WM8785 [WOLFSON]

24-Bit, 192kHz Stereo ADC; 24位, 192kHz立体声ADC
WM8785
型号: WM8785
厂家: WOLFSON MICROELECTRONICS PLC    WOLFSON MICROELECTRONICS PLC
描述:

24-Bit, 192kHz Stereo ADC
24位, 192kHz立体声ADC

文件: 总31页 (文件大小:309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WM8785  
w
24-Bit, 192kHz Stereo ADC  
DESCRIPTION  
FEATURES  
SNR 111dB (‘A’ weighted @ 48kHz)  
THD -102dB (at -0.1dB)  
Sampling Frequency: 8 – 192kHz  
2 or 3 Wire Microprocessor Control Interface  
Master or Slave Clocking Mode  
The WM8785 is a stereo audio ADC with differential inputs  
designed for high performance recordable media applications.  
Data is provided as a PCM output.  
Stereo 24-bit multi-bit sigma-delta ADCs are used with digital  
audio output word lengths of 16 to 32 bits, and sampling rates  
from 8kHz to 192kHz. The device has a selectable high pass  
filter to remove residual DC offsets. The device also supports a  
TDM bus for data out.  
Programmable Audio Data Interface Modes  
-
-
I2S, Left, Right Justified or DSP  
16/20/24/32 bit Word Lengths  
A TDM bus is supported for data out  
Supply Voltages  
The device is controlled via a 2 or 3 wire serial interface. The  
interface provides access to all features including oversampling  
rate, audio format, powerdown, master/slave control and digital  
signal manipulation. The device is supplied in a 20-lead SSOP  
package.  
-
-
Analogue 4.5 to 5.5V  
Digital core: 2.7V to 3.6V  
20-lead SSOP package  
APPLICATIONS  
Recordable DVD Players  
Personal Video Recorders  
High End Sound Cards  
Studio Audio Processing Equipment  
BLOCK DIAGRAM  
Pre-Production, December 2005, Rev 3.0  
WOLFSON MICROELECTRONICS plc  
To receive regular email updates, sign up at http://www.wolfsonmicro.com/enews/  
Copyright 2005 Wolfson Microelectronics plc  
WM8785  
Pre-Production  
TABLE OF CONTENTS  
DESCRIPTION .......................................................................................................1  
FEATURES.............................................................................................................1  
APPLICATIONS .....................................................................................................1  
BLOCK DIAGRAM .................................................................................................1  
TABLE OF CONTENTS .........................................................................................2  
PIN CONFIGURATION...........................................................................................3  
ORDERING INFORMATION ..................................................................................3  
PIN DESCRIPTION ................................................................................................4  
ABSOLUTE MAXIMUM RATINGS.........................................................................5  
RECOMMENDED OPERATING CONDITIONS .....................................................5  
ELECTRICAL CHARACTERISTICS ......................................................................6  
TERMINOLOGY............................................................................................................ 7  
SIGNAL TIMING REQUIREMENTS.......................................................................8  
SYSTEM CLOCK TIMING ............................................................................................. 8  
AUDIO INTERFACE TIMING – MASTER MODE, PCM DATA ...................................... 8  
AUDIO INTERFACE TIMING – SLAVE MODE, PCM DATA ......................................... 9  
CONTROL INTERFACE TIMING – 3-WIRE MODE ...................................................... 9  
CONTROL INTERFACE TIMING – 2-WIRE MODE .................................................... 10  
POWER-ON RESET ................................................................................................... 11  
DIGITAL FILTER CHARACTERISTICS...............................................................12  
TERMINOLOGY.......................................................................................................... 12  
FILTER RESPONSES..........................................................................................13  
DEVICE DESCRIPTION.......................................................................................16  
INTRODUCTION......................................................................................................... 16  
DIGITAL AUDIO INTERFACE..................................................................................... 16  
DIGITAL HIGH PASS.................................................................................................. 20  
DATA OUT PIN DISABLE ........................................................................................... 21  
CONTROL INTERFACE.............................................................................................. 21  
TIME DIVISION MULTIPLEXED DATA OUT............................................................... 22  
TDM SELECTION ....................................................................................................... 23  
OVERSAMPLING RATIOS AND SIGMA-DELTA MODULATOR FREQUENCY.......... 26  
MASTER CLOCK AND AUDIO SAMPLE RATES........................................................ 26  
MLCK AND LRCLK PHASE RELATIONSHIP.............................................................. 27  
POWER DOWN CONTROL........................................................................................ 27  
REGISTER MAP ......................................................................................................... 28  
APPLICATIONS INFORMATION .........................................................................29  
RECOMMENDED EXTERNAL COMPONENTS.......................................................... 29  
PACKAGE DIMENSIONS ....................................................................................30  
IMPORTANT NOTICE..........................................................................................31  
ADDRESS: .................................................................................................................. 31  
PP Rev 3.0 December 2005  
w
2
Pre-Production  
WM8785  
PIN CONFIGURATION  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
9
10  
AINL+  
AINR+  
AINR-  
VREF  
AINL-  
VREFGND  
AVDD  
VMID  
DGND  
AGND  
DVDD  
NC  
LRCLK  
DOUT  
CSB  
BCLK  
SDIN  
MCLK  
SCLK  
NC  
ORDERING INFORMATION  
ORDER CODE  
WM8785GEDS/V  
WM8785GEDS/RV  
TEMPERATURE  
RANGE  
PACKAGE  
MOISTURE SENSITIVITY  
LEVEL  
PEAK SOLDERING  
TEMPERATURE  
-25°C to +85°C  
20-lead SSOP  
(Pb-free)  
MSL3  
MSL3  
260oC  
-25°C to +85°C  
20-lead SSOP  
260oC  
(Pb-free, tape and reel)  
Note:  
Reel quantity = 2,000  
PP Rev 3.0 December 2005  
3
w
WM8785  
Pre-Production  
PIN DESCRIPTION  
PIN  
1
NAME  
AINL+  
AINL-  
VREFGND  
AVDD  
AGND  
LRCLK  
DOUT  
BCLK  
MCLK  
NC  
TYPE  
Analogue Input  
Analogue Input  
Analogue Reference  
Supply  
DESCRIPTION  
Left Channel Positive Input  
Left Channel Negative Input  
2
3
Negative Reference Connection  
Analogue Supply  
4
5
Supply  
Analogue Ground (return path for AVDD)  
Audio Interface Left / Right Clock  
ADC Digital Audio Data  
6
Digital Input / Output  
Digital Output  
Digital Input / Output  
Digital Input  
7
8
Audio Interface Bit Clock  
Master Clock  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
NC  
No Connection  
SCLK  
SDIN  
Digital Input  
Control Interface Clock Input / 2 wire output  
Control Interface Data Input  
Digital Input / Output  
Digital Input  
CSB  
Chip Select / Control Interface Format Selection / 3 wire address select  
No connection  
NC  
NC  
DVDD  
DGND  
VMID  
Supply  
Digital Supply  
Supply  
Digital Ground (return path for DVDD)  
Midrail Voltage Decoupling Capacitor  
Reference Voltage Decoupling Capacitor  
Right Channel Negative Input  
Analogue Output  
Analogue Reference  
Analogue Input  
Analogue Input  
VREF  
AINR-  
AINR+  
Right Channel Positive Input  
PP Rev 3.0 December 2005  
4
w
Pre-Production  
WM8785  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously  
operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given  
under Electrical Characteristics at the test conditions specified.  
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible  
to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage  
of this device.  
Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage  
conditions prior to surface mount assembly. These levels are:  
MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.  
MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.  
MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.  
The Moisture Sensitivity Level for each package type is specified in Ordering Information.  
CONDITION  
MIN  
-0.3V  
MAX  
+3.63V  
Digital supply voltage  
Analogue supply voltage  
Voltage range digital inputs  
Voltage range analogue inputs  
Master Clock Frequency  
-0.3V  
+7V  
DGND -0.3V  
AGND -0.3V  
DVDD + 0.3V  
AVDD +0.3V  
40MHz  
Operating temperature range, TA  
-25°C  
-65°C  
+85°C  
+150°C  
Storage temperature after soldering  
Note: Analogue and digital grounds must always be within 0.3V of each other.  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
SYMBOL  
DVDD  
TEST CONDITIONS  
MIN  
2.7  
TYP  
MAX  
3.6  
UNIT  
Digital supply range  
Analogue supply range  
Ground  
V
V
V
AVDD  
4.5  
5.5  
DGND,AGND  
0
PP Rev 3.0 December 2005  
5
w
WM8785  
Pre-Production  
ELECTRICAL CHARACTERISTICS  
Test Conditions  
DVDD = 3.3V, AVDD = 5.0V, TA = +25oC, 1kHz signal, A-weighted, fs = 48kHz, MCLK = 256fs, 24-bit audio data, Slave Mode  
unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ADC Performance  
Full Scale Input Signal Level  
(for ADC 0dB Input)  
Input resistance  
2.0  
Vrms  
10  
10  
kΩ  
pF  
dB  
Input capacitance  
Signal to Noise Ratio (Note  
1,2,4)  
SNR  
A-weighted,  
@ fs = 48kHz  
Unweighted,  
@ fs = 48kHz  
A-weighted,  
104  
111  
108  
111  
108  
111  
108  
dB  
dB  
dB  
dB  
dB  
Signal to Noise Ratio (Note  
1,2,4)  
SNR  
SNR  
THD  
@ fs = 96kHz  
Unweighted,  
@ fs = 96kHz  
A-weighted,  
Signal to Noise Ratio (Note  
1,2,4)  
@ fs = 192kHz  
Unweighted,  
@ fs = 192kHz  
Total Harmonic Distortion  
Total Harmonic Distortion  
1kHz, -0.1dB Full Scale  
@ fs = 48kHz  
-102  
-102  
dB  
dB  
dB  
%
1kHz, -0.1dB Full Scale  
@ fs = 96kHz  
1kHz, -0.1dB Full Scale  
@ fs = 192kHz  
-102  
THD  
DNR  
1kHz, -0.1dB Full Scale  
@ fs = 48kHz  
0.0008  
0.0008  
0.0008  
1kHz, -0.1dB Full Scale  
@ fs = 96kHz  
%
1kHz, -0.1dB Full Scale  
@ fs = 192kHz  
%
Dynamic Range  
-60dBFS  
104  
5
111  
0.1  
dB  
dB  
Channel Level Matching  
Power Supply Rejection Ratio  
20kHz signal  
PSRR  
1kHz 100mVpp, applied  
to AVDD, DVDD  
0 dB  
20Hz to 20kHz  
100mVpp  
45  
dB  
Digital Logic Levels (CMOS Levels)  
Input LOW level  
VIL  
VIH  
0.3 x DVDD  
+1  
V
V
Input HIGH level  
0.7 x DVDD  
-1  
Input leakage current  
Input capacitance  
Output LOW  
0.2  
5
µA  
pF  
V
VOL  
VOH  
I
OL=1mA  
0.1 x DVDD  
Output HIGH  
I
OH= -1mA  
0.9 x DVDD  
V
Analogue Reference Levels  
Midrail Reference Voltage  
VMID  
RVMID  
VREF  
AVDD to VMID and  
VMID to VREFGND  
–3%  
5
AVDD/2  
0 k  
+3%  
+3%  
V
V
Potential Divider Resistance  
Buffered Reference Voltage  
AVDD to VMID and  
VMID to GND  
–3%  
0.8 x AVDD  
PP Rev 3.0 December 2005  
6
w
Pre-Production  
WM8785  
Test Conditions  
DVDD = 3.3V, AVDD = 5.0V, TA = +25oC, 1kHz signal, A-weighted, fs = 48kHz, MCLK = 256fs, 24-bit audio data, Slave Mode  
unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
27  
MAX  
UNIT  
mA  
Supply Current  
Analogue supply current  
Digital supply current  
Power Down  
5
mA  
22  
uA  
Note:  
1. VMID is decoupled with 10uF and 0.1uF capacitors close to the device package. Smaller capacitors may reduce  
performance.  
TERMINOLOGY  
1. Signal-to-noise ratio (dB) – Ratio of output level with 1kHz full scale input, to the output level with all zeros into the  
digital input, over a 20Hz to 20kHz bandwidth. (No Auto-zero or Automute function is employed in achieving these  
results).  
2. Dynamic range (dB) - DR is a measure of the difference between the highest and lowest portions of a signal. Normally  
a THD+N measurement at 60dB below full scale. The measured signal is then corrected by adding the 60dB to it.  
(e.g. THD+N @ -60dB= -32dB, DR= 92dB).  
3. THD+N (dB) - THD+N is a ratio, of the rms values, of (Noise + Distortion)/Signal.  
4. Channel Separation (dB) - Also known as Cross-Talk. This is a measure of the amount one channel is isolated from  
the other. Normally measured by sending a full scale signal down one channel and measuring the other.  
5. All performance measurements are done with a 20kHz low pass filter, and where noted an A-weight filter, except  
where noted. Failure to use such a filter will result in higher THD+N and lower SNR and Dynamic Range readings than  
are found in the Electrical Characteristics. The low pass filter removes out of band noise; although this is not audible,  
it may affect dynamic specification values  
PP Rev 3.0 December 2005  
w
7
WM8785  
Pre-Production  
SIGNAL TIMING REQUIREMENTS  
SYSTEM CLOCK TIMING  
Figure 1 System Clock Timing Requirements  
Test Conditions  
DVDD = 3.3V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
System Clock Timing Information  
MCLK System clock cycle time  
MCLK duty cycle  
T
MCnLKsY 25  
TMCLKDS  
60:40  
40:60  
AUDIO INTERFACE TIMING – MASTER MODE, PCM DATA  
Figure 2 Digital Audio Data Timing – Master Mode (see Control Interface)  
Test Conditions  
DVDD = 3.3V, DGND = 0V, TA = +25oC, Master Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
LRCLK propagation delay from BCLK falling edge  
DOUT propagation delay from BCLK falling edge  
tDL  
0
0
10  
11  
ns  
ns  
tDDA  
PP Rev 3.0 December 2005  
8
w
Pre-Production  
WM8785  
AUDIO INTERFACE TIMING – SLAVE MODE, PCM DATA  
Figure 3 Digital Audio Data Timing – Slave Mode  
Test Conditions  
DVDD = 3.3V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
BCLK cycle time  
tBCY 25  
ns  
LRCLK set-up time to BCLK rising edge  
LRCLK hold time from BCLK rising edge  
DOUT propagation delay from BCLK falling edge  
tLRSU  
tLRH  
tDD  
10  
10  
0
ns  
ns  
ns  
11  
CONTROL INTERFACE TIMING – 3-WIRE MODE  
tCSL  
tCSH  
CSB  
tCSS  
tSCY  
tSCS  
tSCH  
tSCL  
SCLK  
SDIN  
LSB  
tDSU  
tDHO  
Figure 4 Control Interface Timing – 3-Wire Serial Control Mode  
Test Conditions  
DVDD = 3.3V, DVDD = 3.3V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise  
stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Program Register Input Information  
SCLK rising edge to CSB rising edge  
SCLK pulse cycle time  
tSCS  
tSCY  
tSCL  
tSCH  
tDSU  
tDHO  
tCSL  
tCSH  
tCSS  
tps  
80  
200  
80  
80  
40  
40  
40  
40  
40  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK pulse width low  
SCLK pulse width high  
SDIN to SCLK set-up time  
SCLK to SDIN hold time  
CSB pulse width low  
CSB pulse width high  
CSB rising to SCLK rising  
Pulse width of spikes that will be suppressed  
6
PP Rev 3.0 December 2005  
9
w
WM8785  
Pre-Production  
CONTROL INTERFACE TIMING – 2-WIRE MODE  
t3  
t3  
t5  
SDIN  
t4  
t6  
t2  
t8  
SCLK  
t7  
t1  
t9  
Figure 5 Control Interface Timing – 2-Wire Serial Control Mode  
Test Conditions  
DVDD = 3.3V, DVDD = 3.3V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise  
stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Program Register Input Information  
SCLK Frequency  
5
MHz 0  
SCLK Low Pulse-Width  
SCLK High Pulse-Width  
Hold Time (Start Condition)  
Setup Time (Start Condition)  
Data Setup Time  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
tps  
80  
80  
ns  
us  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
600  
600  
100  
SDIN, SCLK Rise Time  
SDIN, SCLK Fall Time  
Setup Time (Stop Condition)  
Data Hold Time  
300  
300  
600  
4
900  
6
Pulse width of spikes that will be suppressed  
PP Rev 3.0 December 2005  
10  
w
Pre-Production  
WM8785  
POWER-ON RESET  
The WM8785 has an internal power-on reset circuit. The reset sequence is entered at power-on or  
power-up (DVDD). Until the internal reset is removed, DOUT is forced to zero. DOUT remains zero  
for a count equal to 32 sample clocks, after power up. (This count is driven by MCLK and is  
independent of any external LRCLK).  
Figure 6 POR Circuit  
Figure 7 POR Timing  
PP Rev 3.0 December 2005  
11  
w
WM8785  
Pre-Production  
DIGITAL FILTER CHARACTERISTICS  
The WM8785 digital filter characteristics scale with sample rate.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.454fs  
+/- 0.005  
UNIT  
ADC Sample Rate (Single Rate – 48KHz typically)  
Passband  
+/- 0.005dB  
-6dB  
0
0.5fs  
Passband Ripple  
Stopband  
dB  
0.546fs  
-85  
Stopband Attenuation  
Group Delay  
f > 0.546fs  
dB  
s
32/fs  
0.5fs  
ADC Sample Rate (Dual Rate - 96kHz typically)  
Passband  
+/- 0.005dB  
0
0.454fs  
-6dB  
Passband Ripple  
Stopband  
+/- 0.005  
dB  
0.546fs  
-85  
Stopband Attenuation  
Group Delay  
f > 0.546fs  
dB  
s
32/fs  
ADC Sample Rate (Quad Rate - 192kHz typically)  
Passband  
+/- 0.005dB  
-3dB  
0
0.25fs  
0.45fs  
0.5fs  
-6dB  
Passband Ripple  
Stopband  
+/- 0.005  
dB  
0.75  
fs  
Stopband Attenuation  
Group Delay  
f > 0.75fs  
-85  
dB  
s
10/fs  
3.7  
High Pass Filter Corner  
Frequency  
-3dB  
Hz  
-0.5dB  
10.4  
-0.1dB  
21.6  
TERMINOLOGY  
1. Stop Band Attenuation (dB) - the degree to which the frequency spectrum is attenuated (outside audio band)  
2. Pass-band Ripple – any variation of the frequency response in the pass-band region  
PP Rev 3.0 December 2005  
12  
w
Pre-Production  
WM8785  
FILTER RESPONSES  
SINGLE RATE 48k  
0
-20  
-40  
-60  
-80  
-100  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Frequency (Fs)  
Figure 8 Single Rate 48k Filter Response  
0
-20  
-40  
-60  
-80  
-100  
0.4  
50.60.450.50.5  
Frequency (Fs)  
Figure 9 Single Rate 48k Filter Response  
0.15  
0.1  
0.05  
0
-0.05  
-0.1  
-0.15  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Frequency (Fs)  
Figure 10 Single Rate 48k Filter Response  
PP Rev 3.0 December 2005  
13  
w
WM8785  
Pre-Production  
DUAL RATE 96k  
0
-20  
-40  
-60  
-80  
-100  
0
0.51  
1.52  
2.53  
3.54  
Frequency (Fs)  
Figure 11 Dual Rate 96k Filter Response  
0
-20  
-40  
-60  
-80  
-100  
0.4  
50.60.450.50.5  
Frequency (Fs)  
Figure 12 Dual Rate 96k Filter Response  
0.15  
0.1  
0.05  
0
-0.05  
-0.1  
-0.15  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Frequency (Fs)  
Figure 13 Dual Rate 96k Filter Response  
PP Rev 3.0 December 2005  
14  
w
Pre-Production  
WM8785  
QUAD RATE 192k  
0
-20  
-40  
-60  
-80  
-100  
0
0.51  
1.52  
2.53  
3.54  
Frequency (Fs)  
Figure 14 Quad Rate 192k Filter Response  
0
-20  
-40  
-60  
-80  
-100  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency (Fs)  
Figure 15 Quad Rate 192k Filter Response  
-2.5  
-2.6  
-2.7  
-2.8  
-2.9  
-3  
-3.1  
-3.2  
-3.3  
-3.4  
-3.5  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Frequency (Fs)  
Figure 16 Quad Rate 192k Filter Response  
PP Rev 3.0 December 2005  
15  
w
WM8785  
Pre-Production  
DEVICE DESCRIPTION  
INTRODUCTION  
The WM8785 is a high performance stereo audio ADC designed for demanding recording  
applications such as DVD recorders, studio mixers, PVRs, and AV amplifiers. The WM8785 consists  
of stereo line level inputs, followed by a sigma-delta modulator and digital filtering.  
The WM8785 uses a multi-bit high-order oversampling architecture delivering high SNR operating at  
oversampling ratios from 128fs to 32fs according to the sample rate. Sample rates from 8kHz to  
192kHz are supported. The WM8785 supports master clock rates from 128fs to 768fs.  
The digital filter is a high performance linear phase FIR filter. The digital filters are optimised for each  
sample rate. Also included is a selectable high pass filter to remove residual DC offsets from the  
input signal.  
The output from the ADC is available on a configurable digital audio interface. It supports a number  
of audio data formats including I2S, Left justified and Right justified or DSP, and can operate in  
master or slave modes.  
The WM8785 can be controlled through a 2 wire or 3 wire MPU control interface. It is fully compatible  
and an ideal partner for a range of industry standard microprocessors, controllers and DSPs. A TDM  
bus is supported for multiplexing data output.  
The WM8785 can be powered down under software control to reduce system power consumption.  
DIGITAL AUDIO INTERFACE  
The digital audio interface uses three pins:  
DOUT: ADC data output  
LRCLK: ADC data alignment clock  
BCLK: Bit clock, for synchronisation  
The digital audio interface takes the data from the internal ADC digital filters and places it on DOUT  
and LRCLK. DOUT is the formatted digital audio data stream output from the ADC digital filters with  
left and right channels multiplexed together. LRCLK is an alignment clock that controls whether Left  
or Right channel data is present on the DOUT line. DOUT and LRCLK are synchronous with the  
BCLK signal with each data bit transition signified by a BCLK high to low transition. DOUT is always  
an output. BCLK and LRCLK maybe inputs or outputs depending whether the device is in Master or  
Slave mode, (see Master and Slave Mode Operation, below).  
Four different audio data formats are supported:  
Left justified  
Right justified  
I2S  
DSP  
They are described in Audio Data Formats, below. Refer to the Electrical Characteristic section for  
timing information.  
MASTER AND SLAVE MODE OPERATION  
The WM8785 can be configured as either a master or slave mode device. As a master device the  
WM8785 generates BCLK and LRCLK and thus controls sequencing of the data transfer on DOUT.  
In slave mode, the WM8785 responds with data to clocks it receives over the digital audio interface.  
The mode can be selected by setting MCR=000 (see Table below). Master and slave modes are  
illustrated below.  
Figure 17a Master Mode  
Figure 17b Slave Mode  
PP Rev 3.0 December 2005  
16  
w
Pre-Production  
WM8785  
AUDIO DATA FORMATS  
In Left Justified mode, the MSB is available on the first rising edge of BCLK following an LRCLK  
transition. The other bits up to the LSB are then transmitted in order. Depending on word length,  
BCLK frequency and sample rate, there may be unused BCLK cycles before each LRCLK transition.  
Figure 18 Left Justified Audio Interface (assuming n-bit word length)  
In Right Justified mode, the LSB is available on the last rising edge of BCLK before an LRCLK  
transition. All other bits are transmitted before (MSB first). Depending on word length, BCLK  
frequency and sample rate, there may be unused BCLK cycles after each LRCLK transition.  
Figure 19 Right Justified Audio Interface (assuming n-bit word length)  
In I2S mode, the MSB is available on the second rising edge of BCLK following an LRCLK transition.  
The other bits up to the LSB are then transmitted in order. Depending on word length, BCLK  
frequency and sample rate, there may be unused BCLK cycles between the LSB of one sample and  
the MSB of the next.  
Figure 20 I2S Justified Audio Interface (assuming n-bit word length)  
PP Rev 3.0 December 2005  
17  
w
WM8785  
Pre-Production  
In DSP/PCM mode, the left channel MSB is available on either the 1st (mode B) or 2nd (mode A)  
rising edge of BCLK (selectable by LRP) following a rising edge of LRC. Right channel data  
immediately follows left channel data. Depending on word length, BCLK frequency and sample rate,  
there may be unused BCLK cycles between the LSB of the right channel data and the next sample.  
In device master mode, the LRC output will resemble the frame pulse shown in Figure 21 and Figure  
22. In device slave mode, Figure 23 and Figure 24, it is possible to use any length of frame pulse  
less than 1/fs, providing the falling edge of the frame pulse occurs greater than one BCLK period  
before the rising edge of the next frame pulse.  
Figure 21 DSP/PCM Mode Audio Interface (mode A, LRP=0, Master)  
Figure 22 DSP/PCM Mode Audio Interface (mode B, LRP=1, Master)  
PP Rev 3.0 December 2005  
18  
w
Pre-Production  
WM8785  
Figure 23 DSP/PCM Mode Audio Interface (mode A, LRP=0, Slave)  
Figure 24 DSP/PCM Mode Audio Interface (mode B, LRP=1, Slave)  
AUDIO INTERFACE CONTROL  
The register bits controlling the audio interface are summarised below. Note that dynamically  
changing the software format may cause erroneous operation of the interfaces and is therefore not  
recommended.  
All ADC data is 2’s complement. The length of the digital audio data is programmable at 16/20/24 or  
32 bits, as shown below. The ADC digital filters process data using 24 bits. If the WM8785 is  
programmed to output 16 or 20 bit data then it strips the LSBs from the 24 bit data. If the device is  
programmed to output 32 bits then it packs the LSBs with zeros.  
In master mode LRCLK and BCLK are generated on chip. In slave mode they are received from an  
external source.  
PP Rev 3.0 December 2005  
19  
w
WM8785  
Pre-Production  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
10  
DESCRIPTION  
R0 (00h)  
6:5  
FORMAT  
Audio Data Format Select  
11: DSP Format  
10: I2S Format  
Sample Rate  
and Digital Audio  
Interface Format  
01: Left justified  
00: Right justified  
Audio Data Word Length  
11: 32 bits (see Note)  
10: 24 bits  
R1 (01h)  
1:0  
WL  
10  
0
Digital Audio  
Interface Format  
and TDM  
01: 20 bits  
00: 16 bits  
right, left and I2S modes –  
LRCLK polarity  
2
LRP  
1 = invert LRCLK polarity  
0 = normal LRCLK polarity  
DSP Mode – A/B select  
1 = MSB is available on 1st  
BCLK rising edge after LRC  
rising edge (mode B)  
0 = MSB is available on 2nd  
BCLK rising edge after LRC  
rising edge (mode A)  
3
4
BCLKINV  
LRSWAP  
0
0
BCLK invert bit (for master and  
slave modes)  
0 = BCLK not inverted  
1 = BCLK inverted  
Left/Right channel swap  
1 = swap left and right DAC  
data in audio interface  
0 = output left and right data as  
normal  
Table 1 Audio Data Format Control  
Note: Right Justified mode does not support 32-bit data. If WL=11 in Right justified mode, the actual  
word length is 24 bits.  
DIGITAL HIGH PASS  
The high pass filter can be enabled using the HPFL and HPFR bits (see digital filter characteristics)  
REGISTER  
ADDRESS  
BIT  
LABEL  
HPFR  
DEFAULT  
DESCRIPTION  
R2(02h)  
HPfilter ,  
0
1
1
Digital High Pass Filter, Right Channel  
0 = HPF Off  
Output  
disable,  
Power down,  
1 = HPF On  
1
HPFL  
Digital High Pass Filter, Left Channel  
0 = HPF Off  
Mono mode  
1 = HPF On  
Table 2 Oversampling Ratio Selection  
PP Rev 3.0 December 2005  
20  
w
Pre-Production  
WM8785  
DATA OUT PIN DISABLE  
To prevent any communication problems on the Audio Interface, the interface can be disabled  
(DOUT tristated and floating) using the SDODIS bit.  
REGISTER  
ADDRESS  
BIT  
LABEL  
SDODIS  
DEFAULT  
DESCRIPTION  
R2(02h)  
2
0
DOUT serial data pin disable  
0 = DOUT pin enabled  
HP Filter ,  
Output  
1 = DOUT pin off (high impedance)  
disable,  
Power down,  
Mono mode  
Table 3 Oversampling Ratio Selection  
CONTROL INTERFACE  
SELECTION OF CONTROL MODE  
The WM8785 is controlled by writing to registers through a serial control interface. A control word  
consists of 16 bits. The first 7 bits (B15 to B9) are address bits that select which control register is  
accessed. The remaining 9 bits (B8 to B0) are register bits, corresponding to the 9 bits in each  
control register. The control interface can operate as either a 3-wire or 2-wire MPU interface. The  
CSB pin is sampled at power-up and selects the interface format. After power-up the pin is available  
to latch in control data in 3-wire interface mode.  
Figure 25 Control Interface Mode Selection  
CSB PIN STATUS  
INTERFACE FORMAT  
Low  
2 wire  
3 wire  
High  
Table 4 Control Interface Mode Selection  
SETUP/HOLD  
tpusetup  
TIME  
250us  
250us  
tpuhold  
Table 5 Control Interface Mode Selection  
PP Rev 3.0 December 2005  
21  
w
WM8785  
Pre-Production  
3-WIRE SERIAL CONTROL MODE  
In 3-wire mode, every rising edge of SCLK clocks in one data bit from the SDIN pin. A rising edge on  
CSB latches in a complete control word consisting of the last 16 bits.  
latch  
CSB  
SCLK  
SDIN  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
control register address  
control register data bits  
Figure 26 3-Wire Serial Control Interface  
2-WIRE SERIAL CONTROL MODE  
The WM8785 supports software control via a 2-wire serial bus. Many devices can be controlled by  
the same bus, and each device has a unique 7-bit address (this is not the same as the 7-bit address  
of each register in the WM8785).  
The WM8785 operates as a slave device only. The controller indicates the start of data transfer with  
a high to low transition on SDIN while SCLK remains high. This indicates that a device address and  
data will follow. All devices on the 2-wire bus respond to the start condition and shift in the next eight  
bits on SDIN (7-bit address + Read/Write bit, MSB first). If the device address received matches the  
address of the WM8785 and the R/W bit is ‘0’, indicating a write, then the WM8785 responds by  
pulling SDIN low on the next clock pulse (ACK). If the address is not recognised or the R/W bit is ‘1’,  
the WM8785 returns to the idle condition and wait for a new start condition and valid address.  
Once the WM8785 has acknowledged a correct address, the controller sends the first byte of control  
data (B15 to B8, i.e. the WM8785 register address plus the first bit of register data). The WM8785  
then acknowledges the first data byte by pulling SDIN low for one clock pulse. The controller then  
sends the second byte of control data (B7 to B0, i.e. the remaining 8 bits of register data), and the  
WM8785 acknowledges again by pulling SDIN low.  
The transfer of data is complete when there is a low to high transition on SDIN while SCLK is high.  
After receiving a complete address and data sequence the WM8785 returns to the idle state and  
waits for another start condition. If a start or stop condition is detected out of sequence at any point  
during data transfer (i.e. SDIN changes while SCLK is high), the device jumps to the idle condition.  
DEVICE ADDRESS RD / WR  
(7 BITS) BIT  
ACK  
(LOW)  
CONTROL BYTE 1  
(BITS 15 TO 8)  
ACK  
(LOW)  
CONTROL BYTE 1  
(BITS 15 TO 8)  
ACK  
(LOW)  
SDIN  
SCLK  
START  
STOP  
register address and  
1st register data bit  
remaining 8 bits of  
register data  
Figure 27 2-Wire Serial Control Interface  
The WM8785 device address is 0011010.  
TIME DIVISION MULTIPLEXED DATA OUT  
The WM8785 can be used to time division multiplex several data channels at once. For example, the  
diagram below illustrates 4 devices connected to the same TDM bus. While one DOUT pin is driving  
data, the others will be tri-stated.  
PP Rev 3.0 December 2005  
22  
w
Pre-Production  
WM8785  
Figure 28 WM8785 in Time Division Multiplexing Setup  
Note:  
1. TDM is only available in slave mode.  
2. Right justified mode is not supported  
TDM SELECTION  
The figure below indicates how data is multiplexed onto the TDM bus, in left justified mode. This  
assumes we have 4 devices, and each device has 2 data channels:  
LCHAN = left channel  
RCHAN = right channel  
Each channel is allocated 32 BCLKs  
PP Rev 3.0 December 2005  
23  
w
WM8785  
Pre-Production  
Figure 29 WM8785 in Time Division Multiplexing Left Justified Mode  
Up to 4 devices (8 channels) can be supported, which would require 256 BCLKs per sample.  
(whereas 128 BCLKs will allow only 2 devices, or 4 channels). The table below shows the range of  
BCLK frequencies required.  
BCLK RATE  
DEVICES THAT CAN BE SUPPORTED  
OVER-SAMPLE RATIOS  
SUPPORTED (SET BY OSR)  
64 fs  
1
Single/dual/quad rates all supported  
128 fs  
192 fs  
1, 2  
1, 2  
256 fs  
1, 2, 3, 4  
Single rate only supported  
Table 6 Range of BCLK Frequencies Required  
Note: MCLK frequency must always be greater or equal to BCLK frequency  
To avoid bus contention all chips on the TDM should be programmed before DOUT is released after  
power up (DOUT is held at vss for 32 samples after power-up). Alternatively SDODIS should be set  
while devices are programmed (to tri-state DOUT).  
PP Rev 3.0 December 2005  
24  
w
Pre-Production  
WM8785  
Two registers must be set to enter TDM mode:  
DEVNO[2:0] sets the number of devices which are on the bus  
TDM[2:0] allocates a TDM slot to the device  
REGISTER  
ADDRESS  
BIT  
7:5  
LABEL  
DEFAULT  
DESCRIPTION  
R1(h01)  
DEVNO[2:0]  
000  
Number of TDM Devices  
000 = 1 Device  
Clocking, Sample  
Rates,  
Oversampling and  
Signal Control  
001 = 2 Devices  
010 = 3 Devices  
011 = 4 Devices  
Table 7 DEVNO  
REGISTER  
ADDRESS  
BIT  
8:6  
LABEL  
DEFAULT  
DESCRIPTION  
R2(h02)  
TDM[2:0]  
000  
Time Division Multiplexing  
Device Select  
Clocking, Sample  
Rates,  
000 = Device 0 (no delay)  
Oversampling and  
Signal Control  
001 = Device 1 (64 BCLK delay)  
010 = Device 2 (128 BCLK  
delay)  
011 = Device 3 (192 BCLK  
delay)  
Table 8 TDM  
Note: When TDM is not required, the register will default to 000 (normal operation)  
The figures below indicate TDM mode for I2S and DSP mode A.  
Figure 30 TDM Bus I2S Mode  
PP Rev 3.0 December 2005  
25  
w
WM8785  
Pre-Production  
OVERSAMPLING RATIOS AND SIGMA-DELTA MODULATOR FREQUENCY  
For correct operation of the device and optimal performance, the user must select the appropriate  
ADC modulator oversampling ratio. The oversampling ratio is selected using the OSR[1:0] bits.  
REGISTER  
ADDRESS  
BIT  
4:3  
LABEL  
DEFAULT  
DESCRIPTION  
R0(h00)  
Signal Control  
OSR[1:0]  
00  
Oversampling Ratio  
Control  
00: Single Rate (128fs)  
01: Dual Rate (64fs)  
10: Quad Rate (32fs)  
11: Not Valid  
Table 9 Oversampling Ratio Selection  
The WM8785 can operate at sample rates from 8kHz to 192kHz. The WM8785 uses a sigma-delta  
modulator that operates at frequencies between 1.024MHz and 6.144MHz  
SAMPLING RATE  
(LRCLK)  
OVERSAMPLING RATIO  
SIGMA-DELTA  
MODULATOR  
FREQUENCY (MHZ)  
8kHz  
32kHz  
44.1kHz  
48kHz  
96kHz  
192kHz  
Single Rate (128fs)  
Single Rate (128fs)  
Single Rate (128fs)  
Single Rate (128fs)  
Dual Rate (64fs)  
1.024  
4.096  
5.6448  
6.144  
6.144  
6.144  
Quad Rate (32fs)  
Table 10 Sigma-delta Modulator Frequency  
MASTER CLOCK AND AUDIO SAMPLE RATES  
Master clock frequencies of 128fs, 192fs, 256fs, 384fs, 512fs and 768fs are supported. In slave mode  
the WM8785 automatically detects the audio sample rate. In Master mode the master clock  
frequency is selected using MCR[2:0] bits. This is described in table below.  
REGISTER  
ADDRESS  
BIT  
2:0  
LABEL  
DEFAULT  
000  
DESCRIPTION  
R0(h00)  
MCR[2:0]  
Master/Slave Selection  
000: Slave Mode  
Clocking, Sample  
Rates,  
001: Master Mode, 128fs  
010: Master Mode, 192fs  
011: Master Mode, 256fs  
100: Master Mode, 384fs  
101: Master Mode, 512fs  
110: Master Mode, 768fs  
Table 11 Master Clock Frequency  
The master clock (MCLK) is used to operate the digital filters and the noise shaping circuits. The  
WM8785 supports a wide range of master clock frequencies, and can generate many commonly  
used audio sample rates directly from the master clock. Table 1 shows the recommended master  
clock frequencies for different sample rates  
PP Rev 3.0 December 2005  
26  
w
Pre-Production  
WM8785  
SAMPLING RATE  
(LRCLK)  
OVERSAMPLING  
RATIO  
MASTER CLOCK FREQUENCY (MHZ)  
128fs  
192fs  
256fs  
384fs  
512fs  
768fs  
32kHz  
44.1kHz  
48kHz  
Single Rate  
Single Rate  
Single Rate  
Dual Rate  
-
-
8.192  
11.2896  
12.288  
24.576  
-
12.288  
16.9344  
18.432  
36.864  
-
16.384  
24.576  
-
-
22.5792  
33.8688  
-
-
24.576  
36.864  
96kHz  
-
-
-
-
-
-
192kHz  
Quad Rate  
24.576  
36.864  
Table 12 Slave Mode: Recommended Master Clock Frequency Selection  
MLCK AND LRCLK PHASE RELATIONSHIP  
The WM8785 does not require a specific phase relationship between MLCK and LRCLK. If the  
relationship between MCLK and LRCLK changes by more than +/-8 BCLKs in a 64 BLCK frame, the  
WM8785 will attempt to re-synchronise. During re-synchronisation, data samples may be dropped or  
duplicated.  
POWER DOWN CONTROL  
The WM8785 can be powered down by setting the PWRDNL and PWRDNR bits. This is described in  
the table below.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R2(02h)  
3
PWRDNR  
0
0
Power Down Right Channel  
0 = Power On  
Signal control  
1 = Power Off  
4
PWRDNL  
Power Down Left Channel  
0 = Power On  
1 = Power Off  
Table 13 Power Down Control  
PP Rev 3.0 December 2005  
27  
w
WM8785  
Pre-Production  
REGISTER MAP  
REGISTER ADDRESS REMARK BIT8 BIT7 BIT6 BIT5  
BIT4  
OSR  
BIT3  
BIT2  
MCR  
BIT1  
BIT0  
DEFAULT  
R0(00h)  
00_0000 Sample  
Rate  
0
0
FORMAT  
0_0000_0011  
And  
Audio IF  
Format  
R1(01h)  
00_0001 Audio IF  
Format  
0
DEVNO  
LRSWP  
PWRDNL  
BCLKINV  
LRP  
WL  
0_0000_1010  
And  
TDM  
R2(02h)  
R7(07h)  
00_0010 Signal  
Control  
TDM  
0
PWRDNR SDODIS  
HPFL HPFR  
0_0000_0011  
0_0000_0000  
00_0111 Reset  
Writing to reg 7 will cause software reset  
Table 14 Register Map for Control Interface  
Notes:  
1. All unused register bits should be set to zero  
2. The interface will initiate SWRB whenever R7 is addressed, regardless of the data input.  
3. SWRB is released on the next register write or after 4 MCLK cycles (which ever occurs first).  
4. Until the SWRB is released, DOUT is forced to zero.  
5. DOUT remains zero for a count of 32 sample clocks SWRB is released, this count is driven by MCLK and is  
independent of any external LRCLK.  
PP Rev 3.0 December 2005  
28  
w
Pre-Production  
WM8785  
APPLICATIONS INFORMATION  
RECOMMENDED EXTERNAL COMPONENTS  
Notes:  
1. AGND and DGND should be connected as close to the WM8785 as possible.  
2. C1 to C6 should be placed as close to the WM8785 device as possible.  
3. Capacitor types should be chosen carefully. Capacitors with very low ESR are recommended for optimum performance, such as X7R. VMID and VREF decoupling  
capacitors must be high quality electrolytic capacitors to achieve datasheet performance; ceramic capacitors are not acceptable.  
4. An active input filter is required to achieve datasheet performance. The circuit shown is a tested inverting reference example.  
Figure 31 External Component Diagram  
PP Rev 3.0 December 2005  
29  
w
WM8785  
Pre-Production  
PACKAGE DIMENSIONS  
DS: 20 PIN SSOP (7.2 x 5.3 x 1.75 mm)  
DM0015.C  
b
e
20  
11  
E1  
E
GAUGE  
PLANE  
Θ
1
10  
D
0.25  
L
c
A1  
A A2  
L
1
-C-  
0.10 C  
SEATING PLANE  
Dimensions  
(mm)  
Symbols  
MIN  
NOM  
MAX  
A
A1  
A2  
b
c
D
e
-----  
0.05-----  
1.651.751.85  
0.22  
0.09  
-----  
2.0  
-----  
0.30  
-----  
7.20  
0.38  
0.25  
7.50  
6.90  
0.65 BSC  
7.80  
E
E1  
7.40  
5.00  
8.20  
5.60  
5.30  
L
50.7500..955  
L1  
θ
1.25 REF  
4o  
0o  
8o  
-
JEDEC.95, MO 150  
REF:  
NOTES:  
A. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS.  
B. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION, NOT TO EXCEED 0.20MM.  
D. MEETS JEDEC.95 MO-150, VARIATION = AE. REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.  
PP Rev 3.0 December 2005  
30  
w
Pre-Production  
WM8785  
IMPORTANT NOTICE  
Wolfson Microelectronics plc (WM) reserve the right to make changes to their products or to discontinue any product or  
service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing  
orders, that information being relied on is current. All products are sold subject to the WM terms and conditions of sale  
supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation  
of liability.  
WM warrants performance of its products to the specifications applicable at the time of sale in accordance with WM’s  
standard warranty. Testing and other quality control techniques are utilised to the extent WM deems necessary to support  
this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by  
government requirements.  
In order to minimise risks associated with customer applications, adequate design and operating safeguards must be used  
by the customer to minimise inherent or procedural hazards. Wolfson products are not authorised for use as critical  
components in life support devices or systems without the express written approval of an officer of the company. Life  
support devices or systems are devices or systems that are intended for surgical implant into the body, or support or  
sustain life, and whose failure to perform when properly used in accordance with instructions for use provided, can be  
reasonably expected to result in a significant injury to the user. A critical component is any component of a life support  
device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or  
system, or to affect its safety or effectiveness.  
WM assumes no liability for applications assistance or customer product design. WM does not warrant or represent that  
any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual  
property right of WM covering or relating to any combination, machine, or process in which such products or services might  
be or are used. WM’s publication of information regarding any third party’s products or services does not constitute WM’s  
approval, license, warranty or endorsement thereof.  
Reproduction of information from the WM web site or datasheets is permissible only if reproduction is without alteration and  
is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this  
information with alteration voids all warranties provided for an associated WM product or service, is an unfair and deceptive  
business practice, and WM is not responsible nor liable for any such use.  
Resale of WM’s products or services with statements different from or beyond the parameters stated by WM for that  
product or service voids all express and any implied warranties for the associated WM product or service, is an unfair and  
deceptive business practice, and WM is not responsible nor liable for any such use.  
ADDRESS:  
Wolfson Microelectronics plc  
Westfield House  
26 Westfield Road  
Edinburgh  
EH11 2QB  
United Kingdom  
Tel :: +44 (0)131 272 7000  
Fax :: +44 (0)131 272 7001  
Email :: sales@wolfsonmicro.com  
PP Rev 3.0 December 2005  
31  
w

相关型号:

WM8785GEDS/RV

24-Bit, 192kHz Stereo ADC
WOLFSON

WM8785GEDS/V

24-Bit, 192kHz Stereo ADC
WOLFSON

WM8785_06

24-Bit, 192kHz Stereo ADC
WOLFSON

WM8786

24-Bit, 192kHz Stereo ADC
WOLFSON

WM8786GEDS/RV

24-Bit, 192kHz Stereo ADC
WOLFSON

WM8786GEDS/V

Consumer Circuit, CMOS, PDSO20, 7.20 X 5.30 MM, 1.75 MM HEIGHT, MO-150AE, SSOP-20
CIRRUS

WM8786GEDS/V

24-Bit, 192kHz Stereo ADC
WOLFSON

WM8786_07

24-Bit, 192kHz Stereo ADC
WOLFSON

WM8788

High Performance 24-bit Stereo ADC
WOLFSON

WM8802

Digital Audio Interface Transceiver
WOLFSON

WM8802SCFT

Digital Audio Interface Transceiver
WOLFSON

WM8802SCFTV

Digital Audio Interface Transceiver
WOLFSON