XC3S400A-4FTG256C [XILINX]

Field Programmable Gate Array, 896 CLBs, 400000 Gates, 250MHz, 8064-Cell, CMOS, PBGA256, LEAD FREE, FPTBGA-256;
XC3S400A-4FTG256C
型号: XC3S400A-4FTG256C
厂家: XILINX, INC    XILINX, INC
描述:

Field Programmable Gate Array, 896 CLBs, 400000 Gates, 250MHz, 8064-Cell, CMOS, PBGA256, LEAD FREE, FPTBGA-256

时钟 栅 可编程逻辑
文件: 总132页 (文件大小:3936K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
0
Spartan-3A FPGA Family:  
Data Sheet  
0
0
DS529 August 19, 2010  
Product Specification  
Module 1:  
Introduction and Ordering Information  
Module 3:  
DC and Switching Characteristics  
DS529-1 (v2.0) August 19, 2010  
DS529-3 (v2.0) August 19, 2010  
Introduction  
Features  
DC Electrical Characteristics  
Absolute Maximum Ratings  
Supply Voltage Specifications  
Recommended Operating Conditions  
Architectural and Configuration Overview  
General I/O Capabilities  
Production Status  
Supported Packages and Package Marking  
Ordering Information  
Switching Characteristics  
I/O Timing  
Configurable Logic Block (CLB) Timing  
Multiplier Timing  
Block RAM Timing  
Module 2:  
Digital Clock Manager (DCM) Timing  
Suspend Mode Timing  
Device DNA Timing  
Spartan-3A FPGA Family: Functional  
Description  
Configuration and JTAG Timing  
DS529-2 (v2.0) August 19, 2010  
The functionality of the Spartan®-3A FPGA family is  
described in the following documents.  
Module 4:  
Pinout Descriptions  
UG331: Spartan-3 Generation FPGA User Guide  
DS529-4 (v2.0) August 19, 2010  
Clocking Resources  
Digital Clock Managers (DCMs)  
Block RAM  
Pin Descriptions  
Package Overview  
Pinout Tables  
Configurable Logic Blocks (CLBs)  
-
-
-
Distributed RAM  
SRL16 Shift Registers  
Carry and Arithmetic Logic  
Footprint Diagrams  
For more information on the Spartan-3A FPGA family, go to  
www.xilinx.com/spartan3a  
I/O Resources  
Embedded Multiplier Blocks  
Programmable Interconnect  
ISE® Design Tools and IP Cores  
Embedded Processing and Control Solutions  
Pin Types and Package Overview  
Package Drawings  
Spartan-3A FPGA  
XC3S50A  
Status  
Production  
Production  
Production  
Production  
Production  
Powering FPGAs  
Power Management  
XC3S200A  
UG332: Spartan-3 Generation Configuration User Guide  
XC3S400A  
Configuration Overview  
Configuration Pins and Behavior  
Bitstream Sizes  
XC3S700A  
XC3S1400A  
Detailed Descriptions by Mode  
-
-
-
-
-
-
Master Serial Mode using Platform Flash PROM  
Master SPI Mode using Commodity Serial Flash  
Master BPI Mode using Commodity Parallel Flash  
Slave Parallel (SelectMAP) using a Processor  
Slave Serial using a Processor  
JTAG Mode  
ISE iMPACT Programming Examples  
MultiBoot Reconfiguration  
Design Authentication using Device DNA  
UG334: Spartan-3A/3AN FPGA Starter Kit User Guide  
© Copyright 2006–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and  
other countries. PCI is a registered trademark of the PCI-SIG. All other trademarks are the property of their respective owners.  
DS529 August 19, 2010  
www.xilinx.com  
1
Product Specification  
Spartan-3A FPGA Family: Data Sheet  
2
www.xilinx.com  
DS529 August 19, 2010  
Product Specification  
8
Spartan-3A FPGA Family:  
Introduction and Ordering Information  
DS529-1 (v2.0) August 19, 2010  
Product Specification  
Introduction  
640+ Mb/s data transfer rate per differential I/O  
LVDS, RSDS, mini-LVDS, HSTL/SSTL differential I/O  
with integrated differential termination resistors  
Enhanced Double Data Rate (DDR) support  
DDR/DDR2 SDRAM support up to 400 Mb/s  
Fully compliant 32-/64-bit, 33/66 MHz PCI® technology  
support  
The Spartan®-3A family of Field-Programmable Gate  
Arrays (FPGAs) solves the design challenges in most  
high-volume, cost-sensitive, I/O-intensive electronic  
applications. The five-member family offers densities ranging  
from 50,000 to 1.4 million system gates, as shown in Table 1.  
The Spartan-3A FPGAs are part of the Extended  
Spartan-3A family, which also include the non-volatile  
Spartan-3AN and the higher density Spartan-3A DSP  
FPGAs. The Spartan-3A family builds on the success of the  
earlier Spartan-3E and Spartan-3 FPGA families. New  
features improve system performance and reduce the cost  
of configuration. These Spartan-3A family enhancements,  
combined with proven 90 nm process technology, deliver  
more functionality and bandwidth per dollar than ever before,  
setting the new standard in the programmable logic industry.  
Abundant, flexible logic resources  
Densities up to 25,344 logic cells, including optional shift  
register or distributed RAM support  
Efficient wide multiplexers, wide logic  
Fast look-ahead carry logic  
Enhanced 18 x 18 multipliers with optional pipeline  
IEEE 1149.1/1532 JTAG programming/debug port  
Hierarchical SelectRAM™ memory architecture  
Up to 576 Kbits of fast block RAM with byte write enables  
for processor applications  
Up to 176 Kbits of efficient distributed RAM  
Up to eight Digital Clock Managers (DCMs)  
Because of their exceptionally low cost, Spartan-3A FPGAs  
are ideally suited to a wide range of consumer electronics  
applications, including broadband access, home networking,  
display/projection, and digital television equipment.  
Clock skew elimination (delay locked loop)  
Frequency synthesis, multiplication, division  
High-resolution phase shifting  
Wide frequency range (5 MHz to over 320 MHz)  
Eight low-skew global clock networks, eight additional  
clocks per half device, plus abundant low-skew routing  
Configuration interface to industry-standard PROMs  
The Spartan-3A family is a superior alternative to mask  
programmed ASICs. FPGAs avoid the high initial cost,  
lengthy development cycles, and the inherent inflexibility of  
conventional ASICs, and permit field design upgrades.  
Low-cost, space-saving SPI serial Flash PROM  
x8 or x8/x16 BPI parallel NOR Flash PROM  
Low-cost Xilinx® Platform Flash with JTAG  
Unique Device DNA identifier for design authentication  
Load multiple bitstreams under FPGA control  
Post-configuration CRC checking  
Features  
Very low cost, high-performance logic solution for  
high-volume, cost-conscious applications  
Complete Xilinx ISE® and WebPACK™ development  
system software support plus Spartan-3A Starter Kit  
MicroBlaze™ and PicoBlazeembedded processors  
Low-cost QFP and BGA packaging, Pb-free options  
Dual-range VCCAUX supply simplifies 3.3V-only design  
Suspend, Hibernate modes reduce system power  
Multi-voltage, multi-standard SelectIO™ interface pins  
Up to 502 I/O pins or 227 differential signal pairs  
LVCMOS, LVTTL, HSTL, and SSTL single-ended I/O  
3.3V, 2.5V, 1.8V, 1.5V, and 1.2V signaling  
Selectable output drive, up to 24 mA per pin  
QUIETIO standard reduces I/O switching noise  
Full 3.3V ± 10% compatibility and hot swap compliance  
Common footprints support easy density migration  
Compatible with select Spartan-3AN nonvolatile FPGAs  
Compatible with higher density Spartan-3A DSP FPGAs  
XA Automotive version available  
Table 1: Summary of Spartan-3A FPGA Attributes  
CLB Array  
Block  
RAM  
Maximum  
Distributed  
(One CLB = Four Slices)  
(1)  
System Equivalent  
Dedicated  
Maximum Differential  
RAM bits  
(1)  
Device  
XC3S50A  
XC3S200A  
XC3S400A  
XC3S700A  
Gates Logic Cells Rows Columns CLBs  
Slices  
704  
1,792  
3,584  
bits  
Multipliers DCMs User I/O  
I/O Pairs  
50K  
200K  
400K  
700K  
1,584  
4,032  
8,064  
13,248  
25,344  
16  
32  
40  
48  
72  
12  
16  
24  
32  
40  
176  
448  
896  
11K  
28K  
56K  
92K  
176K  
54K  
3
2
4
4
8
8
144  
248  
311  
372  
502  
64  
112  
142  
165  
288K  
360K  
360K  
576K  
16  
20  
20  
32  
1,472 5,888  
2,816 11,264  
XC3S1400A 1400K  
227  
Notes:  
1. By convention, one Kb is equivalent to 1,024 bits.  
© Copyright 2006–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and  
other countries. PCI is a registered trademark of the PCI-SIG. All other trademarks are the property of their respective owners.  
DS529-1 (v2.0) August 19, 2010  
www.xilinx.com  
3
 
 
 
 
Introduction and Ordering Information  
Architectural Overview  
The Spartan-3A family architecture consists of five  
fundamental programmable functional elements:  
Digital Clock Manager (DCM) Blocks provide  
self-calibrating, fully digital solutions for distributing,  
delaying, multiplying, dividing, and phase-shifting clock  
signals.  
Configurable Logic Blocks (CLBs) contain flexible  
Look-Up Tables (LUTs) that implement logic plus  
storage elements used as flip-flops or latches. CLBs  
perform a wide variety of logical functions as well as  
store data.  
These elements are organized as shown in Figure 1. A dual  
ring of staggered IOBs surrounds a regular array of CLBs.  
Each device has two columns of block RAM except for the  
XC3S50A, which has one column. Each RAM column  
consists of several 18-Kbit RAM blocks. Each block RAM is  
associated with a dedicated multiplier. The DCMs are  
positioned in the center with two at the top and two at the  
bottom of the device. The XC3S50A has DCMs only at the  
top, while the XC3S700A and XC3S1400A add two DCMs in  
the middle of the two columns of block RAM and multipliers.  
Input/Output Blocks (IOBs) control the flow of data  
between the I/O pins and the internal logic of the  
device. IOBs support bidirectional data flow plus 3-state  
operation. Supports a variety of signal standards,  
including several high-performance differential  
standards. Double Data-Rate (DDR) registers are  
included.  
Block RAM provides data storage in the form of 18-Kbit  
dual-port blocks.  
The Spartan-3A family features a rich network of routing that  
interconnect all five functional elements, transmitting signals  
among them. Each functional element has an associated  
switch matrix that permits multiple connections to the  
routing.  
Multiplier Blocks accept two 18-bit binary numbers as  
inputs and calculate the product.  
IOBs  
CLB  
DCM  
IOBs  
DCM  
CLBs  
DCM  
IOBs  
DS312-1_01_032606  
Notes:  
1. The XC3S700A and XC3S1400A have two additional DCMs on both the left and right sides as indicated by the  
dashed lines. The XC3S50A has only two DCMs at the top and only one Block RAM/Multiplier column.  
Figure 1: Spartan-3A FPGA Architecture  
4
www.xilinx.com  
DS529-1 (v2.0) August 19, 2010  
 
Introduction and Ordering Information  
Configuration  
I/O Capabilities  
Spartan-3A FPGAs are programmed by loading  
The Spartan-3A FPGA SelectIO interface supports many  
popular single-ended and differential standards. Table 2  
shows the number of user I/Os as well as the number of  
differential I/O pairs available for each device/package  
combination. Some of the user I/Os are unidirectional  
input-only pins as indicated in Table 2.  
configuration data into robust, reprogrammable, static  
CMOS configuration latches (CCLs) that collectively control  
all functional elements and routing resources. The FPGA’s  
configuration data is stored externally in a PROM or some  
other non-volatile medium, either on or off the board. After  
applying power, the configuration data is written to the  
FPGA using any of seven different modes:  
Spartan-3A FPGAs support the following single-ended  
standards:  
Master Serial from a Xilinx Platform Flash PROM  
Serial Peripheral Interface (SPI) from an  
industry-standard SPI serial Flash  
Byte Peripheral Interface (BPI) Up from an  
industry-standard x8 or x8/x16 parallel NOR Flash  
Slave Serial, typically downloaded from a processor  
Slave Parallel, typically downloaded from a processor  
Boundary Scan (JTAG), typically downloaded from a  
processor or system tester  
3.3V low-voltage TTL (LVTTL)  
Low-voltage CMOS (LVCMOS) at 3.3V, 2.5V, 1.8V,  
1.5V, or 1.2V  
3.3V PCI at 33 MHz or 66 MHz  
HSTL I, II, and III at 1.5V and 1.8V, commonly used in  
memory applications  
SSTL I and II at 1.8V, 2.5V, and 3.3V, commonly used  
for memory applications  
Spartan-3A FPGAs support the following differential  
standards:  
Furthermore, Spartan-3A FPGAs support MultiBoot  
configuration, allowing two or more FPGA configuration  
bitstreams to be stored in a single SPI serial Flash or a BPI  
parallel NOR Flash. The FPGA application controls which  
configuration to load next and when to load it.  
LVDS, mini-LVDS, RSDS, and PPDS I/O at 2.5V or  
3.3V  
Bus LVDS I/O at 2.5V  
TMDS I/O at 3.3V  
Differential HSTL and SSTL I/O  
LVPECL inputs at 2.5V or 3.3V  
Additionally, each Spartan-3A FPGA contains a unique,  
factory-programmed Device DNA identifier useful for  
tracking purposes, anti-cloning designs, or IP protection.  
Table 2: Available User I/Os and Differential (Diff) I/O Pairs  
VQ100  
VQG100  
TQ144  
TQG144  
FT256  
FTG256  
FG320  
FGG320  
FG400  
FGG400  
FG484  
FGG484  
FG676  
FGG676  
Package  
Body Size  
(mm)  
(2)  
(2)  
14 x 14  
20 x 20  
17 x 17  
19 x 19  
21 x 21  
23 x 23  
27 x 27  
Device  
User  
Diff  
User  
Diff  
User  
Diff  
User  
Diff  
User  
Diff  
User  
Diff  
User  
Diff  
68  
60  
108  
50  
144  
64  
XC3S50A  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(13)  
(24)  
(7)  
(24)  
(32)  
(32)  
68  
(13)  
60  
(24)  
195  
(35)  
90  
(50)  
248  
(56)  
112  
(64)  
XC3S200A  
XC3S400A  
XC3S700A  
-
-
-
-
-
-
-
-
195  
(35)  
90  
(50)  
251  
(59)  
112  
(64)  
311  
(63)  
142  
(78)  
-
-
-
-
-
-
161  
(13)  
74  
(36)  
311  
(63)  
142  
(78)  
372  
(84)  
165  
(93)  
-
-
-
-
161  
(13)  
74  
(36)  
375  
(87)  
165  
(93)  
502  
(94)  
227  
(131)  
XC3S1400A  
-
-
Notes:  
1. The number shown in bold indicates the maximum number of I/O and input-only pins. The number shown in (italics) indicates the number  
of input-only pins. The differential (Diff) input-only pin count includes both differential pairs on input-only pins and differential pairs on I/O pins  
within I/O banks that are restricted to differential inputs.  
2. The footprints for the VQ/TQ packages are larger than the package body. See the Package Drawings for details.  
DS529-1 (v2.0) August 19, 2010  
www.xilinx.com  
5
 
Introduction and Ordering Information  
Production Status  
Table 3 indicates the production status of each Spartan-3A  
FPGA by temperature range and speed grade. The table  
also lists the earliest speed file version required for creating  
a production configuration bitstream. Later versions are also  
supported.  
Table 3: Spartan-3A FPGA Production Status (Production Speed File)  
Temperature Range  
Speed Grade  
Commercial (C)  
High-Performance (–5)  
Industrial  
Standard (–4)  
Standard (–4)  
Production  
Production  
Production  
XC3S50A  
XC3S200A  
XC3S400A  
XC3S700A  
XC3S1400A  
(v1.35)  
(v1.35)  
(v1.35)  
Production  
(v1.35)  
Production  
(v1.35)  
Production  
(v1.35)  
Production  
(v1.36)  
Production  
(v1.36)  
Production  
(v1.36)  
Production  
(v1.34)  
Production  
(v1.35)  
Production  
(v1.34)  
Production  
(v1.34)  
Production  
(v1.35)  
Production  
(v1.34)  
Package Marking  
Figure 2 provides a top marking example for Spartan-3A  
FPGAs in the quad-flat packages. Figure 3 shows the top  
marking for Spartan-3A FPGAs in BGA packages. The  
markings for the BGA packages are nearly identical to those  
for the quad-flat packages, except that the marking is  
rotated with respect to the ball A1 indicator.  
The “5C” and “4I” Speed Grade/Temperature Range part  
combinations may be dual marked as “5C/4I”. Devices with  
a single mark are only guaranteed for the marked speed  
grade and temperature range.  
Mask Revision Code  
Fabrication Code  
R
R
Process Technology  
SPARTAN  
XC3S50ATM  
Device Type  
Date Code  
Lot Code  
Package  
TQ144AGQ0625  
D1234567A  
Speed Grade  
4C  
Temperature Range  
Pin P1  
DS529-1_03_080406  
Figure 2: Spartan-3A QFP Package Marking Example  
Mask Revision Code  
R
BGA Ball A1  
Fabrication Code  
Process Code  
R
SPARTAN  
Device Type  
XC3S50ATM  
Date Code  
Package  
FT256 AGQ0625  
D1234567A  
4C  
Lot Code  
Speed Grade  
Temperature Range  
DS529-1_02_021206  
Figure 3: Spartan-3A BGA Package Marking Example  
6
www.xilinx.com  
DS529-1 (v2.0) August 19, 2010  
 
 
 
 
Introduction and Ordering Information  
Ordering Information  
Spartan-3A FPGAs are available in both standard and Pb-free packaging options for all device/package combinations. The  
Pb-free packages include a ‘G’ character in the ordering code.  
Example:  
XC3S50A -4 FT 256 C  
Device Type  
Temperature Range  
Speed Grade  
Package Type/Number of Pins  
DS529-1_05_011309  
Device  
Speed Grade  
Package Type / Number of Pins(1)  
Temperature Range (TJ)  
XC3S50A  
–4 Standard Performance VQ100/  
VQG100  
100-pin Very Thin Quad Flat Pack (VQFP)  
C Commercial (0°C to 85°C)  
XC3S200A –5 High Performance  
(Commercial only)  
TQ144/  
TQG144  
144-pin Thin Quad Flat Pack (TQFP)  
I Industrial (–40°C to 100°C)  
XC3S400A  
XC3S700A  
XC3S1400A  
FT256/  
256-ball Fine-Pitch Thin Ball Grid Array (FTBGA)  
320-ball Fine-Pitch Ball Grid Array (FBGA)  
400-ball Fine-Pitch Ball Grid Array (FBGA)  
484-ball Fine-Pitch Ball Grid Array (FBGA)  
676-ball Fine-Pitch Ball Grid Array (FBGA)  
FTG256  
FG320/  
FGG320  
FG400/  
FGG400  
FG484/  
FGG484  
FG676  
FGG676  
Notes:  
1. See Table 2 for specific device/package combinations.  
2. See DS681 for the XA Automotive Spartan-3A FPGAs.  
Revision History  
The following table shows the revision history for this document.  
Date  
Version  
1.0  
Revision  
12/05/06  
02/02/07  
Initial release.  
1.1  
Promoted to Preliminary status. Updated maximum differential I/O count for XC3S50A in Table 1.  
Updated differential input-only pin counts in Table 2.  
03/16/07  
04/23/07  
05/08/07  
07/10/07  
04/15/08  
1.2  
1.3  
Minor formatting updates.  
Added "Production Status" section.  
Updated XC3S400A to Production.  
Minor updates.  
1.4  
1.4.1  
1.6  
Added VQ100 for XC3S50A and XC3S200A and extended FT256 to XC3S700A and XC3S1400A  
Added reference to SCD 4103 for 750 Mbps performance.  
05/28/08  
03/06/09  
1.7  
1.8  
Added reference to XA Automotive version.  
Simplified Ordering Information. Added references to Extended Spartan-3A Family.  
Removed reference to SCD 4103.  
08/19/10  
2.0  
Updated Table 2 to clarify TQ/VQ size.  
DS529-1 (v2.0) August 19, 2010  
www.xilinx.com  
7
Introduction and Ordering Information  
8
www.xilinx.com  
DS529-1 (v2.0) August 19, 2010  
10  
Spartan-3A FPGA Family:  
Functional Description  
0
DS529-2 (v2.0) August 19, 2010  
Product Specification  
Spartan-3A FPGA Design Documentation  
The functionality of the Spartan®-3A FPGA Family is  
described in the following documents. The topics covered in  
each guide is listed below.  
Detailed Descriptions by Mode  
-
-
-
Master Serial Mode using Xilinx® Platform  
Flash PROM  
DS706: Extended Spartan-3A Family Overview  
www.xilinx.com/support/documentation/  
data_sheets/ds706.pdf  
Master SPI Mode using Commodity SPI Serial  
Flash PROM  
Master BPI Mode using Commodity Parallel  
NOR Flash PROM  
UG331: Spartan-3 Generation FPGA User Guide  
www.xilinx.com/support/documentation/  
user_guides/ug331.pdf  
-
-
-
Slave Parallel (SelectMAP) using a Processor  
Slave Serial using a Processor  
JTAG Mode  
Clocking Resources  
Digital Clock Managers (DCMs)  
Block RAM  
ISE iMPACT Programming Examples  
MultiBoot Reconfiguration  
Configurable Logic Blocks (CLBs)  
Design Authentication using Device DNA  
-
-
-
Distributed RAM  
For application examples, see the Spartan-3A FPGA  
application notes.  
SRL16 Shift Registers  
Carry and Arithmetic Logic  
Spartan-3A FPGA Application Notes  
www.xilinx.com/support/documentation/  
spartan-3a_application_notes.htm  
I/O Resources  
Embedded Multiplier Blocks  
Programmable Interconnect  
ISE® Software Design Tools  
IP Cores  
For specific hardware examples, please see the Spartan-3A  
FPGA Starter Kit board web page, which has links to  
various design examples and the user guide.  
Spartan-3A/3AN FPGA Starter Kit Board Page  
www.xilinx.com/s3astarter  
Embedded Processing and Control Solutions  
Pin Types and Package Overview  
Package Drawings  
UG334: Spartan-3A/3AN FPGA Starter Kit User  
Guide  
www.xilinx.com/support/documentation/  
Powering FPGAs  
boards_and_kits/ug334.pdf  
Power Management  
UG332: Spartan-3 Generation Configuration User  
Guide  
For information on the XA Automotive version of the  
Spartan-3A family, see the following data sheet.  
www.xilinx.com/support/documentation/  
user_guides/ug332.pdf  
XA Spartan-3A Automotive FPGA Family Data Sheet  
www.xilinx.com/support/documentation/data_sheets/  
ds681.pdf  
Configuration Overview  
-
-
Configuration Pins and Behavior  
Bitstream Sizes  
Create a Xilinx user account and sign up to receive  
automatic e-mail notification whenever this data sheet or  
the associated user guides are updated.  
Sign Up for Alerts  
www.xilinx.com/support/answers/18683.htm  
© Copyright 2006–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and  
other countries. PCI is a registered trademark of the PCI-SIG. All other trademarks are the property of their respective owners.  
DS529-2 (v2.0) August 19, 2010  
www.xilinx.com  
9
 
 
Spartan-3A FPGA Family: Functional Description  
Related Product Families  
The Spartan-3AN nonvolatile FPGA family is architecturally  
identical to the Spartan-3A FPGA family, except that it has  
in-system flash memory and is offered in select  
pin-compatible package options.  
The compatible Spartan-3A DSP FPGA family replaces the  
18-bit multiplier with the DSP48A block, while also  
increasing the block RAM capability and quantity. The two  
members of the Spartan-3A DSP FPGA family extend the  
Spartan-3A density range up to 37,440 and 53,712 logic  
cells.  
DS557: Spartan-3AN Family Data Sheet  
www.xilinx.com/support/documentation/  
data_sheets/ds557.pdf  
DS610: Spartan-3A DSP FPGA Family Data Sheet  
www.xilinx.com/support/documentation/  
data_sheets/ds610.pdf  
UG431: XtremeDSP DSP48A for Spartan-3A DSP  
FPGAs  
www.xilinx.com/support/documentation/  
user_guides/ug431.pdf  
Revision History  
The following table shows the revision history for this document.  
Date  
Version  
1.0  
Revision  
12/05/06  
02/02/07  
03/16/07  
04/23/07  
07/10/07  
04/15/08  
05/28/08  
03/06/09  
08/19/10  
Initial release.  
1.1  
Promoted to Preliminary status.  
1.2  
Added cross-reference to nonvolatile Spartan-3AN FPGA family.  
Added cross-reference to compatible Spartan-3A DSP family.  
Updated Starter Kit reference to new UG334.  
Updated trademarks.  
1.3  
1.4  
1.6  
1.7  
Added reference to XA Automotive version.  
Added link to DS706 on Extended Spartan-3A family.  
Updated link to sign up for Alerts.  
1.8  
2.0  
10  
www.xilinx.com  
DS529-2 (v2.0) August 19, 2010  
64  
Spartan-3A FPGA Family:  
DC and Switching Characteristics  
0
DS529-3 (v2.0) August 19, 2010  
Product Specification  
DC Electrical Characteristics  
In this section, specifications may be designated as  
Advance, Preliminary, or Production. These terms are  
defined as follows:  
All parameter limits are representative of worst-case supply  
voltage and junction temperature conditions. Unless  
otherwise noted, the published parameter values apply  
to all Spartan®-3A devices. AC and DC characteristics  
are specified using the same numbers for both  
commercial and industrial grades.  
Advance: Initial estimates are based on simulation, early  
characterization, and/or extrapolation from the  
characteristics of other families. Values are subject to  
change. Use as estimates, not for production.  
Absolute Maximum Ratings  
Preliminary: Based on characterization. Further changes  
Stresses beyond those listed under Table 4: Absolute  
Maximum Ratings may cause permanent damage to the  
device. These are stress ratings only; functional operation  
of the device at these or any other conditions beyond those  
listed under the Recommended Operating Conditions is not  
implied. Exposure to absolute maximum conditions for  
extended periods of time adversely affects device reliability.  
are not expected.  
Production: These specifications are approved once the  
silicon has been characterized over numerous production  
lots. Parameter values are considered stable with no future  
changes expected.  
Table 4: Absolute Maximum Ratings  
Symbol  
Description  
Conditions  
Min  
–0.5  
–0.5  
–0.5  
–0.5  
Max  
1.32  
Units  
VCCINT Internal supply voltage  
VCCAUX Auxiliary supply voltage  
V
V
V
V
3.75  
VCCO  
VREF  
Output driver supply voltage  
Input reference voltage  
3.75  
VCCO + 0.5  
Voltage applied to all User I/O pins and  
dual-purpose pins  
Driver in a high-impedance state  
–0.95  
4.6  
V
VIN  
IIK  
Voltage applied to all Dedicated pins  
Input clamp current per I/O pin  
–0.5  
4.6  
V
mA  
V
–0.5V < VIN < (VCCO + 0.5V)(1)  
Human body model  
100  
2000  
500  
200  
125  
150  
VESD  
Electrostatic Discharge Voltage  
Charged device model  
Machine model  
V
V
TJ  
Junction temperature  
Storage temperature  
°C  
°C  
TSTG  
–65  
Notes:  
1. Upper clamp applies only when using PCI IOSTANDARDs.  
2. For soldering guidelines, see UG112: Device Packaging and Thermal Characteristics and XAPP427: Implementation and Solder Reflow  
Guidelines for Pb-Free Packages.  
© Copyright 2006–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and  
other countries. PCI is a registered trademark of the PCI-SIG. All other trademarks are the property of their respective owners.  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
11  
 
 
 
 
DC and Switching Characteristics  
Power Supply Specifications  
Table 5: Supply Voltage Thresholds for Power-On Reset  
Symbol  
VCCINTT  
VCCAUXT  
VCCO2T  
Description  
Threshold for the VCCINT supply  
Min  
0.4  
1.0  
1.0  
Max  
1.0  
Units  
V
V
V
Threshold for the VCCAUX supply  
2.0  
Threshold for the VCCO Bank 2 supply  
2.0  
Notes:  
1.  
V
, V  
, and V  
supplies to the FPGA can be applied in any order. However, the FPGA’s configuration source (Platform Flash,  
CCO  
CCINT CCAUX  
SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration  
source. Apply V  
information).  
last for lowest overall power consumption (see UG331 chapter “Powering Spartan-3 Generation FPGAs” for more  
CCINT  
2. To ensure successful power-on, V  
no dips at any point.  
, V  
Bank 2, and V  
supplies must rise through their respective threshold-voltage ranges with  
CCAUX  
CCINT CCO  
Table 6: Supply Voltage Ramp Rate  
Symbol  
Description  
Min  
0.2  
0.2  
0.2  
Max  
100  
100  
100  
Units  
ms  
VCCINTR  
VCCAUXR  
VCCO2R  
Ramp rate from GND to valid VCCINT supply level  
Ramp rate from GND to valid VCCAUX supply level  
Ramp rate from GND to valid VCCO Bank 2 supply level  
ms  
ms  
Notes:  
1.  
V
, V  
, and V  
supplies to the FPGA can be applied in any order. However, the FPGA’s configuration source (Platform Flash,  
CCO  
CCINT CCAUX  
SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration  
source. Apply V  
information).  
last for lowest overall power consumption (see UG331 chapter "Powering Spartan-3 Generation FPGAs" for more  
CCINT  
2. To ensure successful power-on, V  
no dips at any point.  
, V  
Bank 2, and V  
supplies must rise through their respective threshold-voltage ranges with  
CCAUX  
CCINT CCO  
Table 7: Supply Voltage Levels Necessary for Preserving CMOS Configuration Latch (CCL) Contents and RAM  
Data  
Symbol  
VDRINT  
VDRAUX  
Description  
Min  
1.0  
2.0  
Units  
VCCINT level required to retain CMOS Configuration Latch (CCL) and RAM data  
VCCAUX level required to retain CMOS Configuration Latch (CCL) and RAM data  
V
V
12  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
 
DC and Switching Characteristics  
General Recommended Operating Conditions  
Table 8: General Recommended Operating Conditions  
Symbol  
Description  
Commercial  
Min  
0
Nominal  
Max  
85  
Units  
°C  
°C  
V
TJ  
Junction temperature  
Industrial  
–40  
1.14  
1.10  
2.25  
3.00  
–0.5  
–0.5  
–0.5  
100  
VCCINT  
Internal supply voltage  
1.20  
1.26  
(1)  
VCCO  
Output driver supply voltage  
3.60  
V
VCCAUX = 2.5  
2.50  
3.30  
2.75  
V
VCCAUX  
Auxiliary supply voltage(2)  
VCCAUX = 3.3  
3.60  
V
PCI IOSTANDARD  
VCCO+0.5  
4.10  
V
VIN  
TIN  
Input voltage(3)  
IP or IO_#  
IO_Lxxy_#(4)  
V
All other  
IOSTANDARDs  
4.10  
V
Input signal transition time(5)  
500  
ns  
Notes:  
1. This V  
range spans the lowest and highest operating voltages for all supported I/O standards. Table 11 lists the recommended V  
CCO  
CCO  
range specific to each of the single-ended I/O standards, and Table 13 lists that specific to the differential standards.  
2. Define VCCAUX selection using CONFIG VCCAUX constraint.  
3. See XAPP459, “Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins.”  
4. For single-ended signals that are placed on a differential-capable I/O, V of –0.2V to –0.5V is supported but can cause increased leakage  
IN  
between the two pins. See Parasitic Leakage in UG331, Spartan-3 Generation FPGA User Guide.  
5. Measured between 10% and 90% V  
. Follow Signal Integrity recommendations.  
CCO  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
13  
 
DC and Switching Characteristics  
General DC Characteristics for I/O Pins  
Table 9: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins(1)  
Symbol  
Description  
Test Conditions  
Min  
Typ  
Max  
Units  
(2)  
IL  
Leakage current at User I/O,  
input-only, dual-purpose, and  
dedicated pins, FPGA powered  
Driver is in a high-impedance state,  
VIN = 0V or VCCO max, sample-tested  
–10  
+10  
µA  
All pins except INIT_B, PROG_B, DONE, and JTAG  
pins when PUDC_B = 1.  
–10  
+10  
µA  
µA  
µA  
µA  
Leakage current on pins during  
hot socketing, FPGA unpowered  
IHS  
INIT_B, PROG_B, DONE, and JTAG pins or other  
pins when PUDC_B = 0.  
Add IHS + IRPU  
(3)  
IRPU  
Current through pull-up resistor  
at User I/O, dual-purpose,  
VIN = GND  
VCCO or VCCAUX  
3.0V to 3.6V  
=
–151  
–315  
–182  
–710  
input-only, and dedicated pins.  
Dedicated pins are powered by  
V
CCO or VCCAUX  
=
–82  
–437  
2.3V to 2.7V  
VCCAUX  
.
VCCO = 1.7V to 1.9V  
CCO = 1.4V to 1.6V  
CCO = 1.14V to 1.26V  
–36  
–22  
–11  
5.1  
–88  
–56  
–226  
–148  
–83  
µA  
µA  
µA  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
µA  
V
V
–31  
(3)  
RPU  
Equivalent pull-up resistor value  
at User I/O, dual-purpose,  
input-only, and dedicated pins  
(based on IRPU per Note 3)  
VIN = GND  
VCCO = 3.0V to 3.6V  
VCCO = 2.3V to 2.7V  
VCCO = 1.7V to 1.9V  
VCCO = 1.4V to 1.6V  
11.4  
14.8  
21.6  
28.4  
41.1  
346  
23.9  
33.1  
52.6  
74.0  
119.4  
659  
6.2  
8.4  
10.8  
15.3  
167  
VCCO = 1.14V to 1.26V  
(3)  
IRPD  
Current through pull-down  
resistor at User I/O,  
VCCAUX = 3.0V to 3.6V  
VIN = VCCO  
VCCAUX = 2.25V to 2.75V  
dual-purpose, input-only, and  
dedicated pins. Dedicated pins  
100  
225  
457  
µA  
are powered by VCCAUX  
.
(3)  
RPD  
Equivalent pull-down resistor  
value at User I/O, dual-purpose,  
input-only, and dedicated pins  
(based on IRPD per Note 3)  
VCCAUX = 3.0V to 3.6V  
VIN = 3.0V to 3.6V  
VIN = 2.3V to 2.7V  
VIN = 1.7V to 1.9V  
VIN = 1.4V to 1.6V  
5.5  
4.1  
3.0  
2.7  
2.4  
7.9  
5.9  
4.2  
3.6  
3.0  
–10  
10.4  
7.8  
5.7  
5.1  
4.5  
16.0  
12.0  
8.5  
7.2  
6.0  
20.8  
15.7  
11.1  
9.6  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
µA  
pF  
Ω
VIN = 1.14V to 1.26V  
8.1  
VCCAUX = 2.25V to 2.75V  
VIN = 3.0V to 3.6V  
VIN = 2.3V to 2.7V  
VIN = 1.7V to 1.9V  
35.0  
26.3  
18.6  
15.7  
12.5  
+10  
10  
V
IN = 1.4V to 1.6V  
VIN = 1.14V to 1.26V  
All VCCO levels  
IREF  
CIN  
VREF current per pin  
Input capacitance  
RDT  
Resistance of optional differential  
termination circuit within a  
differential I/O pair. Not available  
on Input-only pairs.  
VCCO = 3.3V 10%  
90  
100  
115  
LVDS_33,  
MINI_LVDS_33,  
RSDS_33  
VCCO = 2.5V 10%  
90  
110  
Ω
LVDS_25,  
MINI_LVDS_25,  
RSDS_25  
Notes:  
1. The numbers in this table are based on the conditions set forth in Table 8.  
2. For single-ended signals that are placed on a differential-capable I/O, V of –0.2V to –0.5V is supported but can cause increased leakage  
IN  
between the two pins. See "Parasitic Leakage" in UG331, Spartan-3 Generation FPGA User Guide.  
3. This parameter is based on characterization. The pull-up resistance R = V  
/ I  
. The pull-down resistance R = V / I  
.
PU  
CCO RPU  
PD  
IN RPD  
14  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
 
DC and Switching Characteristics  
Quiescent Current Requirements  
Table 10: Quiescent Supply Current Characteristics  
Commercial  
Industrial  
Symbol  
Description  
Device  
XC3S50A  
Typical(2)  
Maximum(2)  
Maximum(2)  
Units  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
ICCINTQ  
Quiescent VCCINT supply current  
2
7
20  
50  
85  
120  
220  
2
30  
70  
125  
185  
310  
3
XC3S200A  
XC3S400A  
XC3S700A  
XC3S1400A  
XC3S50A  
10  
13  
24  
0.2  
0.2  
0.3  
0.3  
0.3  
3
ICCOQ  
Quiescent VCCO supply current  
XC3S200A  
XC3S400A  
XC3S700A  
XC3S1400A  
XC3S50A  
2
3
3
4
3
4
3
4
ICCAUXQ Quiescent VCCAUX supply current  
8
10  
15  
24  
34  
58  
XC3S200A  
XC3S400A  
XC3S700A  
XC3S1400A  
5
12  
18  
28  
50  
5
6
10  
Notes:  
1. The numbers in this table are based on the conditions set forth in Table 8.  
2. Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads  
disabled. Typical values are characterized using typical devices at room temperature (T of 25°C at V = 1.2V, V = 3.3V, and V  
CCAUX  
J
CCINT  
CCO  
= 2.5V). The maximum limits are tested for each device at the respective maximum specified junction temperature and at maximum voltage  
limits with V = 1.26V, V = 3.6V, and V = 3.6V. The FPGA is programmed with a “blank” configuration data file (that is, a design  
CCINT  
CCO  
CCAUX  
with no functional elements instantiated). For conditions other than those described above (for example, a design including functional  
elements), measured quiescent current levels will be different than the values in the table.  
3. For more accurate estimates for a specific design, use the Xilinx XPower tools. There are two recommended ways to estimate the total power  
consumption (quiescent plus dynamic) for a specific design: a) The Spartan-3A FPGA XPower Estimator provides quick, approximate,  
typical estimates, and does not require a netlist of the design. b) XPower Analyzer uses a netlist as input to provide maximum estimates as  
well as more accurate typical estimates.  
4. The maximum numbers in this table indicate the minimum current each power rail requires in order for the FPGA to power-on successfully.  
5. For information on the power-saving Suspend mode, see XAPP480: Using Suspend Mode in Spartan-3 Generation FPGAs. Suspend mode  
typically saves 40% total power consumption compared to quiescent current.  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
15  
 
DC and Switching Characteristics  
Single-Ended I/O Standards  
Table 11: Recommended Operating Conditions for User I/Os Using Single-Ended Standards  
VCCO for Drivers(2)  
VREF  
VIL  
Max (V)  
0.8  
VIH  
Min (V)  
IOSTANDARD  
Attribute  
Min (V) Max (V)  
Nom (V)  
3.3  
3.3  
2.5  
1.8  
1.5  
1.2  
3.3  
3.3  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
1.8  
2.5  
2.5  
3.3  
3.3  
Min (V)  
Nom (V)  
Max (V)  
LVTTL  
3.0  
3.0  
2.3  
1.65  
1.4  
1.1  
3.0  
3.0  
1.4  
1.4  
1.7  
1.7  
1.7  
1.7  
1.7  
2.3  
2.3  
3.0  
3.0  
3.6  
3.6  
2.7  
1.95  
1.6  
1.3  
3.6  
3.6  
1.6  
1.6  
1.9  
1.9  
1.9  
1.9  
1.9  
2.7  
2.7  
3.6  
3.6  
2.0  
LVCMOS33(4)  
LVCMOS25(4,5)  
LVCMOS18  
LVCMOS15  
LVCMOS12  
PCI33_3(6)  
PCI66_3(6)  
HSTL_I  
0.8  
2.0  
0.7  
1.7  
0.4  
0.8  
VREF is not used for  
these I/O standards  
0.4  
0.8  
0.4  
0.7  
0.3 VCCO  
0.3 VCCO  
VREF – 0.1  
0.5 VCCO  
0.5 VCCO  
VREF + 0.1  
VREF + 0.1  
VREF + 0.1  
VREF + 0.1  
VREF + 0.1  
VREF + 0.125  
VREF + 0.125  
VREF + 0.150  
VREF + 0.150  
VREF + 0.2  
VREF + 0.2  
0.68  
0.75  
0.9  
0.9  
-
HSTL_III  
VREF – 0.1  
HSTL_I_18  
HSTL_II_18  
HSTL_III_18  
SSTL18_I  
SSTL18_II  
SSTL2_I  
0.8  
0.9  
1.1  
VREF – 0.1  
0.9  
V
REF – 0.1  
REF – 0.1  
1.1  
V
0.833  
0.833  
1.13  
1.13  
1.3  
0.900  
0.900  
1.25  
1.25  
1.5  
0.969  
0.969  
1.38  
1.38  
1.7  
1.7  
VREF – 0.125  
V
REF – 0.125  
REF – 0.150  
V
SSTL2_II  
VREF – 0.150  
SSTL3_I  
V
V
REF – 0.2  
REF – 0.2  
SSTL3_II  
1.3  
1.5  
Notes:  
1. Descriptions of the symbols used in this table are as follows:  
V
V
V
V
– the supply voltage for output drivers  
– the reference voltage for setting the input switching threshold  
– the input voltage that indicates a Low logic level  
– the input voltage that indicates a High logic level  
CCO  
REF  
IL  
IH  
2. In general, the V  
rails supply only output drivers, not input circuits. The exceptions are for LVCMOS25 inputs when V  
= 3.3V range  
CCAUX  
CCO  
and for PCI I/O standards.  
3. For device operation, the maximum signal voltage (V max) can be as high as V max. See Table 8.  
IH  
IN  
4. There is approximately 100 mV of hysteresis on inputs using LVCMOS33 and LVCMOS25 I/O standards.  
5. All Dedicated pins (PROG_B, DONE, SUSPEND, TCK, TDI, TDO, and TMS) draw power from the V  
rail and use the LVCMOS25 or  
CCAUX  
LVCMOS33 standard depending on V  
. The dual-purpose configuration pins use the LVCMOS standard before the User mode. When  
CCAUX  
using these pins as part of a standard 2.5V configuration interface, apply 2.5V to the V  
throughout configuration.  
lines of Banks 0, 1, and 2 at power-on as well as  
CCO  
6. For information on PCI IP solutions, see www.xilinx.com/pci. The PCI IOSTANDARD is not supported on input-only pins. The PCIX  
IOSTANDARD is available and has equivalent characteristics but no PCI-X IP is supported.  
16  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
 
DC and Switching Characteristics  
Table 12: DC Characteristics of User I/Os Using  
Single-Ended Standards(Continued)  
Table 12: DC Characteristics of User I/Os Using  
Single-Ended Standards  
Test  
Conditions  
Logic Level  
Characteristics  
Test  
Conditions  
Logic Level  
Characteristics  
IOL  
(mA) (mA)  
IOH  
VOL  
Max (V)  
VOH  
Min (V)  
IOL  
(mA) (mA)  
IOH  
VOL  
Max (V)  
VOH  
Min (V)  
IOSTANDARD  
Attribute  
IOSTANDARD  
Attribute  
PCI33_3(5)  
1.5  
1.5  
8
–0.5 10% VCCO 90% VCCO  
–0.5 10% VCCO 90% VCCO  
LVTTL(3)  
2
4
6
8
2
4
–2  
–4  
0.4  
0.4  
0.4  
0.4  
2.4  
PCI66_3(5)  
HSTL_I(4)  
–8  
–8  
0.4  
0.4  
0.4  
0.4  
0.4  
VCCO - 0.4  
VCCO - 0.4  
VCCO - 0.4  
VCCO - 0.4  
VCCO - 0.4  
6
–6  
HSTL_III(4)  
HSTL_I_18  
HSTL_II_18(4)  
HSTL_III_18  
SSTL18_I  
SSTL18_II(4)  
SSTL2_I  
24  
8
8
–8  
–8  
12  
16  
24  
2
12  
16  
24  
2
–12  
–16  
–24  
–2  
16  
24  
6.7  
–16  
–8  
VTT – 0.475 VTT + 0.475  
TT – 0.603 VTT + 0.603  
–8.1 VTT – 0.61 VTT + 0.61  
16.2 –16.2 VTT – 0.81 VTT + 0.81  
–6.7  
LVCMOS33(3)  
LVCMOS25(3)  
LVCMOS18(3)  
VCCO 0.4  
VCCO 0.4  
VCCO 0.4  
V
13.4 –13.4  
8.1  
4
4
–4  
6
6
–6  
SSTL2_II(4)  
SSTL3_I  
8
8
–8  
8
–8  
VTT – 0.6  
VTT – 0.8  
VTT + 0.6  
VTT + 0.8  
12  
16  
24(4)  
2
12  
16  
24  
2
–12  
–16  
–24  
–2  
SSTL3_II  
16  
–16  
Notes:  
1. The numbers in this table are based on the conditions set forth in  
Table 8 and Table 11.  
2. Descriptions of the symbols used in this table are as follows:  
4
4
–4  
I the output current condition under which V is tested  
OL  
OOHL the output current condition under which V is tested  
6
6
–6  
I
OH  
V the output voltage that indicates a Low logic level  
OOHL the output voltage that indicates a High logic level  
CCO the supply voltage for output drivers  
8
8
–8  
V
V
12  
16(4)  
24(4)  
2
12  
16  
24  
2
–12  
–16  
–24  
–2  
V the voltage applied to a resistor termination  
TT  
3. For the LVCMOS and LVTTL standards: the same V and V  
OL  
OH  
limits apply for the Fast, Slow, and QUIETIO slew attributes.  
4. These higher-drive output standards are supported only on  
FPGA banks 1 and 3. Inputs are unrestricted. See the chapter  
"Using I/O Resources" in UG331.  
4
4
–4  
5. Tested according to the relevant PCI specifications. For  
information on PCI IP solutions, see www.xilinx.com/pci. The  
PCIX IOSTANDARD is available and has equivalent  
characteristics but no PCI-X IP is supported.  
6
6
–6  
8
8
–8  
12(4)  
16(4)  
2
12  
16  
2
–12  
–16  
–2  
LVCMOS15(3)  
0.4  
0.4  
VCCO 0.4  
4
4
–4  
6
6
–6  
8(4)  
12(4)  
2
8
–8  
12  
2
–12  
–2  
LVCMOS12(3)  
VCCO 0.4  
4(4)  
6(4)  
4
–4  
6
–6  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
17  
 
DC and Switching Characteristics  
Differential I/O Standards  
Differential Input Pairs  
VINP  
VINN  
Differential  
I/O Pair Pins  
P
N
Internal  
Logic  
VINN  
V
50%  
ID  
VINP  
V
ICM  
GND level  
V
INP + VINN  
V
ICM = Input common mode voltage =  
2
VINP - VINN  
V
ID = Differential input voltage =  
DS529-3_10_012907  
Figure 4: Differential Input Voltages  
Table 13: Recommended Operating Conditions for User I/Os Using Differential Signal Standards  
VCCO for Drivers(1)  
VID VICM  
Max (V) Min (mV) Nom (mV) Max (mV) Min (V)  
(2)  
IOSTANDARD Attribute  
Min (V)  
2.25  
3.0  
Nom (V)  
2.5  
Nom (V)  
Max (V)  
2.35  
(3)  
LVDS_25  
2.75  
3.6  
100  
100  
100  
200  
200  
100  
100  
100  
100  
150  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
350  
350  
300  
600  
600  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
2.7  
0.2  
0.2  
0.8  
0.8  
0.8  
0.68  
1.25  
1.25  
1.3  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
(3)  
LVDS_33  
3.3  
2.35  
(4)  
BLVDS_25  
2.25  
2.25  
3.0  
2.5  
2.75  
2.75  
3.6  
2.35  
(3)  
MINI_LVDS_25  
2.5  
600  
600  
1000  
1000  
1.95  
(3)  
MINI_LVDS_33  
3.3  
1.95  
(5)  
LVPECL_25  
Inputs Only  
Inputs Only  
2.5  
800  
800  
200  
200  
1.95  
(5)  
(6)  
LVPECL_33  
2.8  
(3)  
RSDS_25  
2.25  
3.0  
3.14  
2.25  
3.0  
1.7  
1.7  
1.7  
1.4  
1.4  
1.7  
1.7  
2.3  
2.3  
3.0  
3.0  
2.75  
3.6  
3.47  
2.75  
3.6  
1.9  
1.9  
1.9  
1.6  
1.6  
1.9  
1.9  
2.7  
2.7  
3.6  
3.6  
1.5  
1.5  
3.23  
2.3  
2.3  
1.1  
1.1  
1.1  
0.9  
(3)  
RSDS_33  
3.3  
(3, 4, 7)  
TMDS_33  
3.3  
1200  
400  
400  
(3)  
PPDS_25  
2.5  
(3)  
PPDS_33  
3.3  
DIFF_HSTL_I_18  
1.8  
(8)  
DIFF_HSTL_II_18  
1.8  
DIFF_HSTL_III_18  
DIFF_HSTL_I  
1.8  
1.5  
DIFF_HSTL_III  
DIFF_SSTL18_I  
1.5  
0.9  
1.8  
0.7  
0.7  
1.0  
1.0  
1.1  
1.1  
1.1  
1.1  
1.5  
1.5  
1.9  
1.9  
(8)  
DIFF_SSTL18_II  
1.8  
DIFF_SSTL2_I  
2.5  
(8)  
DIFF_SSTL2_II  
2.5  
DIFF_SSTL3_I  
DIFF_SSTL3_II  
3.3  
3.3  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  
The VCCO rails supply only differential output drivers, not input circuits.  
VICM must be less than VCCAUX  
.
These true differential output standards are supported only on FPGA banks 0 and 2. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331.  
See "External Termination Requirements for Differential I/O," page 20.  
LVPECL is supported on inputs only, not outputs. LVPECL_33 requires VCCAUX=3.3V 10%.  
LVPECL_33 maximum VICM = the lower of 2.8V or VCCAUX – (VID / 2)  
Requires VCCAUX = 3.3V 10% for inputs. (VCCAUX – 300 mV) VICM (VCCAUX – 37 mV)  
These higher-drive output standards are supported only on FPGA banks 1 and 3. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331.  
All standards except for LVPECL and TMDS can have VCCAUX at either 2.5V or 3.3V. Define your VCCAUX level using the CONFIG VCCAUX constraint.  
18  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
 
DC and Switching Characteristics  
Differential Output Pairs  
VOUTP  
VOUTN  
Differential  
I/O Pair Pins  
P
N
Internal  
Logic  
VOH  
VOUTN  
VOD  
50%  
VOUTP  
VOL  
VOCM  
GND level  
V
OUTP + VOUTN  
V
OCM = Output common mode voltage =  
2
VOUTP - VOUTN  
= Output voltage indicating a High logic level  
= Output voltage indicating a Low logic level  
V
OD = Output differential voltage =  
VOH  
VOL  
DS529-3_11_012907  
Figure 5: Differential Output Voltages  
Table 14: DC Characteristics of User I/Os Using Differential Signal Standards  
VOD  
VOCM  
VOH  
VOL  
Typ  
(mV)  
IOSTANDARD Attribute Min (mV)  
Max (mV)  
Min (V)  
Typ (V)  
Max (V)  
Min (V)  
Max (V)  
LVDS_25  
247  
247  
240  
300  
300  
100  
100  
400  
100  
100  
350  
350  
350  
454  
454  
460  
600  
600  
400  
400  
800  
400  
400  
1.125  
1.375  
LVDS_33  
1.125  
1.375  
BLVDS_25  
1.30  
MINI_LVDS_25  
MINI_LVDS_33  
RSDS_25  
1.0  
1.4  
1.0  
1.4  
1.0  
1.4  
RSDS_33  
1.0  
1.4  
TMDS_33  
VCCO – 0.405  
VCCO – 0.190  
PPDS_25  
0.5  
0.5  
0.8  
0.8  
1.4  
1.4  
PPDS_33  
DIFF_HSTL_I_18  
DIFF_HSTL_II_18  
DIFF_HSTL_III_18  
DIFF_HSTL_I  
DIFF_HSTL_III  
DIFF_SSTL18_I  
DIFF_SSTL18_II  
DIFF_SSTL2_I  
DIFF_SSTL2_II  
DIFF_SSTL3_I  
DIFF_SSTL3_II  
VCCO – 0.4  
VCCO – 0.4  
VCCO – 0.4  
VCCO – 0.4  
VCCO – 0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
VTT + 0.475 VTT – 0.475  
VTT + 0.603 VTT – 0.603  
VTT + 0.61  
VTT + 0.81  
VTT + 0.6  
VTT + 0.8  
VTT – 0.61  
VTT – 0.81  
VTT – 0.6  
VTT – 0.8  
Notes:  
1. The numbers in this table are based on the conditions set forth in Table 8 and Table 13.  
2. See "External Termination Requirements for Differential I/O," page 20.  
3. Output voltage measurements for all differential standards are made with a termination resistor (R ) of 100Ω across the N and P pins of the  
T
differential signal pair.  
4. At any given time, no more than two of the following differential output standards can be assigned to an I/O bank: LVDS_25, RSDS_25,  
MINI_LVDS_25, PPDS_25 when V  
=2.5V, or LVDS_33, RSDS_33, MINI_LVDS_33, TMDS_33, PPDS_33 when V  
www.xilinx.com  
= 3.3V  
CCO  
CCO  
DS529-3 (v2.0) August 19, 2010  
19  
 
DC and Switching Characteristics  
External Termination Requirements for Differential I/O  
LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards  
Bank 0 and 2  
Any Bank  
Bank 0  
Bank 0  
No VCCO Restrictions  
LVDS_33, LVDS_25,  
MINI_LVDS_33,  
MINI_LVDS_25,  
1
/ th of Bourns  
4
Part Number  
Bank 2  
Bank 2  
CAT16-PT4F4  
Z
0
0
= 50Ω  
= 50Ω  
RSDS_33, RSDS_25,  
PPDS_33, PPDS_25  
VCCO = 3.3V VCCO = 2.5V  
LVDS_33,  
LVDS_25,  
100Ω  
MINI_LVDS_33,  
RSDS_33,  
PPDS_33  
MINI_LVDS_25,  
RSDS_25,  
PPDS_25  
Z
DIFF_TERM=No  
a) Input-only differential pairs or pairs not using DIFF_TERM=Yes constraint  
VCCO = 3.3V VCCO = 2.5V  
Z
0
= 50Ω  
= 50Ω  
LVDS_33,  
LVDS_25,  
MINI_LVDS_33,  
RSDS_33,  
PPDS_33  
MINI_LVDS_25,  
RSDS_25,  
PPDS_25  
VCCO = 3.3V VCCO = 2.5V  
LVDS_33,  
LVDS_25,  
RDT  
MINI_LVDS_33,  
RSDS_33,  
PPDS_33  
MINI_LVDS_25,  
RSDS_25,  
PPDS_25  
Z
0
DIFF_TERM=Yes  
b) Differential pairs using DIFF_TERM=Yes constraint  
DS529-3_09_020107  
Figure 6: External Input Termination for LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards  
BLVDS_25 I/O Standard  
Any Bank  
Bank 0  
Any Bank  
Bank 0  
1
1
/ th of Bourns  
4
/ th of Bourns  
4
Part Number  
Part Number  
CAT16-LV4F12  
CAT16-PT4F4  
Bank 2  
Bank 2  
V
CCO = 2.5V  
Z
0
0
= 50Ω  
= 50Ω  
No VCCO Requirement  
165Ω  
140Ω  
165Ω  
100Ω BLVDS_25  
BLVDS_25  
Z
DS529-3_07_020107  
Figure 7: External Output and Input Termination Resistors for BLVDS_25 I/O Standard  
TMDS_33 I/O Standard  
Any Bank  
Bank 0  
Bank 0 and 2  
Bank 0  
3.3V  
Bank 2  
Bank 2  
50Ω  
50Ω  
V
CCAUX = 3.3V  
V
CCO = 3.3V  
TMDS_33  
TMDS_33  
DVI/HDMI cable  
DS529-3_08_020107  
Figure 8: External Input Resistors Required for TMDS_33 I/O Standard  
Device DNA Read Endurance  
Table 15: Device DNA Identifier Memory Characteristics  
Symbol  
Description  
Minimum  
Units  
Number of READ operations or JTAG ISC_DNA read operations. Unaffected by  
HOLD or SHIFT operations.  
Read  
cycles  
DNA_CYCLES  
30,000,000  
20  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
 
 
DC and Switching Characteristics  
Switching Characteristics  
All Spartan-3A FPGAs ship in two speed grades: –4 and the  
higher performance –5. Switching characteristics in this  
document are designated as Advance, Preliminary, or  
Production, as shown in Table 16. Each category is defined  
as follows:  
To create a Xilinx user account and sign up for automatic  
E-mail notification whenever this data sheet is updated:  
Sign Up for Alerts  
www.xilinx.com/support/answers/18683.htm  
Timing parameters and their representative values are  
selected for inclusion below either because they are  
important as general design requirements or they indicate  
fundamental device performance characteristics. The  
Spartan-3A FPGA speed files (v1.41), part of the Xilinx  
Development Software, are the original source for many but  
not all of the values. The speed grade designations for these  
files are shown in Table 16. For more complete, more  
precise, and worst-case data, use the values reported by the  
Xilinx static timing analyzer (TRACE in the Xilinx  
development software) and back-annotated to the  
simulation netlist.  
Advance: These specifications are based on simulations  
only and are typically available soon after establishing  
FPGA specifications. Although speed grades with this  
designation are considered relatively stable and  
conservative, some under-reporting might still occur.  
Preliminary: These specifications are based on complete  
early silicon characterization. Devices and speed grades  
with this designation are intended to give a better indication  
of the expected performance of production silicon. The  
probability of under-reporting preliminary delays is greatly  
reduced compared to Advance data.  
Production: These specifications are approved once  
enough production silicon of a particular device has been  
characterized to provide full correlation between speed files  
and devices over numerous production lots. There is no  
under-reporting of delays, and customers receive formal  
notification of any subsequent changes. Typically, the  
slowest speed grades transition to Production before faster  
speed grades.  
Table 16: Spartan-3A v1.41 Speed Grade Designation  
Device  
XC3S50A  
Advance  
Preliminary  
Production  
-4, -5  
XC3S200A  
XC3S400A  
XC3S700A  
XC3S1400A  
-4, -5  
-4, -5  
-4, -5  
-4, -5  
Software Version Requirements  
Table 17 provides the recent history of the Spartan-3A  
FPGA speed files.  
Production-quality systems must use FPGA designs  
compiled using a speed file designated as PRODUCTION  
status. FPGA designs using a less mature speed file  
designation should only be used during system prototyping  
or pre-production qualification. FPGA designs with speed  
files designated as Advance or Preliminary should not be  
used in a production-quality system.  
Table 17: Spartan-3A Speed File Version History  
ISE  
Version  
1.41  
Release  
Description  
ISE 10.1.03 Updated Automotive output delays  
ISE 10.1.02 Updated Automotive input delays.  
ISE 10.1.01 Added Automotive parts.  
1.40  
Whenever a speed file designation changes, as a device  
matures toward Production status, rerun the latest Xilinx®  
ISE® software on the FPGA design to ensure that the FPGA  
design incorporates the latest timing information and  
software updates.  
1.39  
1.38  
ISE 9.2.03i Added Absolute Minimum values.  
Updated pin-to-pin setup and hold  
times (Table 19), TMDS output  
ISE 9.2.01i adjustment (Table 26) multiplier  
setup/hold times (Table 34), and block  
RAM clock width (Table 35).  
1.37  
1.36  
All parameter limits are representative of worst-case supply  
voltage and junction temperature conditions. Unless  
otherwise noted, the published parameter values apply  
to all Spartan-3A devices. AC and DC characteristics  
are specified using the same numbers for both  
commercial and industrial grades.  
ISE 9.2i;  
XC3S400A, all speed grades and all  
previously temperature grades, upgraded to  
available via Production  
Answer  
Record  
AR24992  
XC3S50A, XC3S200A, XC3S700A,  
Answer  
XC3S1400A, all speed grades and all  
Record  
1.35  
1.34  
temperature grades, upgraded to  
Production.  
AR24992  
XC3S700A and XC3S1400A -4 speed  
ISE 9.1.03i grade upgraded to Production. Updated  
pin-to-pin timing numbers.  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
21  
 
 
DC and Switching Characteristics  
I/O Timing  
Pin-to-Pin Clock-to-Output Times  
Table 18: Pin-to-Pin Clock-to-Output Times for the IOB Output Path  
Speed Grade  
-5  
-4  
Symbol  
Description  
Conditions  
Device  
Max  
Max  
Units  
Clock-to-Output Times  
TICKOFDCM  
When reading from the Output  
LVCMOS25(2), 12mA  
XC3S50A  
3.18  
3.21  
2.97  
3.39  
3.51  
4.59  
4.88  
4.68  
4.97  
5.06  
3.42  
3.27  
3.33  
3.50  
3.99  
5.02  
5.24  
5.12  
5.34  
5.69  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Flip-Flop (OFF), the time from the output drive, Fast slew  
rate, with DCM(3)  
XC3S200A  
XC3S400A  
XC3S700A  
XC3S1400A  
XC3S50A  
active transition on the Global  
Clock pin to data appearing at the  
Output pin. The DCM is in use.  
TICKOF  
When reading from OFF, the time LVCMOS25(2), 12mA  
from the active transition on the output drive, Fast slew  
Global Clock pin to data appearing rate, without DCM  
at the Output pin. The DCM is not  
in use.  
XC3S200A  
XC3S400A  
XC3S700A  
XC3S1400A  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in  
Table 8 and Table 11.  
2. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a  
standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, add the appropriate  
Input adjustment from Table 23. If the latter is true, add the appropriate Output adjustment from Table 26.  
3. DCM output jitter is included in all measurements.  
22  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
 
DC and Switching Characteristics  
Pin-to-Pin Setup and Hold Times  
Table 19: Pin-to-Pin Setup and Hold Times for the IOB Input Path (System Synchronous)  
Speed Grade  
-5  
-4  
Symbol  
Setup Times  
TPSDCM  
Description  
Conditions  
Device  
Min  
Min  
Units  
When writing to the Input  
Flip-Flop (IFF), the time from the IFD_DELAY_VALUE = 0,  
setup of data at the Input pin to  
the active transition at a Global  
Clock pin. The DCM is in use. No  
Input Delay is programmed.  
LVCMOS25(2)  
,
XC3S50A  
2.45  
2.59  
2.38  
2.38  
1.91  
2.55  
2.32  
2.21  
2.28  
2.33  
2.68  
2.84  
2.68  
2.57  
2.17  
2.76  
2.76  
2.60  
2.63  
2.41  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
with DCM(4)  
XC3S200A  
XC3S400A  
XC3S700A  
XC3S1400A  
XC3S50A  
TPSFD  
When writing to IFF, the time from LVCMOS25(2)  
the setup of data at the Input pin IFD_DELAY_VALUE = 5,  
to an active transition at the  
Global Clock pin. The DCM is not  
in use. The Input Delay is  
programmed.  
,
XC3S200A  
XC3S400A  
XC3S700A  
XC3S1400A  
without DCM  
Hold Times  
TPHDCM  
When writing to IFF, the time from LVCMOS25(3)  
,
XC3S50A  
-0.36  
-0.52  
-0.33  
-0.17  
-0.07  
-0.63  
-0.56  
-0.42  
-0.80  
-0.69  
-0.36  
-0.52  
-0.29  
-0.12  
0.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
the active transition at the Global IFD_DELAY_VALUE = 0,  
Clock pin to the point when data with DCM(4)  
must be held at the Input pin. The  
XC3S200A  
XC3S400A  
XC3S700A  
XC3S1400A  
XC3S50A  
DCM is in use. No Input Delay is  
programmed.  
TPHFD  
When writing to IFF, the time from LVCMOS25(3)  
,
-0.58  
-0.56  
-0.42  
-0.75  
-0.69  
the active transition at the Global IFD_DELAY_VALUE = 5,  
Clock pin to the point when data without DCM  
must be held at the Input pin. The  
XC3S200A  
XC3S400A  
XC3S700A  
XC3S1400A  
DCM is not in use. The Input  
Delay is programmed.  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in  
Table 8 and Table 11.  
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data  
Input. If this is true of the Global Clock Input, subtract the appropriate adjustment from Table 23. If this is true of the data Input, add the  
appropriate Input adjustment from the same table.  
3. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data  
Input. If this is true of the Global Clock Input, add the appropriate Input adjustment from Table 23. If this is true of the data Input, subtract the  
appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data before the clock’s active  
edge.  
4. DCM output jitter is included in all measurements.  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
23  
 
DC and Switching Characteristics  
Input Setup and Hold Times  
Table 20: Setup and Hold Times for the IOB Input Path  
Speed Grade  
IFD_  
DELAY_  
VALUE  
-5  
-4  
Symbol  
Setup Times  
TIOPICK  
Description  
Conditions  
Device  
Min  
Min  
Units  
Time from the setup of data at the  
Input pin to the active transition at the  
ICLK input of the Input Flip-Flop (IFF).  
No Input Delay is programmed.  
LVCMOS25(2)  
0
XC3S50A  
1.56  
1.71  
1.30  
1.34  
1.36  
2.16  
3.10  
3.51  
4.04  
3.88  
4.72  
5.47  
5.97  
2.05  
2.72  
3.38  
3.88  
3.69  
4.56  
5.34  
5.85  
1.79  
2.43  
3.02  
3.49  
3.41  
4.20  
4.96  
5.44  
1.58  
1.81  
1.51  
1.51  
1.74  
2.18  
3.12  
3.76  
4.32  
4.24  
5.09  
5.94  
6.52  
2.20  
2.93  
3.78  
4.37  
4.20  
5.23  
6.11  
6.71  
2.02  
2.67  
3.43  
3.96  
3.95  
4.81  
5.66  
6.19  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
XC3S200A  
XC3S400A  
XC3S700A  
XC3S1400A  
XC3S50A  
TIOPICKD  
Time from the setup of data at the  
Input pin to the active transition at the  
ICLK input of the Input Flip-Flop (IFF).  
The Input Delay is programmed.  
LVCMOS25(2)  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
XC3S200A  
XC3S400A  
24  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
 
DC and Switching Characteristics  
Speed Grade  
Table 20: Setup and Hold Times for the IOB Input Path(Continued)  
IFD_  
DELAY_  
VALUE  
-5  
-4  
Symbol  
TIOPICKD  
Description  
Conditions  
Device  
Min  
Min  
1.95  
2.83  
3.72  
4.31  
4.14  
5.19  
6.10  
6.73  
2.17  
2.92  
3.76  
4.32  
4.19  
5.09  
5.98  
6.57  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Time from the setup of data at the  
Input pin to the active transition at the  
ICLK input of the Input Flip-Flop (IFF).  
The Input Delay is programmed.  
LVCMOS25(2)  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
XC3S700A  
1.82  
2.62  
3.32  
3.83  
3.69  
4.60  
5.39  
5.92  
1.79  
2.55  
3.38  
3.75  
3.81  
4.39  
5.16  
5.69  
XC3S1400A  
Hold Times  
TIOICKP  
Time from the active transition at the LVCMOS25(3)  
ICLK input of the Input Flip-Flop (IFF)  
to the point where data must be held  
at the Input pin. No Input Delay is  
programmed.  
0
XC3S50A  
–0.66  
–0.85  
–0.42  
–0.81  
–0.71  
–0.88  
–1.33  
–2.05  
–2.43  
–2.34  
–2.81  
–3.03  
–3.83  
–1.51  
–2.09  
–2.40  
–2.68  
–2.56  
–2.99  
–3.29  
–3.61  
–0.64  
–0.65  
–0.42  
–0.67  
–0.71  
–0.88  
–1.33  
–2.05  
–2.43  
–2.34  
–2.81  
–3.03  
–3.57  
–1.51  
–2.09  
–2.40  
–2.68  
–2.56  
–2.99  
–3.29  
–3.61  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
XC3S200A  
XC3S400A  
XC3S700A  
XC3S1400A  
XC3S50A  
TIOICKPD  
Time from the active transition at the LVCMOS25(3)  
ICLK input of the Input Flip-Flop (IFF)  
to the point where data must be held  
at the Input pin. The Input Delay is  
programmed.  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
XC3S200A  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
25  
DC and Switching Characteristics  
Table 20: Setup and Hold Times for the IOB Input Path(Continued)  
Speed Grade  
IFD_  
DELAY_  
VALUE  
-5  
-4  
Symbol  
TIOICKPD  
Description  
Conditions  
Device  
Min  
Min  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Time from the active transition at the LVCMOS25(3)  
ICLK input of the Input Flip-Flop (IFF)  
to the point where data must be held  
at the Input pin. The Input Delay is  
programmed.  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
XC3S400A  
–1.12  
–1.70  
–2.08  
–2.38  
–2.23  
–2.69  
–3.08  
–3.35  
–1.67  
–2.27  
–2.59  
–2.92  
–2.89  
–3.22  
–3.52  
–3.81  
–1.60  
–2.06  
–2.46  
–2.86  
–2.88  
–3.24  
–3.55  
–3.89  
–1.12  
–1.70  
–2.08  
–2.38  
–2.23  
–2.69  
–3.08  
–3.35  
–1.67  
–2.27  
–2.59  
–2.92  
–2.89  
–3.22  
–3.52  
–3.81  
–1.60  
–2.06  
–2.46  
–2.86  
–2.88  
–3.24  
–3.55  
–3.89  
XC3S700A  
XC3S1400A  
Set/Reset Pulse Width  
Minimum pulse width to SR control  
input on IOB  
-
-
1.61  
All  
1.33  
ns  
TRPW_IOB  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in  
Table 8 and Table 11.  
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the  
appropriate Input adjustment from Table 23.  
3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract  
the appropriate Input adjustment from Table 23. When the hold time is negative, it is possible to change the data before the clock’s active  
edge.  
Table 21: Sample Window (Source Synchronous)  
Max  
Symbol  
Description  
Units  
TSAMP  
Setup and hold  
capture window of  
an IOB flip-flop.  
The input capture sample window value is highly specific to a particular application, device,  
package, I/O standard, I/O placement, DCM usage, and clock buffer. Please consult the  
appropriate Xilinx Answer Record for application-specific values.  
ps  
Answer Record 30879  
26  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
 
DC and Switching Characteristics  
Input Propagation Times  
Table 22: Propagation Times for the IOB Input Path  
Speed Grade  
-5  
-4  
Symbol  
Description  
Conditions  
DELAY_VALUE  
Device  
Max  
Max Units  
Propagation Times  
TIOPI  
The time it takes for data to travel  
from the Input pin to the I output with  
no input delay programmed  
LVCMOS25(2)  
IBUF_DELAY_VALUE=0 XC3S50A  
XC3S200A  
1.04  
0.87  
0.65  
0.92  
1.12  
0.87  
0.72  
0.92  
1.21  
2.07  
2.46  
2.71  
3.21  
3.46  
3.84  
4.19  
4.47  
4.11  
4.50  
4.67  
5.20  
5.44  
5.95  
6.28  
6.57  
1.65  
1.97  
2.33  
2.96  
3.19  
3.60  
4.02  
4.26  
3.86  
4.25  
4.55  
5.24  
5.53  
5.94  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
XC3S400A  
XC3S700A  
XC3S1400A 0.96  
TIOPID  
The time it takes for data to travel  
from the Input pin to the I output with  
the input delay programmed  
LVCMOS25(2)  
1
2
XC3S50A  
1.79  
2.13  
2.36  
2.88  
3.11  
3.45  
3.75  
4.00  
3.61  
3.95  
4.18  
4.75  
4.98  
5.31  
5.62  
5.86  
1.57  
1.87  
2.16  
2.68  
2.87  
3.20  
3.57  
3.79  
3.42  
3.79  
4.02  
4.62  
4.86  
5.18  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
1
XC3S200A  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
27  
 
DC and Switching Characteristics  
Table 22: Propagation Times for the IOB Input Path(Continued)  
Speed Grade  
-5  
-4  
Symbol  
TIOPID  
Description  
Conditions  
DELAY_VALUE  
Device  
Max  
5.43  
5.75  
1.32  
1.67  
1.90  
2.33  
2.60  
2.94  
3.23  
3.50  
3.18  
3.53  
3.76  
4.26  
4.51  
4.85  
5.14  
5.40  
1.84  
2.20  
2.46  
2.93  
3.21  
3.54  
3.86  
4.13  
3.82  
4.17  
4.43  
4.95  
5.22  
5.57  
5.89  
6.16  
Max Units  
The time it takes for data to travel  
from the Input pin to the I output with  
the input delay programmed  
LVCMOS25(2)  
15  
16  
1
XC3S200A  
6.24  
6.59  
1.43  
1.83  
2.07  
2.52  
2.91  
3.20  
3.51  
3.85  
3.55  
3.95  
4.20  
4.67  
4.97  
5.32  
5.64  
5.95  
1.87  
2.27  
2.60  
3.15  
3.45  
3.80  
4.16  
4.48  
4.19  
4.58  
4.89  
5.49  
5.83  
6.21  
6.55  
6.89  
2.18  
2.59  
2.84  
3.30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
XC3S400A  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
1
XC3S700A  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
1
XC3S1400A 1.95  
2
2.29  
2.54  
2.96  
3
4
28  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
DC and Switching Characteristics  
Speed Grade  
Table 22: Propagation Times for the IOB Input Path(Continued)  
-5  
-4  
Symbol  
TIOPID  
Description  
Conditions  
DELAY_VALUE  
Device  
Max  
Max Units  
The time it takes for data to travel  
from the Input pin to the I output with  
the input delay programmed  
LVCMOS25(2)  
5
6
XC3S1400A 3.17  
3.52  
3.92  
4.18  
4.57  
4.31  
4.79  
5.06  
5.51  
5.73  
6.08  
6.33  
6.77  
1.81  
2.04  
1.74  
1.74  
1.97  
2.41  
3.35  
3.98  
4.55  
4.47  
5.32  
6.17  
6.75  
2.43  
3.16  
4.01  
4.60  
4.43  
5.46  
6.33  
6.94  
2.25  
2.90  
3.66  
4.19  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3.52  
3.82  
4.10  
3.84  
4.20  
4.46  
4.87  
5.07  
5.43  
5.73  
6.01  
7
8
9
10  
11  
12  
13  
14  
15  
16  
TIOPLI  
The time it takes for data to travel  
from the Input pin through the IFF  
latch to the I output with no input  
delay programmed  
LVCMOS25(2)  
IFD_DELAY_VALUE=0 XC3S50A  
XC3S200A  
1.70  
1.85  
1.44  
1.48  
XC3S400A  
XC3S700A  
XC3S1400A 1.50  
TIOPLID  
The time it takes for data to travel  
from the Input pin through the IFF  
latch to the I output with the input  
delay programmed  
LVCMOS25(2)  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
XC3S50A  
XC3S200A  
XC3S400A  
2.30  
3.24  
3.65  
4.18  
4.02  
4.86  
5.61  
6.11  
2.19  
2.86  
3.52  
4.02  
3.83  
4.70  
5.48  
5.99  
1.93  
2.57  
3.16  
3.63  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
29  
DC and Switching Characteristics  
Table 22: Propagation Times for the IOB Input Path(Continued)  
Speed Grade  
-5  
-4  
Symbol  
Description  
Conditions  
DELAY_VALUE  
Device  
Max  
3.55  
4.34  
5.09  
5.58  
1.96  
2.76  
3.45  
3.97  
3.83  
4.74  
5.53  
6.06  
Max Units  
TIOPLID  
The time it takes for data to travel  
from the Input pin through the IFF  
latch to the I output with the input  
delay programmed  
LVCMOS25(2)  
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
XC3S400A  
4.18  
5.03  
5.88  
6.42  
2.18  
3.06  
3.95  
4.54  
4.37  
5.42  
6.33  
6.96  
2.40  
3.15  
3.99  
4.55  
4.42  
5.32  
6.21  
6.80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
XC3S700A  
XC3S1400A 1.93  
2.69  
3.52  
3.89  
3.95  
4.53  
5.30  
5.83  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in  
Table 8 and Table 11.  
2. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is  
true, add the appropriate Input adjustment from Table 23.  
30  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
DC and Switching Characteristics  
Input Timing Adjustments  
Table 23: Input Timing Adjustments by IOSTANDARD(Continued)  
Table 23: Input Timing Adjustments by IOSTANDARD  
Add the  
Add the  
Adjustment Below  
Adjustment Below  
Convert Input Time from  
LVCMOS25 to the Following  
Signal Standard  
Convert Input Time from  
LVCMOS25 to the Following  
Signal Standard  
Speed Grade  
Speed Grade  
(IOSTANDARD)  
-5  
-4  
Units  
(IOSTANDARD)  
-5  
-4  
Units  
Differential Standards  
LVDS_25  
Single-Ended Standards  
LVTTL  
0.76  
0.79  
0.79  
0.78  
0.79  
0.78  
0.79  
0.79  
0.77  
0.79  
0.79  
0.79  
0.74  
0.72  
1.05  
0.72  
1.05  
0.71  
0.71  
0.74  
0.75  
1.06  
1.06  
0.76  
0.79  
0.79  
0.78  
0.79  
0.78  
0.79  
0.79  
0.77  
0.79  
0.79  
0.79  
0.74  
0.72  
1.05  
0.72  
1.05  
0.71  
0.71  
0.74  
0.75  
1.06  
1.06  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.62  
0.54  
0
0.62  
0.54  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LVDS_33  
LVCMOS33  
LVCMOS25  
LVCMOS18  
LVCMOS15  
LVCMOS12  
PCI33_3  
BLVDS_25  
MINI_LVDS_25  
MINI_LVDS_33  
LVPECL_25  
0.83  
0.60  
0.31  
0.41  
0.41  
0.72  
0.77  
0.69  
0.69  
0.79  
0.71  
0.71  
0.68  
0.68  
0.78  
0.78  
0.83  
0.60  
0.31  
0.41  
0.41  
0.72  
0.77  
0.69  
0.69  
0.79  
0.71  
0.71  
0.68  
0.68  
0.78  
0.78  
LVPECL_33  
RSDS_25  
PCI66_3  
RSDS_33  
HSTL_I  
TMDS_33  
HSTL_III  
PPDS_25  
HSTL_I_18  
HSTL_II_18  
HSTL_III_18  
SSTL18_I  
SSTL18_II  
SSTL2_I  
PPDS_33  
DIFF_HSTL_I_18  
DIFF_HSTL_II_18  
DIFF_HSTL_III_18  
DIFF_HSTL_I  
DIFF_HSTL_III  
DIFF_SSTL18_I  
DIFF_SSTL18_II  
DIFF_SSTL2_I  
DIFF_SSTL2_II  
DIFF_SSTL3_I  
DIFF_SSTL3_II  
SSTL2_II  
SSTL3_I  
SSTL3_II  
Notes:  
1. The numbers in this table are tested using the methodology  
presented in Table 27 and are based on the operating conditions  
set forth in Table 8, Table 11, and Table 13.  
2. These adjustments are used to convert input path times originally  
specified for the LVCMOS25 standard to times that correspond to  
other signal standards.  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
31  
DC and Switching Characteristics  
Output Propagation Times  
Table 24: Timing for the IOB Output Path  
Speed Grade  
-5  
-4  
Symbol  
Description  
Conditions  
Device  
Max  
Max  
Units  
Clock-to-Output Times  
TIOCKP  
When reading from the Output Flip-Flop (OFF), LVCMOS25(2), 12 mA output  
the time from the active transition at the OCLK drive, Fast slew rate  
input to data appearing at the Output pin  
All  
2.87  
2.78  
3.13  
2.91  
ns  
Propagation Times  
TIOOP  
The time it takes for data to travel from the IOB’s LVCMOS25(2), 12 mA output  
All  
All  
ns  
O input to the Output pin  
drive, Fast slew rate  
Set/Reset Times  
TIOSRP  
Time from asserting the OFF’s SR input to  
setting/resetting data at the Output pin  
LVCMOS25(2), 12 mA output  
drive, Fast slew rate  
3.63  
8.62  
3.89  
9.65  
ns  
ns  
TIOGSRQ  
Time from asserting the Global Set Reset (GSR)  
input on the STARTUP_SPARTAN3A primitive to  
setting/resetting data at the Output pin  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in  
Table 8 and Table 11.  
2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data  
Output. When this is true, add the appropriate Output adjustment from Table 26.  
Three-State Output Propagation Times  
Table 25: Timing for the IOB Three-State Path  
Speed Grade  
-5  
-4  
Symbol  
Description  
Conditions  
Device  
Max  
Max  
Units  
Synchronous Output Enable/Disable Times  
TIOCKHZ  
Time from the active transition at the OTCLK input of LVCMOS25, 12 mA  
the Three-state Flip-Flop (TFF) to when the Output output drive, Fast slew  
All  
0.63  
2.80  
0.76  
3.06  
ns  
pin enters the high-impedance state  
rate  
(2)  
TIOCKON  
Time from the active transition at TFF’s OTCLK input  
to when the Output pin drives valid data  
All  
All  
ns  
ns  
Asynchronous Output Enable/Disable Times  
TGTS  
Time from asserting the Global Three State (GTS) LVCMOS25, 12 mA  
9.47  
10.36  
input on the STARTUP_SPARTAN3A primitive to  
when the Output pin enters the high-impedance  
state  
output drive, Fast slew  
rate  
Set/Reset Times  
TIOSRHZ  
Time from asserting TFF’s SR input to when the  
LVCMOS25, 12 mA  
output drive, Fast slew  
rate  
All  
All  
1.61  
3.57  
1.86  
3.82  
ns  
ns  
Output pin enters a high-impedance state  
(2)  
TIOSRON  
Time from asserting TFF’s SR input at TFF to when  
the Output pin drives valid data  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in  
Table 8 and Table 11.  
2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data  
Output. When this is true, add the appropriate Output adjustment from Table 26.  
32  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
DC and Switching Characteristics  
Output Timing Adjustments  
Table 26: Output Timing Adjustments for IOB(Continued)  
Table 26: Output Timing Adjustments for IOB  
Add the  
Add the  
Adjustment  
Adjustment  
Below  
Below  
Convert Output Time from  
LVCMOS25 with 12mA Drive and  
Fast Slew Rate to the Following  
Signal Standard (IOSTANDARD)  
Convert Output Time from  
LVCMOS25 with 12mA Drive and  
Fast Slew Rate to the Following  
Signal Standard (IOSTANDARD)  
Speed Grade  
Speed Grade  
-5  
-4  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-5  
-4  
Units  
LVCMOS33  
Slow  
2 mA  
4 mA  
5.58  
3.17  
3.17  
2.09  
1.24  
1.15  
5.58  
3.17  
3.17  
2.09  
1.24  
1.15  
Single-Ended Standards  
LVTTL  
Slow  
2 mA  
4 mA  
5.58  
3.16  
3.17  
2.09  
1.62  
1.24  
5.58  
3.16  
3.17  
2.09  
1.62  
1.24  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6 mA  
8 mA  
6 mA  
12 mA  
16 mA  
24 mA  
2 mA  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
2.55(3) 2.55(3)  
2.74(3) 2.74(3)  
Fast  
3.02  
1.71  
3.02  
1.71  
4 mA  
Fast  
3.03  
1.71  
3.03  
1.71  
6 mA  
1.72  
1.72  
4 mA  
8 mA  
0.53  
0.53  
6 mA  
1.71  
1.71  
12 mA  
16 mA  
24 mA  
2 mA  
0.59  
0.59  
8 mA  
0.53  
0.53  
0.59  
0.59  
12 mA  
16 mA  
24 mA  
2 mA  
0.53  
0.53  
0.51  
0.51  
0.59  
0.59  
QuietIO  
27.67  
27.67  
27.67  
16.71  
16.29  
16.18  
12.11  
27.67  
27.67  
27.67  
16.71  
16.29  
16.18  
12.11  
0.60  
0.60  
4 mA  
QuietIO  
27.67  
27.67  
27.67  
16.71  
16.67  
16.22  
12.11  
27.67  
27.67  
27.67  
16.71  
16.67  
16.22  
12.11  
6 mA  
4 mA  
8 mA  
6 mA  
12 mA  
16 mA  
24 mA  
8 mA  
12 mA  
16 mA  
24 mA  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
33  
 
DC and Switching Characteristics  
Table 26: Output Timing Adjustments for IOB(Continued)  
Table 26: Output Timing Adjustments for IOB(Continued)  
Add the  
Add the  
Adjustment  
Adjustment  
Below  
Below  
Convert Output Time from  
LVCMOS25 with 12mA Drive and  
Fast Slew Rate to the Following  
Signal Standard (IOSTANDARD)  
Convert Output Time from  
LVCMOS25 with 12mA Drive and  
Fast Slew Rate to the Following  
Signal Standard (IOSTANDARD)  
Speed Grade  
Speed Grade  
-5  
-4  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-5  
-4  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LVCMOS25  
Slow  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
5.33  
2.81  
2.82  
1.14  
1.10  
0.83  
5.33  
2.81  
2.82  
1.14  
1.10  
0.83  
LVCMOS15  
Slow  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
2 mA  
4 mA  
6 mA  
2 mA  
4 mA  
6 mA  
2 mA  
4 mA  
6 mA  
5.82  
3.97  
3.21  
2.53  
2.06  
5.23  
3.05  
1.95  
1.60  
1.30  
34.11  
25.66  
24.64  
22.06  
20.64  
7.14  
4.87  
5.67  
6.77  
5.02  
4.09  
50.76  
43.17  
37.31  
0.34  
0.34  
0.78  
1.16  
0.35  
0.30  
0.47  
0.40  
0.30  
0
5.82  
3.97  
3.21  
2.53  
2.06  
5.23  
3.05  
1.95  
1.60  
1.30  
34.11  
25.66  
24.64  
22.06  
20.64  
7.14  
4.87  
5.67  
6.77  
5.02  
4.09  
50.76  
43.17  
37.31  
0.34  
0.34  
0.78  
1.16  
0.35  
0.30  
0.47  
0.40  
0.30  
0
Fast  
2.26(3) 2.26(3)  
Fast  
4.36  
1.76  
1.25  
0.38  
0
4.36  
1.76  
1.25  
0.38  
0
QuietIO  
0.01  
0.01  
25.92  
25.92  
25.92  
15.57  
15.59  
14.27  
11.37  
4.48  
3.69  
2.91  
1.99  
1.57  
1.19  
3.96  
2.57  
1.90  
1.06  
0.83  
0.63  
24.97  
24.97  
24.08  
16.43  
14.52  
13.41  
0.01  
0.01  
25.92  
25.92  
25.92  
15.57  
15.59  
14.27  
11.37  
4.48  
3.69  
2.91  
1.99  
1.57  
1.19  
3.96  
2.57  
1.90  
1.06  
0.83  
0.63  
24.97  
24.97  
24.08  
16.43  
14.52  
13.41  
QuietIO  
LVCMOS12  
Slow  
Fast  
LVCMOS18  
Slow  
Fast  
QuietIO  
PCI33_3  
PCI66_3  
HSTL_I  
HSTL_III  
HSTL_I_18  
HSTL_II_18  
HSTL_III_18  
SSTL18_I  
SSTL18_II  
SSTL2_I  
QuietIO  
SSTL2_II  
SSTL3_I  
0.05  
0
0.05  
0
SSTL3_II  
0.17  
0.17  
34  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
DC and Switching Characteristics  
Table 26: Output Timing Adjustments for IOB(Continued)  
Add the  
Adjustment  
Below  
Convert Output Time from  
LVCMOS25 with 12mA Drive and  
Fast Slew Rate to the Following  
Signal Standard (IOSTANDARD)  
Speed Grade  
-5  
-4  
Units  
Differential Standards  
LVDS_25  
1.16  
0.46  
0.11  
0.75  
0.40  
1.16  
0.46  
0.11  
0.75  
0.40  
ns  
ns  
ns  
ns  
ns  
LVDS_33  
BLVDS_25  
MINI_LVDS_25  
MINI_LVDS_33  
LVPECL_25  
Input Only  
LVPECL_33  
RSDS_25  
1.42  
0.58  
0.46  
1.07  
0.63  
0.43  
0.41  
0.36  
1.01  
0.54  
0.49  
0.41  
0.82  
0.09  
1.16  
0.28  
1.42  
0.58  
0.46  
1.07  
0.63  
0.43  
0.41  
0.36  
1.01  
0.54  
0.49  
0.41  
0.82  
0.09  
1.16  
0.28  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RSDS_33  
TMDS_33  
PPDS_25  
PPDS_33  
DIFF_HSTL_I_18  
DIFF_HSTL_II_18  
DIFF_HSTL_III_18  
DIFF_HSTL_I  
DIFF_HSTL_III  
DIFF_SSTL18_I  
DIFF_SSTL18_II  
DIFF_SSTL2_I  
DIFF_SSTL2_II  
DIFF_SSTL3_I  
DIFF_SSTL3_II  
Notes:  
1. The numbers in this table are tested using the methodology  
presented in Table 27 and are based on the operating conditions  
set forth in Table 8, Table 11, and Table 13.  
2. These adjustments are used to convert output- and  
three-state-path times originally specified for the LVCMOS25  
standard with 12 mA drive and Fast slew rate to times that  
correspond to other signal standards. Do not adjust times that  
measure when outputs go into a high-impedance state.  
3. Note that 16 mA drive is faster than 24 mA drive for the Slow  
slew rate.  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
35  
DC and Switching Characteristics  
Timing Measurement Methodology  
When measuring timing parameters at the programmable  
I/Os, different signal standards call for different test  
conditions. Table 27 lists the conditions to use for each  
standard.  
LVCMOS, LVTTL), then RT is set to 1MΩ to indicate an open  
connection, and VT is set to zero. The same measurement  
point (VM) that was used at the Input is also used at the  
Output.  
The method for measuring Input timing is as follows: A  
signal that swings between a Low logic level of VL and a  
High logic level of VH is applied to the Input under test.  
Some standards also require the application of a bias  
voltage to the VREF pins of a given bank to properly set the  
input-switching threshold. The measurement point of the  
Input signal (VM) is commonly located halfway between VL  
and VH.  
V (V  
)
T
REF  
FPGA Output  
R (R  
T
)
REF  
V
(V  
)
M
MEAS  
)
C (C  
L
REF  
The Output test setup is shown in Figure 9. A termination  
voltage VT is applied to the termination resistor RT, the other  
end of which is connected to the Output. For each standard,  
RT and VT generally take on the standard values  
recommended for minimizing signal reflections. If the  
standard does not ordinarily use terminations (for example,  
DS312-3_04_102406  
Notes:  
1. The names shown in parentheses are  
used in the IBIS file.  
Figure 9: Output Test Setup  
Table 27: Test Methods for Timing Measurement at I/Os  
Inputs and  
Outputs  
Inputs  
Outputs  
Signal Standard  
(IOSTANDARD)  
VREF (V)  
VL (V)  
VH (V)  
RT (Ω)  
VT (V)  
VM (V)  
Single-Ended  
LVTTL  
-
-
-
-
-
-
-
0
3.3  
3.3  
1M  
1M  
1M  
1M  
1M  
1M  
25  
25  
25  
25  
50  
50  
50  
25  
50  
50  
25  
50  
25  
50  
25  
0
0
1.4  
LVCMOS33  
LVCMOS25  
LVCMOS18  
LVCMOS15  
LVCMOS12  
PCI33_3  
0
1.65  
1.25  
0.9  
0
2.5  
0
0
1.8  
0
0
0
1.5  
0
0.75  
0.6  
1.2  
0
Rising  
Falling  
Rising  
Falling  
Note 3  
Note 3  
0
0.94  
2.03  
0.94  
2.03  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
3.3  
0
PCI66_3  
-
Note 3  
Note 3  
3.3  
0.75  
1.5  
0.9  
0.9  
1.8  
0.9  
0.9  
1.25  
1.25  
1.5  
1.5  
HSTL_I  
0.75  
0.9  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VREF – 0.75  
VREF – 0.75  
VREF – 0.75  
VREF – 0.75  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.75  
VREF + 0.75  
VREF + 0.75  
VREF + 0.75  
HSTL_III  
HSTL_I_18  
HSTL_II_18  
HSTL_III_18  
SSTL18_I  
SSTL18_II  
SSTL2_I  
0.9  
0.9  
1.1  
0.9  
0.9  
1.25  
1.25  
1.5  
SSTL2_II  
SSTL3_I  
SSTL3_II  
1.5  
36  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
 
 
DC and Switching Characteristics  
Inputs and  
Table 27: Test Methods for Timing Measurement at I/Os(Continued)  
Inputs  
Outputs  
Outputs  
Signal Standard  
(IOSTANDARD)  
VREF (V)  
VL (V)  
VH (V)  
RT (Ω)  
VT (V)  
VM (V)  
Differential  
LVDS_25  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VICM – 0.125  
VICM – 0.125  
VICM – 0.125  
VICM – 0.125  
VICM – 0.125  
VICM – 0.3  
VICM – 0.3  
VICM – 0.1  
VICM – 0.1  
VICM – 0.1  
VICM – 0.1  
VICM – 0.1  
VICM – 0.5  
VICM – 0.5  
VICM – 0.5  
VICM – 0.5  
VICM – 0.5  
VICM – 0.5  
VICM – 0.5  
VICM – 0.5  
VICM – 0.5  
VICM – 0.5  
VICM – 0.5  
VICM + 0.125  
VICM + 0.125  
VICM + 0.125  
VICM + 0.125  
VICM + 0.125  
VICM + 0.3  
VICM + 0.3  
VICM + 0.1  
VICM + 0.1  
VICM + 0.1  
VICM + 0.1  
VICM + 0.1  
VICM + 0.5  
VICM + 0.5  
VICM + 0.5  
VICM + 0.5  
VICM + 0.5  
VICM + 0.5  
VICM + 0.5  
VICM + 0.5  
VICM + 0.5  
VICM + 0.5  
VICM + 0.5  
50  
50  
1M  
50  
50  
N/A  
N/A  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
1.2  
1.2  
0
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
LVDS_33  
BLVDS_25  
MINI_LVDS_25  
MINI_LVDS_33  
LVPECL_25  
1.2  
1.2  
N/A  
N/A  
1.2  
1.2  
3.3  
0.8  
0.8  
0.75  
1.5  
0.9  
0.9  
1.8  
0.9  
0.9  
1.25  
1.25  
1.5  
1.5  
LVPECL_33  
RSDS_25  
RSDS_33  
TMDS_33  
PPDS_25  
PPDS_33  
DIFF_HSTL_I  
DIFF_HSTL_III  
DIFF_HSTL_I_18  
DIFF_HSTL_II_18  
DIFF_HSTL_III_18  
DIFF_SSTL18_I  
DIFF_SSTL18_II  
DIFF_SSTL2_I  
DIFF_SSTL2_II  
DIFF_SSTL3_I  
DIFF_SSTL3_II  
Notes:  
1. Descriptions of the relevant symbols are as follows:  
V
V
V
– The reference voltage for setting the input switching threshold  
– The common mode input voltage  
– Voltage of measurement point on signal transition  
REF  
ICM  
M
V – Low-level test voltage at Input pin  
L
V
– High-level test voltage at Input pin  
H
R – Effective termination resistance, which takes on a value of 1 MΩ when no parallel termination is required  
T
V – Termination voltage  
T
2. The load capacitance (C ) at the Output pin is 0 pF for all signal standards.  
L
3. According to the PCI specification.  
The capacitive load (CL) is connected between the output and GND. The Output timing for all standards, as published in the  
speed files and the data sheet, is always based on a CL value of zero. High-impedance probes (less than 1 pF) are used for  
all measurements. Any delay that the test fixture might contribute to test measurements is subtracted from those  
measurements to produce the final timing numbers as published in the speed files and data sheet.  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
37  
DC and Switching Characteristics  
Using IBIS Models to Simulate Load Conditions in Application  
IBIS models permit the most accurate prediction of timing  
delays for a given application. The parameters found in the  
IBIS model (VREF, RREF, and VMEAS) correspond directly  
with the parameters used in Table 27 (VT, RT, and VM). Do  
not confuse VREF (the termination voltage) from the IBIS  
model with VREF (the input-switching threshold) from the  
table. A fourth parameter, CREF, is always zero. The four  
parameters describe all relevant output test conditions. IBIS  
models are found in the Xilinx development software as well  
as at the following link:  
1. Simulate the desired signal standard with the output  
driver connected to the test setup shown in Figure 9.  
Use parameter values VT, RT, and VM from Table 27.  
C
REF is zero.  
2. Record the time to VM.  
3. Simulate the same signal standard with the output driver  
connected to the PCB trace with load. Use the  
appropriate IBIS model (including VREF, RREF, CREF  
,
and VMEAS values) or capacitive value to represent the  
load.  
www.xilinx.com/support/download/index.htm  
4. Record the time to VMEAS  
.
Delays for a given application are simulated according to its  
specific load conditions as follows:  
5. Compare the results of steps 2 and 4. Add (or subtract)  
the increase (or decrease) in delay to (or from) the  
appropriate Output standard adjustment (Table 26) to  
yield the worst-case delay of the PCB trace.  
Simultaneously Switching Output Guidelines  
This section provides guidelines for the recommended  
maximum allowable number of Simultaneous Switching  
Outputs (SSOs). These guidelines describe the maximum  
number of user I/O pins of a given output signal standard  
that should simultaneously switch in the same direction,  
while maintaining a safe level of switching noise. Meeting  
these guidelines for the stated test conditions ensures that  
the FPGA operates free from the adverse effects of ground  
and power bounce.  
Table 28 and Table 29 provide the essential SSO guidelines.  
For each device/package combination, Table 28 provides  
the number of equivalent VCCO/GND pairs. The equivalent  
number of pairs is based on characterization and may not  
match the physical number of pairs. For each output signal  
standard and drive strength, Table 29 recommends the  
maximum number of SSOs, switching in the same direction,  
allowed per VCCO/GND pair within an I/O bank. The  
guidelines in Table 29 are categorized by package style,  
slew rate, and output drive current. Furthermore, the  
number of SSOs is specified by I/O bank. Generally, the left  
and right I/O banks (Banks 1 and 3) support higher output  
drive current.  
Ground or power bounce occurs when a large number of  
outputs simultaneously switch in the same direction. The  
output drive transistors all conduct current to a common  
voltage rail. Low-to-High transitions conduct to the VCCO  
rail; High-to-Low transitions conduct to the GND rail. The  
resulting cumulative current transient induces a voltage  
difference across the inductance that exists between the die  
pad and the power supply or ground return. The inductance  
is associated with bonding wires, the package lead frame,  
and any other signal routing inside the package. Other  
variables contribute to SSO noise levels, including stray  
inductance on the PCB as well as capacitive loading at  
receivers. Any SSO-induced voltage consequently affects  
internal switching noise margins and ultimately signal  
quality.  
Multiply the appropriate numbers from Table 28 and  
Table 29 to calculate the maximum number of SSOs allowed  
within an I/O bank. Exceeding these SSO guidelines might  
result in increased power or ground bounce, degraded  
signal integrity, or increased system jitter.  
SSOMAX/IO Bank = Table 28 x Table 29  
The recommended maximum SSO values assume that the  
FPGA is soldered on the printed circuit board and that the  
board uses sound design practices. The SSO values do not  
apply for FPGAs mounted in sockets, due to the lead  
inductance introduced by the socket.  
The SSO values assume that the VCCAUX is powered at  
3.3V. Setting VCCAUX to 2.5V provides better SSO  
characteristics.  
The number of SSOs allowed for quad-flat packages  
(VQ/TQ) is lower than for ball grid array packages (FG) due  
to the larger lead inductance of the quad-flat packages. Ball  
grid array packages are recommended for applications with  
a large number of simultaneously switching outputs.  
38  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
 
DC and Switching Characteristics  
Table 28: Equivalent VCCO/GND Pairs per Bank  
Package Style (including Pb-free)  
Device  
XC3S50A  
VQ100  
TQ144  
FT256  
FG320  
FG400  
FG484  
FG676  
1
1
2
3
4
4
4
4
4
4
5
5
5
6
9
XC3S200A  
XC3S400A  
XC3S700A  
XC3S1400A  
Table 29: Recommended Number of Simultaneously Switching  
Table 29: Recommended Number of Simultaneously Switching  
Outputs per VCCO-GND Pair (V  
=3.3V)(Continued)  
Outputs per VCCO-GND Pair (V  
=3.3V)  
CCAUX  
CCAUX  
Package Type  
Package Type  
FT256, FG320,  
FG400, FG484,  
FG676  
FT256, FG320,  
FG400, FG484,  
FG676  
VQ100, TQ144  
VQ100, TQ144  
Top, Left,  
Top,  
Left,  
Top,  
Left,  
Top,  
Left,  
Bottom Right Bottom Right  
Bottom Right Bottom Right  
Signal Standard  
(IOSTANDARD)  
(Banks (Banks (Banks (Banks  
Signal Standard  
(IOSTANDARD)  
(Banks (Banks (Banks (Banks  
0,2)  
24  
14  
11  
10  
9
1,3)  
24  
14  
11  
10  
9
0,2)  
76  
46  
27  
20  
13  
10  
1,3)  
76  
46  
27  
20  
13  
10  
9
0,2)  
1,3)  
0,2)  
1,3)  
LVCMOS33  
Slow  
2
4
Single-Ended Standards  
LVTTL  
Slow  
2
4
20  
10  
10  
6
20  
10  
10  
6
60  
41  
29  
22  
13  
11  
9
60  
41  
29  
22  
13  
11  
9
6
8
6
12  
16  
24  
2
8
8
8
12  
16  
24  
2
6
6
8
5
5
Fast  
10  
8
10  
8
10  
8
10  
8
4
4
4
Fast  
10  
6
10  
6
10  
6
10  
6
6
5
5
5
5
4
8
4
4
4
4
6
5
5
5
5
12  
16  
24  
2
4
4
4
4
8
3
3
3
3
2
2
2
2
12  
16  
24  
2
3
3
3
3
2
2
3
3
3
3
QuietIO  
36  
32  
24  
16  
16  
12  
36  
32  
24  
16  
16  
12  
10  
76  
46  
32  
26  
18  
14  
76  
46  
32  
26  
18  
14  
10  
2
2
2
2
4
QuietIO  
40  
24  
20  
16  
12  
9
40  
24  
20  
16  
12  
9
80  
48  
36  
27  
16  
13  
12  
80  
48  
36  
27  
16  
13  
12  
6
4
8
6
12  
16  
24  
8
12  
16  
24  
9
9
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
39  
 
 
DC and Switching Characteristics  
Table 29: Recommended Number of Simultaneously Switching  
Table 29: Recommended Number of Simultaneously Switching  
Outputs per VCCO-GND Pair (V  
=3.3V)(Continued)  
Outputs per VCCO-GND Pair (V  
=3.3V)(Continued)  
CCAUX  
CCAUX  
Package Type  
Package Type  
FT256, FG320,  
FG400, FG484,  
FG676  
FT256, FG320,  
FG400, FG484,  
FG676  
VQ100, TQ144  
VQ100, TQ144  
Top,  
Left,  
Top,  
Left,  
Top,  
Left,  
Top,  
Left,  
Bottom Right Bottom Right  
Bottom Right Bottom Right  
Signal Standard  
(IOSTANDARD)  
(Banks (Banks (Banks (Banks  
Signal Standard  
(IOSTANDARD)  
(Banks (Banks (Banks (Banks  
0,2)  
16  
10  
8
1,3)  
16  
10  
8
0,2)  
76  
46  
33  
24  
18  
1,3)  
76  
46  
33  
24  
18  
11  
7
0,2)  
12  
7
1,3)  
12  
7
0,2)  
55  
31  
18  
1,3)  
55  
31  
18  
15  
10  
25  
10  
6
LVCMOS25  
Slow  
2
4
LVCMOS15  
Slow  
2
4
6
6
7
7
8
7
7
8
6
12  
16  
24  
2
6
6
12  
2
5
6
Fast  
10  
7
10  
7
25  
10  
6
5
4
Fast  
12  
10  
8
12  
10  
8
18  
14  
6
18  
14  
6
6
6
6
4
8
4
4
6
12  
2
3
3
8
6
6
6
6
QuietIO  
30  
21  
18  
30  
21  
18  
12  
12  
17  
13  
10  
9
70  
40  
31  
70  
40  
31  
31  
20  
40  
25  
18  
31  
13  
9
12  
16  
24  
2
3
3
3
3
4
3
3
6
2
2
8
QuietIO  
36  
30  
24  
20  
12  
36  
30  
24  
20  
12  
12  
8
76  
60  
48  
36  
36  
76  
60  
48  
36  
36  
36  
8
12  
2
4
LVCMOS12  
Slow  
Fast  
17  
40  
6
4
8
6
12  
16  
24  
2
2
12  
31  
4
9
6
9
LVCMOS18  
Slow  
Fast  
13  
8
13  
8
64  
34  
22  
18  
64  
34  
22  
18  
13  
10  
18  
9
QuietIO  
2
36  
36  
33  
27  
9
55  
55  
36  
36  
16  
13  
20  
8
4
4
6
8
8
6
8
7
7
PCI33_3  
9
16  
12  
16  
2
5
PCI66_3  
9
5
HSTL_I  
11  
7
13  
8
13  
8
18  
9
HSTL_III  
HSTL_I_18  
HSTL_II_18  
HSTL_III_18  
SSTL18_I  
SSTL18_II  
SSTL2_I  
4
13  
13  
5
17  
17  
5
6
7
7
7
7
8
4
4
4
4
8
8
10  
7
8
12  
16  
2
4
4
7
13  
9
15  
9
3
3
QuietIO  
30  
24  
20  
16  
30  
24  
20  
16  
12  
12  
64  
64  
48  
36  
64  
64  
48  
36  
36  
24  
10  
10  
6
18  
18  
9
4
SSTL2_II  
SSTL3_I  
6
7
8
8
10  
7
8
SSTL3_II  
5
6
6
12  
16  
40  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
DC and Switching Characteristics  
Table 29: Recommended Number of Simultaneously Switching  
Outputs per VCCO-GND Pair (V  
=3.3V)(Continued)  
CCAUX  
Package Type  
FT256, FG320,  
FG400, FG484,  
FG676  
VQ100, TQ144  
Top,  
Left,  
Top,  
Left,  
Bottom Right Bottom Right  
Signal Standard  
(IOSTANDARD)  
(Banks (Banks (Banks (Banks  
0,2)  
1,3)  
0,2)  
1,3)  
Differential Standards (Number of I/O Pairs or Channels)  
LVDS_25  
8
8
1
8
8
1
22  
27  
4
4
LVDS_33  
BLVDS_25  
MINI_LVDS_25  
MINI_LVDS_33  
LVPECL_25  
22  
27  
Input Only  
Input Only  
LVPECL_33  
RSDS_25  
8
8
8
8
8
6
4
3
5
3
2
5
3
6
2
4
6
4
5
3
4
3
22  
27  
27  
22  
27  
10  
4
8
2
4
7
4
9
4
5
3
RSDS_33  
TMDS_33  
PPDS_25  
PPDS_33  
DIFF_HSTL_I  
DIFF_HSTL_III  
DIFF_HSTL_I_18  
DIFF_HSTL_II_18  
DIFF_HSTL_III_18  
DIFF_SSTL18_I  
DIFF_SSTL18_II  
DIFF_SSTL2_I  
DIFF_SSTL2_II  
DIFF_SSTL3_I  
DIFF_SSTL3_II  
8
5
3
9
4
3
Notes:  
1. Not all I/O standards are supported on all I/O banks. The left and  
right banks (I/O banks 1 and 3) support higher output drive  
current than the top and bottom banks (I/O banks 0 and 2).  
Similarly, true differential output standards, such as LVDS,  
RSDS, PPDS, miniLVDS, and TMDS, are only supported in top  
or bottom banks (I/O banks 0 and 2). Refer to UG331: Spartan-3  
Generation FPGA User Guide for additional information.  
2. The numbers in this table are recommendations that assume  
sound board lay out practice. Test limits are the V /V voltage  
IL IH  
limits for the respective I/O standard.  
3. If more than one signal standard is assigned to the I/Os of a given  
bank, refer to XAPP689: Managing Ground Bounce in Large  
FPGAs for information on how to perform weighted average SSO  
calculations.  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
41  
DC and Switching Characteristics  
Configurable Logic Block (CLB) Timing  
Table 30: CLB (SLICEM) Timing  
Speed Grade  
-5  
-4  
Symbol  
Description  
Min  
Max  
Min  
Max  
Units  
Clock-to-Output Times  
TCKO  
When reading from the FFX (FFY) Flip-Flop, the time  
from the active transition at the CLK input to data  
appearing at the XQ (YQ) output  
0.60  
0.68  
ns  
Setup Times  
TAS  
Time from the setup of data at the F or G input to the  
active transition at the CLK input of the CLB  
0.18  
1.58  
0.36  
1.88  
ns  
ns  
TDICK  
Time from the setup of data at the BX or BY input to  
the active transition at the CLK input of the CLB  
Hold Times  
TAH  
Time from the active transition at the CLK input to the  
point where data is last held at the F or G input  
0
0
0
0
ns  
ns  
TCKDI  
Time from the active transition at the CLK input to the  
point where data is last held at the BX or BY input  
Clock Timing  
TCH  
The High pulse width of the CLB’s CLK signal  
The Low pulse width of the CLK signal  
Toggle frequency (for export control)  
0.63  
0.63  
0
0.75  
0.75  
0
ns  
ns  
TCL  
FTOG  
770  
667  
MHz  
Propagation Times  
TILO  
The time it takes for data to travel from the CLB’s F  
(G) input to the X (Y) output  
0.62  
0.71  
ns  
ns  
Set/Reset Pulse Width  
TRPW_CLB  
The minimum allowable pulse width, High or Low, to  
the CLB’s SR input  
1.33  
1.61  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 8.  
42  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
DC and Switching Characteristics  
Table 31: CLB Distributed RAM Switching Characteristics  
-5  
-4  
Symbol  
Description  
Min  
Max  
Min  
Max  
Units  
Clock-to-Output Times  
TSHCKO  
Time from the active edge at the CLK input to data appearing on  
the distributed RAM output  
1.69  
2.01  
ns  
Setup Times  
TDS  
Setup time of data at the BX or BY input before the active  
transition at the CLK input of the distributed RAM  
0.07  
0.18  
0.30  
0.02  
0.36  
0.59  
ns  
ns  
ns  
TAS  
Setup time of the F/G address inputs before the active transition  
at the CLK input of the distributed RAM  
TWS  
Setup time of the write enable input before the active transition at  
the CLK input of the distributed RAM  
Hold Times  
TDH  
Hold time of the BX and BY data inputs after the active transition  
at the CLK input of the distributed RAM  
0.13  
0.01  
0.13  
0.01  
ns  
ns  
TAH, TWH  
Hold time of the F/G address inputs or the write enable input after  
the active transition at the CLK input of the distributed RAM  
Clock Pulse Width  
TWPH, TWPL  
Minimum High or Low pulse width at CLK input  
0.88  
1.01  
ns  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 8.  
Table 32: CLB Shift Register Switching Characteristics  
-5  
-4  
Symbol  
Description  
Min  
Max  
Min  
Max  
Units  
Clock-to-Output Times  
TREG  
Time from the active edge at the CLK input to data appearing on  
the shift register output  
4.11  
4.82  
ns  
Setup Times  
TSRLDS  
Setup time of data at the BX or BY input before the active  
transition at the CLK input of the shift register  
0.13  
0.18  
ns  
Hold Times  
TSRLDH  
Hold time of the BX or BY data input after the active transition at  
the CLK input of the shift register  
0.16  
0.90  
0.16  
1.01  
ns  
ns  
Clock Pulse Width  
TWPH, TWPL  
Minimum High or Low pulse width at CLK input  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 8.  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
43  
DC and Switching Characteristics  
Clock Buffer/Multiplexer Switching Characteristics  
Table 33: Clock Distribution Switching Characteristics  
Maximum  
Speed Grade  
Description  
Symbol  
Minimum  
-5  
-4  
Units  
Global clock buffer (BUFG, BUFGMUX, BUFGCE) I input to  
O-output delay  
TGIO  
0.22  
0.23  
ns  
Global clock multiplexer (BUFGMUX) select S-input setup to I0 and  
I1 inputs. Same as BUFGCE enable CE-input  
TGSI  
0
0.56  
350  
0.63  
334  
ns  
Frequency of signals distributed on global buffers (all sides)  
FBUFG  
MHz  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 8.  
44  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
 
DC and Switching Characteristics  
18 x 18 Embedded Multiplier Timing  
Table 34: 18 x 18 Embedded Multiplier Timing  
Speed Grade  
-5  
-4  
Symbol  
Description  
Min  
Max  
Min  
Max  
Units  
Combinatorial Delay  
TMULT  
Combinational multiplier propagation delay from the A and B inputs  
to the P outputs, assuming 18-bit inputs and a 36-bit product  
(AREG, BREG, and PREG registers unused)  
4.36  
4.88  
ns  
Clock-to-Output Times  
TMSCKP_P  
Clock-to-output delay from the active transition of the CLK input to  
valid data appearing on the P outputs when using the PREG  
0.84  
4.44  
1.30  
4.97  
ns  
ns  
register(2,3)  
TMSCKP_A  
TMSCKP_B  
Clock-to-output delay from the active transition of the CLK input to  
valid data appearing on the P outputs when using either the AREG  
or BREG register(2,4)  
Setup Times  
TMSDCK_P  
Data setup time at the A or B input before the active transition at the  
CLK when using only the PREG output register (AREG, BREG  
registers unused)(3)  
3.56  
3.98  
ns  
TMSDCK_A  
TMSDCK_B  
Data setup time at the A input before the active transition at the CLK  
when using the AREG input register(4)  
0.00  
0.00  
0.00  
0.00  
ns  
ns  
Data setup time at the B input before the active transition at the CLK  
when using the BREG input register(4)  
Hold Times  
TMSCKD_P  
Data hold time at the A or B input after the active transition at the  
CLK when using only the PREG output register (AREG, BREG  
registers unused)(3)  
0.00  
0.00  
ns  
TMSCKD_A  
TMSCKD_B  
Clock Frequency  
Data hold time at the A input after the active transition at the CLK  
0.35  
0.35  
0.45  
0.45  
ns  
ns  
when using the AREG input register(4)  
Data hold time at the B input after the active transition at the CLK  
when using the BREG input register(4)  
FMULT  
Internal operating frequency for a two-stage 18x18 multiplier using  
the AREG and BREG input registers and the PREG output  
0
280  
0
250  
MHz  
register(1)  
Notes:  
1. Combinational delay is less and pipelined performance is higher when multiplying input data with less than 18 bits.  
2. The PREG register is typically used in both single-stage and two-stage pipelined multiplier implementations.  
3. The PREG register is typically used when inferring a single-stage multiplier.  
4. Input registers AREG or BREG are typically used when inferring a two-stage multiplier.  
5. The numbers in this table are based on the operating conditions set forth in Table 8.  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
45  
 
DC and Switching Characteristics  
Block RAM Timing  
Table 35: Block RAM Timing  
Speed Grade  
-5  
-4  
Symbol  
Description  
Min  
Max  
Min  
Max  
Units  
Clock-to-Output Times  
TRCKO  
When reading from block RAM, the delay from the active  
transition at the CLK input to data appearing at the DOUT  
output  
2.06  
2.49  
ns  
Setup Times  
TRCCK_ADDR Setup time for the ADDR inputs before the active transition at  
the CLK input of the block RAM  
0.32  
0.28  
0.69  
1.12  
0.36  
0.31  
0.77  
1.26  
ns  
ns  
ns  
ns  
TRDCK_DIB  
Setup time for data at the DIN inputs before the active  
transition at the CLK input of the block RAM  
TRCCK_ENB Setup time for the EN input before the active transition at the  
CLK input of the block RAM  
TRCCK_WEB Setup time for the WE input before the active transition at the  
CLK input of the block RAM  
Hold Times  
TRCKC_ADDR Hold time on the ADDR inputs after the active transition at the  
CLK input  
0
0
0
0
0
0
0
0
ns  
ns  
ns  
ns  
TRCKD_DIB  
Hold time on the DIN inputs after the active transition at the  
CLK input  
TRCKC_ENB Hold time on the EN input after the active transition at the CLK  
input  
TRCKC_WEB Hold time on the WE input after the active transition at the CLK  
input  
Clock Timing  
TBPWH  
TBPWL  
Clock Frequency  
High pulse width of the CLK signal  
1.56  
1.56  
1.79  
1.79  
ns  
ns  
Low pulse width of the CLK signal  
FBRAM  
Block RAM clock frequency  
0
320  
0
280  
MHz  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 8.  
46  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
 
DC and Switching Characteristics  
Digital Clock Manager (DCM) Timing  
For specification purposes, the DCM consists of three key  
components: the Delay-Locked Loop (DLL), the Digital  
Frequency Synthesizer (DFS), and the Phase Shifter (PS).  
Period jitter is the worst-case deviation from the ideal clock  
period over a collection of millions of samples. In a  
histogram of period jitter, the mean value is the clock period.  
Aspects of DLL operation play a role in all DCM applications.  
All such applications inevitably use the CLKIN and the  
CLKFB inputs connected to either the CLK0 or the CLK2X  
feedback, respectively. Thus, specifications in the DLL  
tables (Table 36 and Table 37) apply to any application that  
only employs the DLL component. When the DFS and/or the  
PS components are used together with the DLL, then the  
specifications listed in the DFS and PS tables (Table 38  
through Table 41) supersede any corresponding ones in the  
DLL tables. DLL specifications that do not change with the  
addition of DFS or PS functions are presented in Table 36  
and Table 37.  
Cycle-cycle jitter is the worst-case difference in clock period  
between adjacent clock cycles in the collection of clock  
periods sampled. In a histogram of cycle-cycle jitter, the  
mean value is zero.  
Spread Spectrum  
DCMs accept typical spread spectrum clocks as long as  
they meet the input requirements. The DLL will track the  
frequency changes created by the spread spectrum clock to  
drive the global clocks to the FPGA logic. See XAPP469,  
Spread-Spectrum Clocking Reception for Displays for  
details.  
Period jitter and cycle-cycle jitter are two of many different  
ways of specifying clock jitter. Both specifications describe  
statistical variation from a mean value.  
Delay-Locked Loop (DLL)  
Table 36: Recommended Operating Conditions for the DLL  
Speed Grade  
-5  
-4  
Symbol  
Description  
Min  
Max  
Min  
Max  
Units  
Input Frequency Ranges  
FCLKIN  
CLKIN_FREQ_DLL  
Frequency of the CLKIN clock input  
5(2)  
280(3)  
5(2)  
250(3)  
MHz  
Input Pulse Requirements  
CLKIN_PULSE  
CLKIN pulse width as a  
percentage of the CLKIN  
period  
F
F
CLKIN < 150 MHz  
CLKIN > 150 MHz  
40%  
45%  
60%  
55%  
40%  
45%  
60%  
55%  
Input Clock Jitter Tolerance and Delay Path Variation(4)  
CLKIN_CYC_JITT_DLL_LF  
CLKIN_CYC_JITT_DLL_HF  
CLKIN_PER_JITT_DLL  
Cycle-to-cycle jitter at the  
CLKIN input  
FCLKIN < 150 MHz  
FCLKIN > 150 MHz  
300  
150  
1
300  
150  
1
ps  
ps  
ns  
ns  
Period jitter at the CLKIN input  
CLKFB_DELAY_VAR_EXT  
Allowable variation of off-chip feedback delay  
from the DCM output to the CLKFB input  
1
1
Notes:  
1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.  
2. The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Table 38.  
3. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming  
clock frequency by two as it enters the DCM. The CLK2X output reproduces the clock frequency provided on the CLKIN input.  
4. CLKIN input jitter beyond these limits might cause the DCM to lose lock.  
5. The DCM specifications are guaranteed when both adjacent DCMs are locked.  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
47  
 
DC and Switching Characteristics  
Table 37: Switching Characteristics for the DLL  
Speed Grade  
-5  
-4  
Symbol  
Description  
Device  
Min  
Max  
Min  
Max  
Units  
Output Frequency Ranges  
CLKOUT_FREQ_CLK0  
CLKOUT_FREQ_CLK90  
CLKOUT_FREQ_2X  
Frequency for the CLK0 and CLK180 outputs  
Frequency for the CLK90 and CLK270 outputs  
Frequency for the CLK2X and CLK2X180 outputs  
Frequency for the CLKDV output  
All  
5
5
280  
200  
334  
186  
5
5
250  
200  
334  
166  
MHz  
MHz  
MHz  
MHz  
10  
10  
CLKOUT_FREQ_DV  
0.3125  
0.3125  
(2,3,4)  
Output Clock Jitter  
CLKOUT_PER_JITT_0  
CLKOUT_PER_JITT_90  
CLKOUT_PER_JITT_180  
CLKOUT_PER_JITT_270  
CLKOUT_PER_JITT_2X  
Period jitter at the CLK0 output  
All  
100  
150  
100  
150  
ps  
ps  
ps  
ps  
ps  
Period jitter at the CLK90 output  
Period jitter at the CLK180 output  
Period jitter at the CLK270 output  
Period jitter at the CLK2X and CLK2X180 outputs  
150  
150  
150  
150  
[0.5%  
[0.5%  
ofCLKIN  
period  
ofCLKIN  
period  
+ 100]  
+ 100]  
CLKOUT_PER_JITT_DV1  
CLKOUT_PER_JITT_DV2  
Period jitter at the CLKDV output when performing integer  
division  
150  
150  
ps  
ps  
Period jitter at the CLKDV output when performing non-integer  
division  
[0.5%  
ofCLKIN  
period  
[0.5%  
ofCLKIN  
period  
+ 100]  
+ 100]  
(4)  
Duty Cycle  
CLKOUT_DUTY_CYCLE_DLL Duty cycle variation for the CLK0, CLK90, CLK180, CLK270,  
CLK2X, CLK2X180, and CLKDV outputs, including the  
All  
All  
[1% of  
CLKIN  
period  
+ 350]  
[1% of  
CLKIN  
period  
+ 350]  
ps  
BUFGMUX and clock tree duty-cycle distortion  
(4)  
Phase Alignment  
CLKIN_CLKFB_PHASE  
CLKOUT_PHASE_DLL  
Phase offset between the CLKIN and CLKFB inputs  
150  
150  
ps  
ps  
Phase offset between DLL outputs  
[1% of  
CLKIN  
period  
+ 100]  
[1% of  
CLKIN  
period  
+ 100]  
CLK0 to CLK2X  
(not CLK2X180)  
[1% of  
CLKIN  
period  
+ 150]  
[1% of  
CLKIN  
period  
+ 150]  
ps  
All others  
Lock Time  
(3)  
LOCK_DLL  
When using the DLL alone: The  
time from deassertion at the DCM’s  
Reset input to the rising transition  
at its LOCKED output. When the  
DCM is locked, the CLKIN and  
CLKFB signals are in phase  
5 MHz < F  
< 15 MHz  
All  
All  
5
5
ms  
µs  
CLKIN  
F
> 15 MHz  
600  
600  
CLKIN  
Delay Lines  
(5)  
DCM_DELAY_STEP  
Finest delay resolution, averaged over all steps  
15  
35  
15  
35  
ps  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 8 and Table 36.  
2. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.  
3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.  
4. Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. For example, the data sheet specifies a maximum jitter of  
“ [1% of CLKIN period + 150]”. Assume the CLKIN frequency is 100 MHz. The equivalent CLKIN period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps.  
According to the data sheet, the maximum jitter is [100 ps + 150 ps] = 250ps.  
5. The typical delay step size is 23 ps.  
48  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
 
DC and Switching Characteristics  
Digital Frequency Synthesizer (DFS)  
Table 38: Recommended Operating Conditions for the DFS  
Speed Grade  
-5  
-4  
Symbol  
Description  
Min  
Max  
Min  
Max  
Units  
(2)  
Input Frequency Ranges  
(4)  
(4)  
F
CLKIN_FREQ_FX  
Frequency for the CLKIN input  
0.200  
333  
0.200  
333  
MHz  
CLKIN  
(3)  
Input Clock Jitter Tolerance  
CLKIN_CYC_JITT_FX_LF  
CLKIN_CYC_JITT_FX_HF  
CLKIN_PER_JITT_FX  
Cycle-to-cycle jitter at the CLKIN  
input, based on CLKFX output  
frequency  
F
F
< 150 MHz  
> 150 MHz  
300  
300  
ps  
ps  
ns  
CLKFX  
CLKFX  
150  
1
150  
1
Period jitter at the CLKIN input  
Notes:  
1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are used.  
2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 36.  
3. CLKIN input jitter beyond these limits may cause the DCM to lose lock.  
4. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming  
clock frequency by two as it enters the DCM.  
Table 39: Switching Characteristics for the DFS  
Speed Grade  
-5  
-4  
Symbol  
Description  
Device  
All  
Min  
5
Max  
350  
Min  
5
Max  
320  
Units  
Output Frequency Ranges  
(2)  
CLKOUT_FREQ_FX  
Frequency for the CLKFX and CLKFX180 outputs  
MHz  
(3,4)  
Output Clock Jitter  
CLKOUT_PER_JITT_FX  
Period jitter at the CLKFX and CLKFX180  
outputs.  
All  
Typ  
Max  
Typ  
Max  
Use the Spartan-3A Jitter Calculator:  
ps  
ps  
CLKIN  
20 MHz  
www.xilinx.com/support/documentatio  
n/data_sheets/s3a_jitter_calc.zip  
[1% of  
[1% of  
[1% of  
[1% of  
CLKIN  
> 20 MHz  
CLKFX CLKFX CLKFX CLKFX  
period  
+ 100]  
period  
+ 200]  
period  
+ 100]  
period  
+ 200]  
(5,6)  
Duty Cycle  
CLKOUT_DUTY_CYCLE_FX Duty cycle precision for the CLKFX and CLKFX180 outputs,  
including the BUFGMUX and clock tree duty-cycle distortion  
All  
[1% of  
CLKFX  
period  
+ 350]  
[1% of  
CLKFX  
period  
+ 350]  
ps  
(6)  
Phase Alignment  
CLKOUT_PHASE_FX  
Phase offset between the DFS CLKFX output and the DLL  
CLK0 output when both the DFS and DLL are used  
All  
All  
200  
200  
ps  
ps  
CLKOUT_PHASE_FX180  
Phase offset between the DFS CLKFX180 output and the DLL  
CLK0 output when both the DFS and DLL are used  
[1% of  
CLKFX  
period  
+ 200]  
[1% of  
CLKFX  
period  
+ 200]  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
49  
 
 
DC and Switching Characteristics  
Table 39: Switching Characteristics for the DFS(Continued)  
Speed Grade  
-5  
-4  
Symbol  
Lock Time  
Description  
Device  
Min  
Max  
Min  
Max  
Units  
(2, 3)  
LOCK_FX  
The time from deassertion at the DCM’s  
Reset input to the rising transition at its  
LOCKED output. The DFS asserts  
LOCKED when the CLKFX and CLKFX180  
signals are valid. If using both the DLL and  
the DFS, use the longer locking time.  
5 MHz < F  
All  
5
5
ms  
µs  
CLKIN  
< 15 MHz  
F
>
450  
450  
CLKIN  
15 MHz  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 8 and Table 38.  
2. DFS performance requires the additional logic automatically added by ISE 9.1i and later software revisions.  
3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.  
4. Maximum output jitter is characterized within a reasonable noise environment (150 ps input period jitter, 40 SSOs and 25% CLB switching)  
on an XC3S1400A FPGA. Output jitter strongly depends on the environment, including the number of SSOs, the output drive strength, CLB  
utilization, CLB switching activities, switching frequency, power supply and PCB design. The actual maximum output jitter depends on the  
system application.  
5. The CLKFX and CLKFX180 outputs always have an approximate 50% duty cycle.  
6. Some duty-cycle and alignment specifications include a percentage of the CLKFX output period. For example, the data sheet specifies a  
maximum CLKFX jitter of “ [1% of CLKFX period + 200]”. Assume the CLKFX output frequency is 100 MHz. The equivalent CLKFX period  
is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is [100 ps + 200 ps] = 300 ps.  
50  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
DC and Switching Characteristics  
Phase Shifter (PS)  
Table 40: Recommended Operating Conditions for the PS in Variable Phase Mode  
Speed Grade  
-5  
-4  
Symbol  
Description  
Min  
Max  
Min  
Max  
Units  
Operating Frequency Ranges  
PSCLK_FREQ  
(FPSCLK  
Frequency for the PSCLK input  
1
167  
1
167  
MHz  
)
Input Pulse Requirements  
PSCLK_PULSE PSCLK pulse width as a percentage of the PSCLK period  
40%  
60%  
40%  
60%  
-
Table 41: Switching Characteristics for the PS in Variable Phase Mode  
Symbol  
Phase Shifting Range  
MAX_STEPS(2)  
Description  
Phase Shift Amount  
Units  
Maximum allowed number of  
[INTEGER(10 (TCLKIN – 3 ns))]  
[INTEGER(15 (TCLKIN – 3 ns))]  
steps  
CLKIN < 60  
MHz  
DCM_DELAY_STEP steps for a  
given CLKIN clock period, where  
T = CLKIN clock period in ns. If using  
CLKIN_DIVIDE_BY_2 = TRUE,  
double the clock effective clock  
period.  
CLKIN 60  
MHz  
FINE_SHIFT_RANGE_MIN  
Minimum guaranteed delay for variable phase shifting  
[MAX_STEPS •  
ns  
ns  
DCM_DELAY_STEP_MIN]  
FINE_SHIFT_RANGE_MAX Maximum guaranteed delay for variable phase shifting  
[MAX_STEPS •  
DCM_DELAY_STEP_MAX]  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 8 and Table 40.  
2. The maximum variable phase shift range, MAX_STEPS, is only valid when the DCM is has no initial fixed phase shifting, that is, the  
PHASE_SHIFT attribute is set to 0.  
3. The DCM_DELAY_STEP values are provided at the bottom of Table 37.  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
51  
 
DC and Switching Characteristics  
Miscellaneous DCM Timing  
Table 42: Miscellaneous DCM Timing  
Symbol  
Description  
Min  
Max  
Units  
DCM_RST_PW_MIN  
Minimum duration of a RST pulse width  
3
CLKIN  
cycles  
DCM_RST_PW_MAX(2)  
Maximum duration of a RST pulse width  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
seconds  
seconds  
minutes  
minutes  
DCM_CONFIG_LAG_TIME(3)  
Maximum duration from VCCINT applied to FPGA configuration  
successfully completed (DONE pin goes High) and clocks  
applied to DCM DLL  
Notes:  
1. This limit only applies to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV).  
The DCM DFS outputs (CLKFX, CLKFX180) are unaffected.  
2. This specification is equivalent to the Virtex®-4 DCM_RESET specification. This specification does not apply for Spartan-3A FPGAs.  
3. This specification is equivalent to the Virtex-4 TCONFIG specification. This specification does not apply for Spartan-3A FPGAs.  
DNA Port Timing  
Table 43: DNA_PORT Interface Timing  
Symbol  
TDNASSU  
TDNASH  
Description  
Setup time on SHIFT before the rising edge of CLK  
Hold time on SHIFT after the rising edge of CLK  
Setup time on DIN before the rising edge of CLK  
Hold time on DIN after the rising edge of CLK  
Setup time on READ before the rising edge of CLK  
Hold time on READ after the rising edge of CLK  
Clock-to-output delay on DOUT after rising edge of CLK  
CLK frequency  
Min  
1.0  
0.5  
1.0  
0.5  
5.0  
0
Max  
Units  
ns  
ns  
TDNADSU  
TDNADH  
TDNARSU  
TDNARH  
ns  
ns  
10,000  
ns  
ns  
TDNADCKO  
TDNACLKF  
TDNACLKH  
TDNACLKL  
0.5  
0
1.5  
100  
ns  
MHz  
ns  
CLK High time  
1.0  
1.0  
CLK Low time  
ns  
Notes:  
1. The minimum READ pulse width is 5 ns, the maximum READ pulse width is 10 µs.  
2. The numbers in this table are based on the operating conditions set forth in Table 8.  
52  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
 
DC and Switching Characteristics  
Suspend Mode Timing  
Entering Suspend Mode  
Exiting Suspend Mode  
sw_gwe_cycle  
sw_gts_cycle  
SUSPEND Input  
AWAKE Output  
tSUSPENDHIGH_AWAKE  
tSUSPENDLOW_AWAKE  
tAWAKE_GWE  
tSUSPEND_GWE  
Flip-Flops, Block RAM,  
Distributed RAM  
Write Protected  
tAWAKE_GTS  
tSUSPEND_GTS  
FPGA Outputs  
Defined by SUSPEND constraint  
tSUSPEND_DISABLE tSUSPEND_ENABLE  
FPGA Inputs,  
Interconnect  
Blocked  
DS610-3_08_061207  
Figure 10: Suspend Mode Timing  
Table 44: Suspend Mode Timing Parameters  
Symbol  
Description  
Min  
Typ  
Max Units  
Entering Suspend Mode  
TSUSPENDHIGH_AWAKE Rising edge of SUSPEND pin to falling edge of AWAKE pin without glitch filter  
+160  
7
+300  
10  
+600  
ns  
ns  
ns  
ns  
ns  
(suspend_filter:No)  
TSUSPENDFILTER  
Adjustment to SUSPEND pin rising edge parameters when glitch filter  
enabled (suspend_filter:Yes)  
TSUSPEND_GTS  
Rising edge of SUSPEND pin until FPGA output pins drive their defined  
SUSPEND constraint behavior  
TSUSPEND_GWE  
Rising edge of SUSPEND pin to write-protect lock on all writable clocked  
elements  
<5  
TSUSPEND_DISABLE  
Rising edge of the SUSPEND pin to FPGA input pins and interconnect  
disabled  
340  
Exiting Suspend Mode  
TSUSPENDLOW_AWAKE Falling edge of the SUSPEND pin to rising edge of the AWAKE pin. Does not  
include DCM lock time.  
4 to 108  
µs  
µs  
ns  
µs  
ns  
µs  
TSUSPEND_ENABLE  
TAWAKE_GWE1  
TAWAKE_GWE512  
TAWAKE_GTS1  
Falling edge of the SUSPEND pin to FPGA input pins and interconnect  
re-enabled  
3.7 to 109  
Rising edge of the AWAKE pin until write-protect lock released on all writable  
clocked elements, using sw_clk:InternalClock and sw_gwe_cycle:1.  
67  
14  
57  
14  
Rising edge of the AWAKE pin until write-protect lock released on all writable  
clocked elements, using sw_clk:InternalClock and sw_gwe_cycle:512.  
Rising edge of the AWAKE pin until outputs return to the behavior described  
in the FPGA application, using sw_clk:InternalClock and sw_gts_cycle:1.  
TAWAKE_GTS512  
Rising edge of the AWAKE pin until outputs return to the behavior described  
in the FPGA application, using sw_clk:InternalClock and  
sw_gts_cycle:512.  
Notes:  
1. These parameters based on characterization.  
2. For information on using the Spartan-3A Suspend feature, see XAPP480: Using Suspend Mode in Spartan-3 Generation FPGAs.  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
53  
 
DC and Switching Characteristics  
Configuration and JTAG Timing  
General Configuration Power-On/Reconfigure Timing  
1.2V  
V
CCINT  
1.0V  
2.0V  
2.0V  
(Supply)  
2.5V  
or  
V
CCAUX  
(Supply)  
3.3V  
V
Bank 2  
(Supply)  
2.5V  
or  
CCO  
3.3V  
TPOR  
PROG_B  
(Input)  
TPL  
TPROG  
INIT_B  
(Open-Drain)  
TICCK  
CCLK  
(Output)  
DS529-3_01_052708  
Notes:  
1. The V  
, V  
, and V  
supplies can be applied in any order.  
CCO  
CCINT CCAUX  
2. The Low-going pulse on PROG_B is optional after power-on but necessary for reconfiguration without a power cycle.  
3. The rising edge of INIT_B samples the voltage levels applied to the mode pins (M0 - M2).  
Figure 11: Waveforms for Power-On and the Beginning of Configuration  
Table 45: Power-On Timing and the Beginning of Configuration  
All Speed Grades  
Symbol  
Description  
Device  
Min  
Max  
Units  
(2)  
TPOR  
The time from the application of VCCINT, VCCAUX, and VCCO All  
Bank 2 supply voltage ramps (whichever occurs last) to the  
rising transition of the INIT_B pin  
18  
ms  
TPROG  
The width of the low-going pulse on the PROG_B pin  
All  
0.5  
-
0.5  
0.5  
1
µs  
ms  
ms  
ms  
ms  
ms  
ns  
(2)  
TPL  
The time from the rising edge of the PROG_B pin to the  
rising transition on the INIT_B pin  
XC3S50A  
XC3S200A  
XC3S400A  
XC3S700A  
XC3S1400A  
All  
2
2
TINIT  
Minimum Low pulse width on INIT_B output  
250  
0.5  
(3)  
TICCK  
The time from the rising edge of the INIT_B pin to the  
generation of the configuration clock signal at the CCLK  
output pin  
All  
4
µs  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 8. This means power must be applied to all V  
, V  
,
CCINT CCO  
and V  
lines.  
CCAUX  
2. Power-on reset and the clearing of configuration memory occurs during this period.  
3. This specification applies only to the Master Serial, SPI, and BPI modes.  
4. For details on configuration, see UG332 Spartan-3 Generation Configuration User Guide.  
54  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
DC and Switching Characteristics  
Configuration Clock (CCLK) Characteristics  
Table 46: Master Mode CCLK Output Period by ConfigRate Opti0on Setting  
ConfigRate  
Temperature  
Range  
Symbol  
TCCLK1  
Description  
Setting  
Minimum  
1,254  
1,180  
413  
390  
207  
195  
178  
168  
156  
147  
123  
116  
103  
97  
Maximum  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CCLK clock period by  
ConfigRate setting  
Commercial  
Industrial  
1
2,500  
(power-on value)  
Commercial  
Industrial  
TCCLK3  
3
833  
417  
357  
313  
250  
208  
192  
147  
114  
100  
93  
Commercial  
Industrial  
TCCLK6  
6 (default)  
Commercial  
Industrial  
TCCLK7  
7
8
Commercial  
Industrial  
TCCLK8  
Commercial  
Industrial  
TCCLK10  
TCCLK12  
TCCLK13  
TCCLK17  
TCCLK22  
TCCLK25  
TCCLK27  
TCCLK33  
TCCLK44  
TCCLK50  
10  
12  
13  
17  
22  
25  
27  
33  
44  
50  
100  
Commercial  
Industrial  
Commercial  
Industrial  
93  
88  
Commercial  
Industrial  
72  
68  
Commercial  
Industrial  
54  
51  
Commercial  
Industrial  
47  
45  
Commercial  
Industrial  
44  
42  
Commercial  
Industrial  
36  
76  
34  
Commercial  
Industrial  
26  
57  
25  
Commercial  
Industrial  
22  
50  
21  
Commercial  
Industrial  
11.2  
10.6  
TCCLK100  
25  
Notes:  
1. Set the ConfigRate option value when generating a configuration bitstream.  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
55  
 
DC and Switching Characteristics  
Table 47: Master Mode CCLK Output Frequency by ConfigRate Option Setting  
ConfigRate  
Temperature  
Range  
Symbol  
FCCLK1  
Description  
Setting  
Minimum  
Maximum  
0.797  
0.847  
2.42  
Units  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Equivalent CCLK clock frequency  
by ConfigRate setting  
Commercial  
Industrial  
1
0.400  
(power-on value)  
Commercial  
Industrial  
FCCLK3  
3
1.20  
2.40  
2.57  
Commercial  
Industrial  
4.83  
6
FCCLK6  
(default)  
5.13  
Commercial  
Industrial  
5.61  
FCCLK7  
7
8
2.80  
5.96  
Commercial  
Industrial  
6.41  
FCCLK8  
3.20  
6.81  
Commercial  
Industrial  
8.12  
FCCLK10  
FCCLK12  
FCCLK13  
FCCLK17  
FCCLK22  
FCCLK25  
FCCLK27  
FCCLK33  
FCCLK44  
FCCLK50  
FCCLK100  
10  
12  
13  
17  
22  
25  
27  
33  
44  
50  
100  
4.00  
8.63  
Commercial  
Industrial  
9.70  
4.80  
10.31  
10.69  
11.37  
13.74  
14.61  
18.44  
19.61  
20.90  
22.23  
22.39  
23.81  
27.48  
29.23  
37.60  
40.00  
44.80  
47.66  
88.68  
94.34  
Commercial  
Industrial  
5.20  
Commercial  
Industrial  
6.80  
Commercial  
Industrial  
8.80  
Commercial  
Industrial  
10.00  
10.80  
13.20  
17.60  
20.00  
40.00  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Table 48: Master Mode CCLK Output Minimum Low and High Time  
ConfigRate Setting  
12 13 17 22  
Symbol  
Description  
1
3
6
7
8
10  
25  
27  
33  
44  
50  
100 Units  
Master Mode Commercial 595 196 98.3 84.5 74.1 58.4 48.9 44.1 34.2 25.6 22.3 20.9 17.1 12.3 10.4 5.3  
ns  
ns  
T
T
CCLK  
MCCL,  
MCCH  
Minimum Low  
and High Time  
Industrial  
560 185 92.6 79.8 69.8 55.0 46.0 41.8 32.3 24.2 21.4 20.0 16.2 11.9 10.0 5.0  
Table 49: Slave Mode CCLK Input Low and High Time  
Symbol  
Description  
Min  
Max  
Units  
ns  
TSCCL,  
TSCCH  
CCLK Low and High time  
5
56  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
 
 
 
DC and Switching Characteristics  
Master Serial and Slave Serial Mode Timing  
PROG_B  
(Input)  
INIT_B  
(Open-Drain)  
TMCCH  
TSCCH  
TMCCL  
TSCCL  
CCLK  
(Input/Output)  
TDCC  
1/FCCSER  
TCCD  
DIN  
(Input)  
Bit n+1  
TCCO  
Bit n  
Bit 0  
Bit 1  
DOUT  
(Output)  
Bit n-63  
Bit n-64  
DS312-3_05_103105  
Figure 12: Waveforms for Master Serial and Slave Serial Configuration  
Table 50: Timing for the Master Serial and Slave Serial Configuration Modes  
All Speed Grades  
Slave/  
Master  
Symbol  
Description  
Min  
Max  
Units  
Clock-to-Output Times  
TCCO  
The time from the falling transition on the CCLK pin to data appearing at the  
DOUT pin  
Both  
Both  
1.5  
10  
ns  
Setup Times  
TDCC  
The time from the setup of data at the DIN pin to the rising transition at the  
CCLK pin  
7
ns  
ns  
Hold Times  
TCCD  
The time from the rising transition at the CCLK pin to the point when data is  
last held at the DIN pin  
Master  
Slave  
0
1.0  
Clock Timing  
TCCH  
High pulse width at the CCLK input pin  
Master  
Slave  
Master  
Slave  
Slave  
See Table 48  
See Table 49  
See Table 48  
See Table 49  
100  
TCCL  
Low pulse width at the CCLK input pin  
FCCSER  
Frequency of the clock signal at the  
CCLK input pin  
No bitstream compression  
With bitstream compression  
0
0
MHz  
MHz  
100  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 8.  
2. For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz.  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
57  
 
DC and Switching Characteristics  
Slave Parallel Mode Timing  
PROG_B  
(Input)  
INIT_B  
(Open-Drain)  
TSMCSCC  
TSMCCCS  
CSI_B  
(Input)  
TSMCCW  
TSMWCC  
RDWR_B  
(Input)  
TMCCH  
TSCCH  
TMCCL  
TSCCL  
CCLK  
(Input)  
1/FCCPAR  
TSMDCC  
TSMCCD  
D0 - D7  
(Inputs)  
Byte 0  
Byte 1  
Byte n  
Byte n+1  
DS529-3_02_051607  
Notes:  
1. It is possible to abort configuration by pulling CSI_B Low in a given CCLK cycle, then switching RDWR_B Low or High in any subsequent  
cycle for which CSI_B remains Low. The RDWR_B pin asynchronously controls the driver impedance of the D0 - D7 bus. When RDWR_B  
switches High, be careful to avoid contention on the D0 - D7 bus.  
2. To pause configuration, pause CCLK instead of de-asserting CSI_B. See UG332 Chapter 7 section “Non-Continuous SelectMAP Data  
Loading” for more details.  
Figure 13: Waveforms for Slave Parallel Configuration  
Table 51: Timing for the Slave Parallel Configuration Mode  
All Speed Grades  
Symbol  
Description  
Min  
Max  
Units  
Setup Times  
(2)  
TSMDCC  
The time from the setup of data at the D0-D7 pins to the rising transition at the CCLK pin  
Setup time on the CSI_B pin before the rising transition at the CCLK pin  
Setup time on the RDWR_B pin before the rising transition at the CCLK pin  
7
7
ns  
ns  
ns  
TSMCSCC  
TSMCCW  
15  
Hold Times  
TSMCCD  
The time from the rising transition at the CCLK pin to the point when data is last held at  
the D0-D7 pins  
1.0  
0
ns  
ns  
ns  
TSMCCCS  
TSMWCC  
The time from the rising transition at the CCLK pin to the point when a logic level is last  
held at the CSO_B pin  
The time from the rising transition at the CCLK pin to the point when a logic level is last  
held at the RDWR_B pin  
0
Clock Timing  
TCCH  
The High pulse width at the CCLK input pin  
5
5
0
0
ns  
ns  
TCCL  
The Low pulse width at the CCLK input pin  
FCCPAR  
Frequency of the clock signal No bitstream compression  
80  
80  
MHz  
MHz  
at the CCLK input pin  
With bitstream compression  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 8.  
2. Some Xilinx documents refer to Parallel modes as “SelectMAP” modes.  
58  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
 
DC and Switching Characteristics  
Serial Peripheral Interface (SPI) Configuration Timing  
PROG_B  
(Input)  
PUDC_B  
PUDC_B must be stable before INIT_B goes High and constant throughout the configuration process.  
(Input)  
VS[2:0]  
(Input)  
<1:1:1>  
<0:0:1>  
Mode input pins M[2:0] and variant select input pins VS[2:0] are sampled when INIT_B  
goes High. After this point, input values do not matter until DONE goes High, at which  
point these pins become user-I/O pins.  
M[2:0]  
(Input)  
TMINIT  
TINITM  
INIT_B  
(Open-Drain)  
New ConfigRate active  
TCCLK  
TMCCH  
T
n
MCCL  
n
TMCCL1 TMCCH1  
T
TCCLK1  
CCLK1  
n
CCLK  
TV  
DIN  
Data  
Data  
TDCC  
Data  
Data  
(Input)  
TCSS  
TCCD  
CSO_B  
MOSI  
TCCO  
Command Command  
(msb) (msb-1)  
TDSU  
TDH  
Pin initially pulled High by internal pull-up resistor if PUDC_B input is Low.  
Pin initially high-impedance (Hi-Z) if PUDC_B input is High. External pull-up resistor required on CSO_B.  
DS529-3_06_102506  
Shaded values indicate specifications on attached SPI Flash PROM.  
Figure 14: Waveforms for Serial Peripheral Interface (SPI) Configuration  
Table 52: Timing for Serial Peripheral Interface (SPI) Configuration Mode  
Symbol Description  
TCCLK1  
TCCLKn  
TMINIT  
Minimum  
Maximum  
See Table 46  
See Table 46  
Units  
Initial CCLK clock period  
CCLK clock period after FPGA loads ConfigRate bitstream option setting  
Setup time on VS[2:0] variant-select pins and M[2:0] mode pins before the  
rising edge of INIT_B  
50  
0
ns  
ns  
TINITM  
Hold time on VS[2:0] variant-select pins and M[2:0] mode pins after the  
rising edge of INIT_B  
TCCO  
TDCC  
TCCD  
MOSI output valid delay after CCLK falling clock edge  
See Table 50  
See Table 50  
See Table 50  
Setup time on the DIN data input before CCLK rising clock edge  
Hold time on the DIN data input after CCLK rising clock edge  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
59  
DC and Switching Characteristics  
Table 53: Configuration Timing Requirements for Attached SPI Serial Flash  
Symbol  
TCCS  
Description  
SPI serial Flash PROM chip-select time  
Requirement  
Units  
ns  
TCCS TMCCL1 TCCO  
TDSU  
TDH  
SPI serial Flash PROM data input setup time  
SPI serial Flash PROM data input hold time  
SPI serial Flash PROM data clock-to-output time  
ns  
ns  
TDSU TMCCL1 TCCO  
TDH TMCCH1  
TV TMCCLn TDCC  
1
TV  
ns  
fC or fR  
Maximum SPI serial Flash PROM clock frequency (also depends on  
specific read command used)  
MHz  
--------------------------------  
fC  
TCCLKn(min)  
Notes:  
1. These requirements are for successful FPGA configuration in SPI mode, where the FPGA generates the CCLK signal. The  
post-configuration timing can be different to support the specific needs of the application loaded into the FPGA.  
2. Subtract additional printed circuit board routing delay as required by the application.  
60  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
DC and Switching Characteristics  
Byte Peripheral Interface (BPI) Configuration Timing  
PROG_B  
(Input)  
PUDC_B  
(Input)  
PUDC_B must be stable before INIT_B goes High and constant throughout the configuration process.  
Mode input pins M[2:0] are sampled when INIT_B goes High. After this point,  
input values do not matter until DONE goes High, at which point the mode pins  
become user-I/O pins.  
M[2:0]  
(Input)  
<0:1:0>  
TMINIT  
TINITM  
INIT_B  
Open-Drain)  
Pin initially pulled High by internal pull-up resistor if PUDC_B input is Low.  
Pin initially high-impedance (Hi-Z) if PUDC_B input is High.  
LDC[2:0]  
HDC  
CSO_B  
New ConfigRate active  
TCCLK1  
TCCLKn  
TINITADDR  
TCCLK1  
CCLK  
TCCO  
000_0000  
Byte 0  
Address  
Address Address  
TCCD  
A[25:0]  
000_0001  
Byte 1  
T
AVQV  
TDCC  
Data  
D[7:0]  
(Input)  
Data  
Data  
Data  
Shaded values indicate specifications on attached parallel NOR Flash PROM.  
DS529-3_05_021009  
Figure 15: Waveforms for Byte-wide Peripheral Interface (BPI) Configuration  
Table 54: Timing for Byte-wide Peripheral Interface (BPI) Configuration Mode  
Symbol  
TCCLK1  
TCCLKn  
TMINIT  
Description  
Minimum  
Maximum  
Units  
Initial CCLK clock period  
See Table 46  
CCLK clock period after FPGA loads ConfigRate setting  
Setup time on M[2:0] mode pins before the rising edge of INIT_B  
Hold time on M[2:0] mode pins after the rising edge of INIT_B  
See Table 46  
50  
0
5
ns  
ns  
TINITM  
TINITADDR  
Minimum period of initial A[25:0] address cycle; LDC[2:0] and HDC are asserted  
and valid  
5
TCCLK1  
cycles  
TCCO  
TDCC  
TCCD  
Address A[25:0] outputs valid after CCLK falling edge  
Setup time on D[7:0] data inputs before CCLK rising edge  
Hold time on D[7:0] data inputs after CCLK rising edge  
See Table 50  
See TSMDCC in Table 51  
0
ns  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
61  
 
 
DC and Switching Characteristics  
Table 55: Configuration Timing Requirements for Attached Parallel NOR BPI Flash  
Symbol  
TCE  
(tELQV  
TOE  
(tGLQV  
TACC  
(tAVQV  
TBYTE  
(tFLQV, FHQV  
Notes:  
Description  
Requirement  
Units  
Parallel NOR Flash PROM chip-select time  
ns  
TCE TINITADDR  
)
Parallel NOR Flash PROM output-enable time  
Parallel NOR Flash PROM read access time  
For x8/x16 PROMs only: BYTE# to output valid time(3)  
ns  
ns  
ns  
TOE TINITADDR  
TACC 50%TCCLKn(min) TCCO TDCC PCB  
TBYTE TINITADDR  
)
)
t
)
1. These requirements are for successful FPGA configuration in BPI mode, where the FPGA generates the CCLK signal. The  
post-configuration timing can be different to support the specific needs of the application loaded into the FPGA.  
2. Subtract additional printed circuit board routing delay as required by the application.  
3. The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA’s LDC2 pin. The resistor  
value also depends on whether the FPGA’s PUDC_B pin is High or Low.  
62  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
 
DC and Switching Characteristics  
IEEE 1149.1/1532 JTAG Test Access Port Timing  
TCCH  
TCCL  
TCK  
(Input)  
1/FTCK  
TTCKTMS  
TTMSTCK  
TMS  
(Input)  
TTDITCK  
TTCKTDI  
TDI  
(Input)  
TTCKTDO  
TDO  
(Output)  
DS099_06_020709  
Figure 16: JTAG Waveforms  
Table 56: Timing for the JTAG Test Access Port  
All Speed  
Grades  
Symbol  
Description  
Min  
Max  
11.0  
Units  
ns  
Clock-to-Output Times  
TTCKTDO The time from the falling transition on the TCK pin to data appearing at the TDO pin  
1.0  
Setup Times  
TTDITCK The time from the setup of data at the All devices and functions except those shown below  
TDI pin to the rising transition at the  
7.0  
ns  
Boundary scan commands (INTEST, EXTEST,  
SAMPLE) on XC3S700A and XC3S1400A FPGAs  
11.0  
TCK pin  
TTMSTCK The time from the setup of a logic level at the TMS pin to the rising transition at the TCK pin  
7.0  
ns  
ns  
Hold Times  
TTCKTDI The time from the rising transition at  
the TCK pin to the point when data is  
last held at the TDI pin  
All functions except those shown below  
0
Configuration commands (CFG_IN, ISC_PROGRAM)  
2.0  
TTCKTMS The time from the rising transition at the TCK pin to the point when a logic level is last held at the  
TMS pin  
0
ns  
Clock Timing  
TCCH  
TCCL  
The High pulse width at the TCK pin All functions except ISC_DNA command  
The Low pulse width at the TCK pin  
5
5
ns  
ns  
TCCHDNA The High pulse width at the TCK pin During ISC_DNA command  
TCCLDNA The Low pulse width at the TCK pin  
10  
10  
0
10,000  
10,000  
33  
ns  
ns  
FTCK  
Frequency of the TCK signal  
All operations on XC3S50A, XC3S200A, and  
XC3S400A FPGAs and for BYPASS or HIGHZ  
instructions on all FPGAs  
MHz  
All operations on XC3S700A and XC3S1400A FPGAs,  
except for BYPASS or HIGHZ instructions  
20  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 8.  
2. For details on JTAG see Chapter 9 “JTAG Configuration Mode and Boundary-Scan” in UG332 Spartan-3 Generation Configuration User  
Guide.  
DS529-3 (v2.0) August 19, 2010  
www.xilinx.com  
63  
 
DC and Switching Characteristics  
Revision History  
The following table shows the revision history for this document.  
Date  
Version  
1.0  
Revision  
12/05/06  
02/02/07  
Initial release.  
1.1  
Promoted to Preliminary status. Moved Table 15 to under "DC Electrical Characteristics" section. Updated all  
timing specifications for the v1.32 speed files. Added recommended Simultaneous Switching Output (SSO)  
limits in Table 29. Set a 10 µs maximum pulse width for the DNA_PORT READ signal and the JTAG clock  
input during the ISC_DNA command, affecting both Table 43 and Table 56. Described "External Termination  
Requirements for Differential I/O." Added separate DIN hold time for Slave mode in Table 50. Corrected  
wording in Table 52 and Table 54; no specifications affected.  
03/16/07  
1.2  
Updated all AC timing specifications to the v1.34 speeds file. Promoted the XC3S700A and XC3S1400A  
FPGAs offered in the -4 speed grade to Production status, as shown in Table 16. Added Note 2 to Table 39  
regarding the extra logic (one LUT) automatically added by ISE 9.1i and later software revisions for any DCM  
application that leverages the Digital Frequency Synthesizer (DFS). Separated some JTAG specifications by  
array size or function, as shown in Table 56. Updated quiescent current limits in Table 10.  
04/23/07  
05/08/07  
1.3  
1.4  
Updated all AC timing specifications to the v1.35 speeds file. Promoted all devices except the XC3S400A to  
Production status, as shown in Table 16.  
Updated XC3S400A to Production and v1.36 speeds file. Added banking rules and other explanatory  
footnotes to Table 12 and Table 13. Corrected DIFF_SSTL3_II VOL Max in Table 14. Improved XC3S400A  
Pin-to-Pin Clock-to-Output times in Table 18. Updated XC3S400A Pin-to-Pin Setup Times in Table 19.  
Updated TIOICKPD for -5 in Table 20. Added SSO numbers to Table 28 and Table 29. Removed invalid  
Embedded Multiplier Hold Times in Table 34. Improved CLKOUT_FREQ_CLK90 in Table 37. Improved  
TTDITCK and FTCK performance for XC3S400A in Table 56.  
07/10/07  
04/15/08  
1.5  
1.6  
Added DIFF_HSTL_I and DIFF_HSTL_III to Table 13, Table 14, Table 27, and Table 29. Updated TMDS DC  
characteristics in Table 14. Updated for speed file v1.37 in ISE 9.2.01i as shown in Table 17. Updated  
pin-to-pin setup and hold times in Table 19. Updated TMDS output adjustment in Table 26. Updated I/O Test  
Method values in Table 27. Added BLVDS SSO numbers inTable 29. For Multiplier block, updated setup times  
and added hold times to Table 34. Updated block RAM clock width in Table 35. Updated  
CLKOUT_PER_JITT_2X and CLKOUT_PER_JITT_DV2 in Table 37. Added CCLK specifications for  
Commercial in Table 46 through Table 48.  
Added VIN to Recommended Operating Conditions in Table 8 and added reference to XAPP459, “Eliminating  
I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins.” Reduced typical  
ICCINTQ and ICCAUXQ quiescent current values by 12%-58% in Table 10. Increased VIL max to 0.4V for  
LVCMOS12/15/18 and improved VIH min to 0.7V for LVCMOS12 in Table 11. Changed VOL max to 0.4V and  
VOH min to VCCO-0.4V for LVCMOS15/18 in Table 12. Noted latest speed file v1.39 in ISE 10.1 software in  
Table 16. Added new packages to SSO limits in Table 28 and Table 29. Improved SSTL18_II SSO limit for  
FG packages in Table 29. Improved FBUFG for -4 to 334 MHz in Table 33. Added references to 375 MHz  
performance via SCD 4103 in Table 33,Table 38, Table 39, and Table 40. Restored Units column to Table 44.  
Updated CCLK output maximum period in Table 46 to match minimum frequency in Table 47. Corrected BPI  
active clock edge in Figure 15 and Table 54.  
05/28/08  
03/06/09  
1.7  
1.8  
Improved VCCAUXT and VCCO2T POR minimum in Table 5 and updated VCCO POR levels in Figure 11.  
Clarified recommended VIN in Table 8. Added reference to VCCAUX in "Simultaneously Switching Output  
Guidelines". Added reference to Sample Window in Table 21. Removed DNA_RETENTION limit of 10 years  
in Table 15 since number of Read cycles is the only unique limit. Added references to UG332.  
Changed typical quiescent current temperature from ambient to junction. Updated BPI configuration  
waveforms in Figure 15 and updated Table 55. Updated selected I/O standard DC characteristics. Added  
TIOPI and TIOPID in Table 22.  
Removed references to SCD 4103.  
08/19/10  
2.0  
Added IIK to Table 4. Updated VIN in Table 8 and footnoted IL in Table 9 to note potential leakage between  
pins of a differential pair. Clarified LVPECL notes to Table 13. Corrected symbols for TSUSPEND_GTS and  
TSUSPEND_GWE in Table 44.  
64  
www.xilinx.com  
DS529-3 (v2.0) August 19, 2010  
132  
Spartan-3A FPGA Family:  
Pinout Descriptions  
0
DS529-4 (v2.0) August 19, 2010  
Product Specification  
Introduction  
This section describes how the various pins on a  
Spartan®-3A FPGA connect within the supported  
Except for the thermal characteristics, all information for the  
standard package applies equally to the Pb-free package.  
component packages, and provides device-specific thermal  
characteristics. For general information on the pin functions  
and the package characteristics, see the Packaging section  
of UG331: Spartan-3 Generation FPGA User Guide.  
Pin Types  
Most pins on a Spartan-3A FPGA are general-purpose,  
user-defined I/O pins. There are, however, up to 12 different  
functional types of pins on Spartan-3A FPGA packages, as  
outlined in Table 57. In the package footprint drawings that  
follow, the individual pins are color-coded according to pin  
type as in the table.  
UG331: Spartan-3 Generation FPGA User Guide  
www.xilinx.com/support/documentation  
/user_guides/ug331.pdf  
Spartan-3A FPGAs are available in both standard and  
Pb-free, RoHS versions of each package, with the Pb-free  
version adding a “G” to the middle of the package code.  
Table 57: Types of Pins on Spartan-3A FPGAs  
Type / Color  
Description  
Pin Name(s) in Type  
Code  
Unrestricted, general-purpose user-I/O pin. Most pins can be paired together to form  
differential I/Os.  
IO_#  
IO_Lxxy_#  
I/O  
Unrestricted, general-purpose input-only pin. This pin does not have an output structure, IP_#  
INPUT  
DUAL  
differential termination resistor, or PCI clamp diode.  
IP_Lxxy_#  
Dual-purpose pin used in some configuration modes during the configuration process and M[2:0]  
then usually available as a user I/O after configuration. If the pin is not used during  
configuration, this pin behaves as an I/O-type pin. See UG332: Spartan-3 Generation  
Configuration User Guide for additional information on these signals.  
PUDC_B  
CCLK  
MOSI/CSI_B  
D[7:1]  
D0/DIN  
DOUT  
CSO_B  
RDWR_B  
INIT_B  
A[25:0]  
VS[2:0]  
LDC[2:0]  
HDC  
Dual-purpose pin that is either a user-I/O pin or Input-only pin, or, along with all other  
IP/VREF_#  
VREF pins in the same bank, provides a reference voltage input for certain I/O standards. IP_Lxxy_#/VREF_#  
VREF  
CLK  
If used for a reference voltage within a bank, all VREF pins within the bank must be  
connected.  
IO/VREF_#  
IO_Lxxy_#/VREF_#  
Either a user-I/O pin or an input to a specific clock buffer driver. Most packages have 16 IO_Lxxy_#/GCLK[15:0],  
global clock inputs that optionally clock the entire device. The exceptions are the TQ144 IO_Lxxy_#/LHCLK[7:0],  
and the XC3S50A in the FT256 package). The RHCLK inputs optionally clock the right half IO_Lxxy_#/RHCLK[7:0]  
of the device. The LHCLK inputs optionally clock the left half of the device. See the Using  
Global Clock Resources chapter in UG331: Spartan-3 Generation FPGA User Guide for  
additional information on these signals.  
Dedicated configuration pin, two per device. Not available as a user-I/O pin. Every  
package has two dedicated configuration pins. These pins are powered by VCCAUX. See  
the UG332: Spartan-3 Generation Configuration User Guide for additional information on  
the DONE and PROG_B signals.  
DONE, PROG_B  
CONFIG  
© Copyright 2006–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and  
other countries. PCI is a registered trademark of the PCI-SIG. All other trademarks are the property of their respective owners.  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
65  
 
 
 
 
 
 
 
 
Pinout Descriptions  
Table 57: Types of Pins on Spartan-3A FPGAs(Continued)  
Type / Color  
Description  
Code  
Pin Name(s) in Type  
Control and status pins for the power-saving Suspend mode. SUSPEND is a dedicated  
SUSPEND, AWAKE  
PWR  
MGMT  
pin and is powered by VCCAUX. AWAKE is a dual-purpose pin. Unless Suspend mode is  
enabled in the application, AWAKE is available as a user-I/O pin.  
Dedicated JTAG pin - 4 per device. Not available as a user-I/O pin. Every package has  
four dedicated JTAG pins. These pins are powered by VCCAUX.  
TDI, TMS, TCK, TDO  
JTAG  
Dedicated ground pin. The number of GND pins depends on the package used. All must GND  
be connected.  
GND  
VCCAUX  
VCCINT  
VCCO  
N.C.  
Dedicated auxiliary power supply pin. The number of VCCAUX pins depends on the  
package used. All must be connected. VCCAUX can be either 2.5V or 3.3V. Set on board  
and using CONFIG VCCAUX constraint.  
VCCAUX  
Dedicated internal core logic power supply pin. The number of VCCINT pins depends on VCCINT  
the package used. All must be connected to +1.2V.  
Along with all the other VCCO pins in the same bank, this pin supplies power to the output VCCO_#  
buffers within the I/O bank and sets the input threshold voltage for some I/O standards. All  
must be connected.  
This package pin is not connected in this specific device/package combination but may be N.C.  
connected in larger devices in the same package.  
Notes:  
1. # = I/O bank number, an integer between 0 and 3.  
Package Pins by Type  
Each package has three separate voltage supply  
A majority of package pins are user-defined I/O or input  
pins. However, the numbers and characteristics of these I/O  
depend on the device type and the package in which it is  
available, as shown in Table 59. The table shows the  
maximum number of single-ended I/O pins available,  
assuming that all I/O-, INPUT-, DUAL-, VREF-, and  
CLK-type pins are used as general-purpose I/O. AWAKE is  
counted here as a dual-purpose I/O pin. Likewise, the table  
shows the maximum number of differential pin-pairs  
available on the package. Finally, the table shows how the  
total maximum user-I/Os are distributed by pin type,  
including the number of unconnected—N.C.—pins on the  
device.  
inputs—VCCINT, VCCAUX, and VCCO—and a common  
ground return, GND. The numbers of pins dedicated to  
these functions vary by package, as shown in Table 58.  
Table 58: Power and Ground Supply Pins by Package  
Package  
VCCINT VCCAUX VCCO GND  
VQ100  
TQ144  
4
4
3
4
6
13  
13  
28  
50  
32  
43  
53  
77  
8
FT256 (50A/200A/400A)  
FT256 (700A/1400A)  
FG320  
6
4
16  
13  
16  
22  
24  
36  
15  
6
10  
8
Not all I/O standards are supported on all I/O banks. The left  
and right banks (I/O banks 1 and 3) support higher output  
drive current than the top and bottom banks (I/O banks 0  
and 2). Similarly, true differential output standards, such as  
LVDS, RSDS, PPDS, miniLVDS, and TMDS, are only  
supported in the top or bottom banks (I/O banks 0 and 2).  
Inputs are unrestricted. For more details, see the chapter  
Using I/O Resources” in UG331.  
FG400  
9
8
FG484  
15  
23  
10  
14  
FG676  
66  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
 
Pinout Descriptions  
.
Table 59: Maximum User I/O by Package  
Maximum  
All Possible I/Os by Type  
Maximum  
Input-  
Only  
Maximum  
Differential  
Pairs  
User I/Os  
and  
Device  
Package  
I/O  
INPUT  
DUAL  
VREF  
CLK  
N.C.  
Input-Only  
XC3S50A  
68  
6
60  
60  
17  
17  
2
20  
20  
26  
26  
52  
52  
52  
52  
52  
52  
52  
52  
52  
52  
52  
6
23  
23  
30  
30  
32  
32  
30  
30  
32  
32  
32  
32  
32  
32  
32  
0
0
VQ100  
TQ144  
XC3S200A  
XC3S50A  
68  
6
2
6
108  
144  
195  
195  
161  
161  
248  
251  
311  
311  
372  
375  
502  
7
50  
42  
2
8
0
XC3S50A  
32  
35  
35  
13  
13  
56  
59  
63  
63  
84  
87  
94  
64  
53  
20  
21  
21  
2
15  
21  
21  
18  
18  
23  
24  
26  
26  
33  
34  
38  
51  
0
XC3S200A  
XC3S400A  
XC3S700A  
XC3S1400A  
XC3S200A  
XC3S400A  
XC3S400A  
XC3S700A  
XC3S700A  
XC3S1400A  
XC3S1400A  
90  
69  
FT256  
90  
69  
0
60  
59  
0
60  
59  
2
0
112  
112  
142  
142  
165  
165  
227  
101  
101  
155  
155  
194  
195  
313  
40  
42  
46  
46  
61  
62  
67  
3
FG320  
FG400  
0
0
0
3
FG484  
FG676  
0
17  
Notes:  
1. Some VREFs are on INPUT pins. See pinout tables for details.  
Electronic versions of the package pinout tables and foot-  
prints are available for download from the Xilinx website.  
Using a spreadsheet program, the data can be sorted and  
reformatted according to any specific needs. Similarly, the  
ASCII-text file is easily parsed by most scripting programs.  
http://www.xilinx.com/support/documentation/data_sheets/  
s3a_pin.zip  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
67  
 
Pinout Descriptions  
Package Overview  
Table 60 shows the six low-cost, space-saving production package styles for the Spartan-3A family.  
Table 60: Spartan-3A Family Package Options  
(1)  
Maximum Lead Pitch  
Body Area  
(mm)  
Height  
(mm)  
Mass  
(g)  
Package  
Leads  
Type  
I/O  
(mm)  
0.5  
0.5  
1.0  
1.0  
1.0  
1.0  
1.0  
VQ100 / VQG100  
TQ144 / TQG144  
FT256 / FTG256  
FG320 / FGG320  
FG400 / FGG400  
FG484 / FGG484  
FG676 / FGG676  
100  
144  
256  
320  
400  
484  
676  
Very Thin Quad Flat Pack (VQFP)  
Thin Quad Flat Pack (TQFP)  
68  
14 x 14  
20 x 20  
17 x 17  
19 x 19  
21 x 21  
23 x 23  
27 x 27  
1.20  
1.60  
1.55  
2.00  
2.43  
2.60  
2.60  
0.6  
1.4  
0.9  
1.4  
2.2  
2.2  
3.4  
108  
195  
251  
311  
375  
502  
Fine-pitch Thin Ball Grid Array (FBGA)  
Fine-pitch Ball Grid Array (FBGA)  
Fine-pitch Ball Grid Array (FBGA)  
Fine-pitch Ball Grid Array (FBGA)  
Fine-pitch Ball Grid Array (FBGA)  
Notes:  
1. Package mass is ±10%.  
Each package style is available in an environmentally  
friendly lead-free (Pb-free) option. The Pb-free packages  
include an extra ‘G’ in the package style name. For example,  
the standard “CS484” package becomes “CSG484” when  
ordered as the Pb-free option. The mechanical dimensions  
of the standard and Pb-free packages are similar, as shown  
in the mechanical drawings provided in Table 61.  
Mechanical Drawings  
Detailed mechanical drawings for each package type are  
available from the Xilinx web site at the specified location in  
Table 61.  
Material Declaration Data Sheets (MDDS) are also available  
on the Xilinx web site for each package.  
For additional package information, see UG112: Device  
Package User Guide.  
Table 61: Xilinx Package Documentation  
Package  
VQ100  
Drawing  
MDDS  
Package Drawing  
PK173_VQ100  
PK130_VQG100  
PK169_TQ144  
PK126_TQG144  
PK158_FT256  
PK115_FTG256  
PK152_FG320  
PK106_FGG320  
PK182_FG400  
PK108_FGG400  
PK183_FG484  
PK110_FGG484  
PK155_FG676  
PK111_FGG676  
VQG100  
TQ144  
Package Drawing  
Package Drawing  
Package Drawing  
Package Drawing  
Package Drawing  
Package Drawing  
TQG144  
FT256  
FTG256  
FG320  
FGG320  
FG400  
FGG400  
FG484  
FGG484  
FG676  
FGG676  
68  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
 
 
 
Pinout Descriptions  
Package Thermal Characteristics  
The power dissipated by an FPGA application has  
The junction-to-case thermal resistance (θJC) indicates the  
difference between the temperature measured on the  
package body (case) and the die junction temperature per  
watt of power consumption. The junction-to-board (θJB)  
value similarly reports the difference between the board and  
junction temperature. The junction-to-ambient (θJA) value  
reports the temperature difference between the ambient  
environment and the junction temperature. The θJA value is  
reported at different air velocities, measured in linear feet  
per minute (LFM). The “Still Air (0 LFM)” column shows the  
implications on package selection and system design. The  
power consumed by a Spartan-3A FPGA is reported using  
either the XPower Power Estimator or the XPower Analyzer  
calculator integrated in the Xilinx® ISE® development  
software. Table 62 provides the thermal characteristics for  
the various Spartan-3A FPGA package offerings. This  
information is also available using the Thermal Query tool  
on xilinx.com (www.xilinx.com/cgi-bin/thermal/thermal.pl).  
θ
JA value in a system without a fan. The thermal resistance  
drops with increasing air flow.  
Table 62: Spartan-3A Package Thermal Characteristics  
Junction-to-Ambient (θ  
)
JA  
at Different Air Flows  
Junction-to-Case  
(θ  
Junction-to-  
Still Air  
(0 LFM)  
Package  
Device  
XC3S50A  
XC3S200A  
)
Board (θ  
)
JB  
250 LFM  
40.4  
500 LFM  
37.6  
750 LFM  
36.6  
Units  
°C/Watt  
°C/Watt  
JC  
12.9  
10.9  
30.1  
48.5  
42.9  
VQ100  
VQG100  
25.7  
35.7  
33.2  
32.4  
TQ144  
TQG144  
XC3S50A  
16.5  
32.0  
42.4  
36.3  
35.8  
34.9  
°C/Watt  
XC3S50A  
XC3S200A  
XC3S400A  
XC3S700A  
XC3S1400A  
XC3S200A  
XC3S400A  
XC3S400A  
XC3S700A  
XC3S700A  
XC3S1400A  
16.0  
10.3  
8.4  
33.5  
23.8  
19.3  
18.6  
14.1  
18.5  
15.4  
15.5  
13.0  
12.8  
9.9  
42.3  
32.7  
29.9  
28.1  
24.2  
27.8  
25.2  
25.6  
23.1  
22.3  
19.5  
35.6  
26.6  
24.9  
22.3  
18.7  
22.3  
19.8  
19.2  
17.9  
17.4  
14.7  
35.5  
26.1  
23.0  
21.2  
17.5  
21.1  
18.6  
18.0  
16.7  
16.2  
13.5  
34.5  
25.2  
22.3  
20.7  
17.0  
20.3  
17.8  
17.3  
16.0  
15.5  
12.8  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
FT256  
FTG256  
7.8  
5.4  
11.7  
9.9  
FG320  
FGG320  
9.8  
FG400  
FGG400  
8.2  
7.9  
FG484  
FGG484  
6.0  
FG676  
FGG676  
XC3S1400A  
5.8  
9.4  
17.8  
13.5  
12.4  
11.8  
°C/Watt  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
69  
 
Pinout Descriptions  
VQ100: 100-lead Very Thin Quad Flat Package  
The XC3S50A and XC3S200 are available in the 100-lead  
very thin quad flat package, VQ100.  
Table 63: Spartan-3A VQ100 Pinout(Continued)  
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
IO_L02P_1/RHCLK0  
IO_L03N_1/TRDY1/RHCLK3  
IO_L03P_1/RHCLK2  
IO_L04N_1/RHCLK7  
IO_L04P_1/IRDY1/RHCLK6  
IO_L05N_1  
P59  
P62  
P61  
P65  
P64  
P71  
P70  
P73  
P72  
P68  
P67  
P46  
P25  
P23  
P27  
P24  
CLK  
CLK  
CLK  
CLK  
CLK  
IO  
Table 63 lists all the package pins. They are sorted by bank  
number and then by pin name. Pins that form a differential  
I/O pair appear together in the table. The table also shows  
the pin number for each pin and the pin type, as defined  
earlier.  
The VQ100 does not support Suspend mode (SUSPEND  
and AWAKE are not connected), the address output pins for  
the Byte-wide Peripheral Interface (BPI) configuration mode,  
or daisy chain configuration (DOUT is not connected).  
IO_L05P_1  
IO  
IO_L06N_1  
IO  
IO_L06P_1  
IO  
Table 63 also indicates that some differential I/O pairs have  
different assignments between the XC3S50A and the  
XC3S200A, highlighted in light blue. See "Footprint  
Migration Differences," page 72 for additional information.  
IP_1/VREF_1  
VREF  
VCCO  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
VCCO_1  
IO_2/MOSI/CSI_B  
IO_L01N_2/M0  
An electronic version of this package pinout table and  
footprint diagram is available for download from the Xilinx  
website at  
IO_L01P_2/M1  
IO_L02N_2/CSO_B  
IO_L02P_2/M2  
www.xilinx.com/support/documentation/data_sheets/  
s3a_pin.zip.  
IO_L03N_2/VS1 (3S50A)  
IO_L04P_2/VS1 (3S200A)  
2
P30  
DUAL  
Pinout Table  
2
2
IO_L03P_2/RDWR_B  
IO_L04N_2/VS0  
P28  
P31  
DUAL  
DUAL  
Table 63: Spartan-3A VQ100 Pinout  
Bank  
0
Pin Name  
IO_0/GCLK11  
Pin  
P90  
P78  
P77  
P84  
P83  
P86  
P85  
P89  
P88  
P94  
P93  
P99  
P98  
P97  
P82  
P79  
P96  
P57  
P56  
P60  
Type  
CLK  
IO  
IO_L04P_2/VS2 (3S50A)  
IO_L03N_2/VS2 (3S200A)  
2
2
P29  
P34  
DUAL  
DUAL  
0
IO_L01N_0  
IO_L05N_2/D7 (3S50A)  
IO_L06P_2/D7 (3S200A)  
0
IO_L01P_0/VREF_0  
IO_L02N_0/GCLK5  
IO_L02P_0/GCLK4  
IO_L03N_0/GCLK7  
IO_L03P_0/GCLK6  
IO_L04N_0/GCLK9  
IO_L04P_0/GCLK8  
IO_L05N_0  
VREF  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
IO  
0
2
2
IO_L05P_2  
P32  
P35  
IO  
0
IO_L06N_2/D6  
DUAL  
0
IO_L06P_2 (3S50A)  
IO_L05N_2 (3S200A)  
2
P33  
IO  
0
2
2
2
2
2
2
2
2
IO_L07N_2/D4  
P37  
P36  
P41  
P40  
P44  
P43  
P49  
P48  
DUAL  
DUAL  
CLK  
0
IO_L07P_2/D5  
0
IO_L08N_2/GCLK15  
IO_L08P_2/GCLK14  
IO_L09N_2/GCLK1  
IO_L09P_2/GCLK0  
IO_L10N_2/D3  
0
CLK  
0
IO_L05P_0  
IO  
CLK  
0
IO_L06N_0/PUDC_B  
IO_L06P_0/VREF_0  
IP_0  
DUAL  
VREF  
IP  
CLK  
0
DUAL  
DUAL  
0
IO_L10P_2/INIT_B  
0
IP_0/VREF_0  
VREF  
VCCO  
VCCO  
IO  
IO_L11N_2/D0/DIN/MISO  
(3S50A)  
IO_L12P_2/D0/DIN/MISO  
(3S200A)  
0
VCCO_0  
2
P51  
DUAL  
0
VCCO_0  
1
IO_L01N_1  
2
2
IO_L11P_2/D2  
P50  
P53  
DUAL  
DUAL  
1
IO_L01P_1  
IO  
IO_L12N_2/CCLK  
1
IO_L02N_1/RHCLK1  
CLK  
70  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
 
Pinout Descriptions  
Table 63: Spartan-3A VQ100 Pinout(Continued)  
Table 63: Spartan-3A VQ100 Pinout(Continued)  
IO_L12P_2/D1 (3S50A)  
IO_L11N_2/D1 (3S200A)  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
P17  
P38  
P66  
P81  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
2
P52  
DUAL  
2
2
IP_2/VREF_2  
VCCO_2  
P39  
P26  
P45  
P4  
VREF  
VCCO  
VCCO  
IO  
2
VCCO_2  
3
IO_L01N_3  
IO_L01P_3  
IO_L02N_3  
IO_L02P_3  
IO_L03N_3/LHCLK1  
IO_L03P_3/LHCLK0  
IO_L04N_3/IRDY2/LHCLK3  
IO_L04P_3/LHCLK2  
IO_L05N_3/LHCLK7  
IO_L05P_3/TRDY2/LHCLK6  
IO_L06N_3  
IO_L06P_3  
IP_3  
3
P3  
IO  
3
P6  
IO  
3
P5  
IO  
3
P10  
P9  
CLK  
3
CLK  
3
P13  
P12  
P16  
P15  
P20  
P19  
P21  
P7  
CLK  
3
CLK  
3
CLK  
3
CLK  
3
IO  
3
IO  
3
IP  
3
IP_3/VREF_3  
VCCO_3  
VREF  
VCCO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
CONFIG  
CONFIG  
JTAG  
JTAG  
JTAG  
JTAG  
VCCAUX  
VCCAUX  
VCCAUX  
3
P11  
P14  
P18  
P42  
P47  
P58  
P63  
P69  
P74  
P8  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
P80  
P87  
P91  
P95  
P54  
P100  
P76  
P2  
GND  
GND  
GND  
VCCAUX DONE  
VCCAUX PROG_B  
VCCAUX TCK  
VCCAUX TDI  
VCCAUX TDO  
P75  
P1  
VCCAUX TMS  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
P22  
P55  
P92  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
71  
Pinout Descriptions  
User I/Os by Bank  
Table 64 indicates how the 68 available user-I/O pins are  
distributed between the four I/O banks on the VQ100  
package.  
Table 64: User I/Os Per Bank for the XC3S50A and XC3S200A in the VQ100 Package  
All Possible I/O Pins by Type  
Package  
Edge  
I/O Bank  
Maximum I/O  
I/O  
3
INPUT  
DUAL  
VREF  
CLK  
7
Top  
0
1
2
3
15  
13  
26  
14  
68  
1
0
0
1
2
1
0
3
1
1
1
6
Right  
6
6
Bottom  
Left  
2
19  
0
4
6
6
TOTAL  
17  
20  
23  
Footprint Migration Differences  
The XC3S50A and XC3S200 have common VQ100 pinouts  
except for some differences in alignment of differential I/O  
pairs.  
Differential I/O Alignment Differences  
Some differential I/O pairs in the VQ100 on the XC3S50A  
FPGA are aligned differently than the corresponding pairs  
on the XC3S200A FPGAs, as shown in Table 65. All the  
mismatched pairs are in I/O Bank 2. These differences are  
indicated with the black diamond character (‹) in the  
footprint diagrams Figure 17 and Figure 18.  
Table 65: Differential I/O Differences in VQ100  
VQ100 Pin Bank  
XC3S50A  
IIO_L04P_2/VS2  
IO_L03N_2/VS1  
IO_L06P_2  
XC3S200A  
IO_L03N_2/VS2  
IO_L04P_2/VS1  
IO_L05N_2  
P29  
P30  
P33  
2
P34  
IO_L05N_2/D7  
IO_L06P_2/D7  
IO_L11N_2/D0/DIN/ IO_L12P_2/D0/DIN/  
P51  
P52  
MISO  
MISO  
IO_L12P_2/D1  
IO_L11N_2/D1  
72  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
 
 
Pinout Descriptions  
VQ100 Footprint (XC3S50A)  
Note pin 1 indicator in top-left corner and logo orientation.  
TMS  
TDI  
1
2
3
4
5
6
7
8
9
75 TDO  
74 GND  
Bank 0  
IO_L01P_3  
IO_L01N_3  
IO_L02P_3  
73 IO_L06N_1  
72 IO_L06P_1  
71 IO_L05N_1  
70 IO_L05P_1  
IO_L02N_3  
IP_3/VREF_3  
69 GND  
GND  
68 IP_1/VREF_1  
67 VCCO_1  
IO_L03P_3/LHCLK0  
IO_L03N_3/LHCLK1 10  
VCCO_3 11  
66 VCCINT  
65 IO_L04N_1/RHCLK7  
64 IO_L04P_1/IRDY1/RHCLK6  
63 GND  
IO_L04P_3/LHCLK2 12  
IO_L04N_3/IRDY2/LHCLK3 13  
GND 14  
62 IO_L03N_1/TRDY1/RHCLK3  
61 IO_L03P_1/RHCLK2  
60 IO_L02N_1/RHCLK1  
59 IO_L02P_1/RHCLK0  
58 GND  
IO_L05P_3/TRDY2/LHCLK6 15  
IO_L05N_3/LHCLK7 16  
VCCINT 17  
GND 18  
IO_L06P_3 19  
57 IO_L01N_1  
IO_L06N_3 20  
56 IO_L01P_1  
IP_3 21  
55 VCCAUX  
VCCAUX 22  
54 DONE  
IO_L01P_2/M1 23  
IO_L02P_2/M2 24  
IO_L01N_2/M0 25  
53 IO_L12N_2/CCLK  
52 IO_L12P_2/D1()  
51 IO_L11N_2/D0/DIN/MISO ()  
Bank 2  
Figure 17: VQ100 Package Footprint - XC3S50A (Top View)  
I/O: Unrestricted, general-purpose  
DUAL: Configuration pins, then  
VREF: User I/O or input voltage  
17  
20  
23  
6
6
user I/O  
possible user I/O  
reference for bank  
INPUT: Unrestricted,  
general-purpose input pin  
CLK: User I/O, input, or global  
buffer input  
VCCO: Output voltage supply for  
bank  
2
CONFIG: Dedicated configuration  
JTAG: Dedicated JTAG port pins  
GND: Ground  
VCCINT: Internal core supply  
2
0
4
4
3
pins  
voltage (+1.2V)  
N.C.: Not connected  
VCCAUX: Auxiliary supply voltage  
13  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
73  
 
Pinout Descriptions  
VQ100 Footprint (XC3S200A)  
Note pin 1 indicator in top-left corner and logo orientation.  
TMS  
TDI  
1
2
3
4
5
6
7
8
9
75 TDO  
Bank 0  
74 GND  
IO_L01P_3  
IO_L01N_3  
IO_L02P_3  
73 IO_L06N_1  
72 IO_L06P_1  
71 IO_L05N_1  
70 IO_L05P_1  
IO_L02N_3  
IP_3/VREF_3  
69 GND  
GND  
68 IP_1/VREF_1  
67 VCCO_1  
IO_L03P_3/LHCLK0  
IO_L03N_3/LHCLK1 10  
VCCO_3 11  
66 VCCINT  
65 IO_L04N_1/RHCLK7  
64 IO_L04P_1/IRDY1/RHCLK6  
63 GND  
IO_L04P_3/LHCLK2 12  
IO_L04N_3/IRDY2/LHCLK3 13  
GND 14  
62 IO_L03N_1/TRDY1/RHCLK3  
61 IO_L03P_1/RHCLK2  
60 IO_L02N_1/RHCLK1  
59 IO_L02P_1/RHCLK0  
58 GND  
IO_L05P_3/TRDY2/LHCLK6 15  
IO_L05N_3/LHCLK7 16  
VCCINT 17  
GND 18  
IO_L06P_3 19  
57 IO_L01N_1  
IO_L06N_3 20  
56 IO_L01P_1  
IP_3 21  
55 VCCAUX  
VCCAUX 22  
54 DONE  
IO_L01P_2/M1 23  
IO_L02P_2/M2 24  
IO_L01N_2/M0 25  
53 IO_L12N_2/CCLK  
52 IO_L11N_2/D1()  
51 IO_L12P_2/D0/DIN/MISO ()  
Bank 2  
200A  
Figure 18: VQ100 Package Footprint - XC3S200A (Top View)  
I/O: Unrestricted, general-purpose  
DUAL: Configuration pins, then  
VREF: User I/O or input voltage  
17  
20  
23  
6
6
user I/O  
possible user I/O  
reference for bank  
INPUT: Unrestricted,  
general-purpose input pin  
CLK: User I/O, input, or global  
buffer input  
VCCO: Output voltage supply for  
bank  
2
CONFIG: Dedicated configuration  
JTAG: Dedicated JTAG port pins  
GND: Ground  
VCCINT: Internal core supply  
2
0
4
4
3
pins  
voltage (+1.2V)  
N.C.: Not connected  
VCCAUX: Auxiliary supply voltage  
13  
74  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
 
Pinout Descriptions  
TQ144: 144-lead Thin Quad Flat Package  
The XC3S50A is available in the 144-lead thin quad flat  
package, TQ144.  
Table 66: Spartan-3A TQ144 Pinout(Continued)  
Pin Name  
IP_0/VREF_0  
Bank  
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
Pin  
P123  
P119  
P136  
P79  
P78  
P76  
P77  
P75  
P84  
P82  
P85  
P83  
P88  
P87  
P92  
P90  
P93  
P91  
P98  
P96  
P101  
P99  
P104  
P102  
P105  
P103  
P80  
P97  
P86  
P95  
P62  
P38  
P37  
P41  
P39  
P44  
P42  
P45  
P43  
P48  
Type  
VREF  
VCCO  
VCCO  
I/O  
Table 66 lists all the package pins. They are sorted by bank  
number and then by pin name. Pins that form a differential  
I/O pair appear together in the table. The table also shows  
the pin number for each pin and the pin type, as defined  
earlier.  
VCCO_0  
VCCO_0  
IO_1  
IO_L01N_1/LDC2  
IO_L01P_1/HDC  
IO_L02N_1/LDC0  
IO_L02P_1/LDC1  
IO_L03N_1  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
The XC3S50A does not support the address output pins for  
the Byte-wide Peripheral Interface (BPI) configuration mode.  
An electronic version of this package pinout table and  
footprint diagram is available for download from the Xilinx  
website at  
www.xilinx.com/support/documentation/data_sheets/  
s3a_pin.zip.  
IO_L03P_1  
I/O  
IO_L04N_1/RHCLK1  
IO_L04P_1/RHCLK0  
IO_L05N_1/TRDY1/RHCLK3  
IO_L05P_1/RHCLK2  
IO_L06N_1/RHCLK5  
IO_L06P_1/RHCLK4  
IO_L07N_1/RHCLK7  
IO_L07P_1/IRDY1/RHCLK6  
IO_L08N_1  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
I/O  
Pinout Table  
Table 66: Spartan-3A TQ144 Pinout  
Bank  
0
Pin Name  
Pin  
Type  
I/O  
IO_0  
P142  
P111  
P110  
P113  
P112  
P117  
P115  
P116  
P114  
P121  
P120  
P126  
P124  
P127  
P125  
P131  
P129  
P132  
P130  
P135  
P134  
P139  
P138  
P143  
P141  
P140  
0
IO_L01N_0  
I/O  
0
IO_L01P_0  
I/O  
0
IO_L02N_0  
I/O  
0
IO_L02P_0/VREF_0  
IO_L03N_0  
VREF  
I/O  
IO_L08P_1  
I/O  
0
IO_L09N_1  
I/O  
0
IO_L03P_0  
I/O  
IO_L09P_1  
I/O  
0
IO_L04N_0  
I/O  
IO_L10N_1  
I/O  
0
IO_L04P_0  
I/O  
IO_L10P_1  
I/O  
0
IO_L05N_0  
I/O  
IO_L11N_1  
I/O  
0
IO_L05P_0  
I/O  
IO_L11P_1  
I/O  
0
IO_L06N_0/GCLK5  
IO_L06P_0/GCLK4  
IO_L07N_0/GCLK7  
IO_L07P_0/GCLK6  
IO_L08N_0/GCLK9  
IO_L08P_0/GCLK8  
IO_L09N_0/GCLK11  
IO_L09P_0/GCLK10  
IO_L10N_0  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
I/O  
IP_1/VREF_1  
VREF  
VREF  
VCCO  
VCCO  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
0
IP_1/VREF_1  
0
VCCO_1  
0
VCCO_1  
0
IO_2/MOSI/CSI_B  
IO_L01N_2/M0  
IO_L01P_2/M1  
IO_L02N_2/CSO_B  
IO_L02P_2/M2  
IO_L03N_2/VS1  
IO_L03P_2/RDWR_B  
IO_L04N_2/VS0  
IO_L04P_2/VS2  
IO_L05N_2/D7  
0
0
0
0
0
IO_L10P_0  
I/O  
0
IO_L11N_0  
I/O  
0
IO_L11P_0  
I/O  
0
IO_L12N_0/PUDC_B  
IO_L12P_0/VREF_0  
IP_0  
DUAL  
VREF  
INPUT  
0
0
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
75  
 
Pinout Descriptions  
Table 66: Spartan-3A TQ144 Pinout(Continued)  
Table 66: Spartan-3A TQ144 Pinout(Continued)  
Bank  
Pin Name  
IO_L05P_2  
Pin  
P46  
P49  
P47  
P51  
P50  
P55  
P54  
P59  
P57  
P60  
P58  
P64  
Type  
I/O  
Bank  
3
Pin Name  
IO_L10P_3  
Pin  
P27  
P30  
P28  
P32  
P31  
P35  
P33  
P14  
P23  
P9  
Type  
I/O  
2
2
2
2
2
2
2
2
2
2
2
2
IO_L06N_2/D6  
DUAL  
I/O  
3
IO_L11N_3  
IO_L11P_3  
IO_L12N_3  
IO_L12P_3  
IP_L13N_3/VREF_3  
IP_L13P_3  
VCCO_3  
VCCO_3  
GND  
I/O  
IO_L06P_2  
3
I/O  
IO_L07N_2/D4  
DUAL  
DUAL  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
DUAL  
3
I/O  
IO_L07P_2/D5  
3
I/O  
IO_L08N_2/GCLK15  
IO_L08P_2/GCLK14  
IO_L09N_2/GCLK1  
IO_L09P_2/GCLK0  
IO_L10N_2/GCLK3  
IO_L10P_2/GCLK2  
IO_L11N_2/DOUT  
3
VREF  
INPUT  
VCCO  
VCCO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
3
3
3
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
P17  
P26  
P34  
P56  
P65  
P81  
P89  
P100  
P106  
P118  
P128  
P137  
GND  
PWR  
MGMT  
GND  
2
IO_L11P_2/AWAKE  
P63  
GND  
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
IO_L12N_2/D3  
IO_L12P_2/INIT_B  
IO_L13N_2/D0/DIN/MISO  
IO_L13P_2/D2  
IO_L14N_2/CCLK  
IO_L14P_2/D1  
IP_2/VREF_2  
P68  
P67  
P71  
P69  
P72  
P70  
P53  
P40  
P61  
P6  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
VREF  
VCCO  
VCCO  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCO_2  
GND  
VCCO_2  
PWR  
MGMT  
VCCAUX SUSPEND  
P74  
IO_L01N_3  
IO_L01P_3  
P4  
I/O  
VCCAUX DONE  
VCCAUX PROG_B  
VCCAUX TCK  
P73  
P144  
P109  
P2  
CONFIG  
CONFIG  
JTAG  
IO_L02N_3  
P5  
I/O  
IO_L02P_3  
P3  
I/O  
IO_L03N_3  
P8  
I/O  
VCCAUX TDI  
JTAG  
IO_L03P_3  
P7  
I/O  
VCCAUX TDO  
P107  
P1  
JTAG  
IO_L04N_3/VREF_3  
IO_L04P_3  
P11  
P10  
P13  
P12  
P16  
P15  
P20  
P18  
P21  
P19  
P25  
P24  
P29  
VREF  
I/O  
VCCAUX TMS  
JTAG  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
P36  
P66  
VCCAUX  
VCCAUX  
IO_L05N_3/LHCLK1  
IO_L05P_3/LHCLK0  
IO_L06N_3/IRDY2/LHCLK3  
IO_L06P_3/LHCLK2  
IO_L07N_3/LHCLK5  
IO_L07P_3/LHCLK4  
IO_L08N_3/LHCLK7  
IO_L08P_3/TRDY2/LHCLK6  
IO_L09N_3  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
I/O  
P108 VCCAUX  
P133 VCCAUX  
P22  
P52  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
P94  
P122  
IO_L09P_3  
I/O  
IO_L10N_3  
I/O  
76  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
Pinout Descriptions  
User I/Os by Bank  
Table 67 indicates how the 108 available user-I/O pins are  
distributed between the four I/O banks on the TQ144  
package. The AWAKE pin is counted as a dual-purpose I/O.  
Table 67: User I/Os Per Bank for the XC3S50A in the TQ144 Package  
All Possible I/O Pins by Type  
Package  
Edge  
I/O Bank  
Maximum I/O  
I/O  
14  
11  
2
INPUT  
DUAL  
VREF  
CLK  
8
Top  
0
1
2
3
27  
25  
1
0
0
1
2
1
4
3
2
1
2
8
Right  
8
Bottom  
Left  
30  
21  
0
6
26  
15  
42  
8
TOTAL  
108  
26  
30  
Footprint Migration Differences  
The XC3S50A FPGA is the only Spartan-3A device offered  
in the TQ144 package.  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
77  
 
Pinout Descriptions  
TQ144 Footprint  
Note pin 1 indicator in top-left corner and logo orientation.  
TMS  
TDI  
1
2
108 VCCAUX  
107 TDO  
Bank 0  
IO_L02P_3  
IO_L01P_3  
IO_L02N_3  
IO_L01N_3  
IO_L03P_3  
IO_L03N_3  
GND  
3
4
5
6
7
8
9
106 GND  
X
105 IO_L11N_1  
104 IO_L10N_1  
103 IO_L11P_1  
102 IO_L10P_1  
101 IO_L09N_1  
100 GND  
IO_L04P_3 10  
IO_L04N_3/VREF_3 11  
IO_L05P_3/LHCLK0 12  
IO_L05N_3/LHCLK1 13  
VCCO_3 14  
99 IO_L09P_1  
98 IO_L08N_1  
97 IP_1/VREF_1  
96 IO_L08P_1  
95 VCCO_1  
IO_L06P_3/LHCLK2 15  
IO_L06N_3/LHCLK3 16  
GND 17  
94 VCCINT  
93 IO_L07N_1/RHCLK7  
92 IO_L06N_1/RHCLK5  
91 IO_L07P_1/RHCLK6  
90 IO_L06P_1/RHCLK4  
89 GND  
IO_L07P_3/LHCLK4 18  
IO_L08P_3/LHCLK6 19  
IO_L07N_3/LHCLK5 20  
IO_L08N_3/LHCLK7 21  
VCCINT 22  
88 IO_L05N_1/RHCLK3  
87 IO_L05P_1/RHCLK2  
86 VCCO_1  
VCCO_3 23  
IO_L09P_3 24  
85 IO_L04N_1/RHCLK1  
84 IO_L03N_1  
IO_L09N_3 25  
GND 26  
83 IO_L04P_1/RHCLK0  
82 IO_L03P_1  
IO_L10P_3 27  
IO_L11P_3 28  
81 GND  
IO_L10N_3 29  
80 IP_1/VREF_1  
79 IO_1  
IO_L11N_3 30  
IO_L12P_3 31  
78 IO_L01N_1/LDC2  
77 IO_L02N_1/LDC0  
76 IO_L01P_1/HDC  
75 IO_L02P_1/LDC1  
IO_L12N_3 32  
IP_L13P_3 33  
GND 34  
IP_L13N_3/VREF_3 35  
VCCAUX 36  
74  
73  
SUSPEND  
Bank 2  
DONE  
DS529-4_10_031207  
Figure 19: TQ144 Package Footprint (Top View)  
I/O: Unrestricted, general-purpose  
DUAL: Configuration pins, then  
VREF: User I/O or input voltage  
42  
2
25  
30  
8
8
user I/O  
possible user I/O  
reference for bank  
INPUT: Unrestricted,  
general-purpose input pin  
CLK: User I/O, input, or global  
buffer input  
VCCO: Output voltage supply for  
bank  
CONFIG: Dedicated configuration  
JTAG: Dedicated JTAG port pins  
VCCINT: Internal core supply  
2
0
4
4
4
pins  
voltage (+1.2V)  
N.C.: Not connected  
GND: Ground  
VCCAUX: Auxiliary supply voltage  
13  
SUSPEND: Dedicated SUSPEND  
and dual-purpose AWAKE Power  
Management pins  
2
78  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
 
Pinout Descriptions  
FT256: 256-ball Fine-pitch, Thin Ball Grid Array  
The 256-ball fine-pitch, thin ball grid array package, FT256,  
Pinout Table  
supports all five Spartan-3A FPGAs. The XC3S200A and  
XC3S400A have identical footprints, and the XC3S700A  
and XC3S1400A have identical footprints. The XC3S50A is  
compatible with the XC3S200A/XC3S400A but has 51  
unconnected balls. The XC3S200A/XC3S400A is similar to  
the XC3S700A/XC3S1400A, but the XC3S700A/  
XC3S1400A adds more power and ground pins and  
therefore is not compatible.  
Table 68: Spartan-3A FT256 Pinout (XC3S50A,  
XC3S200A, XC3S400)  
XC3S200A  
XC3S400A  
FT256  
Ball  
Bank  
XC3S50A  
IO_L01N_0  
Type  
I/O  
0
0
0
IO_L01N_0  
C13  
D13  
B14  
IO_L01P_0  
IO_L02N_0  
IO_L01P_0  
IO_L02N_0  
I/O  
I/O  
Table 68 lists all the package pins for the XC3S50A,  
XC3S200A, and XC3S400A. They are sorted by bank  
number and then by pin name of the largest device. Pins  
that form a differential I/O pair appear together in the table.  
The table also shows the pin number for each pin and the  
pin type, as defined earlier.  
IO_L02P_0/  
VREF_0  
IO_L02P_0/  
VREF_0  
0
B15  
VREF  
0
0
0
0
0
0
IO_L03N_0  
IO_L03P_0  
IO_L04N_0  
IO_L04P_0  
N.C. ()  
IO_L03N_0  
IO_L03P_0  
IO_L04N_0  
IO_L04P_0  
IO_L05N_0  
IO_L05P_0  
D11  
C12  
A13  
A14  
A12  
B12  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
The highlighted rows indicate pinout differences between  
the XC3S50A, the XC3S200A, and the XC3S400A FPGAs.  
The XC3S50A has 51 unconnected balls, indicated as N.C.  
(No Connection) in Table 68 and Figure 20 and with the  
black diamond character (‹) in Table 68. Figure 21  
provides the common footprint for the XC3S200A and  
XC3S400A.  
IP_0  
IO_L06N_0/  
VREF_0  
0
N.C. ()  
E10  
VREF  
0
0
0
0
0
N.C. ()  
IO_L06P_0  
IO_L07N_0  
IO_L07P_0  
IO_L08N_0  
IO_L08P_0  
D10  
A11  
C11  
A10  
B10  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L07N_0  
IO_L07P_0  
IO_L08N_0  
IO_L08P_0  
Table 68 also indicates that some differential I/O pairs have  
different assignments between the XC3S50A and the  
XC3S200A/XC3S400A, highlighted in light blue. See  
"Footprint Migration Differences," page 99 for additional  
information.  
IO_L09N_0/  
GCLK5  
IO_L09N_0/  
GCLK5  
0
0
0
0
0
0
0
0
D9  
C10  
A9  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
All other balls have nearly identical functionality on all three  
devices. Table 73 summarizes the XC3S50A FPGA footprint  
migration differences for the FT256 package.  
IO_L09P_0/  
GCLK4  
IO_L09P_0/  
GCLK4  
IO_L10N_0/  
GCLK7  
IO_L10N_0/  
GCLK7  
The XC3S50A does not support the address output pins for  
the Byte-wide Peripheral Interface (BPI) configuration mode.  
IO_L10P_0/  
GCLK6  
IO_L10P_0/  
GCLK6  
C9  
D8  
C8  
B8  
Table 69 lists all the package pins for the XC3S700A and  
XC3S1400A. They are sorted by bank number and then by  
pin name. Pins that form a differential I/O pair appear  
together in the table. The table also shows the pin number  
for each pin and the pin type, as defined earlier. Figure 22  
provides the common footprint for the XC3S200A and  
XC3S400A.  
IO_L11N_0/  
GCLK9  
IO_L11N_0/  
GCLK9  
IO_L11P_0/  
GCLK8  
IO_L11P_0/  
GCLK8  
IO_L12N_0/  
GCLK11  
IO_L12N_0/  
GCLK11  
IO_L12P_0/  
GCLK10  
IO_L12P_0/  
GCLK10  
A8  
An electronic version of this package pinout table and  
footprint diagram is available for download from the Xilinx  
website at  
0
0
N.C. ()  
N.C. ()  
IO_L13N_0  
IO_L13P_0  
C7  
A7  
I/O  
I/O  
IO_L14N_0/  
VREF_0  
0
N.C. ()  
E7  
VREF  
www.xilinx.com/support/documentation/data_sheets/  
s3a_pin.zip.  
0
0
0
0
0
0
N.C. ()  
IO_L14P_0  
IO_L15N_0  
IO_L15P_0  
IO_L16N_0  
IO_L16P_0  
IO_L17N_0  
F8  
B6  
A6  
C6  
D7  
C5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L15N_0  
IO_L15P_0  
IO_L16N_0  
IO_L16P_0  
IO_L17N_0  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
79  
 
Pinout Descriptions  
Table 68: Spartan-3A FT256 Pinout (XC3S50A,  
XC3S200A, XC3S400) (Continued)  
Table 68: Spartan-3A FT256 Pinout (XC3S50A,  
XC3S200A, XC3S400) (Continued)  
XC3S200A  
XC3S400A  
FT256  
Ball  
XC3S200A  
XC3S400A  
FT256  
Ball  
Bank  
XC3S50A  
IO_L17P_0  
Type  
I/O  
Bank  
XC3S50A  
Type  
IO_L12N_1/  
IO_L12N_1/  
TRDY1/RHCLK3 TRDY1/RHCLK3  
0
0
0
0
0
IO_L17P_0  
A5  
B4  
A4  
B3  
A3  
1
J16  
K16  
H14  
J14  
RHCLK  
IO_L18N_0  
IO_L18P_0  
IO_L19N_0  
IO_L19P_0  
IO_L18N_0  
IO_L18P_0  
IO_L19N_0  
IO_L19P_0  
I/O  
IO_L12P_1/  
RHCLK2  
IO_L12P_1/  
RHCLK2  
1
1
1
1
1
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
I/O  
I/O  
IO_L14N_1/  
RHCLK5  
IO_L14N_1/  
RHCLK5  
I/O  
IO_L14P_1/  
RHCLK4  
IO_L14P_1/  
RHCLK4  
IO_L20N_0/  
PUDC_B  
IO_L20N_0/  
PUDC_B  
0
0
D5  
C4  
DUAL  
VREF  
IO_L15N_1/  
RHCLK7  
IO_L15N_1/  
RHCLK7  
H16  
H15  
IO_L20P_0/  
VREF_0  
IO_L20P_0/  
VREF_0  
IO_L15P_1/  
IRDY1/RHCLK6  
IO_L15P_1/  
IRDY1/RHCLK6  
0
0
0
0
0
0
0
0
0
0
0
IP_0  
IP_0  
D6  
D12  
E6  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
VREF  
IP_0  
IP_0  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N.C. ()  
IO_L16N_1/A11  
IO_L16P_1/A10  
IO_L17N_1/A13  
IO_L17P_1/A12  
IO_L18N_1/A15  
IO_L18P_1/A14  
IO_L19N_1/A17  
IO_L19P_1/A16  
IO_L20N_1/A19  
IO_L20P_1/A18  
IO_L22N_1/A21  
IO_L22P_1/A20  
IO_L23N_1/A23  
IO_L23P_1/A22  
IO_L24N_1/A25  
IO_L24P_1/A24  
F16  
G16  
G14  
H13  
F15  
E16  
F14  
G13  
F13  
E14  
D15  
D16  
D14  
E13  
C15  
C16  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
IP_0  
IP_0  
N.C. ()  
IP_0  
IP_0  
F7  
N.C. ()  
IP_0  
IP_0  
F9  
N.C. ()  
IP_0  
IP_0  
F10  
E9  
N.C. ()  
IP_0/VREF_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
IP_0/VREF_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
N.C. ()  
B5  
VCCO  
VCCO  
VCCO  
VCCO  
N.C. ()  
B9  
N.C. ()  
B13  
E8  
IO_L20N_1  
IO_L20P_1  
IO_L22N_1  
IO_L22P_1  
IO_L23N_1  
IO_L23P_1  
IO_L24N_1  
IO_L24P_1  
IO_L01N_1/  
LDC2  
IO_L01N_1/  
LDC2  
1
1
1
1
N14  
N13  
P15  
R15  
DUAL  
DUAL  
DUAL  
DUAL  
IO_L01P_1/  
HDC  
IO_L01P_1/  
HDC  
IO_L02N_1/  
LDC0  
IO_L02N_1/  
LDC0  
IO_L02P_1/  
LDC1  
IO_L02P_1/  
LDC1  
IP_L04N_1/  
VREF_1  
IP_L04N_1/  
VREF_1  
1
1
IO_L03N_1  
IO_L03P_1  
IO_L03N_1/A1  
IO_L03P_1/A0  
N16  
P16  
DUAL  
DUAL  
1
K12  
VREF  
1
1
IP_L04P_1  
IP_L04P_1  
IP_L09N_1  
K11  
J11  
INPUT  
INPUT  
IO_L05N_1/  
VREF_1  
1
N.C. ()  
M14  
VREF  
N.C. ()  
IP_L09P_1/  
VREF_1  
1
1
1
1
1
1
1
1
1
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
IO_L10N_1  
IO_L10P_1  
IO_L05P_1  
M13  
K13  
L13  
M16  
M15  
L16  
L14  
J13  
J12  
I/O  
1
N.C. ()  
J10  
VREF  
IO_L06N_1/A3  
IO_L06P_1/A2  
IO_L07N_1/A5  
IO_L07P_1/A4  
IO_L08N_1/A7  
IO_L08P_1/A6  
IO_L10N_1/A9  
IO_L10P_1/A8  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
1
1
1
IP_L13N_1  
IP_L13P_1  
IP_L21N_1  
IP_L13N_1  
IP_L13P_1  
IP_L21N_1  
H11  
H10  
G11  
INPUT  
INPUT  
INPUT  
IP_L21P_1/  
VREF_1  
IP_L21P_1/  
VREF_1  
1
1
1
G12  
F11  
F12  
VREF  
INPUT  
VREF  
IP_L25N_1  
IP_L25N_1  
IP_L25P_1/  
VREF_1  
IP_L25P_1/  
VREF_1  
1
1
1
1
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
E15  
H12  
J15  
VCCO  
VCCO  
VCCO  
VCCO  
IO_L11N_1/  
RHCLK1  
IO_L11N_1/  
RHCLK1  
1
1
K14  
K15  
RHCLK  
RHCLK  
IO_L11P_1/  
RHCLK0  
IO_L11P_1/  
RHCLK0  
N15  
80  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
Pinout Descriptions  
Table 68: Spartan-3A FT256 Pinout (XC3S50A,  
XC3S200A, XC3S400) (Continued)  
Table 68: Spartan-3A FT256 Pinout (XC3S50A,  
XC3S200A, XC3S400) (Continued)  
XC3S200A  
XC3S400A  
FT256  
Ball  
XC3S200A  
FT256  
Ball  
Bank  
XC3S50A  
IO_L01N_2/M0  
IO_L01P_2/M1  
Type  
DUAL  
DUAL  
Bank  
XC3S50A  
IO_L20P_2/D1  
IO_L18P_2/D2  
N.C. ()  
XC3S400A  
IO_L18N_2/D1  
IO_L18P_2/D2  
IO_L19N_2  
Type  
DUAL  
DUAL  
I/O  
2
2
IO_L01N_2/M0  
IO_L01P_2/M1  
P4  
N4  
2
2
2
2
R13  
T13  
P13  
N12  
IO_L02N_2/  
CSO_B  
IO_L02N_2/  
CSO_B  
2
T2  
DUAL  
N.C. ()  
IO_L19P_2  
I/O  
2
2
IO_L02P_2/M2  
IO_L04P_2/VS2  
IO_L02P_2/M2  
IO_L03N_2/VS2  
R2  
T3  
DUAL  
DUAL  
IO_L20N_2/  
CCLK  
IO_L20N_2/  
CCLK  
2
2
R14  
T14  
DUAL  
DUAL  
IO_L03P_2/  
RDWR_B  
IO_L03P_2/  
RDWR_B  
IO_L18N_2/D0/  
DIN/MISO  
IO_L20P_2/D0/  
DIN/MISO  
2
R3  
DUAL  
2
2
2
2
2
2
2
2
2
2
IO_L04N_2/VS0  
IO_L03N_2/VS1  
IO_L06P_2  
IO_L04N_2/VS0  
IO_L04P_2/VS1  
IO_L05N_2  
P5  
N6  
R5  
T4  
T6  
T5  
P6  
N7  
N8  
P7  
DUAL  
DUAL  
I/O  
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
IP_2  
IP_2  
L7  
L8  
INPUT  
INPUT  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
IP_2  
IP_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
VCCO_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
VCCO_2  
L9  
IO_L05P_2  
IO_L05P_2  
I/O  
L10  
M7  
M8  
M11  
N5  
M9  
R4  
R8  
R12  
C1  
C2  
D3  
D4  
E1  
IO_L06N_2/D6  
IO_L05N_2/D7  
N.C. ()  
IO_L06N_2/D6  
IO_L06P_2/D7  
IO_L07N_2  
DUAL  
DUAL  
I/O  
N.C. ()  
IO_L07P_2  
I/O  
IO_L08N_2/D4  
IO_L08P_2/D5  
IO_L08N_2/D4  
IO_L08P_2/D5  
DUAL  
DUAL  
VCCO_2  
VCCO_2  
IO_L09N_2/  
GCLK13  
VCCO_2  
VCCO_2  
2
2
2
2
2
2
2
2
N.C. ()  
N.C. ()  
T7  
R7  
T8  
P8  
P9  
N9  
T9  
R9  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
VCCO_2  
VCCO_2  
IO_L09P_2/  
GCLK12  
IO_L01N_3  
IO_L01P_3  
IO_L02N_3  
IO_L02P_3  
IO_L03N_3  
IO_L03P_3  
N.C. ()  
IO_L01N_3  
IO_L01P_3  
IO_L02N_3  
IO_L02P_3  
IO_L03N_3  
IO_L03P_3  
IO_L05N_3  
IO_L05P_3  
IO_L07N_3  
IO_L07P_3  
I/O  
IO_L10N_2/  
GCLK15  
IO_L10N_2/  
GCLK15  
I/O  
IO_L10P_2/  
GCLK14  
IO_L10P_2/  
GCLK14  
I/O  
I/O  
IO_L11N_2/  
GCLK1  
IO_L11N_2/  
GCLK1  
D1  
E2  
I/O  
IO_L11P_2/  
GCLK0  
IO_L11P_2/  
GCLK0  
I/O  
N.C. ()  
E3  
I/O  
IO_L12N_2/  
GCLK3  
IO_L12N_2/  
GCLK3  
N.C. ()  
G4  
F3  
I/O  
IO_L12P_2/  
GCLK2  
IO_L12P_2/  
GCLK2  
N.C. ()  
I/O  
IO_L08N_3/  
VREF_3  
IO_L08N_3/  
VREF_3  
2
2
N.C. ()  
N.C. ()  
IO_L13N_2  
IO_L13P_2  
M10  
N10  
I/O  
I/O  
3
G1  
VREF  
3
3
3
3
3
IO_L08P_3  
N.C. ()  
N.C. ()  
N.C. ()  
N.C. ()  
IO_L08P_3  
IO_L09N_3  
IO_L09P_3  
IO_L10N_3  
IO_L10P_3  
F1  
H4  
G3  
H5  
H6  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L14P_2/  
MOSI/CSI_B  
IO_L14N_2/  
MOSI/CSI_B  
2
2
2
P10  
T10  
R11  
DUAL  
I/O  
IO_L14N_2  
IO_L14P_2  
IO_L15N_2/  
DOUT  
IO_L15N_2/  
DOUT  
DUAL  
IO_L15P_2/  
AWAKE  
IO_L15P_2/  
AWAKE  
PWR  
IO_L11N_3/  
LHCLK1  
IO_L11N_3/  
LHCLK1  
2
T11  
3
3
3
3
H1  
G2  
J3  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
MGMT  
2
2
2
IO_L16N_2  
IO_L16P_2  
IO_L16N_2  
IO_L16P_2  
N11  
P11  
P12  
I/O  
I/O  
IO_L11P_3/  
LHCLK0  
IO_L11P_3/  
LHCLK0  
IO_L12N_3/  
IRDY2/LHCLK3  
IO_L12N_3/  
IRDY2/LHCLK3  
IO_L17N_2/D3  
IO_L17N_2/D3  
DUAL  
IO_L17P_2/  
INIT_B  
IO_L17P_2/  
INIT_B  
IO_L12P_3/  
LHCLK2  
IO_L12P_3/  
LHCLK2  
2
T12  
DUAL  
H3  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
81  
Pinout Descriptions  
Table 68: Spartan-3A FT256 Pinout (XC3S50A,  
XC3S200A, XC3S400) (Continued)  
Table 68: Spartan-3A FT256 Pinout (XC3S50A,  
XC3S200A, XC3S400) (Continued)  
XC3S200A  
XC3S400A  
FT256  
Ball  
XC3S200A  
XC3S400A  
FT256  
Ball  
Bank  
XC3S50A  
Type  
Bank  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
XC3S50A  
GND  
Type  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
IO_L14N_3/  
LHCLK5  
IO_L14N_3/  
LHCLK5  
GND  
B11  
C3  
3
J1  
J2  
K1  
LHCLK  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
IO_L14P_3/  
LHCLK4  
IO_L14P_3/  
LHCLK4  
3
3
LHCLK  
LHCLK  
C14  
E5  
IO_L15N_3/  
LHCLK7  
IO_L15N_3/  
LHCLK7  
E12  
F2  
IO_L15P_3/  
TRDY2/LHCLK6  
IO_L15P_3/  
TRDY2/LHCLK6  
3
3
3
K3  
L2  
L1  
LHCLK  
I/O  
F6  
N.C. ()  
N.C. ()  
IO_L16N_3  
G8  
IO_L16P_3/  
VREF_3  
VREF  
G10  
G15  
H9  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
N.C. ()  
IO_L17N_3  
IO_L17P_3  
IO_L18N_3  
IO_L18P_3  
IO_L19N_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
IO_L23P_3  
IO_L24N_3  
IO_L24P_3  
J6  
J4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
N.C. ()  
N.C. ()  
L3  
J8  
N.C. ()  
K4  
L4  
K2  
N.C. ()  
K7  
N.C. ()  
M3  
N1  
M1  
P1  
N2  
P2  
R1  
M4  
N3  
K9  
IO_L20N_3  
IO_L20P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
IO_L23P_3  
IO_L24N_3  
IO_L24P_3  
L11  
L15  
M5  
M12  
P3  
P14  
R6  
R10  
T1  
IP_L04N_3/  
VREF_3  
IP_L04N_3/  
VREF_3  
3
3
3
F4  
E4  
G5  
VREF  
INPUT  
VREF  
T16  
IP_L04P_3  
IP_L04P_3  
PWR  
MGMT  
IP_L06N_3/  
VREF_3  
VCCAUX SUSPEND  
SUSPEND  
R16  
N.C. ()  
VCCAUX DONE  
VCCAUX PROG_B  
VCCAUX TCK  
DONE  
CONFIG  
CONFIG  
JTAG  
T15  
A2  
3
3
3
3
3
N.C. ()  
IP_L06P_3  
IP_L13N_3  
IP_L13P_3  
IP_L21N_3  
IP_L21P_3  
G6  
J7  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
PROG_B  
TCK  
IP_L13N_3  
IP_L13P_3  
IP_L21N_3  
IP_L21P_3  
A15  
B1  
H7  
K6  
K5  
VCCAUX TDI  
TDI  
JTAG  
VCCAUX TDO  
TDO  
JTAG  
B16  
B2  
VCCAUX TMS  
TMS  
JTAG  
IP_L25N_3/  
VREF_3  
IP_L25N_3/  
VREF_3  
3
L6  
VREF  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
E11 VCCAUX  
3
3
IP_L25P_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
GND  
IP_L25P_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
GND  
L5  
D2  
H2  
J5  
INPUT  
VCCO  
VCCO  
VCCO  
VCCO  
GND  
F5  
L12  
M6  
G7  
G9  
H8  
J9  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
3
3
3
M2  
A1  
A16  
B7  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
82  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
Pinout Descriptions  
Table 69: Spartan-3A FT256 Pinout (XC3S700A,  
Table 68: Spartan-3A FT256 Pinout (XC3S50A,  
XC3S200A, XC3S400) (Continued)  
XC3S700A  
XC3S1400A  
FT256  
Ball  
Bank  
Type  
XC3S200A  
XC3S400A  
FT256  
Ball  
Bank  
XC3S50A  
Type  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IO_L18N_0  
B4  
A4  
I/O  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT  
VCCINT  
K8  
VCCINT  
VCCINT  
IO_L18P_0  
I/O  
K10  
IO_L19N_0  
B3  
I/O  
IO_L19P_0  
A3  
I/O  
Table 69: Spartan-3A FT256 Pinout (XC3S700A, XC3S1400A)  
IO_L20N_0/PUDC_B  
IO_L20P_0/VREF_0  
IP_0  
D5  
DUAL  
VREF  
INPUT  
VCCO  
VCCO  
VCCO  
VCCO  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
XC3S700A  
XC3S1400A  
FT256  
Ball  
Bank  
Type  
C4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IO_L01N_0  
C13  
D13  
B14  
B15  
D12  
C12  
A13  
A14  
A12  
B12  
D10  
D11  
A11  
C11  
A10  
B10  
D9  
I/O  
I/O  
E6  
IO_L01P_0  
VCCO_0  
B13  
B5  
IO_L02N_0  
I/O  
VCCO_0  
IO_L02P_0/VREF_0  
IO_L03N_0  
VREF  
I/O  
VCCO_0  
B9  
VCCO_0  
E8  
IO_L03P_0  
I/O  
IO_L01N_1/LDC2  
IO_L01P_1/HDC  
IO_L02N_1/LDC0  
IO_L02P_1/LDC1  
IO_L03N_1/A1  
IO_L03P_1/A0  
IO_L06N_1/A3  
IO_L06P_1/A2  
IO_L07N_1/A5  
IO_L07P_1/A4  
IO_L08N_1/A7  
IO_L08P_1/A6  
IO_L10N_1/A9  
IO_L10P_1/A8  
IO_L11N_1/RHCLK1  
IO_L11P_1/RHCLK0  
IO_L12N_1/TRDY1/RHCLK3  
IO_L12P_1/RHCLK2  
IO_L15N_1/RHCLK7  
IO_L15P_1/IRDY1/RHCLK6  
IO_L16N_1/A11  
IO_L16P_1/A10  
IO_L17N_1/A13  
IO_L17P_1/A12  
IO_L18N_1/A15  
IO_L18P_1/A14  
IO_L19N_1/A17  
IO_L19P_1/A16  
IO_L20N_1/A19  
N14  
N13  
P15  
R15  
N16  
P16  
K13  
L13  
M16  
M15  
L16  
L14  
J13  
J12  
K14  
K15  
J16  
K16  
H16  
H15  
F16  
G16  
G14  
H13  
F15  
E16  
F14  
G13  
F13  
IO_L04N_0  
I/O  
IO_L04P_0  
I/O  
IO_L05N_0  
I/O  
IO_L05P_0  
I/O  
IO_L06N_0/VREF_0  
IO_L06P_0  
VREF  
I/O  
IO_L07N_0  
I/O  
IO_L07P_0  
I/O  
IO_L08N_0  
I/O  
IO_L08P_0  
I/O  
IO_L09N_0/GCLK5  
IO_L09P_0/GCLK4  
IO_L10N_0/GCLK7  
IO_L10P_0/GCLK6  
IO_L11N_0/GCLK9  
IO_L11P_0/GCLK8  
IO_L12N_0/GCLK11  
IO_L12P_0/GCLK10  
IO_L13N_0  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
I/O  
C10  
A9  
C9  
D8  
C8  
B8  
A8  
C7  
IO_L13P_0  
A7  
I/O  
IO_L14N_0/VREF_0  
IO_L14P_0  
E7  
VREF  
I/O  
E9  
IO_L15N_0  
B6  
I/O  
IO_L15P_0  
A6  
I/O  
IO_L16N_0  
C6  
I/O  
IO_L16P_0  
D7  
I/O  
IO_L17N_0  
C5  
I/O  
IO_L17P_0  
A5  
I/O  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
83  
Pinout Descriptions  
Table 69: Spartan-3A FT256 Pinout (XC3S700A,  
Table 69: Spartan-3A FT256 Pinout (XC3S700A,  
XC3S700A  
XC3S1400A  
FT256  
Ball  
XC3S700A  
XC3S1400A  
FT256  
Ball  
Bank  
Type  
Bank  
Type  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IO_L20P_1/A18  
E14  
D15  
D16  
D14  
E13  
C15  
C16  
H12  
J14  
M13  
M14  
E15  
J15  
N15  
P4  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
VREF  
VREF  
VREF  
VREF  
VCCO  
VCCO  
VCCO  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
IO_L16N_2  
N11  
P11  
P12  
T12  
R13  
T13  
P13  
N12  
R14  
T14  
M11  
M7  
M9  
N5  
I/O  
I/O  
IO_L22N_1/A21  
IO_L22P_1/A20  
IO_L23N_1/A23  
IO_L23P_1/A22  
IO_L24N_1/A25  
IO_L24P_1/A24  
IP_1/VREF_1  
IO_L16P_2  
IO_L17N_2/D3  
IO_L17P_2/INIT_B  
IO_L18N_2/D1  
IO_L18P_2/D2  
IO_L19N_2  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
IO_L19P_2  
I/O  
IP_1/VREF_1  
IO_L20N_2/CCLK  
IO_L20P_2/D0/DIN/MISO  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
VCCO_2  
DUAL  
DUAL  
VREF  
VREF  
VREF  
VREF  
VREF  
VCCO  
VCCO  
VCCO  
I/O  
IP_1/VREF_1  
IP_1/VREF_1  
VCCO_1  
VCCO_1  
VCCO_1  
IO_L01N_2/M0  
IO_L01P_2/M1  
IO_L02N_2/CSO_B  
IO_L02P_2/M2  
IO_L03N_2/VS2  
IO_L03P_2/RDWR_B  
IO_L04N_2/VS0  
IO_L04P_2/VS1  
IO_L05N_2  
P6  
N4  
R12  
R4  
T2  
VCCO_2  
R2  
VCCO_2  
R8  
T3  
IO_L01N_3  
C1  
R3  
IO_L01P_3  
C2  
I/O  
P5  
IO_L02N_3  
D3  
I/O  
N6  
IO_L02P_3  
D4  
I/O  
R5  
IO_L03N_3  
E1  
I/O  
IO_L05P_2  
T4  
I/O  
IO_L03P_3  
D1  
I/O  
IO_L06N_2/D6  
IO_L06P_2/D7  
IO_L08N_2/D4  
IO_L08P_2/D5  
IO_L09N_2/GCLK13  
IO_L09P_2/GCLK12  
IO_L10N_2/GCLK15  
IO_L10P_2/GCLK14  
IO_L11N_2/GCLK1  
IO_L11P_2/GCLK0  
IO_L12N_2/GCLK3  
IO_L12P_2/GCLK2  
IO_L14N_2/MOSI/CSI_B  
IO_L14P_2  
T6  
DUAL  
DUAL  
DUAL  
DUAL  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
DUAL  
I/O  
IO_L04N_3  
F4  
I/O  
T5  
IO_L04P_3  
E4  
I/O  
N8  
IO_L05N_3  
E2  
I/O  
P7  
IO_L05P_3  
E3  
I/O  
T7  
IO_L07N_3  
G3  
F3  
I/O  
R7  
IO_L07P_3  
I/O  
T8  
IO_L08N_3/VREF_3  
IO_L08P_3  
G1  
F1  
VREF  
I/O  
P8  
P9  
IO_L11N_3/LHCLK1  
IO_L11P_3/LHCLK0  
IO_L12N_3/IRDY2/LHCLK3  
IO_L12P_3/LHCLK2  
IO_L14N_3/LHCLK5  
IO_L14P_3/LHCLK4  
IO_L15N_3/LHCLK7  
IO_L15P_3/TRDY2/LHCLK6  
H1  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
N9  
G2  
J3  
T9  
R9  
H3  
P10  
T10  
R11  
T11  
J1  
J2  
IO_L15N_2/DOUT  
IO_L15P_2/AWAKE  
DUAL  
PWRMGT  
K1  
K3  
84  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
Pinout Descriptions  
Table 69: Spartan-3A FT256 Pinout (XC3S700A,  
Table 69: Spartan-3A FT256 Pinout (XC3S700A,  
XC3S700A  
XC3S1400A  
FT256  
Ball  
XC3S700A  
XC3S1400A  
FT256  
Ball  
Bank  
Type  
Bank  
Type  
3
3
IO_L16N_3  
L2  
L1  
I/O  
VREF  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
G8  
H11  
H5  
GND  
GND  
IO_L16P_3/VREF_3  
IO_L18N_3  
IO_L18P_3  
IO_L19N_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L22N_3  
IO_L22P_3/VREF_3  
IO_L23N_3  
IO_L23P_3  
IO_L24N_3  
IO_L24P_3  
IP_3  
3
L3  
GND  
3
K4  
I/O  
H7  
GND  
3
L4  
I/O  
H9  
GND  
3
M3  
N1  
M1  
P1  
I/O  
J10  
J6  
GND  
3
I/O  
GND  
3
I/O  
J8  
GND  
3
I/O  
K11  
K12  
K2  
GND  
3
N2  
P2  
VREF  
I/O  
GND  
3
GND  
3
R1  
M4  
N3  
J4  
I/O  
K5  
GND  
3
I/O  
K7  
GND  
3
I/O  
K9  
GND  
3
INPUT  
VREF  
VREF  
VCCO  
VCCO  
VCCO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
L10  
L11  
L15  
L6  
GND  
3
IP_3/VREF_3  
IP_3/VREF_3  
VCCO_3  
VCCO_3  
VCCO_3  
GND  
G4  
J5  
GND  
3
GND  
3
D2  
H2  
M2  
A1  
GND  
3
L8  
GND  
3
M12  
M5  
M8  
N10  
N7  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
A16  
B11  
B7  
GND  
GND  
GND  
GND  
GND  
GND  
C14  
C3  
E10  
E12  
E5  
P14  
P3  
GND  
GND  
GND  
GND  
R10  
R6  
GND  
GND  
GND  
GND  
T1  
GND  
GND  
F11  
F2  
T16  
R16  
T15  
A2  
GND  
GND  
VCCAUX SUSPEND  
VCCAUX DONE  
VCCAUX PROG_B  
VCCAUX TCK  
PWRMGT  
CONFIG  
CONFIG  
JTAG  
JTAG  
JTAG  
JTAG  
VCCAUX  
VCCAUX  
VCCAUX  
GND  
F6  
GND  
F7  
GND  
F8  
A15  
B1  
GND  
F9  
VCCAUX TDI  
GND  
G10  
G12  
G15  
G5  
G6  
VCCAUX TDO  
B16  
B2  
GND  
VCCAUX TMS  
GND  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
D6  
GND  
E11  
F12  
GND  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
85  
Pinout Descriptions  
Table 69: Spartan-3A FT256 Pinout (XC3S700A,  
XC3S700A  
XC3S1400A  
FT256  
Ball  
Bank  
Type  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
F5  
H14  
H4  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
L12  
L5  
M10  
M6  
F10  
G11  
G7  
G9  
H10  
H6  
H8  
J11  
J7  
J9  
K10  
K6  
K8  
L7  
L9  
86  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
Pinout Descriptions  
User I/Os by Bank  
Table 70, Table 71, and Table 72 indicate how the available  
user-I/O pins are distributed between the four I/O banks on  
the FT256 package. The AWAKE pin is counted as a  
dual-purpose I/O.  
The XC3S50A FPGA in the FT256 package has 51  
unconnected balls, labeled with an “N.C.type. These pins  
are also indicated in Figure 20.  
Table 70: User I/Os Per Bank on XC3S50A in the FT256 Package  
All Possible I/O Pins by Type  
Package  
I/O Bank  
Maximum I/O  
Edge  
I/O  
21  
12  
5
INPUT  
DUAL  
VREF  
CLK  
8
Top  
0
1
2
3
40  
32  
7
5
1
4
3
3
Right  
8
Bottom  
Left  
40  
2
21  
0
6
6
32  
15  
53  
6
3
8
TOTAL  
144  
20  
26  
15  
30  
.
Table 71: User I/Os Per Bank on XC3S200A and XC3S400A in the FT256 Package  
All Possible I/O Pins by Type  
Package  
Edge  
I/O Bank  
Maximum I/O  
I/O  
27  
1
INPUT  
DUAL  
1
VREF  
CLK  
8
Top  
0
1
2
3
47  
50  
6
6
5
5
Right  
30  
21  
0
8
Bottom  
Left  
48  
11  
30  
69  
2
6
8
50  
7
5
8
TOTAL  
195  
21  
52  
21  
32  
Table 72: User I/Os Per Bank on XC3S700A and XC3S1400A in the FT256 Package  
All Possible I/O Pins by Type  
Package  
Edge  
I/O Bank  
Maximum I/O  
I/O  
27  
0
INPUT  
DUAL  
1
VREF  
CLK  
8
Top  
0
1
2
3
41  
40  
1
0
0
1
2
4
4
Right  
30  
21  
0
6
Bottom  
Left  
41  
7
5
8
39  
25  
59  
5
8
TOTAL  
161  
52  
18  
30  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
87  
 
 
 
Pinout Descriptions  
Footprint Migration Differences  
Unconnected Balls on XC3S50A  
Table 73: FT256 XC3S50A Footprint Migration  
Table 73 summarizes any footprint and functionality  
differences between the XC3S50A and the XC3S200A or  
XC3S400A FPGAs that might affect easy migration between  
these devices in the FT256 package. The XC3S200A and  
XC3S400A have identical pinouts. The XC3S50A pinout is  
compatible, but there are 52 balls that are different.  
Generally, designs easily migrate upward from the  
XC3S50A to either the XC3S200A or XC3S400A. If using  
differential I/O, see Table 74. If using the BPI configuration  
mode (parallel Flash), see Table 75.  
XC3S200A/  
XC3S400A  
Type  
FT256  
Ball  
XC3S50A  
Type  
Bank  
3
Migration  
Æ
K4  
K13  
L1  
N.C.  
I/O  
1
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
Æ
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
3
Æ
L2  
3
Æ
L3  
3
Æ
L4  
3
Æ
Table 73: FT256 XC3S50A Footprint Migration Difference  
L13  
L14  
L16  
M3  
1
Æ
XC3S200A/  
FT256  
Ball  
XC3S50A  
Type  
XC3S400A  
Type  
1
Æ
Bank  
0
Migration  
Æ
1
Æ
A7  
A12  
B12  
C7  
N.C.  
I/O  
3
Æ
0
N.C.  
INPUT  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
Æ
I/O  
M10  
M13  
M14  
M15  
M16  
N7  
2
Æ
0
Æ
I/O  
1
Æ
0
Æ
I/O  
1
Æ
D10  
E2  
0
Æ
I/O  
1
Æ
3
Æ
I/O  
1
Æ
E3  
3
Æ
I/O  
2
Æ
E7  
0
Æ
I/O  
N10  
N12  
P6  
2
Æ
E10  
E16  
F3  
0
Æ
I/O  
2
Æ
1
Æ
I/O  
2
Æ
3
Æ
I/O  
P13  
R7  
2
Æ
F8  
0
Æ
I/O  
2
Æ
F14  
F15  
F16  
G3  
1
Æ
I/O  
T7  
2
Æ
1
Æ
I/O  
DIFFERENCES  
Legend:  
52  
1
Æ
I/O  
3
Æ
I/O  
This pin can unconditionally migrate from the device  
on the left to the device on the right. Migration in the  
other direction is possible depending on how the pin is  
configured for the device on the right.  
Æ
G4  
3
Æ
I/O  
G5  
3
Æ
INPUT  
INPUT  
I/O  
G6  
3
Æ
G13  
G14  
G16  
H4  
1
Æ
1
Æ
I/O  
1
Æ
I/O  
3
Æ
I/O  
H5  
3
Æ
I/O  
H6  
3
Æ
I/O  
H13  
J4  
1
Æ
I/O  
3
Æ
I/O  
J6  
3
Æ
I/O  
J10  
J11  
1
Æ
INPUT  
INPUT  
1
Æ
88  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
 
Pinout Descriptions  
XC3S50A Differential I/O Alignment Differences  
Also, some differential I/O pairs on the XC3S50A FPGA are  
aligned differently than the corresponding pairs on the  
XC3S200A or XC3S400A FPGAs, as shown in Table 74. All  
the mismatched pairs are in I/O Bank 2. The shading  
highlights the N side of each pair.  
Table 74: Differential I/O Differences in FT256  
FT256  
Ball  
XC3S200A  
XC3S400A  
Bank  
XC3S50A  
T3  
N6  
R5  
T5  
IO_L04P_2/VS2  
IO_L03N_2/VS1  
IO_L06P_2  
IO_L03N_2/VS2  
IO_L04P_2/VS1  
IO_L05N_2  
IO_L05N_2/D7  
IO_L06P_2/D7  
2
IO_L14P_2/MOSI IO_L14N_2/MOSI  
P10  
/CSI_B  
/CSI_B  
T10  
R13  
T14  
IO_L14N_2  
IO_L20P_2  
IO_L18N_2  
IO_L14P_2  
IO_L18N_2  
IO_L20P_2  
XC3S50A Does Not Have BPI Mode Address Outputs  
The XC3S50A FPGA does not generate the BPI-mode  
address pins during configuration. Table 75 summarizes  
these differences.  
Table 75: XC3S50A BPI Functional Differences  
FT256  
Ball  
XC3S200A  
XC3S400A  
Bank  
XC3S50A  
IO_L03N_1  
N16  
P16  
J13  
IO_L03N_1/A1  
IO_L03P_1/A0  
IO_L10N_1/A9  
IO_L10P_1/A8  
IO_L20N_1/A19  
IO_L20P_1/A18  
IO_L22N_1/A21  
IO_L22P_1/A20  
IO_L23N_1/A23  
IO_L23P_1/A22  
IO_L24N_1/A25  
IO_L24P_1/A24  
IO_L03P_1  
IO_L10N_1  
IO_L10P_1  
IO_L20N_1  
IO_L20P_1  
IO_L22N_1  
IO_L22P_1  
IO_L23N_1  
IO_L23P_1  
IO_L24N_1  
IO_L24P_1  
J12  
F13  
E14  
D15  
D16  
D14  
E13  
C15  
C16  
1
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
89  
 
 
Pinout Descriptions  
Differences Between XC3S200A/XC3S400A and XC3S700A/XC3S1400A  
The XC3S700A and XC3S1400A FPGAs have several  
additional power and ground pins as compared to the  
XC3S200A and XC3S400A. Table 76 summarizes all the  
differences. All dedicated and dual-purpose configuration  
pins are in the same location.  
Table 76: Differences Between XC3S200A/XC3S400A  
and XC3S700A/XC3S1400A (Continued)  
XC3S200A  
XC3S700A  
FT256  
Ball  
XC3S400A  
XC3S1400A  
Bank  
Pin Name  
Type  
I/O  
Pin Name  
GND  
Type  
Table 76: Differences Between XC3S200A/XC3S400A  
and XC3S700A/XC3S1400A  
N10  
M10  
2
2
IO_L13P_2  
IO_L13N_2  
GND  
I/O  
VCCAUX  
VCCAUX  
XC3S200A  
XC3S400A  
XC3S700A  
IP_2/  
FT256  
Ball  
XC3S1400A  
P6  
2
IO_L07N_2  
I/O  
VREF  
Bank  
VREF_2  
Pin Name  
Type  
I/O  
Pin Name  
Type  
GND  
I/O  
L8  
L7  
2
2
IP_2  
IP_2  
INPUT GND  
GND  
F8  
0
0
IO_L14P_0  
IO_L03N_0  
GND  
INPUT VCCINT  
VCCINT  
D11  
I/O  
IO_L06P_0  
IP_2/  
VCCO  
M9  
L10  
M8  
L9  
2
2
2
2
VCCO_2  
VREF  
GND  
VREF_2  
IO_L06N_0/  
VREF_0  
D10  
0
IO_L06P_0  
I/O  
VREF  
IP_2/  
VREF_2  
VREF GND  
VREF GND  
VREF VCCINT  
F7  
F9  
0
0
0
IP_0  
IP_0  
IP_0  
INPUT GND  
GND  
GND  
I/O  
IP_2/  
VREF_2  
INPUT GND  
GND  
D12  
INPUT IO_L03N_0  
IP_2/  
VREF_2  
VCCINT  
IP_0/  
VREF_0  
E9  
0
INPUT IO_L14P_0  
I/O  
H5  
J6  
3
3
3
3
3
3
IO_L10N_3  
IO_L17N_3  
IO_L09P_3  
IO_L17P_3  
IO_L09N_3  
IO_L10P_3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
GND  
D6  
0
0
IP_0  
IP_0  
INPUT VCCAUX  
INPUT VCCINT  
VCCAUX  
VCCINT  
GND  
F10  
G3  
J4  
IO_L07N_3  
IP_3  
I/O  
IO_L06N_0/  
VREF_0  
E10  
M13  
0
1
VREF GND  
GND  
IP  
H4  
H6  
VCCAUX  
VCCINT  
VCCAUX  
VCCINT  
IP_1/  
I/O  
IO_L05P_1  
VREF  
VREF_1  
F11  
H11  
K11  
G11  
H10  
J11  
1
1
1
1
1
1
IP_L25N_1 INPUT GND  
IP_L13N_1 INPUT GND  
IP_L04P_1 INPUT GND  
IP_L21N_1 INPUT VCCINT  
IP_L13P_1 INPUT VCCINT  
IP_L09N_1 INPUT VCCINT  
GND  
GND  
IO_L22P_3/  
VREF_3  
N2  
G4  
3
3
IO_L22P_3  
IO_L07N_3  
I/O  
I/O  
VREF  
VREF  
IP_3/  
VREF_3  
GND  
VCCINT  
VCCINT  
VCCINT  
G6  
H7  
K5  
E4  
L5  
J7  
3
3
3
3
3
3
3
IP_L06P_3 INPUT GND  
IP_L13P_3 INPUT GND  
IP_L21P_3 INPUT GND  
IP_L04P_3 INPUT IO_L04P_3  
IP_L25P_3 INPUT VCCAUX  
IP_L13N_3 INPUT VCCINT  
IP_L21N_3 INPUT VCCINT  
IP_3/  
GND  
GND  
GND  
IO_L14N_1/  
RHCLK VCCAUX  
RHCLK5  
H14  
J14  
H12  
G12  
J10  
K12  
F12  
1
1
1
1
1
1
1
VCCAUX  
VREF  
VREF  
GND  
I/O  
VCCAUX  
VCCINT  
VCCINT  
IO_L14P_1/  
RHCLK4  
IP_1/  
RHCLK  
VCCO  
VREF_1  
IP_1/  
VREF_1  
VCCO_1  
K6  
IP_L21P_1/  
VREF_1  
J5  
G5  
L6  
F4  
3
3
3
3
VCCO_3  
VCCO  
VREF  
GND  
GND  
I/O  
VREF GND  
VREF GND  
VREF GND  
VREF VCCAUX  
VREF_3  
IP_L06N_3/  
VREF_3  
IP_L09P_1/  
VREF_1  
VREF GND  
GND  
IP_L25N_3/  
VREF_3  
IP_L04N_1/  
VREF_1  
VREF GND  
GND  
IP_L04N_3/  
VREF_3  
IP_L25P_1/  
VREF_1  
VREF IO_L04N_3  
VCCAUX  
IO_L05N_1/  
VREF_1  
IP_1/  
VREF  
M14  
N7  
1
2
VREF  
GND  
VREF_1  
IO_L07P_2  
I/O  
GND  
90  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
 
Pinout Descriptions  
FT256 Footprint (XC3S50A)  
(Differential Outputs)  
(Differential Outputs)  
Bank 0  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
N.C.  
N.C.  
TCK  
GND  
L12P_0  
L10N_0  
A
B
C
D
E
F
L19P_0  
L18P_0  
L17P_0  
L15P_0  
L08N_0  
L07N_0  
L04N_0  
L04P_0  
GCLK10  
GCLK7  
I/O  
L12N_0  
GCLK11  
I/O  
L02P_0  
VREF_0  
I/O  
L19N_0  
I/O  
L18N_0  
I/O  
L15N_0  
I/O  
L08P_0  
I/O  
L02N_0  
VCCO_0  
VCCO_0  
VCCO_0  
TDI  
TMS  
GND  
N.C.  
GND  
INPUT  
TDO  
I/O  
L20P_0  
VREF_0  
I/O  
L11P_0  
GCLK8  
I/O  
L10P_0  
GCLK6  
I/O  
L09P_0  
GCLK4  
I/O  
L01N_3  
I/O  
L01P_3  
I/O  
L17N_0  
I/O  
L16N_0  
I/O  
L07P_0  
I/O  
L03P_0  
I/O  
L01N_0  
I/O  
L24N_1  
I/O  
L24P_1  
GND  
GND  
I/O  
L20N_0  
PUDC_B  
I/O  
L11N_0  
GCLK9  
I/O  
L09N_0  
GCLK5  
I/O  
L03P_3  
I/O  
L02N_3  
I/O  
L02P_3  
I/O  
L16P_0  
I/O  
L03N_0  
I/O  
L01P_0  
I/O  
L23N_1  
I/O  
L22N_1  
I/O  
L22P_1  
VCCO_3  
N.C.  
INPUT  
INPUT  
GND  
N.C.  
N.C.  
INPUT  
GND  
I/O  
L03N_3  
INPUT  
L04P_3  
INPUT  
VREF_0  
I/O  
L23P_1  
I/O  
L20P_1  
VCCO_0  
VCCAUX  
VCCO_1  
N.C.  
N.C.  
N.C.  
N.C.  
GND  
VCCAUX  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
INPUT  
L04N_3  
VREF_3  
INPUT  
L25P_1  
VREF_1  
I/O  
L08P_3  
INPUT  
L25N_1  
I/O  
L20N_1  
GND  
INPUT  
N.C.  
INPUT INPUT  
N.C.  
N.C.  
I/O  
L08N_3  
VREF_3 LHCLK0  
I/O  
L11P_3  
INPUT  
L21P_1  
VREF_1  
INPUT  
L21N_1  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C. VCCINT GND VCCINT GND  
N.C.  
N.C.  
GND  
G
H
J
I/O  
L15P_1  
IRDY1  
I/O  
I/O  
L12P_3  
LHCLK2  
I/O  
L14N_1  
RHCLK5  
I/O  
L15N_1  
RHCLK7  
INPUT  
INPUT INPUT  
L13P_1  
VCCO_3  
L11N_3  
VCCO_1  
N.C.  
N.C.  
N.C.  
VCCINT GND  
L13P_3  
L13N_1  
LHCLK1  
RHCLK6  
I/O  
L12N_3  
IRDY2  
LHCLK3  
I/O  
L12N_1  
TRDY1  
RHCLK3  
I/O  
L14N_3  
LHCLK5 LHCLK4  
I/O  
L14P_3  
I/O  
L14P_1  
RHCLK4  
INPUT  
L13N_3  
I/O  
L10P_1  
I/O  
L10N_1  
VCCO_3  
VCCO_1  
GND VCCINT N.C.  
N.C.  
I/O  
L15P_3  
TRDY2  
LHCLK6  
I/O  
L15N_3  
LHCLK7  
INPUT  
L04N_1  
VREF_1  
I/O  
L11N_1  
I/O  
L11P_1  
I/O  
L12P_1  
INPUT INPUT  
L21P_3  
INPUT  
L04P_1  
GND  
N.C.  
GND VCCINT GND VCCINT  
N.C.  
N.C.  
N.C.  
K
L
L21N_3  
RHCLK1 RHCLK0 RHCLK2  
INPUT  
L25N_3  
VREF_3  
INPUT  
L25P_3  
INPUT INPUT  
INPUT INPUT  
VCCAUX  
GND  
N.C.  
N.C.  
N.C.  
GND  
N.C.  
N.C.  
GND  
N.C.  
N.C.  
N.C.  
VREF_2 VREF_2  
I/O  
L20P_3  
I/O  
L24N_3  
INPUT INPUT  
VREF_2 VREF_2  
INPUT  
VREF_2  
VCCO_3  
VCCAUX  
VCCO_2  
GND  
N.C.  
N.C.  
M
N
P
R
T
I/O  
L01P_2  
M1  
I/O  
L03N_2  
VS1  
I/O  
L08N_2  
D4  
I/O  
L11P_2  
GCLK0  
I/O  
L01P_1  
HDC  
I/O  
L01N_1  
LDC2  
I/O  
L20N_3  
I/O  
L22P_3  
I/O  
L24P_3  
INPUT  
VREF_2  
I/O  
L16N_2  
I/O  
L03N_1  
VCCO_1  
N.C.  
N.C.  
I/O  
L14P_2  
MOSI  
I/O  
L01N_2  
M0  
I/O  
L04N_2  
VS0  
I/O  
L08P_2  
D5  
I/O  
L10P_2  
GCLK14  
I/O  
L11N_2  
GCLK1  
I/O  
L17N_2  
D3  
I/O  
L02N_1  
LDC0  
I/O  
L22N_3  
I/O  
L23N_3  
I/O  
L16P_2  
I/O  
L03P_1  
GND  
N.C.  
N.C.  
GND  
CSI_B  
I/O  
L02P_2  
M2  
I/O  
L03P_2  
RDWR_B  
I/O  
L12P_2  
GCLK2  
I/O  
L15N_2  
DOUT  
I/O  
L20P_2  
D1  
I/O  
L20N_2  
CCLK  
I/O  
L02P_1  
LDC1  
I/O  
L23P_3  
I/O  
L06P_2  
VCCO_2  
VCCO_2  
VCCO_2  
GND  
N.C.  
N.C.  
GND  
I/O  
L18N_2  
D0  
I/O  
L02N_2  
CSO_B  
I/O  
L04P_2  
VS2  
I/O  
L05N_2  
D7  
I/O  
L06N_2  
D6  
I/O  
L10N_2  
GCLK15  
I/O  
L12N_2  
GCLK3  
I/O  
L15P_2  
AWAKE  
I/O  
L17P_2  
INIT_B  
I/O  
L18P_2  
D2  
I/O  
L05P_2  
I/O  
L14N_2  
GND  
DONE  
GND  
DIN/MISO  
(Differential Outputs)  
Bank 2  
(Differential Outputs)  
DS529-4_09_012009  
Figure 20: XC3S50A FT256 Package Footprint (Top View)  
I/O: Unrestricted,  
DUAL: Configuration pins,  
VREF: User I/O or input  
SUSPEND: Dedicated  
SUSPEND and  
dual-purpose AWAKE  
Power Management pins  
53  
20  
2
25  
30  
4
15  
16  
6
2
general-purpose user I/O  
then possible user I/O  
voltage reference for bank  
INPUT: Unrestricted,  
general-purpose input pin  
CLK: User I/O, input, or  
global buffer input  
VCCO: Output voltage  
supply for bank  
CONFIG: Dedicated  
configuration pins  
JTAG: Dedicated JTAG  
port pins  
VCCINT: Internal core  
supply voltage (+1.2V)  
N.C.: Not connected  
(XC3S50A only)  
GND: Ground  
VCCAUX: Auxiliary supply  
voltage  
51  
28  
4
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
91  
Pinout Descriptions  
FT256 Footprint (XC3S200A, XC3S400A)  
Bank 0  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
TCK  
GND  
L12P_0  
L10N_0  
A
B
C
D
E
F
L19P_0  
L18P_0  
L17P_0  
L15P_0  
L13P_0  
L08N_0  
L07N_0  
L05N_0  
L04N_0  
L04P_0  
GCLK10  
GCLK7  
I/O  
L12N_0  
GCLK11  
I/O  
L02P_0  
VREF_0  
I/O  
L19N_0  
I/O  
L18N_0  
I/O  
L15N_0  
I/O  
L08P_0  
I/O  
L05P_0  
I/O  
L02N_0  
VCCO_0  
VCCO_0  
VCCO_0  
TDI  
TMS  
GND  
GND  
TDO  
I/O  
L20P_0  
VREF_0  
I/O  
L11P_0  
GCLK8  
I/O  
L10P_0  
GCLK6  
I/O  
L09P_0  
GCLK4  
I/O  
L24N_1  
A25  
I/O  
L24P_1  
A24  
I/O  
L01N_3  
I/O  
L01P_3  
I/O  
L17N_0  
I/O  
L16N_0  
I/O  
L13N_0  
I/O  
L07P_0  
I/O  
L03P_0  
I/O  
L01N_0  
GND  
GND  
I/O  
L20N_0  
PUDC_B  
I/O  
L11N_0  
GCLK9  
I/O  
L09N_0  
GCLK5  
I/O  
L23N_1  
A23  
I/O  
L22N_1  
A21  
I/O  
L22P_1  
A20  
I/O  
L03P_3  
I/O  
L02N_3  
I/O  
L02P_3  
I/O  
L16P_0  
I/O  
L06P_0  
I/O  
L03N_0  
I/O  
L01P_0  
VCCO_3  
INPUT  
INPUT  
GND  
INPUT  
GND  
I/O  
L14N_0  
VREF_0  
I/O  
L06N_0  
VREF_0  
I/O  
L23P_1  
A22  
I/O  
L20P_1  
A18  
I/O  
L18P_1  
A14  
I/O  
L03N_3  
I/O  
L05N_3  
I/O  
L05P_3  
INPUT  
L04P_3  
INPUT  
VREF_0  
VCCO_0  
VCCAUX  
VCCO_1  
GND  
INPUT  
L04N_3  
VREF_3  
INPUT  
L25P_1  
VREF_1  
I/O  
L20N_1  
A19  
I/O  
L19N_1  
A17  
I/O  
L18N_1  
A15  
I/O  
L16N_1  
A11  
I/O  
L08P_3  
I/O  
L07P_3  
I/O  
L14P_0  
INPUT  
L25N_1  
VCCAUX  
GND  
INPUT  
INPUT INPUT  
I/O  
I/O  
INPUT  
L06N_3  
VREF_3  
INPUT  
L21P_1  
VREF_1  
I/O  
L19P_1  
A16  
I/O  
L17N_1  
A13  
I/O  
L16P_1  
A10  
I/O  
I/O  
INPUT  
INPUT  
VCCINT GND VCCINT GND  
GND  
L08N_3  
L11P_3  
G
H
J
L09P_3  
L07N_3  
L06P_3  
L21N_1  
VREF_3 LHCLK0  
I/O  
L15P_1  
IRDY1  
I/O  
I/O  
L12P_3  
LHCLK2  
I/O  
L17P_1  
A12  
I/O  
L14N_1  
RHCLK5  
I/O  
L15N_1  
RHCLK7  
I/O  
L09N_3  
I/O  
L10N_3  
I/O  
L10P_3  
INPUT  
INPUT INPUT  
VCCO_3  
L11N_3  
VCCO_1  
VCCINT GND  
GND VCCINT  
L13P_3  
L13P_1  
L13N_1  
LHCLK1  
RHCLK6  
I/O  
L12N_3  
IRDY2  
LHCLK3  
I/O  
L12N_1  
TRDY1  
RHCLK3  
I/O  
L14N_3  
LHCLK5 LHCLK4  
I/O  
L14P_3  
INPUT  
L09P_1  
VREF_1  
I/O  
L10P_1  
A8  
I/O  
L10N_1  
A9  
I/O  
L14P_1  
RHCLK4  
I/O  
L17P_3  
I/O  
L17N_3  
INPUT  
L13N_3  
INPUT  
L09N_1  
VCCO_3  
VCCO_1  
I/O  
L15P_3  
TRDY2  
LHCLK6  
I/O  
INPUT  
L04N_1  
VREF_1  
I/O  
L06N_1  
A3  
I/O  
I/O  
I/O  
I/O  
L18P_3  
INPUT INPUT  
INPUT  
L04P_1  
GND  
GND VCCINT GND VCCINT  
L15N_3  
L11N_1  
L11P_1  
L12P_1  
K
L
L21P_3  
L21N_3  
LHCLK7  
RHCLK1 RHCLK0 RHCLK2  
I/O  
INPUT  
L25N_3  
VREF_3  
I/O  
L06P_1  
A2  
I/O  
L08P_1  
A6  
I/O  
L08N_1  
A7  
I/O  
L16N_3  
I/O  
L18N_3  
I/O  
L19N_3  
INPUT  
L25P_3  
INPUT INPUT  
INPUT INPUT  
VCCAUX  
GND  
GND  
L16P_3  
VREF_2 VREF_2  
VREF_3  
I/O  
I/O  
L07P_1  
A4  
I/O  
L07N_1  
A5  
I/O  
I/O  
I/O  
INPUT INPUT  
I/O  
INPUT  
I/O  
VCCO_3  
VCCAUX  
VCCO_2  
GND  
GND  
L05N_1  
M
N
P
R
T
L20P_3  
L19P_3  
L24N_3  
VREF_2 VREF_2  
L13N_2 VREF_2  
L05P_1  
VREF_1  
I/O  
L01P_2  
M1  
I/O  
L04P_2  
VS1  
I/O  
I/O  
I/O  
L11P_2  
GCLK0  
I/O  
L01P_1  
HDC  
I/O  
L01N_1  
LDC2  
I/O  
L03N_1  
A1  
I/O  
L20N_3  
I/O  
L22P_3  
I/O  
L24P_3  
INPUT  
VREF_2  
I/O  
L13P_2  
I/O  
L16N_2  
I/O  
L19P_2  
VCCO_1  
L08N_2  
L07P_2  
D4  
I/O  
L14N_2  
MOSI  
I/O  
L01N_2  
M0  
I/O  
L04N_2  
VS0  
I/O  
L08P_2  
D5  
I/O  
I/O  
L11N_2  
GCLK1  
I/O  
L17N_2  
D3  
I/O  
L02N_1  
LDC0  
I/O  
L03P_1  
A0  
I/O  
L22N_3  
I/O  
L23N_3  
I/O  
L07N_2  
I/O  
L16P_2  
I/O  
L19N_2  
GND  
GND  
L10P_2  
GCLK14  
CSI_B  
I/O  
L02P_2  
M2  
I/O  
L03P_2  
RDWR_B  
I/O  
L09P_2  
I/O  
L12P_2  
GCLK2  
I/O  
L15N_2  
DOUT  
I/O  
L18N_2  
D1  
I/O  
L20N_2  
CCLK  
I/O  
L02P_1  
LDC1  
I/O  
L23P_3  
I/O  
L05N_2  
VCCO_2  
VCCO_2  
VCCO_2  
GND  
GND  
GCLK12  
I/O  
L20P_2  
D0  
I/O  
L02N_2  
CSO_B  
I/O  
L03N_2  
VS2  
I/O  
L06P_2  
D7  
I/O  
L06N_2  
D6  
I/O  
L09N_2  
I/O  
L10N_2  
I/O  
L12N_2  
GCLK3  
I/O  
L15P_2  
AWAKE  
I/O  
L17P_2  
INIT_B  
I/O  
L18P_2  
D2  
I/O  
L05P_2  
I/O  
L14P_2  
GND  
DONE  
GND  
GCLK13 GCLK15  
DIN/MISO  
DS529-4_06_012009  
Bank 2  
Figure 21: XC3S200A and XC3S400A FT256 Package Footprint (Top View)  
I/O: Unrestricted,  
DUAL: Configuration pins,  
VREF: User I/O or input  
SUSPEND: Dedicated  
SUSPEND and  
dual-purpose AWAKE  
Power Management pins  
69  
21  
2
51  
32  
4
21  
16  
6
2
general-purpose user I/O  
then possible user I/O  
voltage reference for bank  
INPUT: Unrestricted,  
general-purpose input pin  
CLK: User I/O, input, or  
global buffer input  
VCCO: Output voltage  
supply for bank  
CONFIG: Dedicated  
configuration pins  
JTAG: Dedicated JTAG  
port pins  
VCCINT: Internal core  
supply voltage (+1.2V)  
N.C.: Not connected  
GND: Ground  
VCCAUX: Auxiliary supply  
voltage  
0
28  
4
92  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
Pinout Descriptions  
FT256 Footprint (XC3S700A, XC3S1400A)  
Bank 0  
11  
1
2
3
4
5
6
7
8
9
10  
12  
13  
14  
15  
16  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND PROG_B  
GND  
TCK  
L12P_0 L10N_0  
GCLK10  
A
B
C
D
E
F
L19P_0 L18P_0 L17P_0 L15P_0 L13P_0  
L08N_0 L07N_0 L05N_0 L04N_0 L04P_0  
GCLK7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDI  
I/O  
TMS  
I/O  
VCCO_0  
I/O  
GND L12N_0 VCCO_0  
GND  
I/O  
VCCO_0  
I/O  
L02P_0  
VREF_0  
TDO  
I/O  
L19N_0 L18N_0  
L15N_0  
L08P_0  
L05P_0  
L02N_0  
GCLK11  
I/O  
L20P_0  
VREF_0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
L11P_0 L10P_0 L09P_0  
GCLK8 GCLK6 GCLK4  
GND  
I/O  
L24N_1 L24P_1  
L01N_3 L01P_3  
L17N_0 L16N_0 L13N_0  
L07P_0 L03P_0 L01N_0  
A25  
A24  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L16P_0  
I/O  
I/O  
I/O  
VCCO_3  
L03P_3  
L20N_0 VCCAUX  
L11N_0 L09N_0 L06N_0  
GCLK9 GCLK5 VREF_0  
L23N_1 L22N_1 L22P_1  
L02N_3 L02P_3  
L06P_0 L03N_0 L01P_0  
PUDC_B  
A23  
A21  
A20  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L14P_0  
GND  
INPUT L14N_0 VCCO_0  
GND VCCAUX GND  
L23P_1 L20P_1 VCCO_1 L18P_1  
L03N_3 L05N_3 L05P_3 L04P_3  
VREF_0  
A22  
A18  
A14  
I/O  
I/O  
I/O  
I/O  
I/O  
L08P_3  
I/O  
I/O  
GND  
I/O  
VCCAUX GND  
GND  
GND  
GND  
GND VCCINT GND VCCAUX L20N_1 L19N_1 L18N_1 L16N_1  
L07P_3 L04N_3  
A19  
A17  
A15  
A11  
I/O  
I/O  
I/O  
I/O  
L16P_1  
A10  
I/O  
L07N_3  
INPUT  
VREF_3  
L08N_3 L11P_3  
VREF_3 LHCLK0  
GND  
GND  
VCCINT  
VCCINT  
GND  
VCCINT GND  
INPUT  
L19P_1 L17N_1  
GND  
G
H
J
A16  
A13  
I/O  
I/O  
I/O  
I/O  
I/O  
L15N_1  
RHCLK7  
L15P_1  
IRDY1  
RHCLK6  
L11N_3 VCCO_3 L12P_3 VCCAUX GND VCCINT GND VCCINT GND VCCINT GND  
L17P_1 VCCAUX  
A12  
VREF_1  
LHCLK1  
LHCLK2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
INPUT  
VREF_3  
INPUT  
VREF_1  
L12N_3  
IRDY2  
LHCLK3  
L12N_1  
TRDY1  
RHCLK3  
L14N_3 L14P_3  
LHCLK5 LHCLK4  
INPUT  
GND  
VCCINT  
GND  
VCCINT  
GND  
VCCINT L10P_1 L10N_1  
VCCO_1  
A8  
A9  
I/O  
I/O  
L15N_3  
LHCLK7  
I/O  
I/O  
I/O  
I/O  
I/O  
L18P_3  
L15P_3  
TRDY2  
LHCLK6  
GND  
GND VCCINT GND VCCINT GND VCCINT GND  
GND  
L06N_1 L11N_1 L11P_1 L12P_1  
K
L
A3  
RHCLK1 RHCLK0 RHCLK2  
I/O  
I/O  
I/O  
I/O  
L08N_1  
A7  
I/O  
I/O  
I/O  
L16P_3  
VREF_3  
VCCAUX GND  
GND VCCAUX  
VCCINT  
GND  
VCCINT  
GND  
VCCAUX  
GND  
GND VCCAUX L06P_1 L08P_1  
GND  
I/O  
L16N_3 L18N_3 L19N_3  
A2  
A6  
I/O  
I/O  
L20P_3  
I/O  
I/O  
INPUT  
VREF_2  
INPUT  
VREF_2  
INPUT  
INPUT INPUT  
VREF_1 VREF_1  
VCCO_3  
GND  
I/O  
L08N_2 L11P_2  
D4  
GND  
I/O  
L07P_1 L07N_1  
M
N
P
R
T
L19P_3 L24N_3  
VREF_2  
A4  
A5  
I/O  
L22P_3  
VREF_3  
I/O  
I/O  
I/O  
INPUT  
I/O  
I/O  
I/O  
I/O  
I/O  
L20N_3  
I/O  
L01P_2  
L24P_3  
M1  
L04P_2  
GND  
I/O  
L01P_1 L01N_1 VCCO_1 L03N_1  
VREF_2  
VS1  
L16N_2 L19P_2  
GCLK0  
HDC  
LDC2  
GND  
I/O  
A1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L19N_2  
I/O  
I/O  
INPUT  
L14N_2  
MOSI  
GND  
I/O  
L01N_2 L04N_2  
L08P_2 L10P_2 L11N_2  
D5  
L17N_2  
L16P_2  
D3  
L02N_1 L03P_1  
L22N_3 L23N_3  
VREF_2  
VS0  
M0  
GCLK14 GCLK1  
LDC0  
A0  
CSI_B  
I/O  
I/O  
L23P_3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L05N_2  
L02P_2 L03P_2 VCCO_2  
M2  
GND  
L09P_2 VCCO_2 L12P_2  
GND  
L15N_2 VCCO_2 L18N_2 L20N_2 L02P_1  
RDWR_B  
GCLK12  
GCLK2  
DOUT  
D1  
CCLK  
LDC1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L14P_2  
I/O  
L05P_2  
L20P_2  
D0/DIN  
MISO  
GND  
L02N_2 L03N_2  
L06P_2 L06N_2 L09N_2 L10N_2 L12N_2  
L15P_2 L17P_2 L18P_2  
DONE  
GND  
CSO_B  
VS2  
D7  
D6  
GCLK13 GCLK15 GCLK3  
AWAKE INIT_B  
D2  
Bank 2  
DS529-4_012009  
Figure 22: XC3S700A and XC3S1400A FT256 Package Footprint (Top View)  
I/O: Unrestricted,  
DUAL: Configuration, then  
VREF: User I/O or input  
SUSPEND: Dedicated  
SUSPEND and  
dual-purpose AWAKE  
Power Management pins  
2
59  
2
51  
30  
4
18  
13  
15  
10  
general-purpose user I/O  
possible user I/O  
voltage reference for bank  
INPUT: Unrestricted,  
general-purpose input pin  
CLK: User I/O, input, or  
global buffer input  
VCCO: Output voltage  
supply for bank  
CONFIG: Dedicated  
configuration pins  
JTAG: Dedicated JTAG  
port pins  
VCCINT: Internal core  
supply voltage (+1.2V)  
2
N.C.: Not connected  
GND: Ground  
VCCAUX: Auxiliary supply  
voltage  
0
50  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
93  
Pinout Descriptions  
FG320: 320-ball Fine-pitch Ball Grid Array  
The 320-ball fine-pitch ball grid array package, FG320,  
supports two Spartan-3A FPGAs, the XC3S200A and the  
XC3S400A, as shown in Table 77 and Figure 23.  
Table 77: Spartan-3A FG320 Pinout(Continued)  
FG320  
Bank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Pin Name  
IO_L09P_0  
Ball  
B11  
D10  
C11  
C9  
B10  
B9  
Type  
I/O  
The FG320 package is an 18 x 18 array of solder balls  
minus the four center balls.  
IO_L10N_0  
I/O  
Table 77 lists all the package pins. They are sorted by bank  
number and then by pin name of the largest device. Pins  
that form a differential I/O pair appear together in the table.  
The table also shows the pin number for each pin and the  
pin type, as defined earlier.  
IO_L10P_0  
I/O  
IO_L11N_0/GCLK5  
IO_L11P_0/GCLK4  
IO_L12N_0/GCLK7  
IO_L12P_0/GCLK6  
IO_L13N_0/GCLK9  
IO_L13P_0/GCLK8  
IO_L14N_0/GCLK11  
IO_L14P_0/GCLK10  
IO_L15N_0  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
I/O  
The shaded rows indicate pinout differences between the  
XC3S200A and the XC3S400A FPGAs. The XC3S200A  
has three unconnected balls, indicated as N.C. (No  
Connection) in Table 77 and with the black diamond  
character (‹) in Table 77 and Figure 23.  
A10  
B7  
A8  
C8  
B8  
All other balls have nearly identical functionality on all three  
devices. Table 80 summarizes the Spartan-3A FPGA  
footprint migration differences for the FG320 package.  
C7  
D8  
E9  
IO_L15P_0  
I/O  
An electronic version of this package pinout table and  
footprint diagram is available for download from the Xilinx  
website at  
IO_L16N_0  
I/O  
IO_L16P_0  
D9  
B6  
I/O  
IO_L17N_0  
I/O  
www.xilinx.com/support/documentation/data_sheets/  
s3a_pin.zip.  
IO_L17P_0  
A6  
I/O  
IO_L18N_0/VREF_0  
IO_L18P_0  
A4  
VREF  
I/O  
Pinout Table  
A5  
Table 77: Spartan-3A FG320 Pinout  
IO_L19N_0  
E7  
I/O  
IO_L19P_0  
F8  
I/O  
FG320  
Bank  
Pin Name  
IO_L01N_0  
Ball  
C15  
C16  
A16  
B16  
A14  
A15  
C14  
B15  
D12  
C13  
A13  
B13  
B12  
C12  
F11  
E11  
A11  
Type  
I/O  
IO_L20N_0  
D6  
C6  
A3  
I/O  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IO_L20P_0  
I/O  
IO_L01P_0  
I/O  
IO_L21N_0  
I/O  
IO_L02N_0  
IO_L02P_0/VREF_0  
IO_L03N_0  
IO_L03P_0  
I/O  
IO_L21P_0  
B4  
I/O  
VREF  
I/O  
IO_L22N_0  
D5  
C5  
A2  
I/O  
IO_L22P_0  
I/O  
I/O  
IO_L23N_0  
I/O  
IO_L04N_0  
IO_L04P_0  
I/O  
IO_L23P_0  
B3  
I/O  
I/O  
IO_L24N_0/PUDC_B  
IO_L24P_0/VREF_0  
IP_0  
E5  
DUAL  
VREF  
INPUT  
INPUT  
INPUT  
IO_L05N_0  
IO_L05P_0  
I/O  
E6  
I/O  
D13  
D14  
E12  
IO_L06N_0/VREF_0  
IO_L06P_0  
VREF  
I/O  
IP_0  
IP_0  
IO_L07N_0  
IO_L07P_0  
I/O  
XC3S400A: IP_0  
XC3S200A: N.C. ()  
0
E13  
INPUT  
I/O  
0
0
0
IP_0  
IP_0  
IP_0  
F7  
F9  
INPUT  
INPUT  
INPUT  
IO_L08N_0  
IO_L08P_0  
I/O  
I/O  
F10  
IO_L09N_0  
I/O  
94  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
 
Pinout Descriptions  
Table 77: Spartan-3A FG320 Pinout(Continued)  
Table 77: Spartan-3A FG320 Pinout(Continued)  
FG320  
FG320  
Ball  
Bank  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Pin Name  
Ball  
F12  
G7  
Type  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
VREF  
VCCO  
VCCO  
VCCO  
VCCO  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
Bank  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
Pin Name  
IO_L21N_1  
Type  
I/O  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
F17  
G17  
E18  
F18  
H15  
J14  
D17  
D18  
E16  
F16  
F15  
G15  
E15  
D16  
B18  
C18  
B17  
C17  
N14  
P15  
L14  
M13  
L16  
M15  
K14  
K13  
J13  
K12  
G14  
H13  
G13  
H12  
F13  
F14  
E17  
H14  
L15  
P17  
U3  
IO_L21P_1  
I/O  
G8  
IO_L22N_1/A13  
IO_L22P_1/A12  
IO_L23N_1/A15  
IO_L23P_1/A14  
IO_L25N_1  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
G9  
G11  
E10  
B5  
IP_0/VREF_0  
VCCO_0  
VCCO_0  
B14  
D11  
E8  
IO_L25P_1  
I/O  
VCCO_0  
IO_L26N_1/A17  
IO_L26P_1/A16  
IO_L27N_1/A19  
IO_L27P_1/A18  
IO_L29N_1/A21  
IO_L29P_1/A20  
IO_L30N_1/A23  
IO_L30P_1/A22  
IO_L31N_1/A25  
IO_L31P_1/A24  
IP_L04N_1/VREF_1  
IP_L04P_1  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
VREF  
INPUT  
VREF  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
VREF  
VCCO  
VCCO  
VCCO  
VCCO  
DUAL  
DUAL  
VCCO_0  
IO_L01N_1/LDC2  
IO_L01P_1/HDC  
IO_L02N_1/LDC0  
IO_L02P_1/LDC1  
IO_L03N_1/A1  
IO_L03P_1/A0  
IO_L05N_1  
T17  
R16  
U18  
U17  
R17  
T18  
N16  
P16  
M14  
N15  
P18  
R18  
M17  
M16  
N18  
N17  
L12  
L13  
K16  
L17  
K17  
L18  
J17  
K18  
K15  
J16  
H17  
H18  
G16  
H16  
IO_L05P_1  
I/O  
IO_L06N_1  
I/O  
IO_L06P_1  
I/O  
IO_L07N_1/VREF_1  
IO_L07P_1  
VREF  
I/O  
IP_L08N_1/VREF_1  
IP_L08P_1  
IO_L09N_1/A3  
IO_L09P_1/A2  
IO_L10N_1/A5  
IO_L10P_1/A4  
IO_L11N_1/A7  
IO_L11P_1/A6  
IO_L13N_1/A9  
IO_L13P_1/A8  
IO_L14N_1/RHCLK1  
IO_L14P_1/RHCLK0  
IO_L15N_1/TRDY1/RHCLK3  
IO_L15P_1/RHCLK2  
IO_L17N_1/RHCLK5  
IO_L17P_1/RHCLK4  
IO_L18N_1/RHCLK7  
IO_L18P_1/IRDY1/RHCLK6  
IO_L19N_1/A11  
IO_L19P_1/A10  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
DUAL  
DUAL  
IP_L12N_1  
IP_L12P_1/VREF_1  
IP_L16N_1  
IP_L16P_1  
IP_L20N_1  
IP_L20P_1/VREF_1  
IP_L24N_1  
IP_L24P_1  
IP_L28N_1  
IP_L28P_1/VREF_1  
IP_L32N_1  
IP_L32P_1/VREF_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
IO_L01N_2/M0  
IO_L01P_2/M1  
T3  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
95  
Pinout Descriptions  
Table 77: Spartan-3A FG320 Pinout(Continued)  
Table 77: Spartan-3A FG320 Pinout(Continued)  
FG320  
FG320  
Bank  
2
Pin Name  
IO_L02N_2/CSO_B  
IO_L02P_2/M2  
IO_L03N_2/VS2  
IO_L03P_2/RDWR_B  
IO_L04N_2  
Ball  
Type  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
Bank  
Pin Name  
IO_L21P_2  
Ball  
V14  
U15  
V15  
T15  
R14  
U16  
V16  
M8  
Type  
I/O  
V3  
2
2
2
2
2
2
2
2
2
2
2
V2  
IO_L22N_2/D1  
IO_L22P_2/D2  
IO_L23N_2  
IO_L23P_2  
IO_L24N_2/CCLK  
IO_L24P_2/D0/DIN/MISO  
IP_2  
DUAL  
DUAL  
I/O  
2
U4  
2
T4  
2
T5  
I/O  
2
IO_L04P_2  
R5  
I/O  
DUAL  
DUAL  
INPUT  
INPUT  
INPUT  
2
IO_L05N_2/VS0  
IO_L05P_2/VS1  
IO_L06N_2  
V5  
DUAL  
DUAL  
I/O  
2
V4  
2
U6  
IP_2  
M9  
2
IO_L06P_2  
T6  
I/O  
IP_2  
M12  
2
IO_L07N_2  
P8  
I/O  
XC3S400A: IP_2  
2
N7  
INPUT  
XC3S200A: N.C. ()  
2
IO_L07P_2  
N8  
I/O  
2
2
2
2
2
2
2
2
2
IP_2  
N9  
N11  
R6  
INPUT  
INPUT  
INPUT  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
2
IO_L08N_2/D6  
IO_L08P_2/D7  
IO_L09N_2  
T7  
DUAL  
DUAL  
I/O  
IP_2  
2
R7  
IP_2  
2
R9  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
M11  
N10  
P6  
2
IO_L09P_2  
T8  
I/O  
2
IO_L10N_2/D4  
IO_L10P_2/D5  
IO_L11N_2/GCLK13  
IO_L11P_2/GCLK12  
IO_L12N_2/GCLK15  
IO_L12P_2/GCLK14  
IO_L13N_2/GCLK1  
IO_L13P_2/GCLK0  
IO_L14N_2/GCLK3  
IO_L14P_2/GCLK2  
IO_L15N_2  
V6  
DUAL  
DUAL  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
I/O  
2
U7  
P7  
2
V8  
P9  
2
U8  
P13  
2
V9  
XC3S400A: IP_2/VREF_2  
XC3S200A: N.C. ()  
2
P14  
VREF  
2
U9  
2
T10  
U10  
U11  
V11  
R10  
P10  
T11  
R11  
V13  
U12  
U13  
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
VCCO_2  
P11  
R8  
U5  
U14  
C1  
C2  
B1  
B2  
D2  
D3  
G5  
F5  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
2
VCCO_2  
2
VCCO_2  
2
VCCO_2  
2
IO_L01N_3  
IO_L01P_3  
IO_L02N_3  
IO_L02P_3  
IO_L03N_3  
IO_L03P_3  
IO_L05N_3  
IO_L05P_3  
IO_L06N_3  
IO_L06P_3  
IO_L07N_3  
IO_L07P_3  
IO_L09N_3  
IO_L09P_3  
2
IO_L15P_2  
I/O  
I/O  
2
IO_L16N_2/MOSI/CSI_B  
IO_L16P_2  
DUAL  
I/O  
I/O  
2
I/O  
2
IO_L17N_2  
I/O  
I/O  
2
IO_L17P_2  
I/O  
I/O  
2
IO_L18N_2/DOUT  
DUAL  
I/O  
PWR  
MGMT  
I/O  
2
IO_L18P_2/AWAKE  
T12  
E3  
F4  
I/O  
2
2
2
2
2
IO_L19N_2  
P12  
N12  
R13  
T13  
T14  
I/O  
I/O  
I/O  
IO_L19P_2  
E1  
D1  
G4  
F3  
I/O  
IO_L20N_2/D3  
IO_L20P_2/INIT_B  
IO_L21N_2  
DUAL  
DUAL  
I/O  
I/O  
I/O  
I/O  
96  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
Pinout Descriptions  
Table 77: Spartan-3A FG320 Pinout(Continued)  
Table 77: Spartan-3A FG320 Pinout(Continued)  
FG320  
FG320  
Ball  
Bank  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Pin Name  
IO_L10N_3/VREF_3  
IO_L10P_3  
Ball  
F1  
F2  
J6  
Type  
VREF  
I/O  
Bank  
3
Pin Name  
IP_L16N_3  
Type  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
VCCO  
VCCO  
VCCO  
VCCO  
GND  
K6  
J5  
3
IP_L16P_3  
IP_L20N_3  
IP_L20P_3  
IP_L24N_3  
IP_L24P_3  
IP_L28N_3  
IP_L28P_3  
IP_L32N_3/VREF_3  
IP_L32P_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
GND  
IO_L11N_3  
I/O  
3
L6  
IO_L11P_3  
J7  
I/O  
3
L7  
IO_L13N_3  
H1  
H2  
J3  
I/O  
3
M4  
M3  
M5  
M6  
P4  
IO_L13P_3  
I/O  
3
IO_L14N_3/LHCLK1  
IO_L14P_3/LHCLK0  
IO_L15N_3/IRDY2/LHCLK3  
IO_L15P_3/LHCLK2  
IO_L17N_3/LHCLK5  
IO_L17P_3/LHCLK4  
IO_L18N_3/LHCLK7  
IO_L18P_3/TRDY2/LHCLK6  
IO_L19N_3  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
I/O  
3
H3  
J1  
3
3
J2  
3
P5  
K5  
J4  
3
E2  
3
H4  
K3  
K2  
L2  
3
L5  
3
P2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
A1  
IO_L19P_3/VREF_3  
IO_L21N_3  
L1  
VREF  
I/O  
GND  
A7  
GND  
M2  
N1  
N2  
P1  
L4  
GND  
A12  
A18  
C10  
D4  
GND  
IO_L21P_3  
I/O  
GND  
GND  
IO_L22N_3  
I/O  
GND  
GND  
IO_L22P_3  
I/O  
GND  
GND  
IO_L23N_3  
I/O  
GND  
D7  
GND  
IO_L23P_3  
L3  
I/O  
GND  
D15  
F6  
GND  
IO_L25N_3  
R2  
R1  
N4  
N3  
T2  
T1  
N6  
N5  
R3  
P3  
U2  
U1  
H7  
G6  
H5  
H6  
G2  
G3  
I/O  
GND  
GND  
IO_L25P_3  
I/O  
GND  
G1  
G12  
G18  
H8  
GND  
IO_L26N_3  
I/O  
GND  
GND  
IO_L26P_3  
I/O  
GND  
GND  
IO_L27N_3  
I/O  
GND  
GND  
IO_L27P_3  
I/O  
GND  
H10  
J11  
J15  
K4  
GND  
IO_L29N_3  
I/O  
GND  
GND  
IO_L29P_3  
I/O  
GND  
GND  
IO_L30N_3  
I/O  
GND  
GND  
IO_L30P_3  
I/O  
GND  
K8  
GND  
IO_L31N_3  
I/O  
GND  
L9  
GND  
IO_L31P_3  
I/O  
GND  
L11  
M1  
M7  
M18  
N13  
R4  
GND  
IP_L04N_3/VREF_3  
IP_L04P_3  
VREF  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
GND  
GND  
GND  
GND  
IP_L08N_3/VREF_3  
IP_L08P_3  
GND  
GND  
GND  
GND  
IP_L12N_3  
GND  
GND  
IP_L12P_3  
GND  
R12  
GND  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
97  
Pinout Descriptions  
Table 77: Spartan-3A FG320 Pinout(Continued)  
FG320  
Bank  
GND  
GND  
GND  
GND  
GND  
GND  
Pin Name  
Ball  
R15  
T9  
Type  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
V1  
V7  
V12  
V18  
PWR  
MGMT  
VCCAUX SUSPEND  
T16  
VCCAUX DONE  
VCCAUX PROG_B  
VCCAUX TCK  
V17  
C4  
CONFIG  
CONFIG  
JTAG  
A17  
E4  
VCCAUX TDI  
JTAG  
VCCAUX TDO  
E14  
C3  
JTAG  
VCCAUX TMS  
JTAG  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
A9  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
G10  
J12  
J18  
K1  
K7  
M10  
V10  
H9  
H11  
J8  
K11  
L8  
L10  
98  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
Pinout Descriptions  
User I/Os by Bank  
Table 78 and Table 79 indicate how the available user-I/O  
pins are distributed between the four I/O banks on the  
FG320 package. The AWAKE pin is counted as a  
dual-purpose I/O.  
Table 78: User I/Os Per Bank for XC3S200A in the FG320 Package  
All Possible I/O Pins by Type  
Package  
I/O Bank  
Maximum I/O  
Edge  
I/O  
35  
9
INPUT  
DUAL  
1
VREF  
CLK  
8
Top  
0
1
2
3
60  
64  
11  
10  
6
5
7
Right  
Bottom  
Left  
30  
21  
0
8
60  
19  
38  
101  
6
8
64  
13  
40  
5
8
TOTAL  
248  
52  
23  
32  
Table 79: User I/Os Per Bank for XC3S400A in the FG320 Package  
All Possible I/O Pins by Type  
Package  
I/O Bank  
Maximum I/O  
Edge  
I/O  
35  
9
INPUT  
DUAL  
1
VREF  
CLK  
8
Top  
0
1
2
3
61  
64  
12  
10  
7
5
7
Right  
Bottom  
Left  
30  
21  
0
8
62  
19  
38  
101  
7
8
64  
13  
42  
5
8
TOTAL  
251  
52  
24  
32  
Footprint Migration Differences  
Table 80 summarizes any footprint and functionality  
differences between the XC3S200A and the XC3S400A  
FPGAs that might affect easy migration between devices  
available in the FG320 package. There are three such balls.  
All other pins not listed in Table 80 unconditionally migrate  
between Spartan-3A devices available in the FG320  
package.  
The arrows indicate the direction for easy migration.  
Table 80: FG320 Footprint Migration Differences  
Pin  
E13  
N7  
Bank  
XC3S200A  
N.C.  
Migration  
XC3S400A  
INPUT  
0
2
2
Æ
Æ
Æ
3
N.C.  
N.C.  
INPUT  
P14  
INPUT/VREF  
DIFFERENCES  
Legend:  
This pin can unconditionally migrate from the device  
on the left to the device on the right. Migration in the  
other direction is possible depending on how the pin is  
configured for the device on the right.  
Æ
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
99  
 
 
 
Pinout Descriptions  
FG320 Footprint  
Bank 0  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
I/O  
L18N_0  
VREF_0  
I/O  
L13P_0  
GCLK8  
I/O  
L12P_0  
GCLK6  
I/O  
L06N_0  
VREF_0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
GND  
GND  
GND  
TCK  
GND  
A
B
C
D
E
F
L23N_0  
L21N_0  
L18P_0  
L17P_0  
L09N_0  
L03N_0  
L03P_0  
L02N_0  
I/O  
L13N_0  
GCLK9  
I/O  
L14P_0  
GCLK10  
I/O  
L12N_0  
GCLK7  
I/O  
L11P_0  
GCLK4  
I/O  
L02P_0  
VREF_0  
I/O  
L31N_1  
A25  
I/O  
L30N_1  
A23  
I/O  
L02N_3  
I/O  
L02P_3  
I/O  
L23P_0  
I/O  
L21P_0  
I/O  
L17N_0  
I/O  
L09P_0  
I/O  
L07N_0  
I/O  
L06P_0  
I/O  
L04P_0  
VCCO_0  
VCCO_0  
I/O  
L14N_0  
GCLK11  
I/O  
L11N_0  
GCLK5  
I/O  
L31P_1  
A24  
I/O  
L30P_1  
A22  
I/O  
L01N_3  
I/O  
L01P_3  
I/O  
L22P_0  
I/O  
L20P_0  
I/O  
L15N_0  
I/O  
L10P_0  
I/O  
L07P_0  
I/O  
L05P_0  
I/O  
L04N_0  
I/O  
L01N_0  
I/O  
L01P_0  
TMS  
GND  
I/O  
L29P_1  
A20  
I/O  
L07P_3  
I/O  
L03N_3  
I/O  
L03P_3  
I/O  
L22N_0  
I/O  
L20N_0  
I/O  
L15P_0  
I/O  
L16P_0  
I/O  
L10N_0  
I/O  
L05N_0  
I/O  
L25N_1  
I/O  
L25P_1  
VCCO_0  
GND  
TDI  
GND  
INPUT INPUT  
GND  
I/O  
L24N_0  
PUDC_B VREF_0  
I/O  
L24P_0  
I/O  
L29N_1  
A21  
I/O  
L26N_1  
A17  
I/O  
L22N_1  
A13  
INPUT  
TDO  
I/O  
L07N_3  
I/O  
L06N_3  
I/O  
L19N_0  
I/O  
L16N_0  
INPUT  
VREF_0  
I/O  
L08P_0  
VCCO_3  
VCCO_0  
VCCO_1  
INPUT  
INPUT  
GND  
I/O  
L10N_3  
VREF_3  
INPUT  
INPUT  
L32N_1  
I/O  
L27N_1  
A19  
I/O  
L26P_1  
A16  
I/O  
L22P_1  
A12  
I/O  
L10P_3  
I/O  
L09P_3  
I/O  
L06P_3  
I/O  
I/O  
L19P_0  
I/O  
L08N_0  
I/O  
L21N_1  
GND  
L05P_3  
INPUT  
INPUT INPUT  
L32P_1  
VREF_1  
I/O  
L27P_1  
A18  
I/O  
L19N_1  
A11  
INPUT INPUT  
L12N_3  
I/O  
L09N_3  
I/O  
L05N_3  
INPUT  
L04P_3  
INPUT INPUT  
L28N_1  
I/O  
L21P_1  
VCCAUX  
GND  
INPUT INPUT INPUT  
INPUT  
INPUT  
GND  
G
H
J
L12P_3  
L24N_1  
I/O  
L18P_1  
IRDY1  
I/O  
L14P_3  
LHCLK0  
INPUT  
L08N_3  
VREF_3  
INPUT  
L28P_1  
VREF_1  
I/O  
L23N_1  
A15  
I/O  
L19P_1  
A10  
I/O  
L18N_1  
RHCLK7  
I/O  
L13N_3  
I/O  
L13P_3  
INPUT  
L08P_3  
INPUT  
L24P_1  
VCCO_3  
VCCO_1  
GND VCCINT GND VCCINT  
L04N_3  
VREF_3  
RHCLK6  
I/O  
L15N_3  
IRDY2  
LHCLK3  
I/O  
L15N_1  
TRDY1  
RHCLK3  
I/O  
L15P_3  
I/O  
L14N_3  
I/O  
L17P_3  
I/O  
L23P_1  
A14  
I/O  
L17P_1  
RHCLK4  
INPUT  
L16P_3  
I/O  
L11N_3  
I/O  
L11P_3  
INPUT  
L20N_1  
VCCAUX  
VCCAUX  
VCCINT  
GND  
GND  
GND  
LHCLK2 LHCLK1 LHCLK4  
I/O  
I/O  
I/O  
L17N_3  
LHCLK5  
INPUT  
L20P_1  
VREF_1  
I/O  
L17N_1  
RHCLK5  
I/O  
L13N_1  
A9  
I/O  
L14N_1  
RHCLK1 RHCLK2  
I/O  
L15P_1  
INPUT  
L16N_3  
INPUT INPUT  
L16P_1  
L18P_3  
VCCAUX  
VCCAUX  
GND  
VCCINT  
K
L
L18N_3  
LHCLK7  
TRDY2  
LHCLK6  
L16N_1  
I/O  
L19P_3  
VREF_3  
I/O  
L11N_1  
A7  
I/O  
L11P_1  
A6  
INPUT  
L08N_1  
VREF_1  
I/O  
L13P_1  
A8  
I/O  
L14P_1  
RHCLK0  
I/O  
L19N_3  
I/O  
L23P_3  
I/O  
L23N_3  
INPUT INPUT  
L20N_3  
INPUT  
L12N_1  
VCCO_3  
VCCO_1  
VCCINT GND VCCINT GND  
INPUT  
L20P_3  
INPUT  
L12P_1  
VREF_1  
I/O  
L09P_1  
A2  
I/O  
L09N_1  
A3  
I/O  
L21N_3  
INPUT INPUT INPUT INPUT  
INPUT  
L08P_1  
I/O  
L06N_1  
VCCAUX  
GND  
GND  
INPUT INPUT  
INPUT  
GND  
M
N
P
R
T
L24P_3  
L24N_3  
L28N_3  
L28P_3  
VREF_2  
INPUT  
L04N_1  
VREF_1  
I/O  
L10P_1  
A4  
I/O  
L10N_1  
A5  
INPUT  
I/O  
L21P_3  
I/O  
L22N_3  
I/O  
L26P_3  
I/O  
L26N_3  
I/O  
L29P_3  
I/O  
L29N_3  
I/O  
INPUT  
VREF_2  
I/O  
L19P_2  
I/O  
L06P_1  
I/O  
L05N_1  
INPUT  
L07P_2  
INPUT  
GND  
INPUT  
VREF_2  
INPUT  
L32N_3  
VREF_3  
I/O  
L07N_1  
VREF_1  
I/O  
L22P_3  
I/O  
L30P_3  
INPUT INPUT INPUT  
L32P_3  
I/O  
L07N_2  
INPUT  
VREF_2  
I/O  
L15P_2  
I/O  
L19N_2  
INPUT  
VREF_2  
INPUT  
L04P_1  
I/O  
L05P_1  
VCCO_3  
VCCO_2  
VCCO_1  
VREF_2 VREF_2  
I/O  
L08P_2  
D7  
I/O  
L20N_2  
D3  
I/O  
L01P_1  
HDC  
I/O  
L03N_1  
A1  
I/O  
L25P_3  
I/O  
L25N_3  
I/O  
L30N_3  
I/O  
L04P_2  
I/O  
L09N_2  
I/O  
L15N_2  
I/O  
L16P_2  
I/O  
L23P_2  
I/O  
L07P_1  
VCCO_2  
GND  
INPUT  
GND  
GND  
I/O  
L16N_2  
MOSI  
I/O  
L01P_2  
M1  
I/O  
L03P_2  
RDWR_B  
I/O  
L08N_2  
D6  
I/O  
L13N_2  
GCLK1  
I/O  
L18P_2  
AWAKE  
I/O  
L20P_2  
INIT_B  
I/O  
L01N_1  
LDC2  
I/O  
L03P_1  
A0  
I/O  
L27P_3  
I/O  
L27N_3  
I/O  
L04N_2  
I/O  
L06P_2  
I/O  
L09P_2  
I/O  
L21N_2  
I/O  
L23N_2  
GND  
CSI_B  
I/O  
L01N_2  
M0  
I/O  
L03N_2  
VS2  
I/O  
L10P_2  
D5  
I/O  
I/O  
I/O  
L13P_2  
GCLK0  
I/O  
L14N_2  
GCLK3  
I/O  
L18N_2  
DOUT  
I/O  
L22N_2  
D1  
I/O  
L24N_2  
CCLK  
I/O  
L02P_1  
LDC1  
I/O  
L02N_1  
LDC0  
I/O  
I/O  
I/O  
I/O  
VCCO_2  
VCCO_2  
U
V
L11P_2  
L12P_2  
L31P_3  
L31N_3  
L06N_2  
L17P_2  
GCLK12 GCLK14  
I/O  
L24P_2  
D0  
I/O  
L02P_2  
M2  
I/O  
L02N_2  
CSO_B  
I/O  
L05P_2  
VS1  
I/O  
L05N_2  
VS0  
I/O  
L10N_2  
D4  
I/O  
L11N_2  
GCLK13 GCLK15  
I/O  
L12N_2  
I/O  
L14P_2  
GCLK2  
I/O  
L22P_2  
D2  
I/O  
L17N_2  
I/O  
L21P_2  
VCCAUX  
GND  
GND  
GND  
DONE  
GND  
DIN/MISO  
Bank 2  
DS529-4_05_012009  
Figure 23: FG320 Package Footprint (Top View)  
I/O: Unrestricted,  
general-purpose user I/O  
DUAL: Configuration  
pins, then possible  
user-I/O  
VREF: User I/O or input  
voltage reference for  
bank  
SUSPEND: Dedicated  
SUSPEND and  
dual-purpose AWAKE  
Power Management pins  
23 -  
24  
101  
51  
2
INPUT: Unrestricted,  
general-purpose input  
pin  
CLK: User I/O, input, or  
VCCO: Output voltage  
40 -  
42  
global buffer input  
supply for bank  
32  
4
16  
6
CONFIG: Dedicated  
configuration pins  
JTAG: Dedicated JTAG  
port pins  
VCCINT: Internal core  
supply voltage (+1.2V)  
2
3
N.C.: Not connected.  
Only the XC3S200A has  
these pins (‹).  
GND: Ground  
VCCAUX: Auxiliary  
supply voltage  
32  
8
100  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
Pinout Descriptions  
FG400: 400-ball Fine-pitch Ball Grid Array  
The 400-ball fine-pitch ball grid array, FG400, supports two  
different Spartan-3A FPGAs, the XC3S400A and the  
XC3S700A. Both devices share a common footprint for this  
package as shown in Table 81 and Figure 24.  
Table 81: Spartan-3A FG400 Pinout(Continued)  
FG400  
Ball  
Bank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Pin Name  
IO_L13P_0  
Type  
I/O  
B12  
C11  
B11  
E11  
D11  
C10  
A10  
E10  
D10  
A8  
Table 81 lists all the FG400 package pins. They are sorted  
by bank number and then by pin name. Pairs of pins that  
form a differential I/O pair appear together in the table. The  
table also shows the pin number for each pin and the pin  
type, as defined earlier.  
IO_L14N_0  
I/O  
IO_L14P_0  
I/O  
IO_L15N_0/GCLK5  
IO_L15P_0/GCLK4  
IO_L16N_0/GCLK7  
IO_L16P_0/GCLK6  
IO_L17N_0/GCLK9  
IO_L17P_0/GCLK8  
IO_L18N_0/GCLK11  
IO_L18P_0/GCLK10  
IO_L19N_0  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
I/O  
An electronic version of this package pinout table and  
footprint diagram is available for download from the Xilinx  
website at  
www.xilinx.com/support/documentation/data_sheets/  
s3a_pin.zip.  
Pinout Table  
A9  
C9  
B9  
Table 81: Spartan-3A FG400 Pinout  
IO_L19P_0  
I/O  
FG400  
Bank  
0
Pin Name  
IO_L01N_0  
Ball  
A18  
B18  
C17  
D17  
E15  
D16  
A17  
B17  
A16  
C16  
C15  
D15  
A14  
C14  
A15  
B15  
F13  
E13  
C13  
D14  
C12  
B13  
F12  
D12  
A12  
Type  
I/O  
IO_L20N_0  
C8  
B8  
I/O  
IO_L20P_0  
I/O  
0
IO_L01P_0  
I/O  
IO_L21N_0  
D8  
C7  
F9  
I/O  
0
IO_L02N_0  
IO_L02P_0/VREF_0  
IO_L03N_0  
IO_L03P_0  
I/O  
IO_L21P_0  
I/O  
0
VREF  
I/O  
IO_L22N_0/VREF_0  
IO_L22P_0  
VREF  
I/O  
0
E9  
0
I/O  
IO_L23N_0  
F8  
I/O  
0
IO_L04N_0  
IO_L04P_0/VREF_0  
IO_L05N_0  
IO_L05P_0  
I/O  
IO_L23P_0  
E8  
I/O  
0
VREF  
I/O  
IO_L24N_0  
A7  
I/O  
0
IO_L24P_0  
B7  
I/O  
0
I/O  
IO_L25N_0  
C6  
A6  
I/O  
0
IO_L06N_0  
IO_L06P_0  
I/O  
IO_L25P_0  
I/O  
0
I/O  
IO_L26N_0  
B5  
I/O  
0
IO_L07N_0  
IO_L07P_0  
I/O  
IO_L26P_0  
A5  
I/O  
0
I/O  
IO_L27N_0  
F7  
I/O  
0
IO_L08N_0  
IO_L08P_0  
I/O  
IO_L27P_0  
E7  
I/O  
0
I/O  
IO_L28N_0  
D6  
C5  
C4  
A4  
I/O  
0
IO_L09N_0  
IO_L09P_0  
I/O  
IO_L28P_0  
I/O  
0
I/O  
IO_L29N_0  
I/O  
0
IO_L10N_0/VREF_0  
IO_L10P_0  
VREF  
I/O  
IO_L29P_0  
I/O  
0
IO_L30N_0  
B3  
I/O  
0
IO_L11N_0  
IO_L11P_0  
I/O  
IO_L30P_0  
A3  
I/O  
0
I/O  
IO_L31N_0  
F6  
I/O  
0
IO_L12N_0  
IO_L12P_0  
I/O  
IO_L31P_0  
E6  
I/O  
0
I/O  
IO_L32N_0/PUDC_B  
B2  
DUAL  
0
IO_L13N_0  
I/O  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
101  
 
Pinout Descriptions  
Table 81: Spartan-3A FG400 Pinout(Continued)  
Table 81: Spartan-3A FG400 Pinout(Continued)  
FG400  
FG400  
Bank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Pin Name  
IO_L32P_0/VREF_0  
IP_0  
Ball  
Type  
VREF  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
VREF  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
Bank  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Pin Name  
IO_L13N_1/A5  
Ball  
N19  
N18  
M18  
M17  
L16  
L15  
M20  
M19  
L18  
L19  
L17  
K18  
J20  
Type  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
DUAL  
DUAL  
I/O  
A2  
E14  
F11  
F14  
G8  
IO_L13P_1/A4  
IO_L14N_1/A7  
IO_L14P_1/A6  
IO_L16N_1/A9  
IO_L16P_1/A8  
IO_L17N_1/RHCLK1  
IO_L17P_1/RHCLK0  
IO_L18N_1/TRDY1/RHCLK3  
IO_L18P_1/RHCLK2  
IO_L20N_1/RHCLK5  
IO_L20P_1/RHCLK4  
IO_L21N_1/RHCLK7  
IO_L21P_1/IRDY1/RHCLK6  
IO_L22N_1/A11  
IO_L22P_1/A10  
IO_L24N_1  
IP_0  
IP_0  
IP_0  
IP_0  
G9  
IP_0  
G10  
G12  
G13  
H9  
IP_0  
IP_0  
IP_0  
IP_0  
H10  
H11  
H12  
G11  
B4  
IP_0  
IP_0  
IP_0/VREF_0  
VCCO_0  
K20  
J18  
VCCO_0  
B10  
B16  
D7  
J19  
VCCO_0  
K16  
J17  
VCCO_0  
IO_L24P_1  
I/O  
VCCO_0  
D13  
F10  
V20  
W20  
U18  
V19  
R16  
T17  
T20  
T18  
U20  
U19  
P17  
P16  
R17  
R18  
R20  
R19  
P20  
P18  
N17  
N15  
IO_L25N_1/A13  
IO_L25P_1/A12  
IO_L26N_1/A15  
IO_L26P_1/A14  
IO_L28N_1  
H18  
H19  
G20  
H20  
H17  
G18  
F19  
F20  
F18  
G17  
E19  
E20  
F17  
E18  
D18  
D20  
F16  
G16  
C19  
C20  
B19  
B20  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
VCCO_0  
IO_L01N_1/LDC2  
IO_L01P_1/HDC  
IO_L02N_1/LDC0  
IO_L02P_1/LDC1  
IO_L03N_1/A1  
IO_L03P_1/A0  
IO_L05N_1  
IO_L05P_1  
IO_L06N_1  
IO_L06P_1  
IO_L07N_1  
IO_L07P_1  
IO_L08N_1  
IO_L08P_1  
IO_L09N_1  
IO_L09P_1  
IO_L10N_1/VREF_1  
IO_L10P_1  
IO_L12N_1/A3  
IO_L12P_1/A2  
IO_L28P_1  
I/O  
IO_L29N_1/A17  
IO_L29P_1/A16  
IO_L30N_1/A19  
IO_L30P_1/A18  
IO_L32N_1  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
I/O  
I/O  
I/O  
IO_L32P_1  
I/O  
I/O  
IO_L33N_1  
I/O  
I/O  
IO_L33P_1  
I/O  
I/O  
IO_L34N_1  
I/O  
I/O  
IO_L34P_1  
I/O  
I/O  
IO_L36N_1/A21  
IO_L36P_1/A20  
IO_L37N_1/A23  
IO_L37P_1/A22  
IO_L38N_1/A25  
IO_L38P_1/A24  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
VREF  
I/O  
DUAL  
DUAL  
102  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
Pinout Descriptions  
Table 81: Spartan-3A FG400 Pinout(Continued)  
Table 81: Spartan-3A FG400 Pinout(Continued)  
FG400  
FG400  
Ball  
Bank  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Pin Name  
IP_1/VREF_1  
Ball  
N14  
P15  
P14  
M15  
M16  
M13  
M14  
L13  
L14  
K14  
K15  
J15  
J16  
J13  
J14  
H14  
H15  
G14  
G15  
D19  
H16  
K19  
N16  
T19  
V4  
Type  
VREF  
VREF  
INPUT  
VREF  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
Bank  
2
Pin Name  
IO_L09N_2/VS0  
Type  
DUAL  
DUAL  
I/O  
W6  
V6  
IP_L04N_1/VREF_1  
IP_L04P_1  
2
IO_L09P_2/VS1  
IO_L10N_2  
2
Y7  
IP_L11N_1/VREF_1  
IP_L11P_1  
2
IO_L10P_2  
Y6  
I/O  
2
IO_L11N_2  
U9  
I/O  
IP_L15N_1  
2
IO_L11P_2  
T9  
I/O  
IP_L15P_1/VREF_1  
IP_L19N_1  
2
IO_L12N_2/D6  
IO_L12P_2/D7  
IO_L13N_2  
W8  
V7  
DUAL  
DUAL  
I/O  
2
IP_L19P_1  
2
V9  
IP_L23N_1  
2
IO_L13P_2  
V8  
I/O  
IP_L23P_1/VREF_1  
IP_L27N_1  
2
IO_L14N_2/D4  
IO_L14P_2/D5  
IO_L15N_2/GCLK13  
IO_L15P_2/GCLK12  
IO_L16N_2/GCLK15  
IO_L16P_2/GCLK14  
IO_L17N_2/GCLK1  
IO_L17P_2/GCLK0  
IO_L18N_2/GCLK3  
IO_L18P_2/GCLK2  
IO_L19N_2  
T10  
U10  
Y9  
DUAL  
DUAL  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
I/O  
2
IP_L27P_1  
2
IP_L31N_1  
2
W9  
W10  
V10  
V11  
Y11  
V12  
U11  
R12  
T12  
W12  
Y12  
W13  
Y13  
V13  
U13  
IP_L31P_1/VREF_1  
IP_L35N_1  
2
2
IP_L35P_1  
2
IP_L39N_1  
2
IP_L39P_1/VREF_1  
VCCO_1  
2
2
VCCO_1  
2
VCCO_1  
2
IO_L19P_2  
I/O  
VCCO_1  
2
IO_L20N_2/MOSI/CSI_B  
IO_L20P_2  
DUAL  
I/O  
VCCO_1  
2
IO_L01N_2/M0  
IO_L01P_2/M1  
IO_L02N_2/CSO_B  
IO_L02P_2/M2  
IO_L03N_2  
2
IO_L21N_2  
I/O  
U4  
2
IO_L21P_2  
I/O  
Y2  
2
IO_L22N_2/DOUT  
IO_L22P_2/AWAKE  
DUAL  
W3  
W4  
Y3  
PWR  
MGMT  
2
2
2
2
2
2
2
2
2
2
2
2
IO_L23N_2  
R13  
T13  
W14  
Y14  
T14  
V14  
V15  
Y15  
T15  
U15  
W16  
I/O  
I/O  
IO_L03P_2  
I/O  
IO_L23P_2  
IO_L04N_2  
R7  
I/O  
IO_L24N_2/D3  
IO_L24P_2/INIT_B  
IO_L25N_2  
DUAL  
DUAL  
I/O  
IO_L04P_2  
T6  
I/O  
IO_L05N_2  
U5  
I/O  
IO_L05P_2  
V5  
I/O  
IO_L25P_2  
I/O  
IO_L06N_2  
U6  
I/O  
IO_L26N_2/D1  
IO_L26P_2/D2  
IO_L27N_2  
DUAL  
DUAL  
I/O  
IO_L06P_2  
T7  
I/O  
IO_L07N_2/VS2  
IO_L07P_2/RDWR_B  
IO_L08N_2  
U7  
DUAL  
DUAL  
I/O  
T8  
IO_L27P_2  
I/O  
Y5  
IO_L28N_2  
I/O  
IO_L08P_2  
Y4  
I/O  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
103  
Pinout Descriptions  
Table 81: Spartan-3A FG400 Pinout(Continued)  
Table 81: Spartan-3A FG400 Pinout(Continued)  
FG400  
FG400  
Bank  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
Pin Name  
IO_L28P_2  
Ball  
Y16  
U16  
V16  
Y18  
Y17  
U17  
V17  
Y19  
W18  
P9  
Type  
I/O  
Bank  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Pin Name  
IO_L08P_3  
Ball  
H6  
G4  
F3  
F2  
E3  
H2  
G3  
G1  
F1  
H3  
J4  
Type  
I/O  
IO_L29N_2  
IO_L29P_2  
IO_L30N_2  
IO_L30P_2  
IO_L31N_2  
IO_L31P_2  
IO_L32N_2/CCLK  
IO_L32P_2/D0/DIN/MISO  
IP_2  
I/O  
IO_L09N_3  
I/O  
I/O  
IO_L09P_3  
I/O  
I/O  
IO_L10N_3  
I/O  
I/O  
IO_L10P_3  
I/O  
I/O  
IO_L12N_3  
I/O  
I/O  
IO_L12P_3  
I/O  
DUAL  
DUAL  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
IO_L13N_3/VREF_3  
IO_L13P_3  
VREF  
I/O  
IO_L14N_3  
I/O  
IP_2  
P12  
P13  
R8  
IO_L14P_3  
I/O  
IP_2  
IO_L16N_3  
J2  
I/O  
IP_2  
IO_L16P_3  
J3  
I/O  
IP_2  
R10  
T11  
N9  
IO_L17N_3/LHCLK1  
IO_L17P_3/LHCLK0  
IO_L18N_3/IRDY2/LHCLK3  
IO_L18P_3/LHCLK2  
IO_L20N_3/LHCLK5  
IO_L20P_3/LHCLK4  
IO_L21N_3/LHCLK7  
IO_L21P_3/TRDY2/LHCLK6  
IO_L22N_3  
K2  
J1  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
I/O  
IP_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
VCCO_2  
L3  
N12  
P8  
K3  
L5  
P10  
P11  
R14  
R11  
U8  
K4  
M1  
L1  
M3  
M2  
M5  
M4  
N2  
N1  
N4  
N3  
R1  
P1  
P4  
P3  
R3  
R2  
T2  
T1  
R4  
T3  
U3  
VCCO_2  
IO_L22P_3/VREF_3  
IO_L24N_3  
VREF  
I/O  
VCCO_2  
U14  
W5  
W11  
W17  
D3  
VCCO_2  
IO_L24P_3  
I/O  
VCCO_2  
IO_L25N_3  
I/O  
VCCO_2  
IO_L25P_3  
I/O  
IO_L01N_3  
IO_L01P_3  
IO_L02N_3  
IO_L02P_3  
IO_L03N_3  
IO_L03P_3  
IO_L05N_3  
IO_L05P_3  
IO_L06N_3  
IO_L06P_3  
IO_L07N_3  
IO_L07P_3  
IO_L08N_3  
IO_L26N_3  
I/O  
D4  
I/O  
IO_L26P_3  
I/O  
C2  
I/O  
IO_L28N_3  
I/O  
B1  
I/O  
IO_L28P_3  
I/O  
D2  
I/O  
IO_L29N_3  
I/O  
C1  
I/O  
IO_L29P_3  
I/O  
E1  
I/O  
IO_L30N_3  
I/O  
D1  
I/O  
IO_L30P_3  
I/O  
G5  
I/O  
IO_L32N_3  
I/O  
F4  
I/O  
IO_L32P_3/VREF_3  
IO_L33N_3  
VREF  
I/O  
J5  
I/O  
J6  
I/O  
IO_L33P_3  
I/O  
H4  
I/O  
IO_L34N_3  
I/O  
104  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
Pinout Descriptions  
Table 81: Spartan-3A FG400 Pinout(Continued)  
Table 81: Spartan-3A FG400 Pinout(Continued)  
FG400  
FG400  
Ball  
Bank  
Pin Name  
IO_L34P_3  
Ball  
U1  
T4  
Type  
I/O  
Bank  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Pin Name  
Type  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
3
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
E12  
F15  
G2  
3
IO_L36N_3  
IO_L36P_3  
IO_L37N_3  
IO_L37P_3  
IO_L38N_3  
IO_L38P_3  
IP_3  
I/O  
3
R5  
V2  
V1  
W2  
W1  
H7  
G6  
G7  
J7  
I/O  
3
I/O  
G19  
H8  
3
I/O  
3
I/O  
H13  
J9  
3
I/O  
3
INPUT  
VREF  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
GND  
J11  
K1  
3
IP_L04N_3/VREF_3  
IP_L04P_3  
IP_L11N_3/VREF_3  
IP_L11P_3  
IP_L15N_3  
IP_L15P_3  
IP_L19N_3  
IP_L19P_3  
IP_L23N_3  
IP_L23P_3  
IP_L27N_3  
IP_L27P_3  
IP_L31N_3  
IP_L31P_3  
IP_L35N_3  
IP_L35P_3  
IP_L39N_3/VREF_3  
IP_L39P_3  
VCCO_3  
3
K10  
K12  
K17  
L4  
3
3
J8  
3
K7  
K8  
K5  
K6  
L6  
3
L9  
3
L11  
L20  
M10  
M12  
N8  
3
3
3
3
L7  
M7  
M8  
N7  
M6  
N6  
P5  
P7  
P6  
E2  
H5  
L2  
3
N11  
N13  
P2  
3
3
3
P19  
R6  
3
3
R9  
3
T16  
U12  
V3  
3
3
VCCO_3  
3
VCCO_3  
V18  
W7  
W15  
Y1  
3
VCCO_3  
N5  
U2  
A1  
A11  
A20  
B6  
B14  
C3  
C18  
D9  
E5  
3
VCCO_3  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Y10  
Y20  
GND  
GND  
GND  
GND  
PWR  
MGMT  
VCCAUX SUSPEND  
R15  
GND  
GND  
VCCAUX DONE  
VCCAUX PROG_B  
VCCAUX TCK  
VCCAUX TDI  
W19  
D5  
CONFIG  
CONFIG  
JTAG  
GND  
GND  
GND  
GND  
A19  
F5  
GND  
GND  
JTAG  
GND  
GND  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
105  
Pinout Descriptions  
Table 81: Spartan-3A FG400 Pinout(Continued)  
FG400  
Bank  
Pin Name  
Ball  
E17  
E4  
Type  
VCCAUX TDO  
JTAG  
VCCAUX TMS  
JTAG  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
A13  
E16  
H1  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
K13  
L8  
N20  
T5  
Y8  
J10  
J12  
K9  
K11  
L10  
L12  
M9  
M11  
N10  
User I/Os by Bank  
Table 82 indicates how the 311 available user-I/O pins are  
distributed between the four I/O banks on the FG400  
package. The AWAKE pin is counted as a dual-purpose I/O.  
Table 82: User I/Os Per Bank for the XC3S400A and XC3S700A in the FG400 Package  
All Possible I/O Pins by Type  
Package  
I/O Bank  
Maximum I/O  
Edge  
I/O  
INPUT  
DUAL  
VREF  
CLK  
8
Top  
0
1
2
3
77  
79  
50  
12  
1
6
8
Right  
Bottom  
Left  
21  
12  
30  
21  
0
8
76  
35  
6
6
8
79  
49  
16  
6
8
TOTAL  
311  
155  
46  
52  
26  
32  
Footprint Migration Differences  
The XC3S400A and XC3S700A FPGAs have identical  
footprints in the FG400 package. Designs can migrate  
between the XC3S400A and XC3S700A FPGAs without  
further consideration.  
106  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
 
Pinout Descriptions  
FG400 Footprint  
Bank 0  
1
2
3
4
5
6
7
8
9
10  
Left Half of FG400  
Package (Top View)  
I/O  
L32P_0  
VREF_0  
I/O  
L18N_0  
GCLK11 GCLK10  
I/O  
L18P_0  
I/O  
L16P_0  
GCLK6  
I/O  
L30P_0  
I/O  
L29P_0  
I/O  
L26P_0  
I/O  
L25P_0  
I/O  
L24N_0  
GND  
A
B
C
D
E
F
I/O  
L32N_0  
PUDC_B  
I/O  
L02P_3  
I/O  
L30N_0  
I/O  
L26N_0  
I/O  
L24P_0  
I/O  
L20P_0  
I/O  
L19P_0  
VCCO_0  
VCCO_0  
GND  
I/O: Unrestricted,  
general-purpose user I/O  
155  
I/O  
L16N_0  
GCLK7  
I/O  
L03P_3  
I/O  
L02N_3  
I/O  
L29N_0  
I/O  
L28P_0  
I/O  
L25N_0  
I/O  
L21P_0  
I/O  
L20N_0  
I/O  
L19N_0  
GND  
INPUT: Unrestricted,  
general-purpose input pin  
I/O  
L17P_0  
GCLK8  
46  
I/O  
L05P_3  
I/O  
L03N_3  
I/O  
L01N_3  
I/O  
L01P_3  
I/O  
L28N_0  
I/O  
L21N_0  
VCCO_0  
GND  
PROG_B  
DUAL: Configuration pins,  
51  
I/O  
L17N_0  
GCLK9  
I/O  
L05N_3  
I/O  
L10P_3  
I/O  
L31P_0  
I/O  
L27P_0  
I/O  
L23P_0  
I/O  
L22P_0  
VCCO_3  
TMS  
GND  
then possible user I/O  
VREF: User I/O or input  
voltage reference for bank  
I/O  
L22N_0  
VREF_0  
I/O  
L13P_3  
I/O  
L10N_3  
I/O  
L09P_3  
I/O  
L06P_3  
I/O  
L31N_0  
I/O  
L27N_0  
I/O  
L23N_0  
26  
VCCO_0  
TDI  
I/O  
INPUT  
L04N_3  
VREF_3  
CLK: User I/O, input, or  
I/O  
I/O  
I/O  
INPUT  
GND  
INPUT INPUT INPUT  
L13N_3  
G
H
J
clock buffer input  
L12P_3  
L09N_3  
L06N_3  
L04P_3  
32  
VREF_3  
I/O  
L12N_3  
I/O  
L14N_3  
I/O  
L08N_3  
I/O  
L08P_3  
VCCAUX  
VCCO_3  
INPUT  
GND  
INPUT INPUT  
GND VCCINT  
VCCINT GND  
GND VCCINT  
VCCINT GND  
CONFIG: Dedicated  
configuration pins  
2
I/O  
L17P_3  
LHCLK0  
INPUT  
L11N_3  
VREF_3  
I/O  
L16N_3  
I/O  
L16P_3  
I/O  
L14P_3  
I/O  
L07N_3  
I/O  
L07P_3  
INPUT  
L11P_3  
JTAG: Dedicated JTAG  
port pins  
4
I/O  
L17N_3  
I/O  
L18P_3  
I/O  
L20P_3  
INPUT INPUT INPUT INPUT  
GND  
K
L
L19N_3  
L19P_3  
L15N_3  
L15P_3  
SUSPEND: Dedicated  
LHCLK1 LHCLK2 LHCLK4  
SUSPEND and  
2
I/O  
L21P_3  
TRDY2  
LHCLK6  
I/O  
L18N_3  
IRDY2  
LHCLK3  
dual-purpose AWAKE  
I/O  
L20N_3  
LHCLK5  
INPUT INPUT  
L23N_3  
VCCO_3  
VCCAUX  
Power Management pins  
GND  
L23P_3  
GND: Ground  
I/O  
L21N_3  
LHCLK7 VREF_3  
I/O  
L22P_3  
I/O  
L22N_3  
I/O  
L24P_3  
I/O  
L24N_3  
INPUT INPUT INPUT  
L31P_3  
43  
M
N
P
R
T
L27N_3  
L27P_3  
I/O  
L25P_3  
I/O  
L25N_3  
I/O  
L26P_3  
I/O  
L26N_3  
INPUT INPUT  
L35N_3  
INPUT  
VCCINT  
VREF_2  
VCCO: Output voltage  
supply for bank  
VCCO_3  
GND  
L31N_3  
22  
INPUT  
L39N_3  
VREF_3  
I/O  
L28P_3  
I/O  
L29P_3  
I/O  
L29N_3  
INPUT INPUT  
INPUT  
VREF_2  
INPUT  
INPUT  
GND  
VCCINT: Internal core  
supply voltage (+1.2V)  
L35P_3  
L39P_3  
VREF_2  
9
I/O  
L28N_3  
I/O  
L30P_3  
I/O  
L30N_3  
I/O  
L33N_3  
I/O  
L36P_3  
I/O  
L04N_2  
GND  
INPUT  
GND  
INPUT  
VCCAUX: Auxiliary supply  
voltage  
8
I/O  
L32P_3  
VREF_3  
I/O  
I/O  
L14N_2  
D4  
I/O  
L32N_3  
I/O  
L33P_3  
I/O  
L36N_3  
I/O  
L04P_2  
I/O  
L06P_2  
I/O  
L11P_2  
VCCAUX  
L07P_2  
RDWR_B  
I/O  
L01P_2  
M1  
I/O  
L07N_2  
VS2  
I/O  
L14P_2  
D5  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_3  
VCCO_2  
U
V
W
Y
L34P_3  
L34N_3  
L05N_2  
L06N_2  
L11N_2  
I/O  
L01N_2  
M0  
I/O  
L09P_2  
VS1  
I/O  
L12P_2  
D7  
I/O  
L16P_2  
GCLK14  
I/O  
L37P_3  
I/O  
L37N_3  
I/O  
L05P_2  
I/O  
L13P_2  
I/O  
L13N_2  
GND  
I/O  
L02P_2  
M2  
I/O  
L09N_2  
VS0  
I/O  
L12N_2  
D6  
I/O  
L15P_2  
I/O  
L16N_2  
GCLK12 GCLK15  
I/O  
L38P_3  
I/O  
L38N_3  
I/O  
L03N_2  
VCCO_2  
GND  
I/O  
L02N_2  
CSO_B  
I/O  
L15N_2  
GCLK13  
I/O  
L03P_2  
I/O  
L08P_2  
I/O  
L08N_2  
I/O  
L10P_2  
I/O  
L10N_2  
VCCAUX  
GND  
GND  
Bank 2  
DS529-4_03_011608  
Figure 24: FG400 Package Footprint (Top View)  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
107  
Pinout Descriptions  
Bank 0  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Right Half of FG400  
Package (Top View)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
GND  
TCK  
GND  
A
B
C
D
E
F
L13N_0  
L07N_0  
L08N_0  
L05N_0  
L04N_0  
L01N_0  
I/O  
L04P_0  
VREF_0  
I/O  
L38N_1  
A25  
I/O  
L38P_1  
A24  
I/O  
L14P_0  
I/O  
L13P_0  
I/O  
L11P_0  
I/O  
L08P_0  
I/O  
L01P_0  
VCCO_0  
GND  
I/O  
L10N_0  
VREF_0  
I/O  
L37N_1  
A23  
I/O  
L37P_1  
A22  
I/O  
L14N_0  
I/O  
L11N_0  
I/O  
L07P_0  
I/O  
L06N_0  
I/O  
L05P_0  
I/O  
L02N_0  
GND  
I/O  
L15P_0  
GCLK4  
I/O  
L02P_0  
VREF_0  
I/O  
L12P_0  
I/O  
L10P_0  
I/O  
L06P_0  
I/O  
L03P_0  
I/O  
L34N_1  
I/O  
L34P_1  
VCCO_0  
VCCO_1  
I/O  
L15N_0  
GCLK5  
I/O  
L09P_0  
I/O  
L03N_0  
I/O  
L33P_1  
I/O  
L32N_1  
I/O  
L32P_1  
VCCAUX  
GND  
INPUT  
INPUT  
TDO  
I/O  
L36N_1  
A21  
I/O  
L30N_1  
A19  
I/O  
L29N_1  
A17  
I/O  
L29P_1  
A16  
I/O  
L12N_0  
I/O  
L09N_0  
I/O  
L33N_1  
INPUT  
GND  
INPUT  
L39P_1  
VREF_1  
I/O  
L36P_1  
A20  
I/O  
L30P_1  
A18  
I/O  
L26N_1  
A15  
INPUT  
INPUT  
I/O  
INPUT INPUT  
GND  
G
H
J
VREF_0  
L39N_1  
L28P_1  
I/O  
L25N_1  
A13  
I/O  
L25P_1  
A12  
I/O  
L26P_1  
A14  
INPUT INPUT  
I/O  
L28N_1  
VCCO_1  
INPUT INPUT  
GND VCCINT  
VCCINT GND  
GND VCCINT  
VCCINT GND  
GND  
L35N_1  
L35P_1  
INPUT  
L31P_1  
VREF_1  
I/O  
L22N_1  
A11  
I/O  
L22P_1  
A10  
I/O  
L21N_1  
RHCLK7  
INPUT  
L31N_1  
INPUT INPUT  
L27N_1  
I/O  
L24P_1  
L27P_1  
I/O  
L21P_1  
IRDY1  
INPUT  
L23P_1  
VREF_1  
I/O  
L20P_1  
RHCLK4  
INPUT  
L23N_1  
I/O  
L24N_1  
VCCAUX  
VCCO_1  
GND  
K
L
RHCLK6  
I/O  
L18N_1  
TRDY1  
RHCLK3  
I/O  
L16P_1  
A8  
I/O  
L16N_1  
A9  
I/O  
L20N_1  
RHCLK5  
I/O  
L18P_1  
RHCLK2  
INPUT INPUT  
GND  
L19N_1  
L19P_1  
INPUT INPUT  
I/O  
L14P_1  
A6  
I/O  
L14N_1  
A7  
I/O  
L17P_1  
I/O  
L17N_1  
RHCLK0 RHCLK1  
INPUT  
L15N_1  
INPUT  
L11P_1  
L15P_1  
L11N_1  
M
N
P
R
T
VREF_1 VREF_1  
I/O  
INPUT  
L12P_1  
I/O  
L12N_1  
A3  
I/O  
L13P_1  
A4  
I/O  
INPUT  
GND  
VCCO_1  
VCCAUX  
L13N_1  
GND  
VREF_2  
VREF_1  
A2  
A5  
INPUT  
INPUT  
I/O  
L10N_1  
VREF_1  
INPUT  
VREF_2  
I/O  
L07P_1  
I/O  
L07N_1  
I/O  
L10P_1  
INPUT INPUT  
GND  
L04N_1  
L04P_1  
VREF_1  
I/O  
L03N_1  
A1  
I/O  
I/O  
INPUT  
L23N_2 VREF_2  
I/O  
L08N_1  
I/O  
L08P_1  
I/O  
L09P_1  
I/O  
L09N_1  
VCCO_2  
L19N_2  
SUSPEND  
I/O  
L03P_1  
A0  
I/O  
L19P_2  
I/O  
L23P_2  
I/O  
L25N_2  
I/O  
L27N_2  
I/O  
L05P_1  
I/O  
L05N_1  
VCCO_1  
INPUT  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_2  
GND  
L18P_2  
L22P_2  
L02N_1  
U
V
W
Y
L27P_2  
L29N_2  
L31N_2  
L06P_1  
L06N_1  
GCLK2  
AWAKE  
LDC0  
I/O  
L17N_2  
GCLK1  
I/O  
L18N_2  
GCLK3  
I/O  
L22N_2  
DOUT  
I/O  
L26N_2  
D1  
I/O  
L02P_1  
LDC1  
I/O  
L01N_1  
LDC2  
I/O  
L25P_2  
I/O  
L29P_2  
I/O  
L31P_2  
GND  
I/O  
L20N_2  
MOSI  
I/O  
L32P_2  
D0  
I/O  
L24N_2  
D3  
I/O  
L01P_1  
HDC  
I/O  
L21N_2  
I/O  
L28N_2  
VCCO_2  
VCCO_2  
GND  
DONE  
CSI_B  
DIN/MISO  
I/O  
L17P_2  
GCLK0  
I/O  
L24P_2  
INIT_B  
I/O  
L26P_2  
D2  
I/O  
L32N_2  
CCLK  
I/O  
L20P_2  
I/O  
L21P_2  
I/O  
L28P_2  
I/O  
L30P_2  
I/O  
L30N_2  
GND  
Bank 2  
DS529-4_04_012009  
108  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
Pinout Descriptions  
FG484: 484-ball Fine-pitch Ball Grid Array  
The 484-ball fine-pitch ball grid array, FG484, supports both  
the XC3S700A and the XC3S1400A FPGAs. There are  
three pinout differences, as described in Table 86.  
Table 83: Spartan-3A FG484 Pinout(Continued)  
FG484  
Ball  
Bank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Pin Name  
IO_L11P_0  
Type  
I/O  
Table 83 lists all the FG484 package pins. They are sorted  
by bank number and then by pin name. Pairs of pins that  
form a differential I/O pair appear together in the table. The  
table also shows the pin number for each pin and the pin  
type, as defined earlier.  
D15  
A15  
A16  
A14  
B15  
E13  
F13  
C13  
D13  
A13  
B13  
E12  
C12  
A11  
A12  
C11  
B11  
E11  
D11  
C10  
A10  
A8  
IO_L12N_0/VREF_0  
IO_L12P_0  
VREF  
I/O  
IO_L13N_0  
I/O  
IO_L13P_0  
I/O  
The shaded rows indicate pinout differences between the  
XC3S700A and the XC3S1400A FPGAs. The XC3S700A  
has three unconnected balls, indicated as N.C. (No  
Connection) in Table 83 and with the black diamond  
character (‹) in Table 83 and Figure 25.  
IO_L14N_0  
I/O  
IO_L14P_0  
I/O  
IO_L15N_0  
I/O  
IO_L15P_0  
I/O  
An electronic version of this package pinout table and  
footprint diagram is available for download from the Xilinx  
website at  
IO_L16N_0  
I/O  
IO_L16P_0  
I/O  
www.xilinx.com/support/documentation/data_sheets/  
s3a_pin.zip.  
IO_L17N_0/GCLK5  
IO_L17P_0/GCLK4  
IO_L18N_0/GCLK7  
IO_L18P_0/GCLK6  
IO_L19N_0/GCLK9  
IO_L19P_0/GCLK8  
IO_L20N_0/GCLK11  
IO_L20P_0/GCLK10  
IO_L21N_0  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
I/O  
Pinout Table  
Table 83: Spartan-3A FG484 Pinout  
FG484  
Bank  
0
Pin Name  
IO_L01N_0  
Ball  
D18  
E17  
C19  
D19  
A20  
B20  
F15  
E15  
A18  
C18  
A19  
B19  
C17  
D17  
C16  
D16  
E14  
C14  
A17  
B17  
C15  
Type  
I/O  
0
IO_L01P_0  
IO_L02N_0  
IO_L02P_0/VREF_0  
IO_L03N_0  
IO_L03P_0  
IO_L04N_0  
IO_L04P_0  
IO_L05N_0  
IO_L05P_0  
IO_L06N_0  
IO_L06P_0/VREF_0  
IO_L07N_0  
IO_L07P_0  
IO_L08N_0  
IO_L08P_0  
IO_L09N_0  
IO_L09P_0  
IO_L10N_0  
IO_L10P_0  
IO_L11N_0  
I/O  
0
I/O  
IO_L21P_0  
I/O  
0
VREF  
I/O  
IO_L22N_0  
I/O  
0
IO_L22P_0  
A9  
I/O  
0
I/O  
IO_L23N_0  
E10  
D10  
C9  
I/O  
0
I/O  
IO_L23P_0  
I/O  
0
I/O  
IO_L24N_0/VREF_0  
IO_L24P_0  
VREF  
I/O  
0
I/O  
B9  
0
I/O  
IO_L25N_0  
C8  
I/O  
0
I/O  
IO_L25P_0  
B8  
I/O  
0
VREF  
I/O  
IO_L26N_0  
A6  
I/O  
0
IO_L26P_0  
A7  
I/O  
0
I/O  
IO_L27N_0  
C7  
I/O  
0
I/O  
IO_L27P_0  
D7  
I/O  
0
I/O  
IO_L28N_0  
A5  
I/O  
0
I/O  
IO_L28P_0  
B6  
I/O  
0
I/O  
IO_L29N_0  
D6  
I/O  
0
I/O  
IO_L29P_0  
C6  
I/O  
0
I/O  
IO_L30N_0  
D8  
I/O  
0
I/O  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
109  
 
Pinout Descriptions  
Table 83: Spartan-3A FG484 Pinout(Continued)  
Table 83: Spartan-3A FG484 Pinout(Continued)  
FG484  
FG484  
Bank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
Pin Name  
IO_L30P_0  
Ball  
Type  
I/O  
Bank  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Pin Name  
IO_L01P_1/HDC  
Ball  
AA22  
W20  
W19  
T18  
T17  
W21  
Y22  
V20  
V19  
V22  
W22  
U21  
U22  
U19  
U20  
T22  
T20  
T19  
R20  
R22  
R21  
P22  
P20  
P18  
R19  
N21  
N22  
N19  
N20  
N17  
N18  
L22  
Type  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
E9  
IO_L31N_0  
IO_L31P_0  
IO_L32N_0  
IO_L32P_0  
IO_L33N_0  
IO_L33P_0  
IO_L34N_0  
IO_L34P_0  
IO_L35N_0  
IO_L35P_0  
IO_L36N_0/PUDC_B  
IO_L36P_0/VREF_0  
IP_0  
B4  
I/O  
IO_L02N_1/LDC0  
IO_L02P_1/LDC1  
IO_L03N_1/A1  
IO_L03P_1/A0  
IO_L05N_1  
A4  
I/O  
D5  
I/O  
C5  
I/O  
B3  
I/O  
A3  
I/O  
IO_L05P_1  
I/O  
F8  
I/O  
IO_L06N_1  
I/O  
E7  
I/O  
IO_L06P_1  
I/O  
E6  
I/O  
IO_L07N_1  
I/O  
F7  
I/O  
IO_L07P_1  
I/O  
A2  
DUAL  
VREF  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
VREF  
VREF  
VREF  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
DUAL  
IO_L09N_1  
I/O  
B2  
IO_L09P_1  
I/O  
E16  
E8  
IO_L10N_1  
I/O  
IP_0  
IO_L10P_1  
I/O  
IP_0  
F10  
F12  
F16  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G7  
IO_L11N_1  
I/O  
IP_0  
IO_L11P_1  
I/O  
IP_0  
IO_L13N_1  
I/O  
IP_0  
IO_L13P_1  
I/O  
IP_0  
IO_L14N_1  
I/O  
IP_0  
IO_L14P_1  
I/O  
IP_0  
IO_L15N_1/VREF_1  
IO_L15P_1  
VREF  
I/O  
IP_0  
IP_0  
IO_L17N_1/A3  
IO_L17P_1/A2  
IO_L18N_1/A5  
IO_L18P_1/A4  
IO_L19N_1/A7  
IO_L19P_1/A6  
IO_L20N_1/A9  
IO_L20P_1/A8  
IO_L21N_1/RHCLK1  
IO_L21P_1/RHCLK0  
IO_L22N_1/TRDY1/RHCLK3  
IO_L22P_1/RHCLK2  
IO_L24N_1/RHCLK5  
IO_L24P_1/RHCLK4  
IO_L25N_1/RHCLK7  
IO_L25P_1/IRDY1/RHCLK6  
IO_L26N_1/A11  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
DUAL  
IP_0  
IP_0  
IP_0  
G9  
IP_0  
H10  
H13  
H14  
G8  
IP_0  
IP_0  
IP_0/VREF_0  
IP_0/VREF_0  
IP_0/VREF_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
IO_L01N_1/LDC2  
H12  
H9  
M22  
L20  
B10  
B14  
B18  
B5  
L21  
M20  
M18  
K19  
K20  
J22  
F14  
F9  
Y21  
110  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
Pinout Descriptions  
Table 83: Spartan-3A FG484 Pinout(Continued)  
Table 83: Spartan-3A FG484 Pinout(Continued)  
FG484  
FG484  
Ball  
Bank  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Pin Name  
IO_L26P_1/A10  
Ball  
K22  
L19  
L18  
J20  
Type  
DUAL  
I/O  
Bank  
Pin Name  
IP_L23P_1  
Type  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
VREF  
1
1
1
1
1
1
1
1
1
1
1
1
1
M17  
L16  
M15  
K16  
L15  
K15  
K14  
H18  
H17  
J15  
IO_L28N_1  
IP_L27N_1  
IO_L28P_1  
I/O  
IP_L27P_1/VREF_1  
IP_L31N_1  
IO_L29N_1/A13  
IO_L29P_1/A12  
IO_L30N_1/A15  
IO_L30P_1/A14  
IO_L32N_1  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
J21  
IP_L31P_1  
G22  
H22  
K18  
K17  
H20  
H21  
F21  
F22  
G20  
G19  
H19  
J18  
IP_L35N_1  
IP_L35P_1/VREF_1  
IP_L39N_1  
IO_L32P_1  
I/O  
IP_L39P_1  
IO_L33N_1/A17  
IO_L33P_1/A16  
IO_L34N_1/A19  
IO_L34P_1/A18  
IO_L36N_1  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
IP_L43N_1/VREF_1  
IP_L43P_1  
J16  
IP_L47N_1  
H15  
H16  
IP_L47P_1/VREF_1  
PWR  
MGMT  
VCCAUX SUSPEND  
U18  
IO_L36P_1  
I/O  
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
VCCO_1  
E21  
J17  
K21  
P17  
P21  
V21  
W5  
V6  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
IO_L37N_1  
I/O  
VCCO_1  
IO_L37P_1  
I/O  
VCCO_1  
IO_L38N_1  
F20  
E20  
F18  
F19  
D22  
E22  
D20  
D21  
C21  
C22  
B21  
B22  
G17  
G18  
R16  
R15  
P16  
P15  
R18  
R17  
N16  
N15  
M16  
I/O  
VCCO_1  
IO_L38P_1  
I/O  
VCCO_1  
IO_L40N_1  
I/O  
VCCO_1  
IO_L40P_1  
I/O  
IO_L01N_2/M0  
IO_L01P_2/M1  
IO_L02N_2/CSO_B  
IO_L02P_2/M2  
IO_L03N_2  
IO_L03P_2  
IO_L04N_2  
IO_L04P_2  
IO_L05N_2  
IO_L05P_2  
IO_L06N_2  
IO_L06P_2  
IO_L07N_2  
IO_L07P_2  
IO_L08N_2  
IO_L08P_2  
IO_L09N_2/VS2  
IO_L09P_2/RDWR_B  
IO_L10N_2  
IO_L41N_1  
I/O  
IO_L41P_1  
I/O  
Y4  
IO_L42N_1  
I/O  
W4  
AA3  
AB2  
AA4  
AB3  
Y5  
IO_L42P_1  
I/O  
IO_L44N_1/A21  
IO_L44P_1/A20  
IO_L45N_1/A23  
IO_L45P_1/A22  
IO_L46N_1/A25  
IO_L46P_1/A24  
IP_L04N_1/VREF_1  
IP_L04P_1  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
VREF  
INPUT  
INPUT  
I/O  
I/O  
I/O  
I/O  
W6  
AB5  
AB4  
Y6  
I/O  
I/O  
I/O  
I/O  
IP_L08N_1  
W7  
AB6  
AA6  
W9  
V9  
I/O  
IP_L08P_1  
I/O  
IP_L12N_1/VREF_1  
IP_L12P_1  
I/O  
DUAL  
DUAL  
I/O  
IP_L16N_1/VREF_1  
IP_L16P_1  
AB7  
IP_L23N_1  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
111  
Pinout Descriptions  
Table 83: Spartan-3A FG484 Pinout(Continued)  
Table 83: Spartan-3A FG484 Pinout(Continued)  
FG484  
FG484  
Bank  
2
Pin Name  
IO_L10P_2  
Ball  
Type  
I/O  
Bank  
2
Pin Name  
IO_L30N_2  
Ball  
V15  
V14  
V16  
W16  
AA19  
AB19  
V17  
W18  
W17  
Y18  
AA21  
AB21  
AA20  
AB20  
P12  
R10  
R11  
R9  
Type  
I/O  
Y7  
2
IO_L11N_2/VS0  
IO_L11P_2/VS1  
IO_L12N_2  
Y8  
DUAL  
DUAL  
I/O  
2
IO_L30P_2  
IO_L31N_2  
IO_L31P_2  
IO_L32N_2  
IO_L32P_2  
IO_L33N_2  
IO_L33P_2  
IO_L34N_2  
IO_L34P_2  
IO_L35N_2  
IO_L35P_2  
IO_L36N_2/CCLK  
IO_L36P_2/D0/DIN/MISO  
IP_2  
I/O  
2
W8  
2
I/O  
2
AB8  
AA8  
Y10  
V10  
AB9  
Y9  
2
I/O  
2
IO_L12P_2  
I/O  
2
I/O  
2
IO_L13N_2  
I/O  
2
I/O  
2
IO_L13P_2  
I/O  
2
I/O  
2
IO_L14N_2/D6  
IO_L14P_2/D7  
IO_L15N_2  
DUAL  
DUAL  
I/O  
2
I/O  
2
2
I/O  
2
AB10  
AA10  
AB11  
Y11  
V11  
U11  
Y12  
W12  
AB12  
AA12  
U12  
V12  
Y13  
AB13  
AB14  
AA14  
Y14  
W13  
2
I/O  
2
IO_L15P_2  
I/O  
2
I/O  
2
IO_L16N_2/D4  
IO_L16P_2/D5  
IO_L17N_2/GCLK13  
IO_L17P_2/GCLK12  
IO_L18N_2/GCLK15  
IO_L18P_2/GCLK14  
IO_L19N_2/GCLK1  
IO_L19P_2/GCLK0  
IO_L20N_2/GCLK3  
IO_L20P_2/GCLK2  
IO_L21N_2  
DUAL  
DUAL  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
I/O  
2
I/O  
2
2
DUAL  
DUAL  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
2
2
2
2
2
2
IP_2  
2
2
IP_2  
2
2
IP_2  
2
2
IP_2  
T13  
2
2
IP_2  
T14  
2
2
IP_2  
T9  
2
2
IP_2  
U10  
U15  
2
IO_L21P_2  
I/O  
2
IP_2  
2
IO_L22N_2/MOSI/CSI_B  
IO_L22P_2  
DUAL  
I/O  
XC3S1400A: IP_2  
XC3S700A: N.C. ()  
2
2
U16  
U7  
INPUT  
INPUT  
2
XC3S1400A: IP_2  
XC3S700A: N.C. ()  
2
IO_L23N_2  
I/O  
2
IO_L23P_2  
I/O  
2
2
2
2
2
2
2
2
2
2
IP_2  
U8  
V7  
INPUT  
INPUT  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
IO_L24N_2/  
DOUT  
2
2
AA15  
AB15  
DUAL  
IP_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
R12  
R13  
R14  
T10  
T11  
T15  
T16  
T7  
PWR  
MGMT  
IO_L24P_2/AWAKE  
2
2
2
2
2
2
2
2
2
2
IO_L25N_2  
Y15  
W15  
U13  
I/O  
I/O  
IO_L25P_2  
IO_L26N_2/D3  
IO_L26P_2/INIT_B  
IO_L27N_2  
DUAL  
DUAL  
I/O  
V13  
Y16  
IO_L27P_2  
AB16  
Y17  
I/O  
IO_L28N_2/D1  
IO_L28P_2/D2  
IO_L29N_2  
DUAL  
DUAL  
I/O  
XC3S1400A: IP_2/VREF_2  
XC3S700A: N.C. ()  
2
T8  
VREF  
AA17  
AB18  
AB17  
2
2
IP_2/VREF_2  
VCCO_2  
V8  
VREF  
VCCO  
IO_L29P_2  
I/O  
AA13  
112  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
Pinout Descriptions  
Table 83: Spartan-3A FG484 Pinout(Continued)  
Table 83: Spartan-3A FG484 Pinout(Continued)  
FG484  
FG484  
Ball  
Bank  
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Pin Name  
Ball  
AA18  
AA5  
AA9  
U14  
U9  
D2  
C1  
C2  
B1  
E4  
D3  
G5  
G6  
E1  
D1  
E3  
F4  
Type  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
Bank  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Pin Name  
IO_L22P_3/LHCLK2  
IO_L24N_3/LHCLK5  
IO_L24P_3/LHCLK4  
IO_L25N_3/LHCLK7  
IO_L25P_3/TRDY2/LHCLK6  
IO_L26N_3  
Type  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
I/O  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
K1  
M2  
M1  
M4  
M3  
N3  
N1  
P2  
P1  
P5  
P3  
N4  
M5  
R2  
R1  
R4  
R3  
T4  
IO_L01N_3  
IO_L01P_3  
I/O  
IO_L26P_3/VREF_3  
IO_L28N_3  
VREF  
I/O  
IO_L02N_3  
I/O  
IO_L02P_3  
I/O  
IO_L28P_3  
I/O  
IO_L03N_3  
I/O  
IO_L29N_3  
I/O  
IO_L03P_3  
I/O  
IO_L29P_3  
I/O  
IO_L05N_3  
I/O  
IO_L30N_3  
I/O  
IO_L05P_3  
I/O  
IO_L30P_3  
I/O  
IO_L06N_3  
I/O  
IO_L32N_3  
I/O  
IO_L06P_3  
I/O  
IO_L32P_3  
I/O  
IO_L07N_3  
I/O  
IO_L33N_3  
I/O  
IO_L07P_3  
I/O  
IO_L33P_3  
I/O  
IO_L08N_3  
G4  
F3  
I/O  
IO_L34N_3  
I/O  
IO_L08P_3  
I/O  
IO_L34P_3  
R5  
T3  
I/O  
IO_L09N_3  
H6  
H5  
J5  
I/O  
IO_L36N_3  
I/O  
IO_L09P_3  
I/O  
IO_L36P_3/VREF_3  
IO_L37N_3  
T1  
VREF  
I/O  
IO_L10N_3  
I/O  
U2  
U1  
V3  
V1  
U5  
T5  
IO_L10P_3  
K6  
F1  
I/O  
IO_L37P_3  
I/O  
IO_L12N_3  
I/O  
IO_L38N_3  
I/O  
IO_L12P_3  
F2  
I/O  
IO_L38P_3  
I/O  
IO_L13N_3  
G1  
G3  
H3  
H4  
H1  
H2  
J1  
I/O  
IO_L40N_3  
I/O  
IO_L13P_3  
I/O  
IO_L40P_3  
I/O  
IO_L14N_3  
I/O  
IO_L41N_3  
U4  
U3  
W2  
W1  
W3  
V4  
Y2  
Y1  
AA2  
AA1  
J8  
I/O  
IO_L14P_3  
I/O  
IO_L41P_3  
I/O  
IO_L16N_3  
I/O  
IO_L42N_3  
I/O  
IO_L16P_3  
I/O  
IO_L42P_3  
I/O  
IO_L17N_3/VREF_3  
IO_L17P_3  
VREF  
I/O  
IO_L43N_3  
I/O  
J3  
IO_L43P_3  
I/O  
IO_L18N_3  
K4  
K5  
K2  
K3  
L3  
I/O  
IO_L44N_3  
I/O  
IO_L18P_3  
I/O  
IO_L44P_3  
I/O  
IO_L20N_3  
I/O  
IO_L45N_3  
I/O  
IO_L20P_3  
I/O  
IO_L45P_3  
I/O  
IO_L21N_3/LHCLK1  
IO_L21P_3/LHCLK0  
IO_L22N_3/IRDY2/LHCLK3  
LHCLK  
LHCLK  
LHCLK  
IP_3/VREF_3  
IP_3/VREF_3  
IP_L04N_3/VREF_3  
VREF  
VREF  
VREF  
L5  
R6  
H7  
L1  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
113  
Pinout Descriptions  
Table 83: Spartan-3A FG484 Pinout(Continued)  
Table 83: Spartan-3A FG484 Pinout(Continued)  
FG484  
FG484  
Bank  
Pin Name  
IP_L04P_3  
Ball  
Type  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
GND  
Bank  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Pin Name  
Ball  
F17  
F6  
Type  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
3
H8  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
3
IP_L11N_3  
IP_L11P_3  
IP_L15N_3/VREF_3  
IP_L15P_3  
IP_L19N_3  
IP_L19P_3  
IP_L23N_3  
IP_L23P_3  
IP_L27N_3  
IP_L27P_3  
IP_L31N_3  
IP_L31P_3  
IP_L35N_3  
IP_L35P_3  
IP_L39N_3  
IP_L39P_3  
IP_L46N_3/VREF_3  
IP_L46P_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
GND  
K8  
3
J7  
G2  
3
3
L8  
G21  
J11  
J13  
J14  
J19  
J4  
K7  
3
M8  
L7  
3
3
M6  
M7  
N9  
3
3
J9  
3
N8  
K10  
K12  
L11  
L13  
L17  
L2  
3
N5  
3
N6  
3
P8  
3
N7  
3
R8  
3
P7  
L6  
3
T6  
L9  
3
R7  
M10  
M12  
M14  
M21  
N11  
N13  
P10  
P14  
P19  
P4  
3
E2  
3
J2  
3
J6  
3
N2  
3
P6  
3
V2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
A1  
GND  
A22  
AA11  
AA16  
AA7  
AB1  
AB22  
B12  
B16  
B7  
GND  
GND  
GND  
GND  
GND  
P9  
GND  
GND  
T12  
T2  
GND  
GND  
GND  
GND  
T21  
U17  
U6  
GND  
GND  
GND  
GND  
GND  
GND  
W10  
W14  
Y20  
Y3  
GND  
C20  
C3  
GND  
GND  
GND  
GND  
D14  
D9  
GND  
GND  
GND  
PWR  
MGMT  
VCCAUX SUSPEND  
U18  
GND  
F11  
GND  
114  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
Pinout Descriptions  
Table 83: Spartan-3A FG484 Pinout(Continued)  
FG484  
Bank  
Pin Name  
Ball  
Y19  
C4  
Type  
VCCAUX DONE  
VCCAUX PROG_B  
VCCAUX TCK  
CONFIG  
CONFIG  
JTAG  
A21  
F5  
VCCAUX TDI  
JTAG  
VCCAUX TDO  
E19  
D4  
JTAG  
VCCAUX TMS  
JTAG  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
D12  
E18  
E5  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
H11  
L4  
M19  
P11  
V18  
V5  
W11  
J10  
J12  
K11  
K13  
K9  
L10  
L12  
L14  
M11  
M13  
M9  
N10  
N12  
N14  
P13  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
115  
Pinout Descriptions  
User I/Os by Bank  
Table 84 and Table 85 indicate how the user-I/O pins are  
distributed between the four I/O banks on the FG484  
package. The AWAKE pin is counted as a dual-purpose I/O.  
Table 84: User I/Os Per Bank for the XC3S700A in the FG484 Package  
All Possible I/O Pins by Type  
Package  
Edge  
I/O Bank  
Maximum I/O  
I/O  
58  
INPUT  
17  
DUAL  
1
VREF  
CLK  
8
Top  
0
1
2
3
92  
94  
8
8
Right  
Bottom  
Left  
33  
15  
30  
21  
0
8
92  
43  
11  
9
8
94  
61  
17  
8
8
TOTAL  
372  
195  
60  
52  
33  
32  
Table 85: User I/Os Per Bank for the XC3S1400A in the FG484 Package  
All Possible I/O Pins by Type  
Package  
Edge  
I/O Bank  
Maximum I/O  
I/O  
58  
INPUT  
DUAL  
1
VREF  
CLK  
8
Top  
0
1
2
3
92  
94  
17  
15  
13  
17  
62  
8
8
Right  
Bottom  
Left  
33  
30  
21  
0
8
95  
43  
10  
8
8
94  
61  
8
TOTAL  
375  
195  
52  
34  
32  
Footprint Migration Differences  
Table 86 summarizes any footprint and functionality  
differences between the XC3S700A and the XC3S1400A  
FPGAs that might affect easy migration between devices  
available in the FG484 package. There are three such balls.  
All other pins not listed in Table 86 unconditionally migrate  
between Spartan-3A devices available in the FG484  
package.  
The arrows indicate the direction for easy migration.  
Table 86: FG484 Footprint Migration Differences  
Pin  
T8  
Bank  
XC3S700A  
N.C.  
Migration  
XC3S1400A  
INPUT/VREF  
INPUT  
2
2
2
Æ
Æ
Æ
3
U7  
N.C.  
N.C.  
U16  
INPUT  
DIFFERENCES  
Legend:  
This pin can unconditionally migrate from the device  
on the left to the device on the right. Migration in the  
other direction is possible depending on how the pin is  
configured for the device on the right.  
Æ
116  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
 
 
 
Pinout Descriptions  
FG484 Footprint  
Bank 0  
1
2
3
4
5
6
7
8
9
10  
11  
Left Half of FG484  
Package (Top View)  
I/O  
I/O  
L18N_0  
GCLK7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L22N_0  
I/O  
L22P_0  
I/O  
L21P_0  
GND  
A
B
C
D
E
F
L36N_0  
L33P_0  
L31P_0  
L28N_0  
L26N_0  
L26P_0  
PUDC_B  
I/O  
L36P_0  
VREF_0  
I/O  
L19P_0  
GCLK8  
I/O  
L02P_3  
I/O  
L33N_0  
I/O  
L31N_0  
I/O  
L28P_0  
I/O  
L25P_0  
I/O  
L24P_0  
VCCO_0  
VCCO_0  
GND  
I/O: Unrestricted,  
general-purpose user I/O  
I/O  
L24N_0  
VREF_0  
I/O  
L19N_0  
GCLK9  
195  
I/O  
L01P_3  
I/O  
L02N_3  
I/O  
L32P_0  
I/O  
L29P_0  
I/O  
L27N_0  
I/O  
L25N_0  
I/O  
L21N_0  
GND  
PROG_B  
I/O  
L20P_0  
GCLK10  
INPUT: Unrestricted,  
general-purpose input pin  
I/O  
L06P_3  
I/O  
L01N_3  
I/O  
L03P_3  
I/O  
L32N_0  
I/O  
L29N_0  
I/O  
L27P_0  
I/O  
L30N_0  
I/O  
L23P_0  
60-  
62  
TMS  
GND  
I/O  
L20N_0  
GCLK11  
I/O  
L06N_3  
I/O  
L07N_3  
I/O  
L03N_3  
I/O  
L35N_0  
I/O  
L34P_0  
I/O  
L30P_0  
I/O  
L23N_0  
VCCO_3  
VCCAUX  
INPUT  
DUAL: Configuration pins,  
then possible user I/O  
51  
I/O  
L12N_3  
I/O  
L12P_3  
I/O  
L08P_3  
I/O  
L07P_3  
I/O  
L35P_0  
I/O  
L34N_0  
VCCO_0  
TDI  
GND  
INPUT  
GND  
VREF: User I/O or input  
voltage reference for bank  
33-  
34  
I/O  
L13N_3  
I/O  
L13P_3  
I/O  
L08N_3  
I/O  
L05N_3  
I/O  
L05P_3  
INPUT  
VREF_0  
GND  
INPUT  
INPUT INPUT INPUT  
G
H
J
CLK: User I/O, input, or  
INPUT  
L04N_3  
VREF_3  
clock buffer input  
32  
2
I/O  
L16N_3  
I/O  
L16P_3  
I/O  
L14N_3  
I/O  
L14P_3  
I/O  
L09P_3  
I/O  
L09N_3  
INPUT INPUT  
L04P_3 VREF_0  
VCCAUX  
INPUT  
I/O  
L17N_3  
VREF_3  
SUSPEND: Dedicated  
SUSPEND and  
dual-purpose AWAKE  
Power Management pins  
I/O  
L17P_3  
I/O  
L10N_3  
INPUT INPUT  
L11P_3 VREF_3  
VCCO_3  
VCCO_3  
GND  
GND VCCINT GND  
VCCINT GND VCCINT  
GND VCCINT GND  
VCCINT GND VCCINT  
I/O  
L22P_3  
LHCLK2  
I/O  
L20N_3  
I/O  
L20P_3  
I/O  
L18N_3  
I/O  
L18P_3  
I/O  
L10P_3  
INPUT INPUT  
K
L
L15P_3  
L11N_3  
CONFIG: Dedicated  
2
4
I/O  
L22N_3  
IRDY2  
LHCLK3  
configuration pins  
I/O  
L21N_3  
LHCLK1  
I/O  
L21P_3  
LHCLK0  
INPUT  
L15N_3  
VREF_3  
INPUT  
L19P_3  
VCCAUX  
GND  
GND  
JTAG: Dedicated JTAG port  
pins  
I/O  
L25P_3  
TRDY2  
LHCLK6  
I/O  
L24P_3  
I/O  
L24N_3  
LHCLK4 LHCLK5  
I/O  
L25N_3  
LHCLK7  
I/O  
L30P_3  
INPUT INPUT INPUT  
M
N
P
R
T
L23N_3  
L23P_3  
L19N_3  
I/O  
GND: Ground  
I/O  
L26N_3  
I/O  
L30N_3  
INPUT INPUT INPUT INPUT INPUT  
VCCO_3  
L26P_3  
VCCINT GND  
53  
24  
15  
10  
L31N_3  
L31P_3  
L35P_3  
L27P_3  
L27N_3  
VREF_3  
I/O  
L28P_3  
I/O  
L28N_3  
I/O  
L29P_3  
I/O  
L29N_3  
INPUT INPUT  
VCCO_3  
VCCAUX  
GND  
GND  
GND  
VCCO: Output voltage  
supply for bank  
L39P_3  
L35N_3  
I/O  
L32P_3  
I/O  
L32N_3  
I/O  
L33P_3  
I/O  
L33N_3  
I/O  
INPUT INPUT INPUT  
INPUT INPUT INPUT  
L34P_3 VREF_3 L46P_3  
L39N_3  
VCCINT: Internal core  
supply voltage (+1.2V)  
INPUT  
I/O  
L36P_3  
VREF_3  
INPUT  
L46N_3  
VREF_3  
I/O  
L36N_3  
I/O  
L34N_3  
I/O  
L40P_3  
INPUT  
VREF_2  
INPUT INPUT  
INPUT  
VREF_2  
GND  
VREF_2 VREF_2  
I/O  
L17P_2  
GCLK12  
INPUT  
VCCAUX: Auxiliary supply  
voltage  
I/O  
L37P_3  
I/O  
L37N_3  
I/O  
L41P_3  
I/O  
L41N_3  
I/O  
L40N_3  
VCCO_2  
GND  
INPUT  
INPUT  
U
V
W
Y
I/O  
L01P_2  
M1  
I/O  
L09P_2  
RDWR_B  
I/O  
L17N_2  
GCLK13  
I/O  
L38P_3  
I/O  
L38N_3  
I/O  
L43P_3  
INPUT  
VREF_2  
I/O  
L13P_2  
VCCO_3  
VCCAUX  
INPUT  
N.C.: Not connected  
(XC3S700A only)  
3
I/O  
L02P_2  
M2  
I/O  
L01N_2  
M0  
I/O  
L11P_2  
VS1  
I/O  
L09N_2  
VS2  
I/O  
L42P_3  
I/O  
L42N_3  
I/O  
L43N_3  
I/O  
L05P_2  
I/O  
L07P_2  
VCCAUX  
GND  
I/O  
L02N_2  
CSO_B  
I/O  
L11N_2  
VS0  
I/O  
L14P_2  
D7  
I/O  
L16P_2  
D5  
I/O  
L44P_3  
I/O  
L44N_3  
I/O  
L05N_2  
I/O  
L07N_2  
I/O  
L10P_2  
I/O  
L13N_2  
GND  
A
A
I/O  
L45P_3  
I/O  
L45N_3  
I/O  
L03N_2  
I/O  
L04N_2  
I/O  
L08P_2  
I/O  
L12P_2  
I/O  
L15P_2  
VCCO_2  
VCCO_2  
GND  
GND  
I/O  
L14N_2  
D6  
I/O  
L16N_2  
D4  
A
B
I/O  
L03P_2  
I/O  
L04P_2  
I/O  
L06P_2  
I/O  
L06N_2  
I/O  
L08N_2  
I/O  
L10N_2  
I/O  
L12N_2  
I/O  
L15N_2  
GND  
Bank 2  
DS529-4 01 101106  
Figure 25: FG484 Package Footprint (Top View)  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
117  
Pinout Descriptions  
Bank 0  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
Right Half of FG484  
Package (Top View)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TCK  
GND  
L18P_0  
L12N_0  
A
B
C
D
E
F
L16N_0  
L13N_0  
L12P_0  
L10N_0  
L05N_0  
L06N_0  
L03N_0  
GCLK6  
VREF_0  
I/O  
L06P_0  
VREF_0  
I/O  
L45N_1  
A23  
I/O  
L45P_1  
A22  
I/O  
L16P_0  
I/O  
L13P_0  
I/O  
L10P_0  
I/O  
L03P_0  
VCCO_0  
VCCO_0  
GND  
GND  
I/O  
L17P_0  
GCLK4  
I/O  
L44N_1  
A21  
I/O  
L44P_1  
A20  
I/O  
L15N_0  
I/O  
L09P_0  
I/O  
L11N_0  
I/O  
L08N_0  
I/O  
L07N_0  
I/O  
L05P_0  
I/O  
L02N_0  
GND  
I/O  
L02P_0  
VREF_0  
I/O  
L15P_0  
I/O  
L11P_0  
I/O  
L08P_0  
I/O  
L07P_0  
I/O  
L01N_0  
I/O  
L42N_1  
I/O  
L42P_1  
I/O  
L41N_1  
VCCAUX  
GND  
I/O  
L17N_0  
GCLK5  
I/O  
L14N_0  
I/O  
L09N_0  
I/O  
L04P_0  
I/O  
L01P_0  
I/O  
L38P_1  
I/O  
L41P_1  
VCCAUX  
VCCO_1  
INPUT  
INPUT  
TDO  
I/O  
L34N_1  
A19  
I/O  
L34P_1  
A18  
I/O  
L14P_0  
I/O  
L04N_0  
I/O  
L40N_1  
I/O  
L40P_1  
I/O  
L38N_1  
VCCO_0  
INPUT  
GND  
I/O  
L46N_1  
A25  
I/O  
L46P_1  
A24  
I/O  
L30N_1  
A15  
I/O  
I/O  
INPUT INPUT INPUT INPUT INPUT  
INPUT  
GND  
G
H
J
L36P_1  
L36N_1  
I/O  
L33N_1  
A17  
I/O  
L33P_1  
A16  
I/O  
L30P_1  
A14  
INPUT  
INPUT  
INPUT INPUT  
L39P_1  
I/O  
L37N_1  
INPUT INPUT  
L47P_1  
VREF_0  
L47N_1  
L39N_1  
VREF_1  
INPUT  
L43N_1  
VREF_1  
I/O  
L29N_1  
A13  
I/O  
L29P_1  
A12  
I/O  
L26N_1  
A11  
INPUT  
I/O  
L37P_1  
VCCO_1  
VCCINT GND  
GND VCCINT  
GND  
GND  
L43P_1  
I/O  
L25P_1  
IRDY1  
INPUT  
L35P_1  
VREF_1  
I/O  
L25N_1  
RHCLK7  
I/O  
L26P_1  
A10  
INPUT INPUT  
L35N_1  
I/O  
L32P_1  
I/O  
L32N_1  
VCCO_1  
K
L
L31N_1  
RHCLK6  
I/O  
L22N_1  
TRDY1  
RHCLK3  
I/O  
L22P_1  
I/O  
L21N_1  
RHCLK2 RHCLK1  
INPUT INPUT  
I/O  
L28P_1  
I/O  
L28N_1  
VCCINT GND VCCINT  
GND VCCINT GND  
VCCINT GND VCCINT  
INPUT VCCINT GND  
GND  
L31P_1  
L27N_1  
INPUT  
L27P_1  
VREF_1  
I/O  
L24P_1  
RHCLK4  
I/O  
L24N_1  
RHCLK5  
I/O  
L21P_1  
RHCLK0  
INPUT INPUT  
VCCAUX  
GND  
M
N
P
R
T
L23N_1  
L23P_1  
INPUT  
L16N_1  
VREF_1  
I/O  
L20N_1  
A9  
I/O  
L20P_1  
A8  
I/O  
L19N_1  
A7  
I/O  
L19P_1  
A6  
I/O  
L18N_1  
A5  
I/O  
L18P_1  
A4  
INPUT  
L16P_1  
I/O  
L17N_1  
A3  
I/O  
L15N_1  
VREF_1  
INPUT INPUT  
I/O  
L15P_1  
VCCO_1  
VCCO_1  
GND  
L08P_1  
L08N_1  
INPUT  
L04N_1  
VREF_1  
INPUT  
L12N_1  
VREF_1  
I/O  
L17P_1  
A2  
INPUT INPUT INPUT INPUT  
VREF_2 VREF_2 VREF_2 L04P_1  
INPUT  
L12P_1  
I/O  
L13P_1  
I/O  
L14P_1  
I/O  
L14N_1  
I/O  
L03P_1  
A0  
I/O  
L03N_1  
A1  
INPUT INPUT  
I/O  
L13N_1  
I/O  
L11P_1  
I/O  
L11N_1  
GND  
INPUT INPUT  
I/O  
GND  
VREF_2 VREF_2  
I/O  
L20N_2  
GCLK3  
INPUT  
I/O  
L10N_1  
I/O  
L10P_1  
I/O  
L09N_1  
I/O  
L09P_1  
VCCO_2  
L26N_2  
INPUT  
GND  
U
V
W
Y
D3  
SUSPEND  
I/O  
I/O  
I/O  
I/O  
L30N_2  
I/O  
L31N_2  
I/O  
L33N_2  
I/O  
L06P_1  
I/O  
L06N_1  
I/O  
L07N_1  
VCCAUX  
VCCO_1  
L20P_2  
L26P_2  
L30P_2  
INIT_B  
GCLK2  
I/O  
I/O  
L02P_1  
LDC1  
I/O  
L02N_1  
LDC0  
I/O  
I/O  
L25P_2  
I/O  
L31P_2  
I/O  
L34N_2  
I/O  
L33P_2  
I/O  
L05N_1  
I/O  
L07P_1  
GND  
L23P_2  
L18P_2  
GCLK14  
I/O  
I/O  
L28N_2  
D1  
I/O  
L01N_1  
LDC2  
I/O  
L21N_2  
I/O  
L23N_2  
I/O  
L25N_2  
I/O  
L27N_2  
I/O  
L34P_2  
I/O  
L05P_1  
DONE  
GND  
L18N_2  
GCLK15  
I/O  
I/O  
I/O  
L28P_2  
D2  
I/O  
I/O  
L01P_1  
HDC  
A
A
I/O  
L22P_2  
I/O  
L32N_2  
I/O  
L35N_2  
VCCO_2  
VCCO_2  
GND  
L19P_2  
L24N_2  
L36N_2  
GCLK0  
DOUT  
CCLK  
I/O  
I/O  
L36P_2  
D0  
I/O  
I/O  
A
B
I/O  
L21P_2  
I/O  
L27P_2  
I/O  
L29P_2  
I/O  
L29N_2  
I/O  
L32P_2  
I/O  
L35P_2  
L22N_2  
MOSI  
GND  
L19N_2  
L24P_2  
GCLK1  
AWAKE  
CSI_B  
DIN/MISO  
Bank 2  
DS529-4_02_012009  
Figure 26:  
118  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
Pinout Descriptions  
FG676: 676-ball Fine-pitch Ball Grid Array  
The 676-ball fine-pitch ball grid array, FG676, supports the  
XC3S1400A FPGA.  
Table 87: Spartan-3A FG676 Pinout(Continued)  
FG676  
Ball  
Bank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Pin Name  
IO_L15N_0  
Type  
I/O  
Table 87 lists all the FG676 package pins. They are sorted  
by bank number and then by pin name. Pairs of pins that  
form a differential I/O pair appear together in the table. The  
table also shows the pin number for each pin and the pin  
type, as defined earlier.  
A19  
B19  
H15  
G15  
C18  
D18  
A18  
B18  
B17  
C17  
E15  
F15  
C16  
D17  
C15  
D16  
A15  
B15  
F14  
E14  
J14  
IO_L15P_0  
I/O  
IO_L16N_0  
I/O  
IO_L16P_0  
I/O  
The XC3S1400A has 17 unconnected balls, indicated as  
N.C. (No Connection) in Table 87 and with the black  
diamond character (‹) in Table 87 and Figure 27.  
IO_L17N_0  
I/O  
IO_L17P_0  
I/O  
An electronic version of this package pinout table and  
footprint diagram is available for download from the Xilinx  
website at:  
IO_L18N_0  
I/O  
IO_L18P_0  
I/O  
IO_L19N_0  
I/O  
www.xilinx.com/support/documentation/data_sheets/  
s3a_pin.zip.  
IO_L19P_0  
I/O  
IO_L20N_0/VREF_0  
IO_L20P_0  
VREF  
I/O  
Pinout Table  
IO_L21N_0  
I/O  
Table 87: Spartan-3A FG676 Pinout  
IO_L21P_0  
I/O  
FG676  
Bank  
0
Pin Name  
IO_L01N_0  
Ball  
F20  
G20  
F19  
G19  
C22  
D22  
C23  
D23  
A22  
B23  
G17  
H17  
B21  
C21  
D21  
E21  
C20  
D20  
K16  
J16  
Type  
I/O  
IO_L22N_0  
I/O  
IO_L22P_0  
I/O  
0
IO_L01P_0  
IO_L02N_0  
IO_L02P_0/VREF_0  
IO_L05N_0  
IO_L05P_0  
IO_L06N_0  
IO_L06P_0  
IO_L07N_0  
IO_L07P_0  
IO_L08N_0  
IO_L08P_0  
IO_L09N_0  
IO_L09P_0  
IO_L10N_0  
IO_L10P_0  
IO_L11N_0  
IO_L11P_0  
IO_L12N_0  
IO_L12P_0  
IO_L13N_0  
IO_L13P_0  
IO_L14N_0  
IO_L14P_0/VREF_0  
I/O  
IO_L23N_0  
I/O  
0
I/O  
IO_L23P_0  
I/O  
0
VREF  
I/O  
IO_L24N_0  
I/O  
0
IO_L24P_0  
I/O  
0
I/O  
IO_L25N_0/GCLK5  
IO_L25P_0/GCLK4  
IO_L26N_0/GCLK7  
IO_L26P_0/GCLK6  
IO_L27N_0/GCLK9  
IO_L27P_0/GCLK8  
IO_L28N_0/GCLK11  
IO_L28P_0/GCLK10  
IO_L29N_0  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
I/O  
0
I/O  
K14  
A14  
B14  
G13  
F13  
C13  
B13  
B12  
A12  
C12  
D13  
F12  
E12  
D11  
C11  
B10  
A10  
0
I/O  
0
I/O  
0
I/O  
0
I/O  
0
I/O  
0
I/O  
0
I/O  
0
I/O  
IO_L29P_0  
I/O  
0
I/O  
IO_L30N_0  
I/O  
0
I/O  
IO_L30P_0  
I/O  
0
I/O  
IO_L31N_0  
I/O  
0
I/O  
IO_L31P_0  
I/O  
0
I/O  
IO_L32N_0/VREF_0  
IO_L32P_0  
VREF  
I/O  
0
E17  
F17  
A20  
B20  
I/O  
0
I/O  
IO_L33N_0  
I/O  
0
I/O  
IO_L33P_0  
I/O  
0
VREF  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
119  
 
Pinout Descriptions  
Table 87: Spartan-3A FG676 Pinout(Continued)  
Table 87: Spartan-3A FG676 Pinout(Continued)  
FG676  
FG676  
Bank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Pin Name  
IO_L34N_0  
Ball  
D10  
C10  
H12  
G12  
B9  
Type  
I/O  
Bank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
Pin Name  
Ball  
D12  
D15  
D19  
E11  
E18  
E20  
F10  
G14  
G16  
H13  
H18  
J10  
J13  
J15  
D7  
Type  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
VREF  
VREF  
VREF  
VREF  
N.C.  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IO_L34P_0  
IO_L35N_0  
IO_L35P_0  
IO_L36N_0  
IO_L36P_0  
IO_L37N_0  
IO_L37P_0  
IO_L38N_0  
IO_L38P_0  
IO_L39N_0  
IO_L39P_0  
IO_L40N_0  
IO_L40P_0  
IO_L41N_0  
IO_L41P_0  
IO_L42N_0  
IO_L42P_0  
IO_L43N_0  
IO_L43P_0  
IO_L44N_0  
IO_L44P_0  
IO_L45N_0  
IO_L45P_0  
IO_L46N_0  
IO_L46P_0  
IO_L47N_0  
IO_L47P_0  
IO_L48N_0  
IO_L48P_0  
IO_L51N_0  
IO_L51P_0  
IO_L52N_0/PUDC_B  
IO_L52P_0/VREF_0  
IP_0  
I/O  
I/O  
I/O  
I/O  
A9  
I/O  
D9  
I/O  
E10  
B8  
I/O  
I/O  
A8  
I/O  
K12  
J12  
D8  
I/O  
I/O  
I/O  
C8  
I/O  
C6  
I/O  
IP_0/VREF_0  
IP_0/VREF_0  
IP_0/VREF_0  
IP_0/VREF_0  
N.C. ()  
B6  
I/O  
D14  
G11  
J17  
A24  
B24  
D5  
C7  
I/O  
B7  
I/O  
K11  
J11  
D6  
I/O  
I/O  
N.C. ()  
N.C.  
I/O  
N.C. ()  
N.C.  
C5  
I/O  
N.C. ()  
E9  
N.C.  
B4  
I/O  
N.C. ()  
F18  
E6  
N.C.  
A4  
I/O  
N.C. ()  
N.C.  
H10  
G10  
H9  
I/O  
N.C. ()  
F9  
N.C.  
I/O  
N.C. ()  
G18  
B5  
N.C.  
I/O  
VCCO_0  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
G9  
E7  
I/O  
VCCO_0  
B11  
B16  
B22  
E8  
I/O  
VCCO_0  
F7  
I/O  
VCCO_0  
B3  
I/O  
VCCO_0  
A3  
I/O  
VCCO_0  
E13  
E19  
H11  
H16  
Y21  
Y20  
AD25  
AE26  
AC24  
G8  
F8  
DUAL  
VREF  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
VCCO_0  
VCCO_0  
A5  
VCCO_0  
IP_0  
A7  
IO_L01N_1/LDC2  
IO_L01P_1/HDC  
IO_L02N_1/LDC0  
IO_L02P_1/LDC1  
IO_L03N_1/A1  
IP_0  
A13  
A17  
A23  
C4  
IP_0  
IP_0  
IP_0  
120  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
Pinout Descriptions  
Table 87: Spartan-3A FG676 Pinout(Continued)  
Table 87: Spartan-3A FG676 Pinout(Continued)  
FG676  
FG676  
Ball  
Bank  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Pin Name  
IO_L03P_1/A0  
Ball  
AC23  
W21  
W20  
AC25  
AD26  
AB26  
AC26  
AB24  
AB23  
V19  
Type  
DUAL  
I/O  
Bank  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Pin Name  
IO_L26P_1/A4  
Type  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
DUAL  
DUAL  
I/O  
T23  
R17  
R18  
R26  
R25  
P20  
P21  
P25  
P26  
N24  
P23  
N19  
P18  
M25  
M26  
N21  
P22  
M23  
L24  
N17  
N18  
K26  
K25  
M20  
N20  
J25  
IO_L04N_1  
IO_L04P_1  
IO_L05N_1  
IO_L05P_1  
IO_L06N_1  
IO_L06P_1  
IO_L07N_1/VREF_1  
IO_L07P_1  
IO_L08N_1  
IO_L08P_1  
IO_L09N_1  
IO_L09P_1  
IO_L10N_1  
IO_L10P_1  
IO_L11N_1  
IO_L11P_1  
IO_L12N_1  
IO_L12P_1  
IO_L13N_1  
IO_L13P_1  
IO_L14N_1  
IO_L14P_1  
IO_L15N_1  
IO_L15P_1  
IO_L17N_1  
IO_L17P_1  
IO_L18N_1  
IO_L18P_1  
IO_L19N_1  
IO_L19P_1  
IO_L21N_1  
IO_L21P_1  
IO_L22N_1  
IO_L22P_1  
IO_L23N_1/VREF_1  
IO_L23P_1  
IO_L25N_1/A3  
IO_L25P_1/A2  
IO_L26N_1/A5  
IO_L27N_1/A7  
IO_L27P_1/A6  
IO_L29N_1/A9  
IO_L29P_1/A8  
IO_L30N_1/RHCLK1  
IO_L30P_1/RHCLK0  
IO_L31N_1/TRDY1/RHCLK3  
IO_L31P_1/RHCLK2  
IO_L33N_1/RHCLK5  
IO_L33P_1/RHCLK4  
IO_L34N_1/RHCLK7  
IO_L34P_1/IRDY1/RHCLK6  
IO_L35N_1/A11  
IO_L35P_1/A10  
IO_L37N_1  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
V18  
I/O  
AA23  
AA22  
U20  
V21  
I/O  
I/O  
I/O  
I/O  
AA25  
AA24  
U18  
U19  
Y23  
I/O  
I/O  
IO_L37P_1  
I/O  
I/O  
IO_L38N_1/A13  
IO_L38P_1/A12  
IO_L39N_1/A15  
IO_L39P_1/A14  
IO_L41N_1  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
I/O  
I/O  
Y22  
I/O  
T20  
I/O  
U21  
Y25  
I/O  
IO_L41P_1  
I/O  
I/O  
IO_L42N_1/A17  
IO_L42P_1/A16  
IO_L43N_1/A19  
IO_L43P_1/A18  
IO_L45N_1  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
Y24  
I/O  
T17  
I/O  
T18  
I/O  
J26  
V22  
I/O  
M22  
M21  
K22  
K23  
M18  
M19  
J22  
W23  
V25  
I/O  
IO_L45P_1  
I/O  
I/O  
IO_L46N_1  
I/O  
V24  
I/O  
IO_L46P_1  
I/O  
U22  
V23  
I/O  
IO_L47N_1  
I/O  
I/O  
IO_L47P_1  
I/O  
R20  
R19  
U24  
U23  
R22  
R21  
T24  
I/O  
IO_L49N_1  
I/O  
I/O  
IO_L49P_1  
J23  
I/O  
VREF  
I/O  
IO_L50N_1  
K21  
L22  
G24  
G23  
K20  
I/O  
IO_L50P_1  
I/O  
DUAL  
DUAL  
DUAL  
IO_L51N_1  
I/O  
IO_L51P_1  
I/O  
IO_L53N_1  
I/O  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
121  
Pinout Descriptions  
Table 87: Spartan-3A FG676 Pinout(Continued)  
Table 87: Spartan-3A FG676 Pinout(Continued)  
FG676  
FG676  
Bank  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Pin Name  
IO_L53P_1  
Ball  
L20  
F24  
F25  
L17  
L18  
F23  
E24  
K18  
K19  
G22  
F22  
J20  
Type  
I/O  
Bank  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Pin Name  
IP_L48P_1  
Ball  
H23  
G25  
G26  
B25  
B26  
AB25  
E25  
H22  
L19  
Type  
INPUT  
VREF  
INPUT  
INPUT  
VREF  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
IO_L54N_1  
I/O  
IP_L52N_1/VREF_1  
IP_L52P_1  
IP_L65N_1  
IP_L65P_1/VREF_1  
VCCO_1  
IO_L54P_1  
I/O  
IO_L55N_1  
I/O  
IO_L55P_1  
I/O  
IO_L56N_1  
I/O  
IO_L56P_1  
I/O  
VCCO_1  
IO_L57N_1  
I/O  
VCCO_1  
IO_L57P_1  
I/O  
VCCO_1  
IO_L58N_1  
I/O  
VCCO_1  
L25  
IO_L58P_1/VREF_1  
IO_L59N_1  
VREF  
I/O  
VCCO_1  
N22  
T19  
T25  
W22  
AD4  
AC4  
AA7  
Y7  
VCCO_1  
IO_L59P_1  
J19  
I/O  
VCCO_1  
IO_L60N_1  
D26  
E26  
D24  
D25  
H21  
J21  
I/O  
VCCO_1  
IO_L60P_1  
I/O  
IO_L01N_2/M0  
IO_L01P_2/M1  
IO_L02N_2/CSO_B  
IO_L02P_2/M2  
IO_L05N_2  
IO_L05P_2  
IO_L06N_2  
IO_L06P_2  
IO_L07N_2  
IO_L07P_2  
IO_L08N_2  
IO_L08P_2  
IO_L09N_2  
IO_L09P_2  
IO_L10N_2  
IO_L10P_2  
IO_L11N_2  
IO_L11P_2  
IO_L12N_2  
IO_L12P_2  
IO_L13N_2  
IO_L13P_2  
IO_L14N_2  
IO_L14P_2  
IO_L15N_2  
IO_L15P_2  
IO_L61N_1  
I/O  
IO_L61P_1  
I/O  
IO_L62N_1/A21  
IO_L62P_1/A20  
IO_L63N_1/A23  
IO_L63P_1/A22  
IO_L64N_1/A25  
IO_L64P_1/A24  
IP_L16N_1  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
INPUT  
INPUT  
VREF  
INPUT  
VREF  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
Y9  
C25  
C26  
G21  
H20  
Y26  
W25  
V26  
W26  
U26  
U25  
R24  
R23  
N25  
N26  
N23  
M24  
L23  
K24  
H25  
H26  
H24  
W9  
I/O  
AF3  
AE3  
AF4  
AE4  
AD6  
AC6  
W10  
V10  
AE6  
AF5  
AE7  
AD7  
AA10  
Y10  
U11  
V11  
AB7  
AC8  
AC9  
AB9  
I/O  
I/O  
I/O  
I/O  
IP_L16P_1  
I/O  
IP_L20N_1/VREF_1  
IP_L20P_1  
I/O  
I/O  
IP_L24N_1/VREF_1  
IP_L24P_1  
I/O  
I/O  
IP_L28N_1  
I/O  
IP_L28P_1/VREF_1  
IP_L32N_1  
I/O  
I/O  
IP_L32P_1  
I/O  
IP_L36N_1  
I/O  
IP_L36P_1/VREF_1  
IP_L40N_1  
I/O  
I/O  
IP_L40P_1  
I/O  
IP_L44N_1  
I/O  
IP_L44P_1/VREF_1  
IP_L48N_1  
I/O  
I/O  
122  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
Pinout Descriptions  
Table 87: Spartan-3A FG676 Pinout(Continued)  
Table 87: Spartan-3A FG676 Pinout(Continued)  
FG676  
FG676  
Ball  
Bank  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Pin Name  
IO_L16N_2  
Ball  
W12  
V12  
Type  
I/O  
Bank  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Pin Name  
IO_L35P_2  
Type  
I/O  
V15  
AE18  
AF18  
AE19  
AF19  
AB16  
AC16  
AE20  
AF20  
AC19  
AD19  
AC20  
AD20  
U16  
IO_L16P_2  
I/O  
IO_L36N_2/D1  
IO_L36P_2/D2  
IO_L37N_2  
IO_L37P_2  
IO_L38N_2  
IO_L38P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
IO_L40P_2  
IO_L41N_2  
IO_L41P_2  
IO_L42N_2  
IO_L42P_2  
IO_L43N_2  
IO_L43P_2  
IO_L44N_2  
IO_L44P_2  
IO_L45N_2  
IO_L45P_2  
IO_L46N_2  
IO_L46P_2  
IO_L47N_2  
IO_L47P_2  
IO_L48N_2  
IO_L48P_2  
IO_L51N_2  
IO_L51P_2  
IO_L52N_2/CCLK  
IO_L52P_2/D0/DIN/MISO  
IP_2  
DUAL  
DUAL  
I/O  
IO_L17N_2/VS2  
IO_L17P_2/RDWR_B  
IO_L18N_2  
AA12  
Y12  
DUAL  
DUAL  
I/O  
AF8  
I/O  
IO_L18P_2  
AE8  
I/O  
I/O  
IO_L19N_2/VS0  
IO_L19P_2/VS1  
IO_L20N_2  
AF9  
DUAL  
DUAL  
I/O  
I/O  
AE9  
I/O  
W13  
V13  
I/O  
IO_L20P_2  
I/O  
I/O  
IO_L21N_2  
AC12  
AB12  
AF10  
AE10  
AC11  
AD11  
AE12  
AF12  
Y13  
I/O  
I/O  
IO_L21P_2  
I/O  
I/O  
IO_L22N_2/D6  
IO_L22P_2/D7  
IO_L23N_2  
DUAL  
DUAL  
I/O  
I/O  
I/O  
V16  
I/O  
IO_L23P_2  
I/O  
Y17  
I/O  
IO_L24N_2/D4  
IO_L24P_2/D5  
IO_L25N_2/GCLK13  
IO_L25P_2/GCLK12  
IO_L26N_2/GCLK15  
IO_L26P_2/GCLK14  
IO_L27N_2/GCLK1  
IO_L27P_2/GCLK0  
IO_L28N_2/GCLK3  
IO_L28P_2/GCLK2  
IO_L29N_2  
DUAL  
DUAL  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
I/O  
AA17  
AD21  
AE21  
AC21  
AD22  
V17  
I/O  
I/O  
I/O  
AA13  
AE13  
AF13  
AA14  
Y14  
I/O  
I/O  
I/O  
W17  
I/O  
AA18  
AB18  
AE23  
AF23  
AE25  
AF25  
AE24  
AF24  
AA19  
AB13  
AB17  
AB20  
AC7  
I/O  
AE14  
AF14  
AC14  
AD14  
AB15  
AC15  
W15  
V14  
I/O  
I/O  
I/O  
IO_L29P_2  
I/O  
I/O  
IO_L30N_2/MOSI/CSI_B  
IO_L30P_2  
DUAL  
I/O  
I/O  
DUAL  
DUAL  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
IO_L31N_2  
I/O  
IO_L31P_2  
I/O  
IO_L32N_2/DOUT  
AE15  
DUAL  
IP_2  
PWR  
MGMT  
IP_2  
2
IO_L32P_2/AWAKE  
AD15  
IP_2  
2
2
2
2
2
IO_L33N_2  
AD17  
AE17  
Y15  
I/O  
I/O  
IP_2  
IO_L33P_2  
IP_2  
AC13  
AC17  
AC18  
AD9  
IO_L34N_2/D3  
IO_L34P_2/INIT_B  
IO_L35N_2  
DUAL  
DUAL  
I/O  
IP_2  
AA15  
U15  
IP_2  
IP_2  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
123  
Pinout Descriptions  
Table 87: Spartan-3A FG676 Pinout(Continued)  
Table 87: Spartan-3A FG676 Pinout(Continued)  
FG676  
FG676  
Bank  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
Pin Name  
Ball  
AD10  
AD16  
AF2  
AF7  
Y11  
Type  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
N.C.  
Bank  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Pin Name  
IO_L05P_3  
Ball  
K9  
E4  
D3  
F4  
E3  
G4  
F5  
H6  
J7  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
IP_2  
IP_2  
IP_2  
IP_2  
IP_2  
IO_L06N_3  
IO_L06P_3  
IO_L07N_3  
IO_L07P_3  
IO_L09N_3  
IO_L09P_3  
IO_L10N_3  
IO_L10P_3  
IO_L11N_3  
IO_L11P_3  
IO_L13N_3  
IO_L13P_3  
IO_L14N_3  
IO_L14P_3  
IO_L15N_3  
IO_L15P_3  
IO_L17N_3  
IO_L17P_3  
IO_L18N_3  
IO_L18P_3  
IO_L19N_3  
IO_L19P_3  
IO_L21N_3  
IO_L21P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
IO_L23P_3  
IO_L25N_3  
IO_L25P_3  
IO_L26N_3  
IO_L26P_3  
IO_L27N_3  
IO_L27P_3  
IO_L28N_3  
IO_L28P_3  
IO_L29N_3/VREF_3  
IO_L29P_3  
IO_L30N_3  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
N.C. ()  
AA9  
AA20  
AB6  
AB10  
AC10  
AD12  
AF15  
AF17  
AF22  
Y16  
F2  
E1  
J6  
K7  
F3  
G3  
L9  
AA8  
AC5  
AC22  
AD5  
Y18  
N.C. ()  
N.C.  
L10  
H1  
H2  
L7  
N.C. ()  
N.C.  
N.C. ()  
N.C.  
N.C. ()  
N.C.  
N.C. ()  
Y19  
N.C.  
K6  
J4  
N.C. ()  
AD23  
W18  
Y8  
N.C.  
N.C. ()  
N.C.  
J5  
N.C. ()  
N.C.  
M9  
M10  
K4  
K5  
K2  
K3  
L3  
VCCO_2  
AB8  
AB14  
AB19  
AE5  
AE11  
AE16  
AE22  
W11  
W16  
J9  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
L4  
VCCO_2  
M7  
M8  
M3  
M4  
M6  
M5  
M1  
M2  
N4  
VCCO_2  
IO_L01N_3  
IO_L01P_3  
IO_L02N_3  
IO_L02P_3  
IO_L03N_3  
IO_L03P_3  
IO_L05N_3  
J8  
I/O  
B1  
I/O  
B2  
I/O  
H7  
I/O  
G6  
I/O  
K8  
I/O  
124  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
Pinout Descriptions  
Table 87: Spartan-3A FG676 Pinout(Continued)  
Table 87: Spartan-3A FG676 Pinout(Continued)  
FG676  
FG676  
Ball  
Bank  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Pin Name  
IO_L30P_3  
Ball  
N5  
N2  
N1  
N7  
N6  
P2  
P1  
P3  
P4  
P10  
N9  
R2  
R1  
R4  
R3  
T4  
Type  
I/O  
Bank  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Pin Name  
IO_L52P_3  
Type  
I/O  
W3  
Y2  
IO_L31N_3  
I/O  
IO_L53N_3  
IO_L53P_3  
IO_L55N_3  
IO_L55P_3  
IO_L56N_3  
IO_L56P_3  
IO_L57N_3  
IO_L57P_3  
IO_L59N_3  
IO_L59P_3  
IO_L60N_3  
IO_L60P_3  
IO_L61N_3  
IO_L61P_3  
IO_L63N_3  
IO_L63P_3  
IO_L64N_3  
IO_L64P_3  
IO_L65N_3  
IO_L65P_3  
IP_L04N_3/VREF_3  
IP_L04P_3  
I/O  
IO_L31P_3  
I/O  
Y1  
I/O  
IO_L32N_3/LHCLK1  
IO_L32P_3/LHCLK0  
IO_L33N_3/IRDY2/LHCLK3  
IO_L33P_3/LHCLK2  
IO_L34N_3/LHCLK5  
IO_L34P_3/LHCLK4  
IO_L35N_3/LHCLK7  
IO_L35P_3/TRDY2/LHCLK6  
IO_L36N_3  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
I/O  
AA3  
AA2  
U8  
I/O  
I/O  
I/O  
U7  
I/O  
Y6  
I/O  
Y5  
I/O  
V6  
I/O  
V7  
I/O  
AC1  
AB1  
V8  
I/O  
IO_L36P_3/VREF_3  
IO_L37N_3  
VREF  
I/O  
I/O  
I/O  
IO_L37P_3  
I/O  
U9  
I/O  
IO_L38N_3  
I/O  
W6  
W7  
AC3  
AC2  
AD2  
AD1  
C1  
I/O  
IO_L38P_3  
T3  
I/O  
I/O  
IO_L39N_3  
P6  
P7  
R6  
R5  
P9  
P8  
U4  
T5  
I/O  
I/O  
IO_L39P_3  
I/O  
I/O  
IO_L40N_3  
I/O  
I/O  
IO_L40P_3  
I/O  
I/O  
IO_L41N_3  
I/O  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
IO_L41P_3  
I/O  
C2  
IO_L42N_3  
I/O  
IP_L08N_3  
D1  
IO_L42P_3  
I/O  
IP_L08P_3  
D2  
IO_L43N_3  
R9  
R10  
U2  
U1  
R7  
R8  
V2  
V1  
T9  
I/O  
IP_L12N_3/VREF_3  
IP_L12P_3  
H4  
IO_L43P_3/VREF_3  
IO_L44N_3  
VREF  
I/O  
G5  
G1  
G2  
J2  
IP_L16N_3  
IO_L44P_3  
I/O  
IP_L16P_3  
IO_L45N_3  
I/O  
IP_L20N_3/VREF_3  
IP_L20P_3  
IO_L45P_3  
I/O  
J3  
IO_L47N_3  
I/O  
IP_L24N_3  
K1  
IO_L47P_3  
I/O  
IP_L24P_3  
J1  
IO_L48N_3  
I/O  
IP_L46N_3  
V4  
IO_L48P_3  
T10  
V5  
U5  
U6  
T7  
I/O  
IP_L46P_3  
U3  
IO_L49N_3  
I/O  
IP_L50N_3/VREF_3  
IP_L50P_3  
W2  
W1  
Y4  
IO_L49P_3  
I/O  
IO_L51N_3  
I/O  
IP_L54N_3  
IO_L51P_3  
I/O  
IP_L54P_3  
Y3  
IO_L52N_3  
W4  
I/O  
IP_L58N_3/VREF_3  
AA5  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
125  
Pinout Descriptions  
Table 87: Spartan-3A FG676 Pinout(Continued)  
Table 87: Spartan-3A FG676 Pinout(Continued)  
FG676  
FG676  
Bank  
3
Pin Name  
IP_L58P_3  
Ball  
AA4  
AB4  
AB3  
AE2  
AE1  
AB2  
E2  
Type  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
GND  
Bank  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Pin Name  
Ball  
C19  
C24  
F1  
Type  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
3
IP_L62N_3  
IP_L62P_3  
IP_L66N_3/VREF_3  
IP_L66P_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
GND  
3
3
F6  
3
F11  
F16  
F21  
F26  
H3  
3
3
3
H5  
3
L2  
3
L8  
H8  
3
P5  
H14  
H19  
J24  
K10  
K17  
L1  
3
T2  
3
T8  
3
W5  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
A1  
GND  
A6  
GND  
GND  
A11  
A16  
A21  
A26  
AA1  
AA6  
AA11  
AA16  
AA21  
AA26  
AD3  
AD8  
AD13  
AD18  
AD24  
AF1  
AF6  
AF11  
AF16  
AF21  
AF26  
C3  
GND  
L6  
GND  
GND  
L11  
L13  
L15  
L21  
L26  
M12  
M14  
M16  
N3  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
N8  
GND  
GND  
N11  
N15  
P12  
P16  
P19  
P24  
R11  
R13  
R15  
T1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
T6  
GND  
C9  
GND  
T12  
T14  
GND  
C14  
GND  
126  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
Pinout Descriptions  
Table 87: Spartan-3A FG676 Pinout(Continued)  
Table 87: Spartan-3A FG676 Pinout(Continued)  
FG676  
FG676  
Ball  
Bank  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Pin Name  
Ball  
T16  
T21  
T26  
U10  
U13  
U17  
V3  
Type  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Bank  
Pin Name  
Type  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
M17  
N12  
N13  
N14  
N16  
P11  
P13  
P14  
P15  
R12  
R14  
R16  
T11  
T13  
T15  
U12  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
W8  
W14  
W19  
W24  
PWR  
MGMT  
VCCAUX SUSPEND  
V20  
VCCAUX DONE  
VCCAUX PROG_B  
VCCAUX TCK  
AB21 CONFIG  
A2  
A25  
G7  
CONFIG  
JTAG  
VCCAUX TDI  
JTAG  
VCCAUX TDO  
E23  
D4  
JTAG  
VCCAUX TMS  
JTAG  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
AB5  
VCCAUX  
AB11 VCCAUX  
AB22 VCCAUX  
E5  
E16  
E22  
J18  
K13  
L5  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
N10  
P17  
T22  
U14  
V9  
K15  
L12  
L14  
L16  
M11  
M13  
M15  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
127  
Pinout Descriptions  
User I/Os by Bank  
Table 88 indicates how the 502 available user-I/O pins are  
distributed between the four I/O banks on the FG676  
package. The AWAKE pin is counted as a dual-purpose I/O.  
Table 88: User I/Os Per Bank for the XC3S1400A in the FG676 Package  
All Possible I/O Pins by Type  
Package  
Edge  
I/O Bank  
Maximum I/O  
I/O  
82  
INPUT  
20  
DUAL  
1
VREF  
9
CLK  
8
Top  
0
1
2
3
120  
130  
120  
132  
502  
Right  
Bottom  
Left  
67  
15  
30  
21  
0
10  
10  
9
8
67  
14  
8
97  
18  
8
TOTAL  
313  
67  
52  
38  
32  
Footprint Migration Differences  
The XC3S1400A FPGA is the only Spartan-3A device  
offered in the FG676 package. However, Table 89  
summarizes footprint and functionality differences between  
the XC3S1400A and the XC3SD1800A in the Spartan-3A  
DSP family. There are 17 unconnected balls in the  
XC3S1400A that become 16 input-only pins and one I/O pin  
in the XC3SD1800A. All other pins not listed in Table 89  
unconditionally migrate between the Spartan-3A devices  
and the Spartan-3A DSP devices available in the FG676  
package. The arrows indicate the direction for easy  
migration. For more details on the Spartan-3A DSP family  
and pinouts, and additional differences in the FG676 pinout  
for the XC3SD3400A device, see DS610.  
Table 89: FG676 Footprint Differences  
Pin  
A24  
B24  
D5  
Bank  
XC3S1400A Migration  
XC3SD1800A  
INPUT  
0
0
0
0
0
0
0
0
2
2
2
2
2
2
2
2
2
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
Æ
Æ
Æ
Æ
Æ
Æ
Æ
Æ
Æ
Æ
Æ
Æ
Æ
Æ
Æ
Æ
Æ
17  
INPUT  
INPUT  
E6  
VREF (INPUT)  
INPUT  
E9  
F9  
VREF (INPUT)  
INPUT  
F18  
G18  
W18  
Y8  
VREF (INPUT)  
VREF (INPUT)  
VREF (INPUT)  
INPUT  
Y18  
Y19  
AA8  
AC5  
AC22  
AD5  
AD23  
INPUT  
INPUT  
INPUT  
I/O  
INPUT  
VREF(INPUT)  
DIFFERENCES  
Legend:  
This pin can unconditionally migrate from the device on  
the left to the device on the right. Migration in the other  
direction is possible depending on how the pin is  
configured for the device on the right.  
Æ
128  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
 
 
Pinout Descriptions  
FG676 Footprint  
Bank 0  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
Left Half of FG676  
Package (Top View)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
INPUT  
GND  
INPUT  
GND  
INPUT  
A
B
C
D
E
F
L51P_0  
L45P_0  
L38P_0  
L36P_0  
L33P_0  
L29P_0  
I/O  
L28P_0  
GCLK10  
I/O  
L02N_3  
I/O  
I/O  
L51N_0  
I/O  
L45N_0  
I/O  
L41P_0  
I/O  
L42P_0  
I/O  
L38N_0  
I/O  
L36N_0  
I/O  
L33N_0  
I/O  
L29N_0  
VCCO_0  
VCCO_0  
L02P_3  
INPUT  
L04N_3  
VREF_3  
I/O  
L28N_0  
GCLK11  
INPUT  
L04P_3  
I/O  
L44P_0  
I/O  
L41N_0  
I/O  
L42N_0  
I/O  
L40P_0  
I/O  
L34P_0  
I/O  
L32P_0  
I/O  
L30N_0  
I/O: Unrestricted,  
313  
GND  
INPUT  
TMS  
GND  
general-purpose user I/O  
I/O  
L32N_0  
VREF_0  
N.C.  
INPUT INPUT  
L08N_3  
I/O  
L06P_3  
I/O  
INPUT  
I/O  
I/O  
L37N_0  
I/O  
L34N_0  
I/O  
L30P_0  
INPUT  
INPUT: Unrestricted,  
67  
L08P_3  
L44N_0 VREF_0 L40N_0  
general-purpose input pin  
N.C.  
N.C.  
N.C.  
I/O  
L11P_3  
I/O  
L07P_3  
I/O  
L06N_3  
I/O  
L48N_0  
I/O  
L37P_0  
I/O  
L31P_0  
VCCO_3  
VCCAUX  
VCCO_0  
VCCO_0  
INPUT  
DUAL: Configuration pins,  
51  
then possible user I/O  
I/O  
I/O  
I/O  
L27P_0  
GCLK8  
I/O  
L11N_3  
I/O  
L14N_3  
I/O  
L07N_3  
I/O  
L09P_3  
I/O  
L31N_0  
GND  
GND  
INPUT  
I/O  
GND  
L52P_0  
VREF_0  
L48P_0  
SUSPEND: Dedicated  
I/O  
L52N_0  
PUDC_B  
I/O  
L27N_0  
GCLK9  
SUSPEND and  
INPUT INPUT  
L16N_3  
I/O  
L14P_3  
I/O  
L09N_3  
INPUT  
L12P_3  
I/O  
L03P_3  
I/O  
L47P_0  
INPUT  
I/O  
L35P_0  
2
TDI  
G
H
J
dual-purpose AWAKE  
L16P_3  
L46P_0 VREF_0  
Power Management pins  
INPUT  
L12N_3  
VREF_3  
I/O  
L17N_3  
I/O  
L17P_3  
I/O  
L10N_3  
I/O  
L03N_3  
I/O  
L47N_0  
I/O  
L46N_0  
I/O  
L35N_0  
VCCO_3  
VCCO_0  
GND  
GND  
INPUT  
INPUT  
VCCAUX  
VREF: User I/O or input  
38  
voltage reference for bank  
INPUT  
L20N_3  
VREF_3  
INPUT  
L24P_3  
INPUT  
L20P_3  
I/O  
L19N_3  
I/O  
L19P_3  
I/O  
L13N_3  
I/O  
L10P_3  
I/O  
L01P_3  
I/O  
L01N_3  
I/O  
INPUT  
I/O  
L39P_0  
L43P_0  
CLK: User I/O, input, or  
clock buffer input  
32  
INPUT  
L24N_3  
I/O  
L23N_3  
I/O  
L23P_3  
I/O  
L22N_3  
I/O  
L22P_3  
I/O  
L18P_3  
I/O  
L13P_3  
I/O  
L05N_3  
I/O  
L05P_3  
I/O  
GND  
I/O  
L39N_0  
K
L
L43N_0  
CONFIG: Dedicated  
configuration pins  
2
I/O  
L25N_3  
I/O  
L25P_3  
I/O  
L18N_3  
I/O  
L15N_3  
I/O  
L15P_3  
VCCO_3  
VCCAUX  
VCCO_3  
GND  
GND  
GND VCCINT GND  
VCCINT GND VCCINT  
GND VCCINT VCCINT  
VCCINT GND VCCINT  
GND VCCINT GND  
VCCINT GND VCCINT  
I/O  
L29N_3  
VREF_3  
JTAG: Dedicated JTAG  
port pins  
I/O  
L29P_3  
I/O  
L27N_3  
I/O  
L27P_3  
I/O  
L28P_3  
I/O  
L28N_3  
I/O  
L26N_3  
I/O  
L26P_3  
I/O  
L21N_3  
I/O  
L21P_3  
4
M
N
P
R
T
I/O  
I/O  
L32P_3  
LHCLK0 LHCLK1  
I/O  
L32N_3  
I/O  
L31P_3  
I/O  
L31N_3  
I/O  
L30N_3  
I/O  
L30P_3  
L35P_3  
TRDY2  
GND: Ground  
VCCAUX  
GND  
GND  
77  
LHCLK6  
I/O  
I/O  
L33P_3  
LHCLK2  
I/O  
L34N_3  
LHCLK5 LHCLK4  
I/O  
L34P_3  
I/O  
L35N_3  
LHCLK7  
I/O  
L39N_3  
I/O  
L39P_3  
I/O  
L41P_3  
I/O  
L41N_3  
L33N_3  
IRDY2  
VCCO_3  
VCCO: Output voltage  
supply for bank  
36  
LHCLK3  
I/O  
L36P_3  
VREF_3  
I/O  
L43P_3  
VREF_3  
I/O  
L36N_3  
I/O  
L37P_3  
I/O  
L37N_3  
I/O  
L40P_3  
I/O  
L40N_3  
I/O  
L45N_3  
I/O  
L45P_3  
I/O  
L43N_3  
VCCINT: Internal core  
23  
supply voltage (+1.2V)  
I/O  
L38P_3  
I/O  
L38N_3  
I/O  
L42P_3  
I/O  
L51P_3  
I/O  
L48N_3  
I/O  
L48P_3  
VCCO_3  
VCCO_3  
GND  
GND  
VCCAUX: Auxiliary supply  
voltage  
14  
I/O  
I/O  
INPUT  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCCINT GND  
L13N_2  
U
V
W
Y
L44P_3  
L44N_3  
L46P_3  
L42N_3  
L49P_3  
L51N_3  
L56P_3  
L56N_3  
L61P_3  
N.C.: Not connected  
17  
I/O  
L47P_3  
I/O  
L47N_3  
INPUT  
L46N_3  
I/O  
L49N_3  
I/O  
L59N_3  
I/O  
L59P_3  
I/O  
L61N_3  
I/O  
L09P_2  
I/O  
L13P_2  
I/O  
L16P_2  
I/O  
L20P_2  
VCCAUX  
GND  
INPUT  
L50N_3  
VREF_3  
INPUT  
L50P_3  
I/O  
L52P_3  
I/O  
L52N_3  
I/O  
L63N_3  
I/O  
L63P_3  
I/O  
L05P_2  
I/O  
L09N_2  
I/O  
L16N_2  
I/O  
L20N_2  
VCCO_3  
VCCO_2  
INPUT  
GND  
GND  
N.C.  
I/O  
L02P_2  
M2  
I/O  
L17P_2  
I/O  
L25N_2  
I/O  
L53P_3  
I/O  
L53N_3  
INPUT INPUT  
L54P_3  
I/O  
L57P_3  
I/O  
L57N_3  
I/O  
L05N_2  
I/O  
L12P_2  
L54N_3  
RDWR_B GCLK13  
INPUT  
L58N_3  
VREF_3  
I/O  
L02N_2  
CSO_B  
I/O  
L17N_2  
VS2  
I/O  
L25P_2  
GCLK12  
N.C.  
A
A
I/O  
L55P_3  
I/O  
L55N_3  
INPUT  
L58P_3  
INPUT  
VREF_2 L12N_2  
I/O  
GND  
GND  
A
B
I/O  
INPUT INPUT  
INPUT  
I/O  
I/O  
INPUT  
I/O  
VCCO_3  
VCCAUX  
VCCO_2  
VCCAUX  
INPUT  
INPUT  
GND  
L60P_3  
L62P_3  
L62N_3  
VREF_2 L14N_2  
L15P_2 VREF_2  
L21P_2  
I/O  
L01P_2  
M1  
N.C.  
A
C
I/O  
L60N_3  
I/O  
L64P_3  
I/O  
L64N_3  
I/O  
I/O  
L14P_2  
I/O  
INPUT  
I/O  
I/O  
L21N_2  
INPUT  
L08P_2  
L15N_2 VREF_2 L23N_2  
I/O  
L01N_2  
M0  
N.C.  
A
D
I/O  
L65P_3  
I/O  
L65N_3  
I/O  
L08N_2  
I/O  
L11P_2  
I/O  
INPUT  
L23P_2 VREF_2  
GND  
GND  
INPUT INPUT  
INPUT  
L66N_3  
VREF_3  
I/O  
L19P_2  
VS1  
I/O  
L22P_2  
D7  
I/O  
L24N_2  
D4  
I/O  
L26N_2  
GCLK15  
A
E
INPUT  
L66P_3  
I/O  
L06P_2  
I/O  
L07P_2  
I/O  
L10N_2  
I/O  
L11N_2  
I/O  
L18P_2  
VCCO_2  
VCCO_2  
I/O  
L19N_2  
VS0  
I/O  
L22N_2  
D6  
I/O  
L24P_2  
D5  
I/O  
L26P_2  
GCLK14  
A
F
I/O  
L06N_2  
I/O  
L07N_2  
I/O  
L10P_2  
I/O  
L18N_2  
GND  
INPUT  
GND  
INPUT  
GND  
Bank 2  
DS529-4_07_102506  
Figure 27: FG676 Package Footprint (Top View)  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
129  
 
Pinout Descriptions  
Bank 0  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
I/O  
L26N_0  
GCLK7  
N.C.  
Right Half of FG676  
Package (Top View)  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
INPUT  
GND  
INPUT  
TCK  
GND  
A
B
C
D
E
F
L23N_0  
L18N_0  
L15N_0  
L14N_0  
L07N_0  
I/O  
L26P_0  
GCLK6  
I/O  
L14P_0  
VREF_0  
INPUT  
L65P_1  
VREF_1  
N.C.  
I/O  
L23P_0  
I/O  
L19N_0  
I/O  
L18P_0  
I/O  
L15P_0  
I/O  
L09N_0  
I/O  
L07P_0  
INPUT  
L65N_1  
VCCO_0  
VCCO_0  
I/O  
L63N_1  
A23  
I/O  
L63P_1  
A22  
I/O  
L22N_0  
I/O  
L21N_0  
I/O  
L19P_0  
I/O  
L17N_0  
I/O  
L11N_0  
I/O  
L09P_0  
I/O  
L05N_0  
I/O  
L06N_0  
GND  
GND  
INPUT  
VCCO_0  
GND  
INPUT  
VREF_0  
I/O  
L22P_0  
I/O  
L21P_0  
I/O  
L17P_0  
I/O  
L11P_0  
I/O  
L10N_0  
I/O  
L05P_0  
I/O  
L06P_0  
I/O  
L61N_1  
I/O  
L61P_1  
I/O  
L60N_1  
INPUT  
I/O  
L20N_0  
VREF_0  
I/O  
L24P_0  
I/O  
L13N_0  
I/O  
L10P_0  
I/O  
L56P_1  
I/O  
L60P_1  
VCCAUX  
GND  
VCCAUX  
VCCO_1  
INPUT  
N.C.  
INPUT  
TDO  
I/O  
L58P_1  
VREF_1  
I/O  
L24N_0  
I/O  
L20P_0  
I/O  
L13P_0  
I/O  
L02N_0  
I/O  
L01N_0  
I/O  
L56N_1  
I/O  
L54N_1  
I/O  
L54P_1  
GND  
GND  
I/O  
L02P_0  
VREF_0  
I/O  
L64N_1  
A25  
INPUT  
L52N_1  
VREF_1  
N.C.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
INPUT  
INPUT  
GND  
INPUT  
G
H
J
L16P_0  
L08N_0  
L01P_0  
L58N_1  
L51P_1  
L51N_1  
L52P_1  
I/O  
L64P_1  
A24  
I/O  
L62N_1  
A21  
INPUT  
L44P_1  
VREF_1  
I/O  
L16N_0  
I/O  
L08P_0  
INPUT INPUT INPUT  
VCCO_0  
VCCO_1  
INPUT  
GND  
L48P_1  
L48N_1  
L44N_1  
I/O  
L25N_0  
GCLK5  
I/O  
L62P_1  
A20  
I/O  
L43N_1  
A19  
I/O  
L43P_1  
A18  
I/O  
INPUT  
L12P_0 VREF_0  
I/O  
L59P_1  
I/O  
L59N_1  
I/O  
L49N_1  
I/O  
L49P_1  
VCCAUX  
INPUT  
GND  
I/O  
L25P_0  
GCLK4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
INPUT  
I/O  
I/O  
VCCINT  
GND  
L12N_0  
K
L
L57N_1  
L57P_1  
L53N_1  
L50N_1  
L46N_1  
L46P_1  
L40P_1  
L41P_1  
L41N_1  
I/O  
L38P_1  
A12  
I/O  
L55N_1  
I/O  
L55P_1  
I/O  
L53P_1  
I/O  
L50P_1  
INPUT  
L40N_1  
VCCO_1  
VCCO_1  
VCCINT GND VCCINT  
GND  
GND  
I/O  
L42N_1  
A17  
I/O  
L38N_1  
A13  
INPUT  
L36P_1  
VREF_1  
I/O  
L35N_1  
A11  
I/O  
L35P_1  
A10  
I/O  
I/O  
I/O  
I/O  
GND VCCINT GND VCCINT  
I/O  
M
N
P
R
T
L47N_1  
L47P_1  
L45P_1  
L45N_1  
I/O  
L39P_1  
A14  
I/O  
L34N_1  
RHCLK7  
I/O  
L42P_1  
A16  
I/O  
L33N_1  
RHCLK5  
I/O  
L37N_1  
INPUT  
L36N_1  
INPUT INPUT  
L32N_1  
VCCO_1  
VCCINT GND VCCINT  
VCCINT VCCINT GND  
VCCINT GND VCCINT  
GND VCCINT GND  
L39N_1  
A15  
L32P_1  
I/O  
I/O  
I/O  
L30N_1  
RHCLK1 RHCLK0  
I/O  
L30P_1  
I/O  
L33P_1  
RHCLK4  
I/O  
L31P_1  
RHCLK2  
I/O  
L37P_1  
L34P_1  
IRDY1  
L31N_1  
TRDY1  
RHCLK3  
VCCAUX  
GND  
GND  
RHCLK6  
I/O  
L27N_1  
A7  
I/O  
L27P_1  
A6  
I/O  
I/O  
L25N_1  
A3  
INPUT  
L28P_1  
VREF_1  
I/O  
L29P_1  
A8  
I/O  
L29N_1  
A9  
I/O  
L22P_1  
I/O  
L25P_1  
L22N_1  
A2  
INPUT  
L28N_1  
I/O  
L26P_1  
A4  
I/O  
L26N_1  
A5  
I/O  
L17N_1  
I/O  
L17P_1  
I/O  
VCCO_1  
VCCAUX  
VCCO_1  
GND  
L14N_1  
GND  
I/O  
L23N_1  
VREF_1  
INPUT  
L24N_1  
VREF_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
INPUT  
VCCAUX  
GND  
U
V
W
Y
L35N_2  
L42N_2  
L12N_1  
L12P_1  
L10N_1  
L14P_1  
L21N_1  
L23P_1  
L24P_1  
INPUT  
L20N_1  
VREF_1  
I/O  
L31P_2  
I/O  
L35P_2  
I/O  
L42P_2  
I/O  
L46N_2  
I/O  
L08P_1  
I/O  
L08N_1  
I/O  
L10P_1  
I/O  
L18N_1  
I/O  
L21P_1  
I/O  
L19P_1  
I/O  
L19N_1  
N.C.  
N.C.  
I/O  
L31N_2  
I/O  
L46P_2  
I/O  
L04P_1  
I/O  
L04N_1  
I/O  
L18P_1  
INPUT INPUT  
VCCO_2  
VCCO_1  
GND  
GND  
N.C.  
GND  
L16P_1  
L20P_1  
I/O  
L27P_2  
GCLK0  
I/O  
L34N_2  
D3  
INPUT  
2
VREF_2  
I/O  
L01P_1  
HDC  
I/O  
L01N_1  
LDC2  
I/O  
L43N_2  
I/O  
L13P_1  
I/O  
L13N_1  
I/O  
L15P_1  
I/O  
L15N_1  
INPUT  
L16N_1  
I/O  
L27N_2  
GCLK1  
I/O  
L34P_2  
INIT_B  
A
A
I/O  
L43P_2  
I/O  
L47N_2  
INPUT  
VREF_2  
I/O  
L09P_1  
I/O  
L09N_1  
I/O  
L11P_1  
I/O  
L11N_1  
GND  
INPUT  
GND  
GND  
I/O  
I/O  
L07N_1  
VREF_1  
A
B
I/O  
L38N_2  
I/O  
L47P_2  
I/O  
L07P_1  
I/O  
L06N_1  
L30N_2  
MOSI  
VCCO_2  
VCCO_2  
VCCAUX  
VCCO_1  
INPUT  
INPUT DONE  
CSI_B  
I/O  
L03P_1  
A0  
I/O  
L03N_1  
A1  
N.C.  
A
C
I/O  
L29N_2  
I/O  
L30P_2  
I/O  
L38P_2  
I/O  
L40N_2  
I/O  
L41N_2  
I/O  
L45N_2  
I/O  
L05N_1  
I/O  
L06P_1  
INPUT INPUT  
I/O  
L32P_2  
AWAKE  
I/O  
L02N_1  
LDC0  
N.C.  
A
D
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
INPUT  
VCCO_2  
GND  
GND  
L33N_2  
GND  
L29P_2  
L40P_2  
L41P_2  
L44N_2  
L45P_2  
L05P_1  
I/O  
L28N_2  
GCLK3  
I/O  
L32N_2  
DOUT  
I/O  
I/O  
I/O  
L52N_2  
CCLK  
I/O  
L02P_1  
LDC1  
A
E
I/O  
L37N_2  
I/O  
L39N_2  
I/O  
L44P_2  
I/O  
L48N_2  
I/O  
L51N_2  
VCCO_2  
L36N_2  
L33P_2  
D1  
I/O  
L52P_2  
D0  
I/O  
L28P_2  
GCLK2  
I/O  
INPUT  
VREF_2  
A
F
INPUT  
VREF_2  
I/O  
L37P_2  
I/O  
L39P_2  
INPUT  
VREF_2  
I/O  
L48P_2  
I/O  
L51P_2  
GND  
GND  
L36P_2  
D2  
DIN/MISO  
Bank 2  
DS529-4_08_012009  
130  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  
Pinout Descriptions  
Revision History  
The following table shows the revision history for this document.  
Date  
Version  
1.0  
Revision  
12/05/06  
02/02/07  
Initial release.  
1.1  
Promoted to Preliminary status. Added DOUT pin to DUAL-type pins in Table 57. Corrected counts for  
DUAL pins and differential pairs in Table 59. Corrected minor typographical error on pin names for pin  
numbers P24 and P25 in Table 66. Highlighted the differences in differential I/O pairs between the  
XC3S50A and XC3S200A in the FT256 package, shown in Table 68 and added Table 74 and Table 75  
to summarize the differences.  
03/16/07  
04/23/07  
05/08/07  
07/10/07  
04/15/08  
1.2  
1.3  
1.4  
1.5  
1.6  
Corrected minor typographical error in Figure 19.  
Added reference to compatible Spartan-3A DSP family.  
Added note regarding banking rules.  
Updated Thermal Characteristics in Table 62.  
Added VQ100 for XC3S50A and XC3S200A and added FT256 for XC3S700A and XCS1400A to  
Table 58, Table 59, and Table 62. Updated Thermal Characteristics with latest data in Table 62.  
Corrected bank for T8 and type for U16 in Table 86. Removed VREF name on 6 unconnected N.C. pins  
for XC3S1400A FG676 in Table 87 and Figure 27. These pins are noted as VREF if migrating up to the  
XC3SD1800A in Table 89.  
05/28/08  
03/06/09  
1.7  
1.8  
Added "Package Overview" section.  
Corrected bank designation for SUSPEND to VCCAUX. Corrected bank designation for JTAG pins in  
XC3S700A and XC3S1400A FT256 to VCCAUX.  
08/19/10  
2.0  
Corrected pin 36 number in Figure 17 and Figure 18. Noted difference in FT256 P10/T10 function  
between XC3S50A and larger devices in Table 68 and Table 74.  
DS529-4 (v2.0) August 19, 2010  
www.xilinx.com  
131  
Pinout Descriptions  
132  
www.xilinx.com  
DS529-4 (v2.0) August 19, 2010  

相关型号:

XC3S400A-4FTG256I

Field Programmable Gate Array, 896 CLBs, 400000 Gates, 250MHz, 8064-Cell, CMOS, PBGA256, LEAD FREE, FPTBGA-256

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XC3S400AN-4FGG400I

Field Programmable Gate Array, 896 CLBs, 400000 Gates, 280MHz, 8064-Cell, CMOS, PBGA400, 21 X 21 MM, ROHS COMPLIANT, FBGA-400

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XC3S400AN-4FGG676I

Field Programmable Gate Array, 896 CLBs, 400000 Gates, 667MHz, CMOS, PBGA676, ROHS COMPLIANT, FBGA-676

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XC3S400AN-4FTG256I

Field Programmable Gate Array, 896 CLBs, 400000 Gates, 667MHz, 8064-Cell, CMOS, PBGA256, ROHS COMPLIANT, FTBGA-256

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XC3S400AN-4TQ144I

Field Programmable Gate Array, 896 CLBs, 400000 Gates, 667MHz, CMOS, PQFP144, TQFP-144

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XC3S400AN-4TQG144C

Field Programmable Gate Array, 896 CLBs, 400000 Gates, 667MHz, CMOS, PQFP144, ROHS COMPLIANT, TQFP-144

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XC3S400AN-5FG676C

Field Programmable Gate Array, 896 CLBs, 400000 Gates, 770MHz, CMOS, PBGA676, FBGA-676

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XC3S400AN-5TQ144C

Field Programmable Gate Array, 896 CLBs, 400000 Gates, 770MHz, CMOS, PQFP144, TQFP-144

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XC3S50

Spartan-3 FPGA Family : Complete Data Sheet

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XC3S50-4CP132C

Spartan-3 FPGA Family: Complete Data Sheet

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XC3S50-4CP132I

Spartan-3 FPGA Family: Complete Data Sheet

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX