLK  
(Output)  
tDL  
ADCLRC/  
DACLRC  
(Outputs)  
tDDA  
ADCDAT  
DACDAT  
tDST  
tDHT  
Figure 2 Digital Audio Data Timing – Master Mode (see Control Interface)  
PD, Rev 4.4, August 2012  
13  
w
WM8750L  
Production Data  
Test Conditions  
DCVDD = 1.42V, DBVDD = 3.3V, DGND = 0V, TA = +25oC,  
Master Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Bit Clock Timing Information  
BCLK rise time (10pF load)  
tBCLKR  
tBCLKF  
tBCLKDS  
tBCLKDS  
3
3
ns  
ns  
BCLK fall time (10pF load)  
BCLK duty cycle (normal mode, BCLK = MCLK/n)  
BCLK duty cycle (USB mode, BCLK = MCLK)  
Audio Data Input Timing Information  
ADCLRC/DACLRC propagation delay from BCLK falling edge  
ADCDAT propagation delay from BCLK falling edge  
DACDAT setup time to BCLK rising edge  
DACDAT hold time from BCLK rising edge  
50:50  
TMCLKDS  
tDL  
10  
27  
ns  
ns  
ns  
ns  
tDDA  
tDST  
tDHT  
10  
10  
AUDIO INTERFACE TIMING – SLAVE MODE  
tBCH  
tBCL  
BCLK  
tBCY  
DACLRC/  
ADCLRC  
tLRSU  
tDS  
tLRH  
DACDAT  
ADCDAT  
tDD  
tDH  
Figure 3 Digital Audio Data Timing – Slave Mode  
Test Conditions  
DCVDD = 1.42V, DBVDD = 3.3V, DGND = 0V, TA = +25oC,  
Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
BCLK cycle time  
tBCY  
tBCH  
tBCL  
tLRSU  
tLRH  
tDH  
50  
20  
20  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK pulse width high  
BCLK pulse width low  
ADCLRC/DACLRC set-up time to BCLK rising edge  
ADCLRC/DACLRC hold time from BCLK rising edge  
DACDAT hold time from BCLK rising edge  
ADCDAT propagation delay from BCLK falling edge  
tDD  
10  
Notes:  
BCLK period should always be greater than or equal to MCLK period.  
For optimum ADC audio performance, the BCLK input signal edge should coincide with the falling edge of MCLK.  
PD, Rev 4.4, August 2012  
14  
w
Production Data  
WM8750L  
CONTROL INTERFACE TIMING – 3-WIRE MODE  
tCSL  
tCSH  
CSB  
tCSS  
tSCY  
tSCS  
tSCH  
tSCL  
SCLK  
SDIN  
LSB  
tDSU  
tDHO  
Figure 4 Control Interface Timing – 3-Wire Serial Control Mode  
Test Conditions  
DCVDD = 1.42V, DBVDD = 3.3V, DGND = 0V, TA = +25oC,  
Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Program Register Input Information  
SCLK rising edge to CSB rising edge  
SCLK pulse cycle time  
tSCS  
tSCY  
tSCL  
tSCH  
tDSU  
tDHO  
tCSL  
tCSH  
tCSS  
tps  
80  
200  
80  
80  
40  
40  
40  
40  
40  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK pulse width low  
SCLK pulse width high  
SDIN to SCLK set-up time  
SCLK to SDIN hold time  
CSB pulse width low  
CSB pulse width high  
CSB rising to SCLK rising  
Pulse width of spikes that will be suppressed  
5
PD, Rev 4.4, August 2012  
15  
w
WM8750L  
Production Data  
CONTROL INTERFACE TIMING – 2-WIRE MODE  
t3  
t3  
t5  
SDIN  
t4  
t6  
t2  
t8  
SCLK  
t7  
t1  
t9  
Figure 5 Control Interface Timing – 2-Wire Serial Control Mode  
Test Conditions  
DCVDD = 1.42V, DBVDD = 3.3V, DGND = 0V, TA = +25oC,  
Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Program Register Input Information  
SCLK Frequency  
0
526  
kHz  
us  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Low Pulse-Width  
SCLK High Pulse-Width  
Hold Time (Start Condition)  
Setup Time (Start Condition)  
Data Setup Time  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
tps  
1.3  
600  
600  
600  
100  
SDIN, SCLK Rise Time  
SDIN, SCLK Fall Time  
300  
300  
Setup Time (Stop Condition)  
Data Hold Time  
600  
0
900  
5
Pulse width of spikes that will be suppressed  
PD, Rev 4.4, August 2012  
16  
w
Production Data  
WM8750L  
INTERNAL POWER ON RESET CIRCUIT  
DCVDD  
AVDD  
VDD  
T1  
Power on Reset  
Internal PORB  
Circuit  
GND  
DGND  
Figure 6 Internal Power on Reset Circuit Schematic  
The WM8750 includes an internal Power-On-Reset Circuit, as shown in Figure 6, which is used to  
reset the digital logic into a default state after power up. The power on reset circuit is powered from  
DCVDD and monitors DCVDD and AVDD. It asserts PORB low if DCVDD or AVDD are below a  
minimum threshold.  
Figure 7 Typical Power-Up Sequence  
Figure 7 shows a typical power-up sequence. When DCVDD and AVDD rise above the minimum  
thresholds, Vpord_dcvdd and Vpord_avdd, there is enough voltage for the circuit to guarantee the  
Power on Reset is asserted low and the chip is held in reset. In this condition, all writes to the control  
interface are ignored. When DCVDD rises to Vpor_dcvdd_on and AVDD rises to Vpor_avdd_on,  
PORB is released high and all registers are in their default state and writes to the control interface  
may take place. If DCVDD and AVDD rise at different rates then PORB will only be released when  
DCVDD and AVDD have both exceeded the Vpor_dcvdd_on and Vpor_avdd_on thresholds.  
On power down, PORB is asserted low whenever DCVDD drops below the minimum threshold  
Vpor_dcvdd_off or AVDD drops below the minimum threshold Vpor_avdd_off.  
SYMBOL  
Vpord_dcvdd  
MIN  
0.4  
0.9  
0.5  
0.4  
TYP  
0.6  
MAX  
0.8  
UNIT  
V
V
V
V
Vpor_dcvdd_on  
Vpor_avdd_on  
Vpor_avdd_off  
1.26  
0.7  
1.6  
0.9  
0.6  
0.8  
Table 2 Typical POR Operation (typical values, not tested)  
PD, Rev 4.4, August 2012  
17  
w
WM8750L  
Production Data  
DEVICE DESCRIPTION  
INTRODUCTION  
The WM8750L is a low power audio codec offering a combination of high quality audio, advanced  
features, low power and small size. These characteristics make it ideal for portable digital audio  
applications such as MP3 and minidisk player / recorders. Stereo 24-bit multi-bit delta sigma ADCs  
and DACs are used with oversampling digital interpolation and decimation filters.  
The device includes three stereo analogue inputs that can be switched internally. Each can be used  
as either a line level input or microphone input and LINPUT1/RINPUT1 and LINPUT2/RINPUT2 can  
be configured as mono differential inputs. A programmable gain amplifier with automatic level control  
(ALC) keeps the recording volume constant. The on-chip stereo ADC and DAC are of a high quality  
using a multi-bit, low-order oversampling architecture to deliver optimum performance with low power  
consumption.  
The DAC output signal first enters an analogue mixer where an analogue input and/or the post-ALC  
signal can be added to it. This mix is available on line and headphone outputs.  
The WM8750L has a configurable digital audio interface where ADC data can be read and digital  
audio playback data fed to the DAC. It supports a number of audio data formats including I2S, DSP  
Mode (a burst mode in which frame sync plus 2 data packed words are transmitted), MSB-First, left  
justified and MSB-First, right justified, and can operate in master or slave modes.  
The WM8750L uses a unique clocking scheme that can generate many commonly used audio sample  
rates from either a 12.00MHz USB clock or an industry standard 256/384 fs clock. This feature  
eliminates the common requirement for an external phase-locked loop (PLL) in applications where the  
master clock is not an integer multiple of the sample rate. Sample rates of 8kHz, 11.025kHz, 12kHz,  
16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz, 88.2kHz and 96kHz can be generated. The digital  
filters used for recording and playback are optimised for each sampling rate used.  
To allow full software control over all its features, the WM8750L offers a choice of 2 or 3 wire MPU  
control interface. It is fully compatible and an ideal partner for a wide range of industry standard  
microprocessors, controllers and DSPs.  
The design of the WM8750L has given much attention to power consumption without compromising  
performance. It operates at very low voltages, and includes the ability to power off parts of the  
circuitry under software control, including standby and power off modes.  
INPUT SIGNAL PATH  
The input signal path for each channel consists of a switch to select between three analogue inputs,  
followed by a PGA (programmable gain amplifier) and an optional microphone gain boost. A  
differential input of either (LINPUT1 – RINPUT1) or (LINPUT2 – RINPUT2) may also be selected. The  
gain of the PGA can be controlled either by the user or by the on-chip ALC function (see Automatic  
Level Control).  
The signal then enters an ADC where it is digitised. Alternatively, the two channels can also be mixed  
in the analogue domain and digitised in one ADC while the other ADC is switched off. The mono-mix  
signal appears on both digital output channels.  
SIGNAL INPUTS  
The WM8750L has three sets of high impedance, low capacitance AC coupled analogue inputs,  
LINPUT1/RINPUT1, LINPUT2/RINPUT2 and LINPUT3/RINPUT3. Inputs can be configured as  
microphone or line level by enabling or disabling the microphone gain boost.  
LINSEL and RINSEL control bits (see Table 3) are used to select independently between external  
inputs and internally generated differential products (LINPUT1-RINPUT1 or LINPUT2-RINPUT2). The  
choice of differential signal, LINPUT1-RINPUT1 or LINPUT2-RINPUT2 is made using DS (refer to  
Table 5).  
PD, Rev 4.4, August 2012  
18  
w
Production Data  
WM8750L  
As an example, the WM8750 can be set up to convert one differential and one single ended mono  
signal by applying the differential signal to LINPUT1/RINPUT1 and the single ended signal to  
RINPUT2. By setting LINSEL to L-R Differential (see Table 3), DS to LINPUT1 - RINPUT1 (see Table  
5) and RINSEL to RINPUT2, each mono signal can then be routed to a separate ADC or Bypass  
path.  
The signal inputs are biased internally to the reference voltage VREF. Whenever the line inputs are  
muted or the device placed into standby mode, the inputs are kept biased to VREF using special anti-  
thump circuitry. This reduces any audible clicks that may otherwise be heard when changing inputs.  
DC MEASUREMENT  
For DC measurements (for example, battery voltage monitoring), the input signal at the LINPUT1  
and/or RINPUT1 pins can be taken directly into the respective ADC, bypassing both PGA and  
microphone boost. The ADC output then becomes unsigned relative to AVDD, instead of being a  
signed (two’s complement) number relative to VREF. Setting L/RDCM will override L/RINSEL. The  
input range for dc measurement is AGND to AVDD.  
REGISTER  
ADDRESS  
BIT  
LABEL  
LINSEL  
DEFAULT  
DESCRIPTION  
R32 (20h)  
Left Channel Input Select  
00 = LINPUT1  
7:6  
00  
ADC Signal  
Path Control  
(Left)  
01 = LINPUT2  
10 = LINPUT3  
11 = L-R Differential (either LINPUT1-  
RINPUT1 or LINPUT2-RINPUT2,  
selected by DS)  
LMICBOOST  
RINSEL  
Left Channel Microphone Gain Boost  
00 = Boost off (bypassed)  
01 = 13dB boost  
5:4  
7:6  
00  
00  
10 = 20dB boost  
11 = 29dB boost  
R33 (21h)  
Right Channel Input Select  
00 = RINPUT1  
ADC Signal  
Path Control  
(Right)  
01 = RINPUT2  
10 = RINPUT3  
11 = L-R Differential (either LINPUT1-  
RINPUT1 or LINPUT2-RINPUT2,  
selected by DS)  
RMICBOOST  
Right Channel Microphone Gain Boost  
00 = Boost off (bypassed)  
01 = 13dB boost  
5:4  
00  
10 = 20dB boost  
11 = 29dB boost  
Table 3 Input Software Control  
REGISTER  
ADDRESS  
BIT  
LABEL  
RDCM  
DEFAULT  
DESCRIPTION  
R31 (1Fh)  
ADC input Mode  
Right Channel DC Measurement  
0 = Normal Operation, PGA Enabled  
1 = Measure DC level on RINPUT1  
Left Channel DC Measurement  
5
0
LDCM  
4
0
0 = Normal Operation, PGA Enabled  
1 = Measure DC level on LINPUT1  
Table 4 DC Measurement Select  
PD, Rev 4.4, August 2012  
19  
w
WM8750L  
Production Data  
DESCRIPTION  
Differential input select  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
R31 (1Fh)  
ADC Input Mode  
DS  
8
0
0: LINPUT1 - RINPUT1  
1: LINPUT2 – RINPUT2  
Table 5 Differential Input Select  
MONO MIXING  
The stereo ADC can operate as a stereo or mono device, or the two channels can be mixed to mono,  
either in the analogue domain (i.e. before the ADC) or in the digital domain (after the ADC).  
MONOMIX selects the mode of operation. For analogue mono mix either the left or right channel ADC  
can be used, allowing the unused ADC to be powered off or used for a dc measurement conversion.  
The user also has the flexibility to select the data output from the audio interface using DATSEL. The  
default is for left and right channel ADC data to be output, but the interface may also be configured so  
that e.g. left channel ADC data is output as both left and right data for when an analogue mono mix is  
selected.  
Note:  
If DC measurement is selected this overrides the MONOMIX selection.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R31 (1Fh)  
MONOMIX  
[1:0]  
00: Stereo  
7:6  
00  
ADC input  
Mode  
01: Analogue Mono Mix (using left ADC)  
10: Analogue Mono Mix (using right ADC)  
11: Digital Mono Mix  
Table 6 Mono Mixing  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R23 (17h)  
DATSEL  
[1:0]  
00: left data=left ADC; right data =right ADC  
01: left data =left ADC; right data = left ADC  
3:2  
00  
Additional  
Control (1)  
10: left data = right ADC; right data =right  
ADC  
11: left data = right ADC; right data = left  
ADC  
Table 7 ADC Data Output Configuration  
The MICBIAS output provides a low noise reference voltage suitable for biasing electret type  
microphones and the associated external resistor biasing network. Refer to the Applications  
Information section for recommended external components. The output can be enabled or disables  
using the MICB control bit (see also the “Power Management” section).  
REGISTER  
ADDRESS  
BIT  
LABEL DEFAULT  
MICB  
DESCRIPTION  
R25 (19h)  
Microphone Bias Enable  
1
0
Power  
Management (1)  
0 = OFF (high impedance output)  
1 = ON  
Table 8 Microphone Bias Control  
PD, Rev 4.4, August 2012  
20  
w
Production Data  
WM8750L  
The internal MICBIAS circuitry is shown below. Note that the is a maximum source current capability  
for MICBIAS is 3mA. The external biasing resistors therefore must be large enough to limit the  
MICBIAS current to 3mA.  
VMID  
MICB  
MICBIAS  
= 1.8 x VMID  
= 0.9 X AVDD  
internal  
resistor  
internal  
resistor  
AGND  
Figure 8 Microphone Bias Schematic  
PGA CONTROL  
The PGA matches the input signal level to the ADC input range. The PGA gain is logarithmically  
adjustable from +30dB to –17.25dB in 0.75dB steps. Each PGA can be controlled either by the user  
or by the ALC function (see Automatic Level Control). When ALC is enabled for one or both channels,  
then writing to the corresponding PGA control register has no effect.  
The gain is independently adjustable on both Right and Left Line Inputs. Additionally, by controlling  
the register bits LIVU and RIVU, the left and right gain settings can be simultaneously updated.  
Setting the LIZC and RIZC bits enables a zero-cross detector which ensures that PGA gain changes  
only occur when the signal is at zero, eliminating any zipper noise. If zero cross is enabled a timeout  
is also available to update the gain if a zero cross does not occur. This function may be enabled by  
setting TOEN in register R23 (17h).  
The inputs can also be muted in the analogue domain under software control. The software control  
registers are shown in Table 9. If zero crossing is enabled, it is necessary to enable zero cross  
timeout to un-mute the input PGAs. This is because their outputs will not cross zero when muted.  
Alternatively, zero cross can be disabled before sending the un-mute command.  
REGISTER  
ADDRESS  
BIT  
LABEL  
LIVU  
DEFAULT  
DESCRIPTION  
R0 (00h)  
Left Channel  
PGA  
Left Volume Update  
8
0
0 = Store LINVOL in intermediate  
latch (no gain change)  
1 = Update left and right channel  
gains (left = LINVOL, right =  
intermediate latch)  
LINMUTE  
LIZC  
Left Channel Input Analogue Mute  
1 = Enable Mute  
7
1
0
0 = Disable Mute  
Note: LIVU must be set to un-mute.  
Left Channel Zero Cross Detector  
1 = Change gain on zero cross only  
0 = Change gain immediately  
Left Channel Input Volume Control  
111111 = +30dB  
6
LINVOL  
[5:0]  
5:0  
010111  
( 0dB )  
111110 = +29.25dB  
. . 0.75dB steps down to  
000000 = -17.25dB  
PD, Rev 4.4, August 2012  
21  
w
WM8750L  
Production Data  
DESCRIPTION  
Right Volume Update  
REGISTER  
ADDRESS  
BIT  
LABEL  
RIVU  
DEFAULT  
R1 (01h)  
Right Channel  
PGA  
8
0
0 = Store RINVOL in intermediate  
latch (no gain change)  
1 = Update left and right channel  
gains (right = RINVOL, left =  
intermediate latch)  
RINMUTE  
RIZC  
Right Channel Input Analogue Mute  
1 = Enable Mute  
7
1
0
0 = Disable Mute  
Note: RIVU must be set to un-mute.  
Right Channel Zero Cross Detector  
1 = Change gain on zero cross only  
0 = Change gain immediately  
Right Channel Input Volume Control  
111111 = +30dB  
6
RINVOL  
[5:0]  
5:0  
010111  
( 0dB )  
111110 = +29.25dB  
. . 0.75dB steps down to  
000000 = -17.25dB  
R23 (17h)  
TOEN  
Timeout Enable  
0
0
Additional  
Control (1)  
0 : Timeout Disabled  
1 : Timeout Enabled  
Table 9 Input PGA Software Control  
ANALOGUE TO DIGITAL CONVERTER (ADC)  
The WM8750L uses a multi-bit, oversampled sigma-delta ADC for each channel. The use of multi-bit  
feedback and high oversampling rates reduces the effects of jitter and high frequency noise. The ADC  
Full Scale input level is proportional to AVDD. With a 3.3V supply voltage, the full scale level is 1.0  
Volts r.m.s. Any voltage greater than full scale may overload the ADC and cause distortion.  
ADC DIGITAL FILTER  
The ADC filters perform true 24 bit signal processing to convert the raw multi-bit oversampled data  
from the ADC to the correct sampling frequency to be output on the digital audio interface. The digital  
filter path is illustrated in Figure 9.  
TO DIGITAL  
AUDIO  
DIGITAL  
HPF  
DIGITAL  
DECIMATOR  
DIGITAL  
FILTER  
FROM ADC  
INTERFACE  
ADCHPD  
Figure 9 ADC Digital Filter  
The ADC digital filters contain a digital high pass filter, selectable via software control. The high-pass  
filter response is detailed in the Digital Filter Characteristics section. When the high-pass filter is  
enabled the dc offset is continuously calculated and subtracted from the input signal. By setting  
HPOR, the last calculated dc offset value is stored when the high-pass filter is disabled and will  
continue to be subtracted from the input signal. If the DC offset is changed, the stored and  
subtracted value will not change unless the high-pass filter is enabled. This feature can be used for  
calibration purposes. In addition the highpass filter may be enabled separately on the left and right  
channels (see Table 11).  
PD, Rev 4.4, August 2012  
w
22  
Production Data  
WM8750L  
The output data format can be programmed by the user to accommodate stereo or monophonic  
recording on both inputs. The polarity of the output signal can also be changed under software  
control. The software control is shown in Table 10.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R5 (05h)  
ADCPOL  
00 = Polarity not inverted  
01 = L polarity invert  
6:5  
00  
ADC and DAC  
Control  
[1:0]  
10 = R polarity invert  
11 = L and R polarity invert  
HPOR  
Store dc offset when high-pass  
filter disabled  
4
0
0
0
1 = store offset  
0 = clear offset  
ADCHPD  
ADC high-pass filter enable  
(Digital)  
HPFLREN = 0  
1 = Disable high-pass filter on left  
and right channels  
0 = Enable high-pass filter on left  
and right channels  
HPFLREN = 1  
0 = High-pass enabled on left,  
disabled on right  
1 = High-pass enabled on right,  
disabled on left  
R27 (1Bh)  
HPFLREN  
ADC high-pass filter left or right  
enable  
5
0
0 = High-pass filter enable/disable  
on left and right channels  
controlled by ADCHPD  
1 = High-pass filter enabled on left  
or right channel, as selected by  
ADCHPD  
Table 10 ADC Signal Path Control  
HPFLREN  
ADCHPD  
HIGH PASS MODE  
High-pass filter enabled on left and right  
channels  
0
0
1
0
1
High-pass filter disabled on left and right  
channels  
0
1
1
High-pass filter enabled on left channel,  
disabled on right channel  
High-pass filter disabled on left channel,  
enabled on right channel  
Table 11 ADC High Pass Filter Enable Modes  
PD, Rev 4.4, August 2012  
23  
w
WM8750L  
Production Data  
DIGITAL ADC VOLUME CONTROL  
The output of the ADCs can be digitally amplified or attenuated over a range from –97dB to +30dB in  
0.5dB steps. The volume of each channel can be controlled separately. The gain for a given eight-bit  
code X is given by:  
0.5 (X-195) dB for 1 X 255;  
MUTE for X = 0  
The LAVU and RAVU control bits control the loading of digital volume control data. When LAVU or  
RAVU are set to 0, the LADCVOL or RADCVOL control data will be loaded into the respective control  
register, but will not actually change the digital gain setting. Both left and right gain settings are  
updated when either LAVU or RAVU are set to 1. This makes it possible to update the gain of both  
channels simultaneously.  
REGISTER  
ADDRESS  
BIT  
LABEL  
LAVU  
DEFAULT  
DESCRIPTION  
R21 (15h)  
Left ADC Volume Update  
8
0
Left ADC  
Digital Volume  
0 = Store LADCVOL in intermediate  
latch (no gain change)  
1 = Update left and right channel  
gains (left = LADCVOL, right =  
intermediate latch)  
LADCVOL  
[7:0]  
Left ADC Digital Volume Control  
0000 0000 = Digital Mute  
0000 0001 = -97dB  
7:0  
11000011  
( 0dB )  
0000 0010 = -96.5dB  
... 0.5dB steps up to  
1111 1111 = +30dB  
R22 (16h)  
RAVU  
Right ADC Volume Update  
8
0
Right ADC  
Digital Volume  
0 = Store RADCVOL in intermediate  
latch (no gain change)  
1 = Update left and right channel  
gains (left = intermediate latch, right  
= RADCVOL)  
RADCVOL  
[7:0]  
Right ADC Digital Volume Control  
0000 0000 = Digital Mute  
0000 0001 = -97dB  
7:0  
11000011  
( 0dB )  
0000 0010 = -96.5dB  
... 0.5dB steps up to  
1111 1111 = +30dB  
Table 12 ADC Digital Volume Control  
PD, Rev 4.4, August 2012  
24  
w
Production Data  
WM8750L  
AUTOMATIC LEVEL CONTROL (ALC)  
The WM8750L has an automatic level control that aims to keep a constant recording volume  
irrespective of the input signal level. This is achieved by continuously adjusting the PGA gain so that  
the signal level at the ADC input remains constant. A digital peak detector monitors the ADC output  
and changes the PGA gain if necessary. Note that when the ALC function is enabled, the settings of  
registers 0 and 1 (LINVOL, LIVU, LIZC, LINMUTE, RINVOL, RIVU, RIZC and RINMUTE) are ignored.  
input  
signal  
PGA  
gain  
signal  
after  
ALC  
ALC  
target  
level  
hold decay  
time time  
attack  
time  
Figure 10 ALC Operation  
The ALC function is enabled using the ALCSEL control bits. When enabled, the recording volume can  
be programmed between –6dB and –28.5dB (relative to ADC full scale) using the ALCL register bits.  
An upper limit for the PGA gain can be imposed by setting the MAXGAIN control bits.  
HLD, DCY and ATK control the hold, decay and attack times, respectively:  
Hold time is the time delay between the peak level detected being below target and the PGA gain  
beginning to ramp up. It can be programmed in power-of-two (2n) steps, e.g. 2.67ms, 5.33ms,  
10.67ms etc. up to 43.7s. Alternatively, the hold time can also be set to zero. The hold time only  
applies to gain ramp-up, there is no delay before ramping the gain down when the signal level is  
above target.  
Decay (Gain Ramp-Up) Time is the time that it takes for the PGA gain to ramp up across 90% of its  
range (e.g. from –15B up to 27.75dB). The time it takes for the recording level to return to its target  
value therefore depends on both the decay time and on the gain adjustment required. If the gain  
adjustment is small, it will be shorter than the decay time. The decay time can be programmed in  
power-of-two (2n) steps, from 24ms, 48ms, 96ms, etc. to 24.58s.  
Attack (Gain Ramp-Down) Time is the time that it takes for the PGA gain to ramp down across 90%  
of its range (e.g. from 27.75dB down to -15B gain). The time it takes for the recording level to return  
to its target value therefore depends on both the attack time and on the gain adjustment required. If  
the gain adjustment is small, it will be shorter than the attack time. The attack time can be  
programmed in power-of-two (2n) steps, from 6ms, 12ms, 24ms, etc. to 6.14s.  
When operating in stereo, the peak detector takes the maximum of left and right channel peak values,  
and any new gain setting is applied to both left and right PGAs, so that the stereo image is preserved.  
However, the ALC function can also be enabled on one channel only. In this case, only one PGA is  
controlled by the ALC mechanism, while the other channel runs independently with its PGA gain set  
through the control register.  
When one ADC channel is unused or used for DC measurement, the peak detector disregards that  
channel. The ALC function can also operate when the two ADC outputs are mixed to mono in the  
digital domain, but not if they are mixed to mono in the analogue domain, before entering the ADCs.  
PD, Rev 4.4, August 2012  
25  
w
WM8750L  
Production Data  
REGISTER  
ADDRESS  
BIT  
LABEL  
ALCSEL  
DEFAULT  
DESCRIPTION  
ALC function select  
R17 (11h)  
8:7  
00  
ALC Control 1  
[1:0]  
00 = ALC off (PGA gain set by register)  
01 = Right channel only  
(OFF)  
10 = Left channel only  
11 = Stereo (PGA registers unused)  
Note: ensure that LINVOL and  
RINVOL settings (reg. 0 and 1) are  
the same before entering this mode.  
MAXGAIN  
[2:0]  
Set Maximum Gain of PGA  
111 : +30dB  
6:4  
3:0  
111  
(+30dB)  
110 : +24dB  
….(-6dB steps)  
001 : -6dB  
000 : -12dB  
ALCL  
[3:0]  
ALC target – sets signal level at ADC  
input  
1011  
(-12dB)  
0000 = -28.5dB fs  
0001 = -27.0dB fs  
… (1.5dB steps)  
1110 = -7.5dB fs  
1111 = -6dB fs  
R18 (12h)  
ALCZC  
ALC uses zero cross detection circuit.  
7
0 (zero  
cross off)  
ALC Control 2  
HLD  
[3:0]  
ALC hold time before gain is increased.  
0000 = 0ms  
3:0  
0000  
(0ms)  
0001 = 2.67ms  
0010 = 5.33ms  
… (time doubles with every step)  
1111 = 43.691s  
R19 (13h)  
DCY  
[3:0]  
ALC decay (gain ramp-up) time  
0000 = 24ms  
7:4  
3:0  
0011  
ALC Control 3  
(192ms)  
0001 = 48ms  
0010 = 96ms  
… (time doubles with every step)  
1010 or higher = 24.58s  
ALC attack (gain ramp-down) time  
0000 = 6ms  
ATK  
[3:0]  
0010  
(24ms)  
0001 = 12ms  
0010 = 24ms  
… (time doubles with every step)  
1010 or higher = 6.14s  
Table 13 ALC Control  
Note: For correct ALC operation in differential input mode, it is recommended that the combined  
signal gain (mic boost and PGA) does not exceed 30dB when the ALC is enabled.  
PD, Rev 4.4, August 2012  
26  
w
Production Data  
WM8750L  
PEAK LIMITER  
To prevent clipping when a large signal occurs just after a period of quiet, the ALC circuit includes a  
limiter function. If the ADC input signal exceeds 87.5% of full scale (–1.16dB), the PGA gain is  
ramped down at the maximum attack rate (as when ATK = 0000), until the signal level falls below  
87.5% of full scale. This function is automatically enabled whenever the ALC is enabled.  
Note:  
If ATK = 0000, then the limiter makes no difference to the operation of the ALC. It is designed to  
prevent clipping when long attack times are used.  
NOISE GATE  
When the signal is very quiet and consists mainly of noise, the ALC function may cause “noise  
pumping”, i.e. loud hissing noise during silence periods. The WM8750L has a noise gate function that  
prevents noise pumping by comparing the signal level at the LINPUT1/2/3 and/or RINPUT1/2/3 pins  
against a noise gate threshold, NGTH. The noise gate cuts in when:  
Signal level at ADC [dB] < NGTH [dB] + PGA gain [dB] + Mic Boost gain [dB]  
This is equivalent to:  
Signal level at input pin [dB] < NGTH [dB]  
The ADC output can then either be muted or alternatively, the PGA gain can be held constant  
(preventing it from ramping up as it normally would when the signal is quiet).  
The table below summarises the noise gate control register. The NGTH control bits set the noise gate  
threshold with respect to the ADC full-scale range. The threshold is adjusted in 1.5dB steps. Levels  
at the extremes of the range may cause inappropriate operation, so care should be taken with set–up  
of the function. Note that the noise gate only works in conjunction with the ALC function, and always  
operates on the same channel(s) as the ALC (left, right, both, or none).  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R20 (14h)  
NGTH  
Noise gate threshold  
7:3  
00000  
Noise Gate  
Control  
[4:0]  
00000 -76.5dBfs  
00001 -75dBfs  
… 1.5 dB steps  
11110 -31.5dBfs  
11111 -30dBfs  
NGG  
[1:0]  
Noise gate type  
2:1  
0
00  
0
X0 = PGA gain held constant  
01 = mute ADC output  
11 = reserved (do not use this setting)  
Noise gate function enable  
1 = enable  
NGAT  
0 = disable  
Table 14 Noise Gate Control  
Note:  
The performance of the ADC may degrade at high input signal levels if the monitor bypass mux is  
selected with MIC boost and ALC enabled.  
PD, Rev 4.4, August 2012  
27  
w
WM8750L  
Production Data  
3D STEREO ENHANCEMENT  
The WM8750L has a digital 3D enhancement option to artificially increase the separation between the  
left and right channels. This effect can be used for recording or playback, but not for both  
simultaneously. Selection of 3D for record or playback is controlled by register bit MODE3D.  
Important:  
Switching the 3D filter from record to playback or from playback to record may only be done when  
ADC and DAC are disabled. The WM8750L control interface will only allow MODE3D to be changed  
when ADC and DAC are disabled (i.e. bits ADCL, ADCR, DACL and DACR in reg. 26 / 1Ah are all  
zero).  
The 3D enhancement function is activated by the 3DEN bit, and has two programmable parameters.  
The 3DDEPTH setting controls the degree of stereo expansion. Additionally, one of four filter  
characteristics can be selected for the 3D processing, using the 3DVC and 3DLC control bits.  
REGISTER  
ADDRESS  
BIT  
LABEL  
MODE3D  
DEFAULT  
DESCRIPTION  
R16 (10h)  
Playback/Record 3D select  
0 = 3D selected for Record  
1 = 3D selected for Playback  
Upper Cut-off frequency  
0 = High (2.2kHz at 48kHz sampling)  
1 = Low (1.5kHz at 48kHz sampling)  
Lower Cut-off frequency  
0 = Low (200Hz at 48kHz sampling)  
1 = High (500Hz at 48kHz sampling)  
Stereo depth  
7
0
3D enhance  
3DUC  
3DLC  
6
5
0
0
3DDEPTH  
[3:0]  
4:1  
0000  
0000: 0% (minimum 3D effect)  
0001: 6.67%  
....  
1110: 93.3%  
1111: 100% (maximum 3D effect)  
3D function enable  
3DEN  
0
0
1: enabled  
0: disabled  
Table 15 3D Stereo Enhancement Function  
When 3D enhancement is enabled (and/or the graphic equaliser for playback) it may be necessary to  
attenuate the signal by 6dB to avoid limiting. This is a user selectable function, enabled by setting  
ADCDIV2 for the record path and DACDIV2 for the playback path.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R5 (05h)  
ADCDIV2  
ADC 6dB attenuate enable  
0 = disabled (0dB)  
8
0
ADC and DAC  
control  
1 = -6dB enabled  
DACDIV2  
DAC 6dB attenuate enable  
0 = disabled (0dB)  
7
0
1 = -6dB enabled  
Table 16 ADC and DAC 6dB Attenuation Select  
PD, Rev 4.4, August 2012  
28  
w
Production Data  
WM8750L  
OUTPUT SIGNAL PATH  
The WM8750L output signal paths consist of digital filters, DACs, analogue mixers and output drivers.  
The digital filters and DACs are enabled when the WM8750L is in ‘playback only’ or ‘record and  
playback’ mode. The mixers and output drivers can be separately enabled by individual control bits  
(see Analogue Outputs). Thus it is possible to utilise the analogue mixing and amplification provided  
by the WM8750L, irrespective of whether the DACs are running or not.  
The WM8750L receives digital input data on the DACDAT pin. The digital filter block processes the  
data to provide the following functions:  
Digital volume control  
Graphic equaliser and Dynamic Bass Boost  
Sigma-Delta Modulation  
Two high performance sigma-delta audio DACs convert the digital data into two analogue signals (left  
and right). These can then be mixed with analogue signals from the LINPUT1/2/3 and RINPUT1/2/3  
pins, and the mix is fed to the output drivers, LOUT1/ROUT1, LOUT2/ROUT2, OUT3 and  
MONOOUT.  
LOUT1/ROUT1/OUT3: can drive a 16or 32stereo headphone or stereo line output.  
LOUT2/ROUT2: can drive a 16or 32stereo headphone or stereo line output, or an 8  
mono speaker.  
MONOOUT: can drive a mono line output or other load down to 10k  
DIGITAL DAC VOLUME CONTROL  
The signal volume from each DAC can be controlled digitally, in the same way as the ADC volume  
(see Digital ADC Volume Control). The gain and attenuation range is –127dB to 0dB in 0.5dB steps.  
The level of attenuation for an eight-bit code X is given by:  
0.5 (X-255) dB for 1 X 255;  
MUTE for X = 0  
The LDVU and RDVU control bits control the loading of digital volume control data. When LDVU or  
RDVU are set to 0, the LDACVOL or RDACVOL control data is loaded into an intermediate register,  
but the actual gain does not change. Both left and right gain settings are updated simultaneously  
when either LDVU or RDVU are set to 1.  
REGISTER  
ADDRESS  
BIT  
LABEL  
LDVU  
DEFAULT  
DESCRIPTION  
R10 (0Ah)  
Left DAC Volume Update  
8
0
Left Channel  
Digital Volume  
0 = Store LDACVOL in intermediate  
latch (no gain change)  
1 = Update left and right channel  
gains (left = LDACVOL, right =  
intermediate latch)  
LDACVOL  
[7:0]  
Left DAC Digital Volume Control  
0000 0000 = Digital Mute  
0000 0001 = -127dB  
7:0  
11111111  
( 0dB )  
0000 0010 = -126.5dB  
... 0.5dB steps up to  
1111 1111 = 0dB  
R11 (0Bh)  
RDVU  
Right DAC Volume Update  
8
0
Right Channel  
Digital Volume  
0 = Store RDACVOL in intermediate  
latch (no gain change)  
1 = Update left and right channel  
gains (left = intermediate latch, right  
= RDACVOL)  
RDACVOL  
[7:0]  
Right DAC Digital Volume Control  
similar to LDACVOL  
7:0  
11111111  
( 0dB )  
Table 17 Digital Volume Control  
PD, Rev 4.4, August 2012  
29  
w
WM8750L  
Production Data  
GRAPHIC EQUALISER  
The WM8750L has a digital graphic equaliser and adaptive bass boost function. This function  
operates on digital audio data before it is passed to the audio DACs. Bass enhancement can take two  
different forms:  
Linear bass control: bass signals are amplified or attenuated by a user programmable gain.  
This is independent of signal volume, and very high bass gains on loud signals may lead to  
signal clipping.  
Adaptive bass boost: The bass volume is amplified by a variable gain. When the bass  
volume is low, it is boosted more than when the bass volume is high. This method is  
recommended because it prevents clipping, and usually sounds more pleasant to the  
human ear.  
Treble control applies a user programmable gain, without any adaptive boost function. Bass and  
treble control are completely independent with separately programmable gains and filter  
characteristics.  
REGISTER  
ADDRESS  
BIT  
LABEL  
BB  
DEFAULT  
DESCRIPTION  
R12 (0Ch)  
Bass Boost  
7
0
Bass Control  
0 = Linear bass control  
1 = Adaptive bass boost  
BC  
Bass Filter Characteristic  
6
0
0 = Low Cutoff (130Hz at 48kHz sampling)  
1 = High Cutoff (200Hz at 48kHz sampling)  
Bass Intensity  
BASS  
[3:0]  
3:0  
1111  
(Disabled)  
Code  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
BB=0  
+9dB  
BB=1  
15 (max)  
+9dB  
14  
13  
12  
11  
10  
9
+7.5dB  
+6dB  
+4.5dB  
+3dB  
+1.5dB  
0dB  
8
-1.5dB  
-3dB  
7
6
-4.5dB  
-6dB  
5
4
-6dB  
3
-6dB  
2
-6dB  
1
Bypass (OFF)  
R13 (0Dh)  
TC  
Treble Filter Characteristic  
6
0
Treble Control  
0 = High Cutoff (8kHz at 48kHz sampling)  
1 = Low Cutoff (4kHz at 48kHz sampling)  
Treble Intensity  
TRBL  
[3:0]  
3:0  
1111  
(Disabled)  
0000 or 0001 = +9dB  
0010 = +7.5dB  
… (1.5dB steps)  
1011 to 1110 = -6dB  
1111 = Disable  
Table 18 Graphic Equaliser  
PD, Rev 4.4, August 2012  
30  
w
Production Data  
WM8750L  
DIGITAL TO ANALOGUE CONVERTER (DAC)  
After passing through the graphic equaliser filters, digital ‘de-emphasis’ can be applied to the audio  
data if necessary (e.g. when the data comes from a CD with pre-emphasis used in the recording). De-  
emphasis filtering is available for sample rates of 48kHz, 44.1kHz and 32kHz.  
The WM8750L also has a Soft Mute function, which gradually attenuates the volume of the digital  
signal to zero. When removed, the gain will return to the original setting. This function is enabled by  
default. To play back an audio signal, it must first be disabled by setting the DACMU bit to zero.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DACMU  
DEFAULT  
DESCRIPTION  
R5 (05h)  
Digital Soft Mute  
3
1
ADC and DAC  
Control  
1 = mute  
0 = no mute (signal active)  
De-emphasis Control  
11 = 48kHz sample rate  
10 = 44.1kHz sample rate  
01 = 32kHz sample rate  
00 = No De-emphasis  
DEEMPH  
[1:0]  
2:1  
00  
Table 19 DAC Control  
The digital audio data is converted to oversampled bit streams in the on-chip, true 24-bit digital  
interpolation filters. The bitstream data enters two multi-bit, sigma-delta DACs, which convert them to  
high quality analogue audio signals. The multi-bit DAC architecture reduces high frequency noise and  
sensitivity to clock jitter. It also uses a Dynamic Element Matching technique for high linearity and low  
distortion.  
In normal operation, the left and right channel digital audio data is converted to analogue in two  
separate DACs. However, it is also possible to disable one channel, so that the same signal (left or  
right) appears on both analogue output channels. Additionally, there is a mono-mix mode where the  
two audio channels are mixed together digitally and then converted to analogue using only one DAC,  
while the other DAC is switched off. The mono-mix signal can be selected to appear on both  
analogue output channels.  
The DAC output defaults to non-inverted. Setting DACINV will invert the DAC output phase on both  
left and right channels.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R23 (17h)  
DMONOMIX  
[1:0]  
DAC mono mix  
5:4  
00  
Additional  
Control (1)  
00: stereo  
01: mono ((L+R)/2) into DACL, ‘0’ into  
DACR  
10: mono ((L+R)/2) into DACR, ‘0’ into  
DACL  
11: mono ((L+R)/2) into DACL and  
DACR  
DACINV  
DAC phase invert  
0 : non-inverted  
1 : inverted  
1
0
Table 20 DAC Mono Mix and Phase Invert Select  
PD, Rev 4.4, August 2012  
31  
w
WM8750L  
Production Data  
OUTPUT MIXERS  
The WM8750L provides the option to mix the DAC output signal with analogue line-in signals from the  
LINPUT1/2/3, RINPUT1/2/3 pins or a mono differential input (LINPUT1 – RINPUT1) or (LINPUT2 –  
RINPUT2), selected by DS (see Table 5) . The level of the mixed-in signals can be controlled with  
PGAs (Programmable Gain Amplifiers).  
The mono mixer is designed to allow a number of signal combinations to be mixed, including the  
possibility of mixing both the right and left channels together to produce a mono output. To prevent  
overloading of the mixer when full-scale DAC left and right signals are input, the mixer inputs from the  
DAC outputs each have a fixed gain of -6dB. The bypass path inputs to the mono mixer have variable  
gain as determined by R38/R39 bits [6:4].  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R34 (22h)  
LMIXSEL  
Left Input Selection for Output Mix  
000 = LINPUT1  
2:0  
000  
Left Mixer (1)  
001 = LINPUT2  
010 = LINPUT3  
011 = Left ADC Input (after PGA /  
MICBOOST)  
100 = Differential input  
Right Input Selection for Output Mix  
000 = RINPUT1  
R36 (24h)  
RMIXSEL  
2:0  
000  
Right Mixer  
(1)  
001 = RINPUT2  
010 = RINPUT3  
011 = Right ADC Input (after PGA /  
MICBOOST)  
100 = Differential input  
Table 21 Output Mixer Signal Selection  
REGISTER  
ADDRESS  
BIT  
LABEL  
LD2LO  
DEFAULT  
DESCRIPTION  
R34 (22h)  
Left DAC to Left Mixer  
0 = Disable (Mute)  
1 = Enable Path  
8
0
Left Mixer  
Control (1)  
LI2LO  
LMIXSEL Signal to Left Mixer  
0 = Disable (Mute)  
1 = Enable Path  
7
0
LI2LOVOL  
[2:0]  
LMIXSEL Signal to Left Mixer Volume  
000 = +6dB  
6:4  
101  
(-9dB)  
… (3dB steps)  
111 = -15dB  
R35 (23h)  
RD2LO  
RI2LO  
Right DAC to Left Mixer  
0 = Disable (Mute)  
1 = Enable Path  
8
7
0
0
Left Mixer  
Control (2)  
RMIXSEL Signal to Left Mixer  
0 = Disable (Mute)  
1 = Enable Path  
RI2LOVOL  
[2:0]  
RMIXSEL Signal to Left Mixer Volume  
000 = +6dB  
6:4  
101  
(-9dB)  
… (3dB steps)  
111 = -15dB  
Table 22 Left Output Mixer Control  
PD, Rev 4.4, August 2012  
32  
w
Production Data  
WM8750L  
REGISTER  
ADDRESS  
BIT  
LABEL  
LD2RO  
DEFAULT  
DESCRIPTION  
R36 (24h)  
Left DAC to Right Mixer  
8
0
Right Mixer  
Control (1)  
0 = Disable (Mute)  
1 = Enable Path  
LI2RO  
LMIXSEL Signal to Right Mixer  
0 = Disable (Mute)  
7
0
1 = Enable Path  
LI2ROVOL  
[2:0]  
LMIXSEL Signal to Right Mixer Volume  
000 = +6dB  
6:4  
101  
(-9dB)  
… (3dB steps)  
111 = -15dB  
R37 (25h)  
RD2RO  
RI2RO  
Right DAC to Right Mixer  
0 = Disable (Mute)  
8
7
0
0
Right Mixer  
Control (2)  
1 = Enable Path  
RMIXSEL Signal to Right Mixer  
0 = Disable (Mute)  
1 = Enable Path  
RI2ROVOL  
[2:0]  
RMIXSEL Signal to Right Mixer Volume  
000 = +6dB  
6:4  
101  
(-9dB)  
… (3dB steps)  
111 = -15dB  
Table 23 Right Output Mixer Control  
REGISTER  
ADDRESS  
BIT  
LABEL  
LD2MO  
DEFAULT  
DESCRIPTION  
R38 (26h)  
Left DAC to Mono Mixer  
0 = Disable (Mute)  
8
0
Mono Mixer  
Control (1)  
1 = Enable Path  
LI2MO  
LMIXSEL Signal to Mono Mixer  
0 = Disable (Mute)  
7
0
1 = Enable Path  
LI2MOVOL  
[2:0]  
LMIXSEL Signal to Mono Mixer  
Volume  
6:4  
101  
(-9dB)  
000 = +6dB  
… (3dB steps)  
111 = -15dB  
R39 (27h)  
RD2MO  
RI2MO  
Right DAC to Mono Mixer  
0 = Disable (Mute)  
1 = Enable Path  
8
7
0
0
Mono Mixer  
Control (2)  
RMIXSEL Signal to Mono Mixer  
0 = Disable (Mute)  
1 = Enable Path  
RI2MOVOL  
[2:0]  
RMIXSEL Signal to Mono Mixer  
Volume  
6:4  
101  
(-9dB)  
000 = +6dB  
… (3dB steps)  
111 = -15dB  
Table 24 Mono Output Mixer Control  
PD, Rev 4.4, August 2012  
33  
w
WM8750L  
Production Data  
ANALOGUE OUTPUTS  
LOUT1/ROUT1 OUTPUTS  
The LOUT1 and ROUT1 pins can drive a 16or 32headphone or a line output (see Headphone  
Output and Line Output sections, respectively). The signal volume on LOUT1 and ROUT1 can be  
independently adjusted under software control by writing to LOUT1VOL and ROUT1VOL,  
respectively. Note that gains over 0dB may cause clipping if the signal is large. Any gain setting below  
0101111 (minimum) mutes the output driver. The corresponding output pin remains at the same DC  
level (the reference voltage on the VREF pin), so that no click noise is produced when muting or un-  
muting.  
A zero cross detect on the analogue output may also be enabled when changing the gain setting to  
minimize audible clicks and zipper noise as the gain updates. If zero cross is enabled a timeout is  
also available to update the gain if a zero cross does not occur. This function may be enabled by  
setting TOEN in register R23 (17h).  
REGISTER  
ADDRESS  
BIT  
LABEL  
LO1VU  
DEFAULT  
DESCRIPTION  
R2 (02h)  
LOUT1  
Volume  
Left Volume Update  
8
0
0 = Store LOUT1VOL in intermediate  
latch (no gain change)  
1 = Update left and right channel gains  
(left = LOUT1VOL, right = intermediate  
latch)  
LO1ZC  
Left zero cross enable  
1 = Change gain on zero cross only  
0 = Change gain immediately  
LOUT1 Volume  
7
0
LOUT1VOL  
[6:0]  
6:0  
1111001  
(0dB)  
1111111 = +6dB  
… (80 steps)  
0110000 = -67dB  
0101111 to 0000000 = Analogue  
MUTE  
R3 (03h)  
ROUT1  
Volume  
RO1VU  
RO1ZC  
Right Volume Update  
8
0
0 = Store ROUT1VOL in intermediate  
latch (no gain change)  
1 = Update left and right channel gains  
(left = intermediate latch, right =  
ROUT1VOL)  
Right zero cross enable  
1 = Change gain on zero cross only  
0 = Change gain immediately  
ROUT1 Volume  
7
0
ROUT1VOL  
[6:0]  
6:0  
1111001  
Similar to LOUT1VOL  
Table 25 LOUT1/ROUT1 Volume Control  
PD, Rev 4.4, August 2012  
34  
w
Production Data  
WM8750L  
LOUT2/ROUT2 OUTPUTS  
The LOUT2 and ROUT2 output pins are essentially similar to LOUT1 and ROUT1, but they are  
independently controlled and can also drive an 8mono speaker (see Speaker Output section). For  
speaker drive, the ROUT2 signal must be inverted (ROUT2INV = 1), so that the left and right channel  
are mixed to mono in the speaker [L–(-R) = L+R].  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R40 (28h)  
LOUT2  
LO2VU  
Same as LO1VU  
8
7
0
0
LO2ZC  
Left zero cross enable  
Volume  
1 = Change gain on zero cross only  
0 = Change gain immediately  
Similar to LOUT1VOL  
LOUT2VOL  
[6:0]  
6:0  
1111001  
(0dB)  
R41 (29h)  
ROUT2  
RO2VU  
RO2ZC  
Same as RO1VU  
8
7
0
0
Right zero cross enable  
1 = Change gain on zero cross only  
0 = Change gain immediately  
Similar ROUT1VOL  
Volume  
ROUT2VOL  
[6:0]  
6:0  
4
1111001  
(0dB)  
0
R24 (18h)  
ROUT2INV  
ROUT2 Invert  
Additional  
Control (2)  
0 = No Inversion (0phase shift)  
1 = Signal inverted (180phase shift)  
Table 26 LOUT2/ROUT2 Volume Control  
MONO OUTPUT  
The MONOOUT pin can drive a mono line output. The signal volume on MONOOUT can be adjusted  
under software control by writing to MOUTVOL.  
REGISTER  
ADDRESS  
BIT  
LABEL  
MOZC  
DEFAULT  
DESCRIPTION  
R42 (2Ah)  
MONOOUT  
Volume  
MONOOUT zero cross enable  
1 = Change gain on zero cross only  
0 = Change gain immediately  
MONOOUT Volume  
7
0
MOUTVOL  
[6:0]  
6:0  
1111001  
(0dB)  
1111111 = +6dB  
… (80 steps)  
0110000 = -67dB  
0101111 to 0000000 = Analogue MUTE  
Table 27 MONOOUT Volume Control  
PD, Rev 4.4, August 2012  
35  
w
WM8750L  
Production Data  
OUT3 OUTPUT  
The OUT3 pin can drive a 16or 32headphone or a line output or be used as a DC reference for a  
headphone output (see Headphone Output section). It can be selected to either drive out an inverted  
ROUT1 or inverted MONOOUT for e.g. an earpiece drive between OUT3 and LOUT1 or differential  
output between OUT3 and MONOOUT. OUT3 can also drive an un-inverted ROUT1 signal, which  
originates at the right mixer output before the output PGA.  
OUT3SW selects the mode of operation required.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R24 (18h)  
OUT3SW  
[1:0]  
OUT3 select  
00 : VREF  
8:7  
00  
Additional  
Control (2)  
01 : ROUT1 signal (volume controlled by  
ROUT1VOL)  
10 : MONOOUT  
11 : right mixer output (no volume  
control through ROUT1VOL)  
Table 28 OUT3 Select  
ENABLING THE OUTPUTS  
Each analogue output of the WM8750L can be separately enabled or disabled. The analogue mixer  
associated with each output is powered on or off along with the output pin. All outputs are disabled by  
default. To save power, unused outputs should remain disabled.  
Outputs can be enabled at any time, except when VREF is disabled (VR=0), as this may cause pop  
noise (see “Power Management” and “Applications Information” sections)  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R26 (1Ah)  
LOUT1  
LOUT1 Enable  
6
5
4
3
2
1
0
0
0
0
0
0
Power  
Management  
(2)  
ROUT1  
LOUT2  
ROUT2  
MONO  
OUT3  
ROUT1 Enable  
LOUT2 Enable  
ROUT2 Enable  
MONOOUT Enable  
OUT3 Enable  
Note: All “Enable” bits are 1 = ON, 0 = OFF  
Table 29 Analogue Output Control  
Whenever an analogue output is disabled, it remains connected to VREF (pin 20) through a resistor.  
This helps to prevent pop noise when the output is re-enabled. The resistance between VREF and  
each output can be controlled using the VROI bit in register 27. The default is low (1.5k), so that any  
capacitors on the outputs can charge up quickly at start-up. If a high impedance is desired for  
disabled outputs, VROI can then be set to 1, increasing the resistance to about 40k.  
REGISTER  
ADDRESS  
BIT  
LABEL  
VROI  
DEFAULT  
DESCRIPTION  
R27 (1Bh)  
VREF to analogue output resistance  
6
0
Additional (1)  
0: 1.5 k  
1: 40 k  
Table 30 Disabled Outputs to VREF Resistance  
PD, Rev 4.4, August 2012  
36  
w
Production Data  
WM8750L  
HEADPHONE SWITCH  
The RINPUT3/HPDETECT pin can be used as a headphone switch control input to automatically  
disable the speaker output and enable the headphone output e.g. when a headphone is plugged into  
a jack socket. In this mode, enabled by setting HPSWEN, HPDETECT switches between headphone  
and speaker outputs (e.g. when the pin is connected to a mechanical switch in the headphone socket  
to detect plug-in). The HPSWPOL bit reverses the pin’s polarity. Note that the LOUT1, ROUT1,  
LOUT2 and ROUT2 bits in register 26 must also be set for headphone and speaker output (see Table  
31 and Table 32).  
Note:  
When RINPUT3/HPDETECT is used as the HPDETECT input, the thresholds become CMOS levels  
(0.3 AVDD / 0.7 AVDD).  
HPSWEN HPSWPOL HPDETECT L/ROUT1 L/ROUT2 Headphone  
Speaker  
enabled  
no  
(PIN23)  
(reg. 26)  
(reg. 26)  
enabled  
no  
0
0
0
0
1
1
1
1
1
1
1
1
X
X
X
X
0
0
0
0
1
1
1
1
X
X
X
X
0
0
1
1
0
0
1
1
0
0
1
1
X
X
0
1
0
1
X
X
0
1
0
1
0
1
X
X
X
X
0
1
no  
yes  
no  
yes  
yes  
no  
yes  
no  
no  
yes  
no  
no  
yes  
no  
no  
no  
yes  
no  
no  
no  
no  
yes  
Table 31 Headphone Switch Operation  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R24 (18h)  
HPSWEN  
Headphone Switch Enable  
6
0
Additional  
Control (2)  
0 : Headphone switch disabled  
1 : Headphone switch enabled  
Headphone Switch Polarity  
HPSWPOL  
5
0
0 : HPDETECT high = headphone  
1 : HPDETECT high = speaker  
Table 32 Headphone Switch  
AVDD  
HPSWEN = 1  
HPSWPOL = 0  
L/ROUT1 = L/ROUT2 = 1  
-
-
ROUT1  
LOUT1  
L
R
33k  
HPDETECT  
Headphone/  
speaker  
switching  
switch opens  
with insertion  
Figure 11 Example Headset Detection Circuit Using Normally-Open Switch  
PD, Rev 4.4, August 2012  
37  
w
WM8750L  
Production Data  
Figure 12 Example Headset Detection Circuit Using Normally-Closed Switch  
THERMAL SHUTDOWN  
The speaker and headphone outputs can drive very large currents. To protect the WM8750L from  
overheating a thermal shutdown circuit is included. If the device temperature reaches approximately  
1500C and the thermal shutdown circuit is enabled (TSDEN = 1 ) then the speaker and headphone  
amplifiers (outputs OUT1L/R, OUT2L/R and OUT3) will be disabled.  
REGISTER  
ADDRESS  
BIT  
LABEL  
TSDEN  
DEFAULT  
DESCRIPTION  
R23 (17h)  
Thermal Shutdown Enable  
0 : thermal shutdown disabled  
1 : thermal shutdown enabled  
8
0
Additional  
Control (1)  
Table 33 Thermal Shutdown  
HEADPHONE OUTPUT  
Analogue outputs LOUT1/ROUT1, LOUT2/ROUT2, and OUT3, can drive a 16or 32headphone  
load, either through DC blocking capacitors, or DC coupled without any capacitor.  
DC Coupled Headphone Output  
(OUT3SW = 00)  
Headphone Output using DC blocking  
capacitors  
C1 220uF  
LOUT1/2  
LOUT1/2  
ROUT1/2  
WM8750L  
WM8750L  
C2 220uF  
ROUT1/2  
HPGND = 0V  
OUT3 = VREF  
Figure 13 Recommended Headphone Output Configurations  
When DC blocking capacitors are used, then their capacitance and the load resistance together  
determine the lower cut-off frequency, fc. Increasing the capacitance lowers fc, improving the bass  
response. Smaller capacitance values will diminish the bass response. Assuming a 16 Ohm load and  
C1, C2 = 220F:  
fc = 1 / 2RLC1 = 1 / (2x 16x 220F) = 45 Hz  
In the DC coupled configuration, the headphone “ground” is connected to the OUT3 pin, which must  
be enabled by setting OUT3 = 1 and OUT3SW = 00. As the OUT3 pin produces a DC voltage of  
AVDD/2 (=VREF), there is no DC offset between LOUT1/ROUT1 and OUT3, and therefore no DC  
blocking capacitors are required. This saves space and material cost in portable applications.  
It is recommended to connect the DC coupled headphone outputs only to headphones, and not to the  
line input of another device. Although the built-in short circuit protection will prevent any damage to  
the headphone outputs, such a connection may be noisy, and may not function properly if the other  
device is grounded.  
PD, Rev 4.4, August 2012  
38  
w
Production Data  
WM8750L  
SPEAKER OUTPUT  
LOUT2 and ROUT2 can differentially drive a mono 8speaker as shown below.  
LEFT  
MIXER  
LOUT2  
LOUT2VOL  
WM8750L  
ROUT2INV = 1  
VSPKR = L-(-R) = L+R  
-1  
ROUT2  
RIGHT  
MIXER  
ROUT2VOL  
Figure 14 Speaker Output Connection  
The right channel is inverted by setting the ROUT2INV bit, so that the signal across the loudspeaker  
is the sum of left and right channels.  
LINE OUTPUT  
The analogue outputs, LOUT1/ROUT1 and LOUT2/ROUT2, can be used as line outputs. Additionally,  
OUT3 and MONOOUT can be used as a stereo line-out by setting OUT3SW=11 (reg. 24) and  
ensuring the contents of registers 38 and 39 (mono-out mix) are the same as reg. 34 and 35 (left out  
mix). Recommended external components are shown below.  
C1  
R1  
1uF  
100 Ohm  
LOUT1/2  
or OUT3 (OUT3SW=11)  
LINE-OUT  
SOCKET  
(LEFT)  
AGND  
AGND  
WM8750L  
ROUT1/2  
or MONOOUT  
LINE-OUT  
SOCKET  
(RIGHT)  
C2  
1uF  
R2  
100 Ohm  
Figure 15 Recommended Circuit for Line Output  
The DC blocking capacitors and the load resistance together determine the lower cut-off frequency, fc.  
Assuming a 10 kOhm load and C1, C2 = 1F:  
fc = 1 / 2(RL+R1) C1 = 1 / (2x 10.1kx 1F) = 16 Hz  
Increasing the capacitance lowers fc, improving the bass response. Smaller values of C1 and C2 will  
diminish the bass response. The function of R1 and R2 is to protect the line outputs from damage  
when used improperly.  
PD, Rev 4.4, August 2012  
39  
w
WM8750L  
Production Data  
DIGITAL AUDIO INTERFACE  
The digital audio interface is used for inputting DAC data into the WM8750L and outputting ADC data  
from it. It uses five pins:  
ADCDAT: ADC data output  
ADCLRC: ADC data alignment clock  
DACDAT: DAC data input  
DACLRC: DAC data alignment clock  
BCLK: Bit clock, for synchronisation  
The clock signals BCLK, ADCLRC and DACLRC can be outputs when the WM8750L operates as a  
master, or inputs when it is a slave (see Master and Slave Mode Operation, below).  
Four different audio data formats are supported:  
Left justified  
Right justified  
I2S  
DSP mode  
All four of these modes are MSB first. They are described in Audio Data Formats, below. Refer to the  
Electrical Characteristic section for timing information.  
MASTER AND SLAVE MODE OPERATION  
The WM8750L can be configured as either a master or slave mode device. As a master device the  
WM8750L generates BCLK, ADCLRC and DACLRC and thus controls sequencing of the data  
transfer on ADCDAT and DACDAT. In slave mode, the WM8750L responds with data to clocks it  
receives over the digital audio interface. The mode can be selected by writing to the MS bit (see  
Table 23). Master and slave modes are illustrated below.  
BCLK  
ADCLRC  
DACLRC  
ADCDAT  
DACDAT  
BCLK  
ADCLRC  
DACLRC  
ADCDAT  
DACDAT  
DSP  
ENCODER/  
DECODER  
DSP  
ENCODER/  
DECODER  
WM8750  
CODEC  
WM8750  
CODEC  
Note: The ADC and DAC can run at different sample rates  
Note: The ADC and DAC can run at different sample rates  
Figure 16 Master Mode  
Figure 17 Slave Mode  
Note: For optimum ADC audio performance in Slave Mode, the BCLK input signal edge should  
coincide with the falling edge of MCLK.  
Note that the ADCDAT output pin may be either logic ‘1’ or logic ‘0’ at power-up until data is clocked  
out from the ADC. It is recommended to ensure that any external connection to the ADCDAT pin is  
compatible with the ADCDAT output pin being driven either high or low by the WM8750L until ADC  
data is clocked out. Alternatively, the ADCDAT pin can be tri-stated by setting the TRI bit in Register  
R24 (see Table 35).  
PD, Rev 4.4, August 2012  
40  
w
Production Data  
WM8750L  
AUDIO DATA FORMATS  
In Left Justified mode, the MSB is available on the first rising edge of BCLK following a LRCLK  
transition. The other bits up to the LSB are then transmitted in order. Depending on word length,  
BCLK frequency and sample rate, there may be unused BCLK cycles before each LRCLK transition.  
Figure 18 Left Justified Audio Interface (assuming n-bit word length)  
In Right Justified mode, the LSB is available on the last rising edge of BCLK before a LRCLK  
transition. All other bits are transmitted before (MSB first). Depending on word length, BCLK  
frequency and sample rate, there may be unused BCLK cycles after each LRCLK transition.  
Figure 19 Right Justified Audio Interface (assuming n-bit word length)  
PD, Rev 4.4, August 2012  
41  
w
WM8750L  
Production Data  
In I2S mode, the MSB is available on the second rising edge of BCLK following a LRCLK transition.  
The other bits up to the LSB are then transmitted in order. Depending on word length, BCLK  
frequency and sample rate, there may be unused BCLK cycles between the LSB of one sample and  
the MSB of the next.  
Figure 20 I2S Justified Audio Interface (assuming n-bit word length)  
In DSP/PCM mode, the left channel MSB is available on either the 1st (mode B) or 2nd (mode A)  
rising edge of BCLK (selectable by LRP) following a rising edge of LRC. Right channel data  
immediately follows left channel data. Depending on word length, BCLK frequency and sample rate,  
there may be unused BCLK cycles between the LSB of the right channel data and the next sample.  
In device master mode, the LRC output will resemble the frame pulse shown in Figure 21 and Figure  
22. In device slave mode, Figure 23 and Figure 24, it is possible to use any length of frame pulse less  
than 1/fs, providing the falling edge of the frame pulse occurs greater than one BCLK period before  
the rising edge of the next frame pulse.  
Figure 21 DSP/PCM Mode Audio Interface (mode A, LRP=0, Master)  
PD, Rev 4.4, August 2012  
42  
w
Production Data  
WM8750L  
Figure 22 DSP/PCM Mode Audio Interface (mode B, LRP=1, Master)  
Figure 23 DSP/PCM Mode Audio Interface (mode A, LRP=0, Slave)  
Figure 24 DSP/PCM Mode Audio Interface (mode B, LRP=0, Slave)  
PD, Rev 4.4, August 2012  
43  
w
WM8750L  
Production Data  
AUDIO INTERFACE CONTROL  
The register bits controlling audio format, word length and master / slave mode are summarised in  
Table 34. MS selects audio interface operation in master or slave mode. In Master mode BCLK,  
ADCLRC and DACLRC are outputs. The frequency of ADCLRC and DACLRC is set by the sample  
rate control bits SR[4:0] and USB. In Slave mode BCLK, ADCLRC and DACLRC are inputs.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R7 (07h)  
BCLKINV  
BCLK invert bit (for master and slave  
modes)  
7
0
Digital Audio  
Interface  
Format  
0 = BCLK not inverted  
1 = BCLK inverted  
MS  
Master / Slave Mode Control  
1 = Enable Master Mode  
0 = Enable Slave Mode  
Left/Right channel swap  
6
5
0
0
LRSWAP  
1 = swap left and right DAC data in  
audio interface  
0 = output left and right data as normal  
LRP  
right, left and i2s modes – LRCLK  
polarity  
4
0
1 = invert LRCLK polarity  
0 = normal LRCLK polarity  
DSP Mode – mode A/B select  
1 = MSB is available on 1st BCLK rising  
edge after LRC rising edge (mode B)  
0 = MSB is available on 2nd BCLK rising  
edge after LRC rising edge (mode A)  
WL[1:0]  
Audio Data Word Length  
11 = 32 bits (see Note)  
10 = 24 bits  
3:2  
1:0  
10  
10  
01 = 20 bits  
00 = 16 bits  
FORMAT[1:0]  
Audio Data Format Select  
11 = DSP Mode  
10 = I2S Format  
01 = Left justified  
00 = Right justified  
Table 34 Audio Data Format Control  
Notes:  
1. The BCLK invert function (BCLKINV) is not supported by the ADC output in Master or Slave  
modes. Inverted BCLK operation (BCLKINV=1) is only supported for DAC-only modes.  
2. In Right-Justified mode, 32-bit word length is not supported  
3. In Right Justified mode, 16-bit and 20-bit word length is only supported if DCVDD 1.5V  
PD, Rev 4.4, August 2012  
44  
w
Production Data  
WM8750L  
AUDIO INTERFACE OUTPUT TRISTATE  
Register bit TRI, register 24(18h) bit[3] can be used to tristate the ADCDAT pin and switch ADCLRC,  
DACLRC and BCLK to inputs. In Slave mode (MASTER=0) ADCLRC, DACLRC and BCLK are by  
default configured as inputs and only ADCDAT will be tri-stated, (see Table 35).  
REGISTER  
ADDRESS  
BIT  
LABEL DEFAULT  
TRI  
DESCRIPTION  
R24(18h)  
Additional  
Control (2)  
Tristates ADCDAT and switches ADCLRC,  
DACLRC and BCLK to inputs.  
3
0
0 = ADCDAT is an output, ADCLRC, DACLRC  
and BCLK are inputs (slave mode) or outputs  
(master mode)  
1 = ADCDAT is tristated, ADCLRC, DACLRC  
and BCLK are inputs  
Table 35 Tri-stating the Audio Interface  
MASTER MODE ADCLRC AND DACLRC ENABLE  
In Master mode, by default ADCLRC is disabled when the ADC is disabled and DACLRC is disabled  
when the DAC is disabled. Register bit LRCM, register 24(18h) bit[2] changes the control so that the  
ADCLRC and DACLRC are disabled only when ADC and DAC are disabled. This enables the user to  
use e.g. ADCLRC for both ADC and DAC LRCLK and disable the ADC when DAC only operation is  
required, (see Table 36).  
REGISTER  
ADDRESS  
BIT  
LABEL DEFAULT  
LRCM  
DESCRIPTION  
R24(18h)  
Additional  
Control (2)  
Selects disable mode for ADCLRC and  
DACLRC  
2
0
0 = ADCLRC disabled when ADC (Left and  
Right) disabled, DACLRC disabled when  
DAC (Left and Right) disabled.  
1 = ADCLRC and DACLRC disabled only when  
ADC (Left and Right) and DAC (Left and  
Right) are disabled.  
Table 36 ADCLRC/DACLRC Enable  
BIT CLOCK MODE  
The default master mode bit clock generator produces a bit clock frequency based on the sample rate  
and input MCLK frequency as shown in Table 40. When enabled by setting the appropriate BCM[1:0]  
bits, the bit clock mode (BCM) function overrides the default master mode bit clock generator to  
produce the bit clock frequency shown in the table below:  
REGISTER  
ADDRESS  
BIT  
LABEL DEFAULT  
00  
DESCRIPTION  
R8 (08h)  
BCLK Frequency  
8:7 BCM[1:0]  
Clocking and  
Sample Rate  
Control  
00 = BCM function disabled  
01 = MCLK/4  
10 = MCLK/8  
11 = MCLK/16  
Table 37 Master Mode BCLK Frequency Control  
The BCM mode bit clock generator produces 16 or 24 bit clock cycles per sample. The number of bit  
clock cycles per sample in this mode is determined by the word length bits (WL[1:0]) in the Digital  
Audio Interface Format register (R7). When these bits are set to 00, there will be 16 bit clock cycles  
per sample. When these bits are set to 01, 10 or 11, there will be 24 bit clock cycles per sample.  
Please refer to Figure 25.  
PD, Rev 4.4, August 2012  
45  
w
WM8750L  
Production Data  
The BCM generator uses the ADCLRC signal, hence the ADCLRC signal must be enabled when  
using bit clock mode. To enable the ADCLRC signal, either the ADC must be powered up or, if the  
ADC is not in use, the LRCM bit must be set to enable both the ADCLRC and DACLRC signals when  
either the ADC or the DAC is enabled.  
Note that, when the BCM function is enabled, the following restrictions apply:  
1. The bit clock invert (BCLKINV) function is not available.  
2. The DAC and ADC must be operated at the same sample rate.  
3. DSP Mode-B digital audio interface mode is not available and must not be selected.  
Figure 25 Bit Clock Mode  
Note: The shaded bit clock cycles are present only when 24-bit mode is selected. Please refer to the  
"Bit Clock Mode" description for details.  
CLOCK OUTPUT  
By default ADCLRC (pin 9) is the ADC word clock input/output. Under the control of ADCLRM[1:0],  
register 27(1Bh) bits [8:7] the ADCLRC pin may be configured as a clock output. If ADCLRM is 01, 10  
or 11 then ADCLRC pin is always an output even in slave mode or when TRI = ‘1’, (see Table 38).  
The ADC then uses the DACLRC pin as its LRCLK in both master and slave modes.  
REGISTER  
ADDRESS  
BIT  
LABEL DEFAULT  
DESCRIPTION  
R27(1Bh)  
Additional  
Control (3)  
Configures ADCLRC pin  
8:7 ADCLRM  
[1:0]  
00  
00 = ADCLRC is ADC word clock input (slave  
mode) or ADCLRC output (master mode)  
01 = ADCLRC pin is MCLK output  
10 = ADCLRC pin is MCLK / 5.5 output  
11 = ADCLRC pin is MCLK / 6 output  
Table 38 ADCLRC Clock Output  
PD, Rev 4.4, August 2012  
46  
w
Production Data  
WM8750L  
CLOCKING AND SAMPLE RATES  
The WM8750L supports a wide range of master clock frequencies on the MCLK pin, and can  
generate many commonly used audio sample rates directly from the master clock. The ADC and DAC  
do not need to run at the same sample rate; several different combinations are possible.  
There are two clocking modes:  
‘Normal’ mode supports master clocks of 128fs, 192fs, 256fs, 384fs, and their multiples  
(Note: fs refers to the ADC or DAC sample rate, whichever is faster)  
USB mode supports 12MHz or 24MHz master clocks. This mode is intended for use in  
systems with a USB interface, and eliminates the need for an external PLL to generate  
another clock frequency for the audio codec.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R8 (08h)  
CLKDIV2  
Master Clock Divide by 2  
1 = MCLK is divided by 2  
0 = MCLK is not divided  
Sample Rate Control  
Clocking Mode Select  
1 = USB Mode  
6
0
Clocking and  
Sample Rate  
Control  
SR [4:0]  
USB  
5:1  
0
00000  
0
0 = ‘Normal’ Mode  
Table 39 Clocking and Sample Rate Control  
The clocking of the WM8750L is controlled using the CLKDIV2, USB, and SR control bits. Setting the  
CLKDIV2 bit divides MCLK by two internally. The USB bit selects between ‘Normal’ and USB mode.  
Each value of SR[4:0] selects one combination of MCLK division ratios and hence one combination of  
sample rates (see next page). Since all sample rates are generated by dividing MCLK, their accuracy  
depends on the accuracy of MCLK. If MCLK changes, the sample rates change proportionately.  
Note that some sample rates (e.g. 44.1kHz in USB mode) are approximated, i.e. they differ from their  
target value by a very small amount. This is not audible, as the maximum deviation is only 0.27%  
(8.0214kHz instead of 8kHz in USB mode). By comparison, a half-tone step corresponds to a 5.9%  
change in pitch.  
The SR[4:0] bits must be set to configure the appropriate ADC and DAC sample rates in both master  
and slave mode.  
Note: When the ADC is configured at a sample rate of 88.2kHz, 88.235kHz or 96kHz (see Table 40),  
the Right Channel ADC data will be delayed by one sample with respect to the Left Channel data.  
PD, Rev 4.4, August 2012  
47  
w
WM8750L  
Production Data  
MCLK  
MCLK  
ADC SAMPLE RATE  
DAC SAMPLE RATE  
USB  
SR [4:0]  
FILTER  
BCLK  
TYPE  
CLKDIV2=0 CLKDIV2=1  
(ADCLRC)  
(DACLRC)  
(MS=1)  
‘Normal’ Clock Mode (‘*’ indicates backward compatibility with WM8731)  
12.288 MHz 24.576 MHz  
8 kHz (MCLK/1536)  
8 kHz (MCLK/1536)  
12 kHz (MCLK/1024)  
16 kHz (MCLK/768)  
24 kHz (MCLK/512)  
32 kHz (MCLK/384)  
48 kHz (MCLK/256)  
48 kHz (MCLK/256)  
96 kHz (MCLK/128)  
8.0182 kHz (MCLK/1408)  
8.0182 kHz (MCLK/1408)  
11.025 kHz (MCLK/1024)  
22.05 kHz (MCLK/512)  
44.1 kHz (MCLK/256)  
44.1 kHz (MCLK/256)  
88.2 kHz (MCLK/128)  
8 kHz (MCLK/2304)  
8 kHz (MCLK/2304)  
12 kHz (MCLK/1536)  
16kHz (MCLK/1152)  
24kHz (MCLK/768)  
8 kHz (MCLK/1536)  
48 kHz (MCLK/256)  
12 kHz (MCLK/1024)  
16 kHz (MCLK/768)  
24 kHz (MCLK/512)  
32 kHz (MCLK/384)  
8 kHz (MCLK/1536)  
48 kHz (MCLK/256)  
96 kHz (MCLK/128)  
8.0182 kHz (MCLK/1408)  
44.1 kHz (MCLK/256)  
11.025 kHz (MCLK/1024)  
22.05 kHz (MCLK/512)  
8.0182 kHz (MCLK/1408)  
44.1 kHz (MCLK/256)  
88.2 kHz (MCLK/128)  
8 kHz (MCLK/2304)  
48 kHz (MCLK/384)  
12 kHz (MCLK/1536)  
16 kHz (MCLK/1152)  
24 kHz (MCLK/768)  
32 kHz (MCLK/576)  
48 kHz (MCLK/384)  
8 kHz (MCLK/2304)  
96 kHz (MCLK/192)  
8.0182 kHz (MCLK/2112)  
44.1 kHz (MCLK/384)  
11.025 kHz (MCLK/1536)  
22.05 kHz (MCLK/768)  
8.0182 kHz (MCLK/2112)  
44.1 kHz (MCLK/384)  
88.2 kHz (MCLK/192)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00110 *  
00100 *  
01000  
1
1
1
1
1
1
1
1
3
1
1
1
1
1
1
3
1
1
1
1
1
1
1
1
3
1
1
1
1
1
1
3
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/2  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/2  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/3  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/3  
01010  
11100  
01100 *  
00010 *  
00000 *  
01110 *  
10110 *  
10100 *  
11000  
11.2896MHz 22.5792MHz  
11010  
10010 *  
10000 *  
11110 *  
00111 *  
00101 *  
01001  
18.432MHz 36.864MHz  
01011  
11101  
32 kHz (MCLK/576)  
48 kHz (MCLK/384)  
48 kHz (MCLK/384)  
96 kHz (MCLK/192)  
8.0182 kHz (MCLK/2112)  
8.0182 kHz (MCLK/2112)  
11.025 kHz (MCLK/1536)  
22.05 kHz (MCLK/768)  
44.1 kHz (MCLK/384)  
44.1 kHz (MCLK/384)  
88.2 kHz (MCLK/192)  
01101 *  
00001 *  
00011 *  
01111 *  
10111 *  
10101 *  
11001  
16.9344MHz 33.8688MHz  
11011  
10011 *  
10001 *  
11111 *  
USB Mode (‘*’ indicates backward compatibility with WM8731)  
12.000MHz 24.000MHz  
8 kHz (MCLK/1500)  
8 kHz (MCLK/1500)  
8 kHz (MCLK/1500)  
48 kHz (MCLK/250)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
00110 *  
00100 *  
10111 *  
10101 *  
11001  
0
0
1
1
1
0
0
1
0
0
1
1
0
0
3
2
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
8.0214 kHz (MCLK/1496)  
8.0214 kHz (MCLK/1496)  
11.0259 kHz (MCLK/1088)  
12 kHz (MCLK/1000)  
16kHz (MCLK/750)  
8.0214kHz (MCLK/1496)  
44.118 kHz (MCLK/272)  
11.0259kHz (MCLK/1088)  
12 kHz (MCLK/1000)  
16kHz (MCLK/750)  
01000  
01010  
22.0588kHz (MCLK/544)  
24kHz (MCLK/500)  
22.0588kHz (MCLK/544)  
24kHz (MCLK/500)  
11011  
11100  
32 kHz (MCLK/375)  
32 kHz (MCLK/375)  
01100 *  
10011 *  
10001 *  
00010 *  
00000 *  
11111 *  
01110 *  
44.118 kHz (MCLK/272)  
44.118 kHz (MCLK/272)  
48 kHz (MCLK/250)  
8.0214kHz (MCLK/1496)  
44.118 kHz (MCLK/272)  
8 kHz (MCLK/1500)  
48 kHz (MCLK/250)  
48 kHz (MCLK/250)  
88.235kHz (MCLK/136)  
96 kHz (MCLK/125)  
88.235kHz (MCLK/136)  
96 kHz (MCLK/125)  
Table 40 Master Clock and Sample Rates  
PD, Rev 4.4, August 2012  
48  
w
Production Data  
WM8750L  
CONTROL INTERFACE  
SELECTION OF CONTROL MODE  
The WM8750L is controlled by writing to registers through a serial control interface. A control word  
consists of 16 bits. The first 7 bits (B15 to B9) are address bits that select which control register is  
accessed. The remaining 9 bits (B8 to B0) are data bits, corresponding to the 9 bits in each control  
register. The control interface can operate as either a 3-wire or 2-wire MPU interface. The MODE pin  
selects the interface format.  
MODE  
Low  
INTERFACE FORMAT  
2 wire  
3 wire  
High  
Table 41 Control Interface Mode Selection  
3-WIRE SERIAL CONTROL MODE  
In 3-wire mode, every rising edge of SCLK clocks in one data bit from the SDIN pin. A rising edge on  
CSB latches in a complete control word consisting of the last 16 bits.  
latch  
CSB  
SCLK  
SDIN  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
control register address  
control register data bits  
Figure 26 3-Wire Serial Control Interface  
2-WIRE SERIAL CONTROL MODE  
The WM8750L supports software control via a 2-wire serial bus. Many devices can be controlled by  
the same bus, and each device has a unique 7-bit address (this is not the same as the 7-bit address  
of each register in the WM8750L).  
The WM8750L operates as a slave device only. The controller indicates the start of data transfer with  
a high to low transition on SDIN while SCLK remains high. This indicates that a device address and  
data will follow. All devices on the 2-wire bus respond to the start condition and shift in the next eight  
bits on SDIN (7-bit address + Read/Write bit, MSB first). If the device address received matches the  
address of the WM8750L and the R/W bit is ‘0’, indicating a write, then the WM8750L responds by  
pulling SDIN low on the next clock pulse (ACK). If the address is not recognised or the R/W bit is ‘1’,  
the WM8750L returns to the idle condition and wait for a new start condition and valid address.  
Once the WM8750L has acknowledged a correct address, the controller sends the first byte of control  
data (B15 to B8, i.e. the WM8750L register address plus the first bit of register data). The WM8750L  
then acknowledges the first data byte by pulling SDIN low for one clock pulse. The controller then  
sends the second byte of control data (B7 to B0, i.e. the remaining 8 bits of register data), and the  
WM8750L acknowledges again by pulling SDIN low.  
The transfer of data is complete when there is a low to high transition on SDIN while SCLK is high.  
After receiving a complete address and data sequence the WM8750L returns to the idle state and  
waits for another start condition. If a start or stop condition is detected out of sequence at any point  
during data transfer (i.e. SDIN changes while SCLK is high), the device jumps to the idle condition.  
PD, Rev 4.4, August 2012  
49  
w
WM8750L  
Production Data  
DEVICE ADDRESS RD / WR  
(7 BITS) BIT  
ACK  
(LOW)  
CONTROL BYTE 1  
(BITS 15 TO 8)  
ACK  
(LOW)  
CONTROL BYTE 2  
(BITS 7 TO 0)  
ACK  
(LOW)  
SDIN  
SCLK  
START  
STOP  
register address and  
1st register data bit  
remaining 8 bits of  
register data  
Figure 27 2-Wire Serial Control Interface  
The WM8750L has two possible device addresses, which can be selected using the CSB pin.  
CSB STATE  
Low  
DEVICE ADDRESS  
0011010 (0 x 34h)  
0011011 (0 x 36h)  
High  
Table 42 2-Wire MPU Interface Address Selection  
POWER SUPPLIES  
The WM8750L can use up to four separate power supplies:  
AVDD / AGND: Analogue supply, powers all analogue functions except the headphone drivers.  
AVDD can range from 1.8V to 3.6V and has the most significant impact on overall power  
consumption (except for power consumed in the headphone). A large AVDD slightly improves  
audio quality.  
HPVDD / HPGND: Headphone supply, powers the headphone drivers. HPVDD is normally tied  
to AVDD, but it requires separate layout and decoupling capacitors to curb harmonic distortion.  
If HPVDD is lower than AVDD, the output signal may be clipped.  
DCVDD: Digital core supply, powers all digital functions except the audio and control interfaces.  
DCVDD can range from 1.42V to 3.6V, and has no effect on audio quality. The return path for  
DCVDD is DGND, which is shared with DBVDD.  
DBVDD: Digital buffer supply, powers the audio and control interface buffers. This makes it  
possible to run the digital core at very low voltages, saving power, while interfacing to other  
digital devices using a higher voltage. DBVDD draws much less power than DCVDD, and has  
no effect on audio quality. DBVDD can range from 1.8V to 3.6V. The return path for DBVDD is  
DGND, which is shared with DCVDD.  
It is possible to use the same supply voltage on all four. However, digital and analogue supplies  
should be routed and decoupled separately to keep digital switching noise out of the analogue signal  
paths.  
PD, Rev 4.4, August 2012  
50  
w
Production Data  
WM8750L  
POWER MANAGEMENT  
The WM8750L has two control registers that allow users to select which functions are active. For  
minimum power consumption, unused functions should be disabled. To avoid any pop or click noise,  
it is important to enable or disable functions in the correct order (see Applications Information).  
VMIDSEL is the enable for the Vmid reference, which defaults to disabled and can be enabled as a  
50kpotential divider or, for low power maintenance of Vref when all other blocks are disabled, as a  
500kpotential divider.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R25 (19h)  
VMIDSEL  
Vmid divider enable and select  
8:7  
00  
Power  
00 – Vmid disabled (for OFF mode)  
Management  
(1)  
01 – 50kdivider enabled (for  
playback/record)  
10 – 500kdivider enabled (for low-power  
standby)  
11 – 5kdivider enabled (for fast start-up)  
VREF (necessary for all other functions)  
0 = Power down  
1 = Power up  
VREF  
AINL  
6
5
4
3
2
1
8
7
6
5
4
3
2
0
0
0
0
0
0
0
0
0
0
0
0
0
Analogue in PGA Left  
0 = Power down  
1 = Power up  
AINR  
Analogue in PGA Right  
0 = Power down  
1 = Power up  
ADCL  
ADCR  
MICB  
ADC Left  
0 = Power down  
1 = Power up  
ADC Right  
0 = Power down  
1 = Power up  
MICBIAS  
0 = Power down  
1 = Power up  
R26 (1Ah)  
DACL  
DACR  
LOUT1  
ROUT1  
LOUT2  
ROUT2  
MONO  
DAC Left  
Power  
Management  
(2)  
0 = Power down  
1 = Power up  
DAC Right  
0 = Power down  
1 = Power up  
LOUT1 Output Buffer*  
0 = Power down  
1 = Power up  
ROUT1 Output Buffer*  
0 = Power down  
1 = Power up  
LOUT2 Output Buffer*  
0 = Power down  
1 = Power up  
ROUT2 Output Buffer*  
0 = Power down  
1 = Power up  
MONOOUT Output Buffer and Mono Mixer  
0 = Power down  
1 = Power up  
PD, Rev 4.4, August 2012  
51  
w
WM8750L  
Production Data  
REGISTER  
ADDRESS  
BIT  
LABEL  
OUT3  
DEFAULT  
DESCRIPTION  
OUT3 Output Buffer  
1
0
0 = Power down  
1 = Power up  
* The left mixer is enabled when LOUT1=1 or LOUT2=1. The right mixer is enabled when  
ROUT1=1 or ROUT2=1.  
Table 43 Power Management  
STOPPING THE MASTER CLOCK  
In order to minimise power consumed in the digital core of the WM8750L, the master clock may be  
stopped in Standby and OFF modes. If this cannot be done externally at the clock source, the  
DIGENB bit (R25, bit 0) can be set to stop the MCLK signal from propagating into the device core. In  
Standby mode, setting DIGENB will typically provide an additional power saving on DCVDD of 20uA.  
However, since setting DIGENB has no effect on the power consumption of other system components  
external to the WM8750L, it is preferable to disable the master clock at its source wherever possible.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R25 (19h)  
DIGENB  
Master clock disable  
0
0
Additional Control  
(1)  
0: master clock enabled  
1: master clock disabled  
Table 44 Master Clock Disable  
Note: Before DIGENB can be set, the control bits ADCL, ADCR, DACL and DACR must be set to  
zero and a waiting time of 1ms must be observed. Any failure to follow this procedure may prevent  
DACs and ADCs from re-starting correctly.  
SAVING POWER BY REDUCING OVERSAMPLING RATE  
The default mode of operation of the ADC and DAC digital filters is in 128x oversampling mode.  
Under the control of ADCOSR and DACOSR the oversampling rate may be halved. This will result in  
a slight decrease in noise performance but will also reduce the power consumption of the device. In  
USB mode ADCOSR must be set to 0, i.e. 128x oversampling.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R24 (18h)  
ADCOSR  
ADC oversample rate select  
1 = 64x (lowest power)  
0 = 128x (best SNR)  
1
0
Additional Control  
(2)  
DACOSR  
DAC oversample rate select  
1 = 64x (lowest power)  
0 = 128x (best SNR)  
0
0
Table 45 ADC and DAC Oversampling Rate Selection  
ADCOSR set to ‘1’, 64x oversample mode, is not supported in USB mode (USB=1).  
PD, Rev 4.4, August 2012  
52  
w
Production Data  
WM8750L  
SAVING POWER AT HIGHER SUPPLY VOLTAGES  
The analogue supplies to the WM8750L can run from 1.8V to 3.6V. By default, all analogue circuitry  
on the device is optimized to run at 3.3V. This set-up is also good for all other supply voltages down  
to 1.8V. At lower voltages, performance can be improved by increasing the bias current. If low power  
operation is preferred the bias current can be left at the default setting. This is controlled as shown  
below.  
REGISTER  
ADDRESS  
BIT  
LABEL DEFAULT  
DESCRIPTION  
R23 (17h)  
VSEL  
[1:0]  
Analogue Bias optimization  
7:6  
11  
Additional  
Control(1)  
00: Highest bias current, optimized for AVDD=1.8V  
01: Bias current optimized for AVDD=2.5V  
1X: Lowest bias current, optimized for AVDD=3.3V  
Table 46 Analogue Bias Selection  
PD, Rev 4.4, August 2012  
53  
w
WM8750L  
Production Data  
REGISTER MAP  
The WM8750L control registers are listed below. Note that only the register addresses described here should be accessed;  
writing to other addresses may result in undefined behaviour. Register bits that are not documented should not be changed  
from the default values.  
ADDRESS  
REGISTER  
remarks  
Bit[8]  
Bit[7]  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
default  
page ref  
(Bit 15 – 9)  
0000000  
0000001  
0000010  
0000011  
0000101  
0000111  
0001000  
0001010  
0001011  
22  
22  
R0 (00h)  
R1 (01h)  
R2 (02h)  
R3 (03h)  
R5 (05h)  
R7 (07h)  
R8 (08h)  
R10 (0Ah)  
R11 (0Bh)  
Left Input volume  
Right Input volume  
LOUT1 volume  
LIVU LINMUTE LIZC  
RIVU RINMUTE RIZC  
LO1VU LO1ZC  
LINVOL  
010010111  
010010111  
001111001  
001111001  
000001000  
000001010  
000000000  
011111111  
011111111  
000001111  
000001111  
not reset  
RINVOL  
LOUT1VOL[6:0]  
ROUT1VOL[6:0]  
34  
34  
ROUT1 volume  
RO1VU RO1ZC  
23, 28, 31  
44  
ADC & DAC Control ADCDIV2 DACDIV2  
ADCPOL[1:0]  
HPOR DACMU  
LRP WL[1:0]  
SR[4:0]  
DEEMPH[1:0]  
ADCHPD  
Audio Interface  
Sample rate  
Left DAC volume  
Right DAC volume  
Bass control  
Treble control  
Reset  
0
BCLKINV  
MS  
LRSWAP  
FORMAT[1:0]  
45, 47  
29  
BCM[1:0]  
CLKDIV2  
USB  
LDVU  
LDACVOL[7:0]  
29  
RDVU  
RDACVOL[7:0]  
30  
R12 (0Ch) 0001100  
R13 (0Dh) 0001101  
0
0
BB  
0
BC  
TC  
0
0
0
0
BASS[3:0]  
TRBL[3:0]  
30  
-
R15 (0Fh)  
R16 (10h)  
R17 (11h)  
R18 (12h)  
R19 (13h)  
R20 (14h)  
R21 (15h)  
R22 (16h)  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
writing to this register resets all registers to their default state  
28  
3D control  
0
MODE3D 3DUC  
3DLC  
MAXGAIN[2:0]  
0
3DDEPTH[3:0]  
ALCL[3:0]  
3DEN  
000000000  
001111011  
000000000  
000110010  
000000000  
011000011  
011000011  
26  
ALC1  
ALCSEL[1:0]  
26  
ALC2  
0
0
ALCZC  
0
0
HLD[3:0]  
ATK[3:0]  
26  
ALC3  
DCY[3:0]  
NGTH[4:0]  
27  
Noise Gate  
Left ADC volume  
Right ADC volume  
0
NGG[1:0]  
NGAT  
TOEN  
24  
LAVU  
RAVU  
LADCVOL[7:0]  
RADCVOL[7:0]  
24  
20, 22, 31,  
38, 53  
R23 (17h)  
R24 (18h)  
0010111  
0011000  
Additional control(1)  
Additional control(2)  
TSDEN  
VSEL[1:0]  
DMONOMIX[1:0]  
DATSEL[1:0]  
DACINV  
011000000  
000000000  
35, 36, 37,  
45, 45, 52  
52, 52  
OUT3SW[1:0]  
HPSWEN HPSWPOL ROUT2INV  
TRI  
LRCM ADCOSR DACOSR  
R25 (19h)  
R26 (1Ah)  
R27 (1Bh)  
R31 (1Fh)  
R32 (20h)  
R33 (21h)  
R34 (22h)  
R35 (23h)  
R36 (24h)  
R37 (25h)  
R38 (26h)  
R39 (27h)  
R40 (28h)  
R41 (29h)  
R42 (2Ah)  
0011001  
0011010  
0011011  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
Pwr Mgmt (1)  
Pwr Mgmt (2)  
VMIDSEL[1:0]  
DACL DACR  
ADCLRM[1:0]  
VREF  
AINL  
AINR  
ADCL  
ADCR  
MICB  
DIGENB  
000000000  
000000000  
000000000  
000000000  
000000000  
000000000  
001010000  
001010000  
001010000  
001010000  
001010000  
001010000  
001111001  
001111001  
001111001  
52  
23, 36, 46  
19, 20, 20  
19  
LOUT1 ROUT1 LOUT2 ROUT2 MONO  
OUT3  
0
0
0
0
0
Additional Control (3)  
ADC input mode  
ADCL signal path  
ADCR signal path  
Left out Mix (1)  
Left out Mix (2)  
VROI HPFLREN  
RDCM  
0
0
0
0
0
0
0
DS  
0
MONOMIX[1:0]  
LDCM  
0
0
LINSEL[1:0]  
RINSEL[1:0]  
LMICBOOST[1:0]  
RMICBOOST[1:0]  
0
0
19  
0
0
0
32, 32  
32  
LD2LO  
RD2LO  
LD2RO  
LI2LO  
LI2LOVOL[2:0]  
0
LMIXSEL[2:0]  
RI2LO  
LI2RO  
RI2LOVOL[2:0]  
LI2ROVOL[2:0]  
RI2ROVOL[2:0]  
LI2MOVOL[2:0]  
RI2MOVOL[2:0]  
0
0
0
0
32, 33  
33  
Right out Mix (1)  
Right out Mix (2)  
Mono out Mix (1)  
Mono out Mix (2)  
LOUT2 volume  
0
RMIXSEL[2:0]  
RD2RO RI2RO  
LD2MO LI2MO  
RD2MO RI2MO  
LO2VU LO2ZC  
RO2VU RO2ZC  
0
0
0
0
0
0
0
0
0
0
33  
0
33  
0
35  
LOUT2VOL[6:0]  
ROUT2VOL[6:0]  
MOUTVOL[6:0]  
35  
ROUT2 volume  
MONOOUT volume  
35  
0
MOZC  
PD, Rev 4.4, August 2012  
54  
w
Production Data  
WM8750L  
DIGITAL FILTER CHARACTERISTICS  
The ADC and DAC employ different digital filters. There are 4 types of digital filter, called Type 0, 1, 2  
and 3. The performance of Types 0 and 1 is listed in the table below, the responses of all filters is  
shown in the proceeding pages.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.416fs  
+/- 0.05  
UNIT  
ADC Filter Type 0 (USB Mode, 250fs operation)  
Passband  
+/- 0.05dB  
-6dB  
0
0.5fs  
Passband Ripple  
Stopband  
dB  
dB  
0.584fs  
-60  
Stopband Attenuation  
f > 0.584fs  
ADC Filter Type 1 (USB mode, 272fs or Normal mode operation)  
Passband  
+/- 0.05dB  
-6dB  
0
0.4535fs  
+/- 0.05  
0.5fs  
Passband Ripple  
Stopband  
dB  
0.5465fs  
-60  
Stopband Attenuation  
f > 0.5465fs  
-3dB  
dB  
Hz  
High Pass Filter Corner  
Frequency  
3.7  
-0.5dB  
10.4  
-0.1dB  
21.6  
DAC Filter Type 0 (USB mode, 250fs operation)  
Passband  
+/- 0.03dB  
-6dB  
0
0.416fs  
+/-0.03  
0.5fs  
Passband Ripple  
Stopband  
dB  
dB  
0.584fs  
-50  
Stopband Attenuation  
f > 0.584fs  
DAC Filter Type 1 (USB mode, 272fs or Normal mode operation)  
Passband  
+/- 0.03dB  
-6dB  
0
0.4535fs  
+/- 0.03  
0.5fs  
Passband Ripple  
dB  
dB  
Stopband  
0.5465fs  
-50  
Stopband Attenuation  
Table 47 Digital Filter Characteristics  
f > 0.5465fs  
DAC FILTERS  
ADC FILTERS  
Mode  
Group Delay  
Mode  
Group Delay  
13/FS  
0 (250 USB)  
0 (250 USB)  
1 (256/272)  
11/FS  
16/FS  
4/FS  
1 (256/272)  
23/FS  
2 (250 USB, 96k mode)  
3 (256/272, 88.2/96k mode)  
2 (250 USB, 96k mode)  
4/FS  
3 (256/272, 88.2/96k mode)  
3/FS  
5/FS  
Table 48 ADC/DAC Digital Filters Group Delay  
TERMINOLOGY  
1. Stop Band Attenuation (dB) – the degree to which the frequency spectrum is attenuated (outside audio band)  
2. Pass-band Ripple – any variation of the frequency response in the pass-band region  
PD, Rev 4.4, August 2012  
55  
w
WM8750L  
Production Data  
DAC FILTER RESPONSES  
0.02  
0.01  
0
0
-20  
-40  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-60  
-80  
-100  
0
0.5  
1
1.5  
2
2.5  
3
Frequency (Fs)  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency (Fs)  
Figure 28 DAC Digital Filter Frequency Response – Type 0 Figure 29 DAC Digital Filter Ripple – Type 0  
0.02  
0
0.01  
-20  
-40  
0
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-60  
-80  
-100  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.5  
1
1.5  
2
2.5  
3
Frequency (Fs)  
Frequency (Fs)  
Figure 30 DAC Digital Filter Frequency Response – Type 1 Figure 31 DAC Digital Filter Ripple – Type 1  
0.02  
0
0.01  
-20  
-40  
0
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-60  
-80  
-100  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0
0.5  
1
1.5  
2
2.5  
3
Frequency (Fs)  
Frequency (Fs)  
Figure 32 DAC Digital Filter Frequency Response – Type 2 Figure 33 DAC Digital Filter Ripple – Type 2  
PD, Rev 4.4, August 2012  
56  
w
Production Data  
WM8750L  
0.25  
0.2  
0
0.15  
0.1  
-20  
-40  
-60  
-80  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-100  
0
0.5  
1
1.5  
2
2.5  
3
0
0.05  
0.1  
0.15  
0.2  
0.25  
Frequency (Fs)  
Frequency (Fs)  
Figure 34 DAC Digital Filter Frequency Response – Type 3 Figure 35 DAC Digital Filter Ripple – Type 3  
ADC FILTER RESPONSES  
0.04  
0
0.03  
-20  
0.02  
0.01  
-40  
0
-60  
-80  
-0.01  
-0.02  
-0.03  
-0.04  
-100  
0
0.5  
1
1.5  
2
2.5  
3
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency (Fs)  
Frequency (Fs)  
Figure 36 ADC Digital Filter Frequency Response – Type 0  
Figure 37 ADC Digital Filter Ripple – Type 0  
0.02  
0
0.01  
0
-20  
-40  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-60  
-80  
-100  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.5  
1
1.5  
2
2.5  
3
Frequency (Fs)  
Frequency (Fs)  
Figure 38 ADC Digital Filter Frequency Response – Type 1  
Figure 39 ADC Digital Filter Ripple – Type 1  
PD, Rev 4.4, August 2012  
57  
w
WM8750L  
Production Data  
0.25  
0.2  
0
0.15  
0.1  
-20  
-40  
-60  
-80  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-100  
0
0.5  
1
1.5  
2
2.5  
3
0
0.05  
0.1  
0.15  
0.2  
0.25  
Frequency (Fs)  
Frequency (Fs)  
Figure 40 ADC Digital Filter Frequency Response – Type 2  
Figure 41 ADC Digital Filter Ripple – Type 2  
0.25  
0
0.2  
0.15  
0.1  
-20  
-40  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-60  
-80  
-100  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0
0.5  
1
1.5  
2
2.5  
3
Frequency (Fs)  
Frequency (Fs)  
Figure 42 ADC Digital Filter Frequency Response – Type 2  
Figure 43 ADC Digital Filter Ripple – Type 3  
DE-EMPHASIS FILTER RESPONSES  
0
0.4  
0.3  
0.2  
0.1  
0
-2  
-4  
-6  
-0.1  
-0.2  
-0.3  
-0.4  
-8  
-10  
0
2000  
4000  
6000  
8000  
10000 12000 14000 16000  
0
2000  
4000  
6000  
8000  
10000 12000 14000 16000  
Frequency (Fs)  
Frequency (Fs)  
Figure 44 De-emphasis Frequency Response (32kHz)  
Figure 45 De-emphasis Error (32kHz)  
PD, Rev 4.4, August 2012  
58  
w
Production Data  
WM8750L  
0
0.4  
0.3  
0.2  
0.1  
0
-2  
-4  
-6  
-8  
-0.1  
-0.2  
-0.3  
-0.4  
-10  
0
0
5000  
10000  
Frequency (Fs)  
15000  
20000  
5000  
10000  
Frequency (Fs)  
15000  
20000  
Figure 46 De-emphasis Frequency Response (44.1kHz)  
Figure 47 De-emphasis Error (44.1kHz)  
0
0.4  
0.3  
0.2  
0.1  
0
-2  
-4  
-6  
-0.1  
-0.2  
-0.3  
-0.4  
-8  
-10  
0
5000  
10000  
Frequency (Fs)  
15000  
20000  
0
5000  
10000  
Frequency (Fs)  
15000  
20000  
Figure 48 De-emphasis Frequency Response (48kHz)  
Figure 49 De-emphasis Error (48kHz)  
HIGHPASS FILTER  
The WM8750L has a selectable digital highpass filter in the ADC filter path to remove DC offsets. The filter response is  
characterised by the following polynomial:  
1 - z-1  
H(z) =  
1 - 0.9995z-1  
0
-5  
-10  
-15  
0
0.0005  
0.001  
Frequency (Fs)  
0.0015  
0.002  
Figure 50 ADC Highpass Filter Response  
PD, Rev 4.4, August 2012  
59  
w
WM8750L  
Production Data  
APPLICATIONS INFORMATION  
RECOMMENDED EXTERNAL COMPONENTS  
Figure 51 Recommended External Components Diagram  
PD, Rev 4.4, August 2012  
60  
w
Production Data  
WM8750L  
LINE INPUT CONFIGURATION  
When LINPUT1/RINPUT1 or LINPUT2/RINPUT2 are used as line inputs, the microphone boost and  
ALC functions should normally be disabled.  
In order to avoid clipping, the user must ensure that the input signal does not exceed AVDD. This  
may require a potential divider circuit in some applications. It is also recommended to remove RF  
interference picked up on any cables using a simple first-order RC filter, as high-frequency  
components in the input signal may otherwise cause aliasing distortion in the audio band. AC signals  
with no DC bias should be fed to the WM8750L through a DC blocking capacitor, e.g. 1F.  
MICROPHONE INPUT CONFIGURATION  
MICBIAS  
R1  
680 Ohm to 2.2kOhm  
check microphone's specification  
FROM  
MICROPHONE  
LINPUT1/2/3  
RINPUT1/2/3  
C2  
1uF  
AGND  
R2  
47kOhm  
C1  
220pF  
AGND  
AGND  
Figure 52 Recommended Circuit for Line Input  
For interfacing to a microphone, the ALC function should be enabled and the microphone boost  
switched on. Microphones held close to a speaker’s mouth would normally use the 13dB gain setting,  
while tabletop or room microphones would need a 29dB boost.  
The recommended application circuit is shown above. R1 and R2 form part of the biasing network  
(refer to Microphone Bias section). R1 connected to MICBIAS is necessary only for electret type  
microphones that require a voltage bias. R2 should always be present to prevent the microphone  
input from charging to a high voltage which may damage the microphone on connection. R1 and R2  
should be large so as not to attenuate the signal from the microphone, which can have source  
impedance greater than 2kOhm. C1 together with the source impedance of the microphone and the  
WM8750L input impedance forms an RF filter. C2 is a DC blocking capacitor to allow the microphone  
to be biased at a different DC voltage to the MICIN signal.  
PD, Rev 4.4, August 2012  
61  
w
WM8750L  
Production Data  
MINIMISING POP NOISE AT THE ANALOGUE OUTPUTS  
To minimise any pop or click noise when the system is powered up or down, the following procedures  
are recommended.  
POWER UP  
Switch on power supplies. By default the WM8750L is in Standby Mode, the DAC is digitally  
muted and the Audio Interface, Line outputs and Headphone outputs are all OFF (DACMU  
= 1 Power Management registers 1 and 2 are all zeros).  
Enable Vmid and VREF.  
Enable DACs as required  
Enable line and / or headphone output buffers as required.  
Set DACMU = 0 to soft-un-mute the audio DACs.  
POWER DOWN  
Set DACMU = 1 to soft-mute the audio DACs.  
Disable all output buffers.  
Switch off the power supplies.  
POWER MANAGEMENT EXAMPLES  
OPERATION MODE  
POWER MANAGEMENT (1)  
PGAs ADCs  
POWER MANAGEMENT (2)  
DACs  
Output Buffers  
PGL PGR ADL ADR MBI DAL DAR LO1 RO1 LO2 RO2 MO HPD  
Stereo Headphone Playback  
Stereo Line-in Record  
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
0
1
1
1
0
1
1
0
0
0
0
1
0
1
1
1
0
0
0
1
0
1
1
0
0
0
0
1
0
0
1
1
0
1
1
1
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
1
x
0
0
0
x
x
0
x
Stereo Microphone Record  
Mono Microphone Record  
Stereo Line-in to Headphone Out  
Phone Call  
Speaker Phone Call [ROUT2INV = 1]  
Record Phone Call [L channel = mic with  
boost, R channel = RX, enable mono mix]  
Table 49 Register Settings for Power Management  
PD, Rev 4.4, August 2012  
62  
w
Production Data  
WM8750L  
PACKAGE DIMENSIONS  
FL: 32 PIN QFN PLASTIC PACKAGE 5 X 5 X 0.9 mm BODY, 0.50 mm LEAD PITCH  
DM101.A  
D
D2  
DETAIL 1  
32  
25  
L
1
24  
INDEX AREA  
(D/2 X E/2)  
4
EXPOSED  
GROUND  
PADDLE  
6
E2  
E
17  
8
aaa  
C
2 X  
16 15  
9
1
b
aaa  
C
2 X  
B
M
C
A
B
bbb  
e
TOP VIEW  
BOTTOM VIEW  
ccc  
C
A3  
A
5
0.08  
C
A1  
C
SIDE VIEW  
SEATING PLANE  
M
45°  
DETAIL 2  
M
0.30  
EXPOSED  
GROUND  
PADDLE  
DETAIL 1  
W
Exposed lead  
T
A3  
G
H
b
Half etch tie bar  
DETAIL 2  
Dimensions (mm)  
Symbols  
NOM  
0.90  
0.02  
MIN  
0.80  
0
MAX  
1.00  
0.05  
NOTE  
A
A1  
A3  
0.203 REF  
0.25  
1
b
0.18  
3.30  
3.30  
0.30  
3.60  
D
5.00 BSC  
2
2
D2  
E
E2  
e
3.45  
5.00 BSC  
3.45  
3.60  
0.50 BSC  
0.20  
G
H
L
0.1  
0.30  
0.40  
0.50  
0.103  
T
W
0.15  
Tolerances of Form and Position  
aaa  
bbb  
ccc  
0.15  
0.10  
0.10  
REF:  
JEDEC, MO-220, VARIATION VHHD-5.  
NOTES:  
1. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 mm AND 0.30 mm FROM TERMINAL TIP.  
2. FALLS WITHIN JEDEC, MO-220, VARIATION VHHD-5.  
3. ALL DIMENSIONS ARE IN MILLIMETRES.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JEDEC 95-1 SPP-002.  
5. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
6. REFER TO APPLICATION NOTE WAN_0118 FOR FURTHER INFORMATION REGARDING PCB FOOTPRINTS AND QFN PACKAGE SOLDERING.  
7. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
PD, Rev 4.4, August 2012  
63  
w
WM8750L  
Production Data  
IMPORTANT NOTICE  
Wolfson Microelectronics plc (“Wolfson”) products and services are sold subject to Wolfson’s terms and conditions of sale,  
delivery and payment supplied at the time of order acknowledgement.  
Wolfson warrants performance of its products to the specifications in effect at the date of shipment. Wolfson reserves the  
right to make changes to its products and specifications or to discontinue any product or service without notice. Customers  
should therefore obtain the latest version of relevant information from Wolfson to verify that the information is current.  
Testing and other quality control techniques are utilised to the extent Wolfson deems necessary to support its warranty.  
Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.  
In order to minimise risks associated with customer applications, the customer must use adequate design and operating  
safeguards to minimise inherent or procedural hazards. Wolfson is not liable for applications assistance or customer  
product design. The customer is solely responsible for its selection and use of Wolfson products. Wolfson is not liable for  
such selection or use nor for use of any circuitry other than circuitry entirely embodied in a Wolfson product.  
Wolfson’s products are not intended for use in life support systems, appliances, nuclear systems or systems where  
malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage.  
Any use of products by the customer for such purposes is at the customer’s own risk.  
Wolfson does not grant any licence (express or implied) under any patent right, copyright, mask work right or other  
intellectual property right of Wolfson covering or relating to any combination, machine, or process in which its products or  
services might be or are used. Any provision or publication of any third party’s products or services does not constitute  
Wolfson’s approval, licence, warranty or endorsement thereof. Any third party trade marks contained in this document  
belong to the respective third party owner.  
Reproduction of information from Wolfson datasheets is permissible only if reproduction is without alteration and is  
accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Wolfson is  
not liable for any unauthorised alteration of such information or for any reliance placed thereon.  
Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in  
this datasheet or in Wolfson’s standard terms and conditions of sale, delivery and payment are made, given and/or  
accepted at that person’s own risk. Wolfson is not liable for any such representations, warranties or liabilities or for any  
reliance placed thereon by any person.  
ADDRESS  
Wolfson Microelectronics plc  
Westfield House  
26 Westfield Road  
Edinburgh  
EH11 2QB  
United Kingdom  
Tel :: +44 (0)131 272 7000  
Fax :: +44 (0)131 272 7001  
Email :: sales@wolfsonmicro.com  
PD, Rev 4.4, August 2012  
64  
w
Production Data  
WM8750L  
REVISION HISTORY  
DATE  
RELEASE  
DESCRIPTION OF CHANGES  
AIF Master mode timing update (tDDA).  
PAGES  
14  
18/11/11  
4.4  
Noted BCLK edge should coincide with MCLK falling edge for best ADC  
performance.  
14, 40  
Register name corrections for consistency with Register Map / WISCE™ - LIZC,  
RIZC, DEEMPH, MOUTVOL  
21, 22, 31, 35  
26  
Noted maximum recommended gain settings for ALC operation in differential  
input mode.  
Noted ADCDAT output is undefined logic state after power-up  
Noted BCLK invert is not supported for ADC operation.  
40  
44  
44  
Noted DCVDD must be 1.5V for Right-Justified 16-bit or Right-Justified 20-bit  
digital audio interface modes.  
Replaced undefined term “DSP late” with “DSP Mode-B”.  
Noted 1-sample delay in 88.2k, 88.235k and 96k ADC modes.  
46  
47  
4
Order codes updated from WM8750LSEFL and WM8750LSEFL/R to  
WM8750CLSEFL and WM8750CLSEFL/R to reflect change to copper wire  
bonding.  
14/05/12  
14/05/12  
4.4  
4.4  
Package diagram changed to DM101.A  
63  
PD, Rev 4.4, August 2012  
65  
w

相关型号:

WM8750JL

Stereo CODEC for Portable Audio Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8750L

STEREO CODEC FOR PORTABLE AUDIO APPLICATIONS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8750LEFL

STEREO CODEC FOR PORTABLE AUDIO APPLICATIONS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8750LEFL/R

STEREO CODEC FOR PORTABLE AUDIO APPLICATIONS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8750LSEFL

STEREO CODEC FOR PORTABLE AUDIO APPLICATIONS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8750LSEFL/R

STEREO CODEC FOR PORTABLE AUDIO APPLICATIONS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8750L_05

Stereo CODEC for Portable Audio Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8751L

STEREO DAC FOR PORTABLE AUDIO APPLICATIONS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8751LEFL

STEREO DAC FOR PORTABLE AUDIO APPLICATIONS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8751LSEFL

STEREO DAC FOR PORTABLE AUDIO APPLICATIONS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8751LSEFR

STEREO DAC FOR PORTABLE AUDIO APPLICATIONS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8753

HI FI AND TELEPHONY DUAL CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON