XCR3032-8VQ44C

更新时间:2024-09-18 12:59:53
品牌:XILINX
描述:EE PLD, 10.5ns, CMOS, PQFP44, PLASTIC, VQFP-44

XCR3032-8VQ44C 概述

EE PLD, 10.5ns, CMOS, PQFP44, PLASTIC, VQFP-44 可编程逻辑器件

XCR3032-8VQ44C 规格参数

生命周期:Obsolete零件包装代码:QFP
包装说明:TQFP,针数:44
Reach Compliance Code:unknownHTS代码:8542.39.00.01
风险等级:5.66Is Samacsys:N
最大时钟频率:74 MHzJESD-30 代码:S-PQFP-G44
长度:10 mm专用输入次数:2
I/O 线路数量:32端子数量:44
最高工作温度:70 °C最低工作温度:
组织:2 DEDICATED INPUTS, 32 I/O输出函数:MACROCELL
封装主体材料:PLASTIC/EPOXY封装代码:TQFP
封装形状:SQUARE封装形式:FLATPACK, THIN PROFILE
可编程逻辑类型:EE PLD传播延迟:10.5 ns
认证状态:Not Qualified座面最大高度:1.2 mm
最大供电电压:3.6 V最小供电电压:3 V
标称供电电压:3.3 V表面贴装:YES
技术:CMOS温度等级:COMMERCIAL
端子形式:GULL WING端子节距:0.8 mm
端子位置:QUAD宽度:10 mm
Base Number Matches:1

XCR3032-8VQ44C 数据手册

通过下载XCR3032-8VQ44C数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
This product has been discontinAuedP. PPleaLseICseeAwTwwIO.xiliNnx.cNomO/paTrtinEfo/notify/pdn0007.htm for details.  
0
R
XCR3032: 32 Macrocell CPLD  
0
14*  
DS038 (v1.3) October 9, 2000  
Product Specification  
CMOS process technology and the patented full CMOS  
FZP design technique. For 5V applications, Xilinx also  
offers the high speed XCR5032 CPLD that offers pin-to-pin  
speeds of 6 ns.  
Features  
Industry's first TotalCMOS™ PLD - both CMOS design  
and process technologies  
Fast Zero Power (FZP™) design technique provides  
ultra-low power and very high speed  
High speed pin-to-pin delays of 8ns  
Ultra-low static power of less than 35 µA  
100% routable with 100% utilization while all pins and  
all macrocells are fixed  
The Xilinx FZP CPLDs utilize the patented XPLA  
(eXtended Programmable Logic Array) architecture. The  
XPLA architecture combines the best features of both PLA  
and PAL type structures to deliver high speed and flexible  
logic allocation that results in superior ability to make  
design changes with fixed pinouts. The XPLA structure in  
each logic block provides a fast 8 ns PAL path with five ded-  
icated product terms per output. This PAL path is joined by  
an additional PLA structure that deploys a pool of 32 prod-  
uct terms to a fully programmable OR array that can allo-  
cate the PLA product terms to any output in the logic block.  
This combination allows logic to be allocated efficiently  
throughout the logic block and supports as many as 37  
product terms on an output. The speed with which logic is  
allocated from the PLA array to an output is only 2.5 ns,  
regardless of the number of PLA product terms used, which  
results in worst case tPD's of only 10.5 ns from any pin to  
any other pin. In addition, logic that is common to multiple  
outputs can be placed on a single PLA product term and  
shared across multiple outputs via the OR array, effectively  
increasing design density.  
Deterministic timing model that is extremely simple to  
use  
Two clocks available  
Programmable clock polarity at every macrocell  
Support for asynchronous clocking  
Innovative XPLA™ architecture combines high speed  
with extreme flexibility  
1000 erase/program cycles guaranteed  
20 years data retention guaranteed  
Logic expandable to 37 product terms  
PCI compliant  
Advanced 0.5µ E2CMOS process  
Security bit prevents unauthorized access  
Design entry and verification using industry standard  
and Xilinx CAE tools  
Reprogrammable using industry standard device  
programmers  
Innovative Control Term structure provides either sum  
terms or product terms in each logic block for:  
The XCR3032 CPLDs are supported by industry standard  
CAE tools (Cadence/OrCAD, Exemplar Logic, Mentor,  
Synopsys, Synario, Viewlogic, and Synplicity), using text  
(ABEL, VHDL, Verilog) and/or schematic entry. Design ver-  
ification uses industry standard simulators for functional  
and timing simulation. Development is supported on per-  
sonal computer, Sparc, and HP platforms. Device fitting  
uses a Xilinx developed tool, XPLA Professional (available  
on the Xilinx web site).  
-
-
Programmable 3-state buffer  
Asynchronous macrocell register preset/reset  
Programmable global 3-state pin facilitates ‘bed of nails'  
testing without using logic resources  
Available in both PLCC and VQFP packages  
Description  
The XCR3032 CPLD is reprogrammable using industry  
standard device programmers from vendors such as Data  
I/O, BP Microsystems, SMS, and others.  
The XCR3032 CPLD (Complex Programmable Logic  
Device) is the first in a family of CoolRunner® CPLDs from  
Xilinx. These devices combine high speed and zero power  
in a 32 macrocell CPLD. With the FZP design technique,  
the XCR3032 offers true pin-to-pin speeds of 8 ns, while  
simultaneously delivering power that is less than 35 µA at  
standby without the need for turbo bitsor other power  
down schemes. By replacing conventional sense amplifier  
methods for implementing product terms (a technique that  
has been used in PLDs since the bipolar era) with a cas-  
caded chain of pure CMOS gates, the dynamic power is  
also substantially lower than any competing CPLD. These  
devices are the first TotalCMOS PLDs, as they use both a  
DS038 (v1.3) October 9, 2000  
www.xilinx.com  
1-800-255-7778  
1
This product has been discontinued. Please see www.xilinx.com/partinfo/notify/pdn0007.htm for details.  
R
XCR3032: 32 Macrocell CPLD  
configured as either SUM or PRODUCT terms, and are  
XPLA Architecture  
used to control the preset/reset and output enables of the  
16 macrocellsflip-flops. The PAL array consists of a pro-  
grammable AND array with a fixed OR array, while the PLA  
array consists of a programmable AND array with a pro-  
grammable OR array. The PAL array provides a high speed  
path through the array, while the PLA array provides  
increased product term density.  
Figure 1 shows a high level block diagram of a 32 macro-  
cell device implementing the XPLA architecture. The XPLA  
architecture consists of logic blocks that are interconnected  
by a Zero-power Interconnect Array (ZIA). The ZIA is a vir-  
tual crosspoint switch. Each logic block is essentially a  
36V16 device with 36 inputs from the ZIA and 16 macro-  
cells. Each logic block also provides 32 ZIA feedback paths  
from the macrocells and I/O pins.  
Each macrocell has five dedicated product terms from the  
PAL array. The pin-to-pin tPD of the XCR3032 device  
through the PAL array is 8 ns. If a macrocell needs more  
than five product terms, it simply gets the additional product  
terms from the PLA array. The PLA array consists of 32  
product terms, which are available for use by all 16 macro-  
cells. The additional propagation delay incurred by a mac-  
rocell using one or all 32 PLA product terms is just 2.5 ns.  
So the total pin-to-pin tPD for the XCR3032 using six to 37  
product terms is 10.5 ns (8 ns for the PAL + 2.5 ns for the  
PLA).  
From this point of view, this architecture looks like many  
other CPLD architectures. What makes the CoolRunner  
family unique is what is inside each logic block and the  
design technique used to implement these logic blocks.  
The contents of the logic block will be described next.  
Logic Block Architecture  
Figure 3 illustrates the logic block architecture. Each logic  
block contains control terms, a PAL array, a PLA array, and  
16 macrocells. The six control terms can individually be  
MC1  
MC1  
MC2  
MC2  
36  
36  
LOGIC  
BLOCK  
LOGIC  
BLOCK  
I/O  
I/O  
MC16  
MC16  
16  
16  
16  
16  
ZIA  
MC1  
MC2  
MC1  
MC2  
36  
36  
LOGIC  
BLOCK  
LOGIC  
BLOCK  
I/O  
I/O  
MC16  
MC16  
16  
16  
16  
16  
SP00439  
Figure 1: Xilinx XPLA CPLD Architecture  
DS038 (v1.3) October 9, 2000  
www.xilinx.com  
2
1-800-255-7778  
This product has been discontinued. Please see www.xilinx.com/partinfo/notify/pdn0007.htm for details.  
R
XCR3032: 32 Macrocell CPLD  
36 ZIA INPUTS  
6
CONTROL  
5
PAL  
ARRAY  
PLA  
ARRAY  
(32)  
SP00435A  
Figure 2: Xilinx XPLA Logic block Architecture  
3
www.xilinx.com  
DS038 (v1.3) October 9, 2000  
1-800-255-7778  
This product has been discontinued. Please see www.xilinx.com/partinfo/notify/pdn0007.htm for details.  
R
XCR3032: 32 Macrocell CPLD  
This pin is provided to support "In-Circuit Testing" or  
"Bed-of-Nailstesting.  
Macrocell Architecture  
Figure 3 shows the architecture of the macrocell used in  
the CoolRunner family. The macrocell consists of a flip-flop  
that can be configured as either a D- or T-type. A D-type  
flip-flop is generally more useful for implementing state  
machines and data buffering. A T-type flip-flop is generally  
more useful in implementing counters. All CoolRunner™  
family members provide both synchronous and asynchro-  
nous clocking and provide the ability to clock off either the  
falling or rising edges of these clocks. These devices are  
designed such that the skew between the rising and falling  
edges of a clock are minimized for clocking integrity. There  
are two clocks (CLK0 and CLK1) available on the  
XCR3032 device. Clock 0 (CLK0) is designated as the  
"synchronous" clock and must be driven by an external  
source. Clock 1 (CLK1) can either be used as a synchro-  
nous clock (driven by an external source) or as an asyn-  
chronous clock (driven by a macrocell equation). The  
timing for asynchronous clocks is different in that the tCO  
time is extended by the amount of time that it takes for the  
signal to propagate through the array and reach the clock  
network, and the tSU time is reduced.  
There are two feedback paths to the ZIA: one from the  
macrocell, and one from the I/O pin. The ZIA feedback path  
before the output buffer is the macrocell feedback path,  
while the ZIA feedback path after the output buffer is the I/O  
pin ZIA path. When the macrocell is used as an output, the  
output buffer is enabled, and the macrocell feedback path  
can be used to feedback the logic implemented in the mac-  
rocell. When the I/O pin is used as an input, the output  
buffer will be 3-stated and the input signal will be fed into  
the ZIA via the I/O feedback path, and the logic imple-  
mented in the buried macrocell can be fed back to the ZIA  
via the macrocell feedback path. It should be noted that  
unused inputs or I/Os should be properly terminated.  
Terminations  
The CoolRunner XCR3032 CPLDs are TotalCMOS  
devices. As with other CMOS devices, it is important to  
consider how to properly terminate unused inputs and I/O  
pins when fabricating a PC board. The XCR3032 devices  
do not have on-chip termination circuits, so it is recom-  
mended that unused inputs and I/O pins be properly termi-  
nated. Allowing unused inputs and I/O pins to float can  
cause the voltage to be in the linear region of the CMOS  
input structures, which can increase the power consump-  
tion of the device. Xilinx recommends the use of 10KΩ  
pull-up resistors for the termination. Using pull-up resistors  
allows the flexibility of using these pins should late design  
changes require additional I/O. These unused pins may  
also be tied directly to VCC, but this will make it more diffi-  
cult to reclaim the use of the pin, should this be needed by  
a subsequent design revision. See the application note Ter-  
minating Unused I/O Pins in Xilinx XPLA1 and XPLA2  
CoolRunner CPLDs for more information.  
Two of the control terms (CT0 and CT1) are used to control  
the Preset/Reset of the macrocell's flip-flop. The Pre-  
set/Reset feature for each macrocell can also be disabled.  
Note that the Power-on Reset leaves all macrocells in the  
"zero" state when power is properly applied. The other four  
control terms (CT2-CT5) can be used to control the Output  
Enable of the macrocell's output buffers. The reason there  
are as many control terms dedicated for the Output Enable  
of the macrocell is to insure that all CoolRunner devices are  
PCI compliant. The macrocell's output buffers can also be  
always enabled or disabled. All CoolRunner devices also  
provide a Global 3-state (GTS) pin, which, when enabled  
and pulled Low, will 3-state all the outputs of the device.  
TO ZIA  
PAL  
PLA  
D/T  
Q
INIT  
(P or R)  
GTS  
CLK0  
CLK0  
CLK1  
CLK1  
GND  
CT0  
CT1  
CT2  
CT3  
CT4  
CT5  
GND  
V
CC  
GND  
SP00440  
Figure 3: XCR3032 Macrocell Architecture  
DS038 (v1.3) October 9, 2000  
www.xilinx.com  
4
1-800-255-7778  
This product has been discontinued. Please see www.xilinx.com/partinfo/notify/pdn0007.htm for details.  
R
XCR3032: 32 Macrocell CPLD  
tSU = 6.5 ns, and the tCO = 7.5 ns. If an output is using six to  
37 product terms, an additional 2.5 ns must be added to the  
tPD and tSU timing parameters to account for the time to  
propagate through the PLA array.  
Simple Timing Model  
Figure 5 shows the CoolRunner Timing Model. The Cool-  
Runner timing model looks very much like a 22V10 timing  
model in that there are three main timing parameters,  
including tPD, tSU, and tCO. In other architectures, the user  
may be able to fit the design into the CPLD, but is not sure  
whether system timing requirements can be met until after  
the design has been fit into the device. This is because the  
timing models of competing architectures are very complex  
and include such things as timing dependencies on the  
number of parallel expanders borrowed, sharable expand-  
ers, varying number of X and Y routing channels used, etc.  
In the XPLA architecture, the user knows up front whether  
the design will meet system timing requirements. This is  
due to the simplicity of the timing model. For example, in  
the XCR3032 device, the user knows up front that if a given  
output uses five product terms or less, the tPD = 8 ns, the  
TotalCMOS Design Technique for Fast Zero  
Power  
Xilinx is the first to offer a TotalCMOS CPLD, both in pro-  
cess technology and design technique. Xilinx employs a  
cascade of CMOS gates to implement its Sum of Products  
instead of the traditional sense amp approach. This CMOS  
gate implementation allows Xilinx to offer CPLDs which are  
both high performance and low power, breaking the para-  
digm that to have low power, you must have low perfor-  
mance. Refer to Figure 6 and Table 1 showing the ICC vs.  
Frequency of our XCR3032 TotalCMOS CPLD.  
t
= COMBINATORIAL PAL ONLY  
= COMBINATORIAL PAL + PLA  
PD_PAL  
t
PD_PLA  
INPUT PIN  
OUTPUT PIN  
REGISTERED  
= PAL ONLY  
t
t
REGISTERED  
SU_PAL  
= PAL + PLA  
t
SU_PLA  
CO  
INPUT PIN  
D
Q
OUTPUT PIN  
SP00441  
GLOBAL CLOCK PIN  
Figure 4: CoolRunner Timing Model  
5
www.xilinx.com  
DS038 (v1.3) October 9, 2000  
1-800-255-7778  
This product has been discontinued. Please see www.xilinx.com/partinfo/notify/pdn0007.htm for details.  
R
XCR3032: 32 Macrocell CPLD  
30  
25  
20  
15  
10  
5
TYPICAL  
I
CC  
(mA)  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
1
FREQUENCY (MHz)  
SP00443  
Figure 5: ICC vs. Frequency at VCC = 3.3V, 25°C  
Table 1: ICCvs. Frequency (VCC = 3.3V, 25°C)  
Frequency (MHz)  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
Typical ICC (mA)  
0.01 2.37 4.65 6.80 9.06 11.1 13.5 15.5 17.4 20.0 22.1 24.4 26.6 28.5  
DS038 (v1.3) October 9, 2000  
www.xilinx.com  
6
1-800-255-7778  
This product has been discontinued. Please see www.xilinx.com/partinfo/notify/pdn0007.htm for details.  
R
XCR3032: 32 Macrocell CPLD  
Absolute Maximum Ratings1  
Symbol  
VCC  
Parameter  
Min.  
-0.5  
-1.2  
-0.5  
-30  
Max.  
7.0  
Unit  
V
Supply voltage2  
VI  
Input voltage  
VCC +0.5  
VCC +0.5  
30  
V
VOUT  
IIN  
IOUT  
TJ  
Output voltage  
V
Input current  
mA  
mA  
°C  
°C  
Output current  
-100  
-40  
100  
Maximum junction temperature  
Storage temperature  
150  
Tstr  
Notes:  
-65  
150  
1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only.  
Functional operation at these or any other condition above those indicated in the operational and programming specification  
is not implied.  
2. The chip supply voltage must be monotonic.  
Operating Range  
Product Grade  
Commercial  
Industrial  
Temperature  
0 to +70°C  
Voltage  
3.3V ± 10%  
3.3V ± 10%  
-40 to +85°C  
7
www.xilinx.com  
DS038 (v1.3) October 9, 2000  
1-800-255-7778  
This product has been discontinued. Please see www.xilinx.com/partinfo/notify/pdn0007.htm for details.  
R
XCR3032: 32 Macrocell CPLD  
DC Electrical Characteristics For Commercial Grade Devices  
Commercial: 0°C TAMB +70°C; 3.0V VCC 3.6V  
Symbol  
VIL  
Parameter  
Input voltage low  
Test Conditions  
VCC = 3.0V  
VCC = 3.6V  
Min.  
Max.  
Unit  
V
0.8  
VIH  
VI  
Input voltage high  
2.0  
V
Input clamp voltage  
VCC = 3.0V, IIN = -18 mA  
VCC = 3.0V, IOL = 8 mA  
-1.2  
0.5  
V
VOL  
VOH  
IIL  
Output voltage low  
V
Output voltage high  
VCC = 3.0V, IOH = -8 mA  
VCC = 3.6V (except CKO), VIN = 0V  
VCC = 3.6V, VIN = 3.0V  
2.4  
-10  
-10  
-10  
-10  
-10  
V
Input leakage current low  
Input leakage current high  
Clock input leakage current  
10  
10  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
IIH  
IIL  
VCC = 3.6V, VIN = 0.4V  
10  
IOZL  
IOZH  
ICCQ  
ICCD  
3-stated output leakage current low VCC = 3.6V, VIN = 0.4V  
3-stated output leakage current high VCC = 3.6V, VIN = 3.0V  
10  
10  
1
Standby current  
Dynamic current  
VCC = 3.6V, TAMB = 0°C  
35  
1, 2  
VCC = 3.6V, TAMB = 0°C at 1 MHz  
VCC = 3.6V, TAMB = 0°C at 50 MHz  
0.5  
18  
IOS  
CIN  
Short circuit output current3  
One pin at a time for no longer than 1  
second  
-5  
5
-100  
Input pin capacitance3  
Clock input capacitance3  
I/O pin capacitance3  
TAMB = 25°C, f = 1 MHz  
TAMB = 25°C, f = 1 MHz  
TAMB = 25°C, f = 1 MHz  
8
pF  
pF  
pF  
CCLK  
CI/O  
12  
10  
Notes:  
1. See Table 1 on page 6 for typical values.  
2. This parameter measured with a 16-bit, loadable up/down counter loaded into every logic block, with all outputs enabled and  
unloaded. Inputs are tied to VCC or ground. This parameter guaranteed by design and characterization, not testing.  
3. Typical values, not tested.  
DS038 (v1.3) October 9, 2000  
www.xilinx.com  
8
1-800-255-7778  
This product has been discontinued. Please see www.xilinx.com/partinfo/notify/pdn0007.htm for details.  
R
XCR3032: 32 Macrocell CPLD  
AC Electrical Characteristics1 For Commercial Grade Devices  
Commercial: 0°C TAMB + 70°C; 3.0V VCC 3.6V  
8
10  
12  
Symbol  
Parameter  
Unit  
Min. Max. Min. Max. Min. Max.  
tPD_PAL Propagation delay time, input (or feedback node) to output through  
PAL  
2
3
8
10.5  
7
2
3
10  
13  
9
2
3
12  
15  
11  
ns  
tPD_PLA Propagation delay time, input (or feedback node) to output through  
PAL + PLA  
ns  
tCO  
Clock to out (global synchronous clock from pin)  
2
6.5  
9
2
2
ns  
ns  
tSU_PAL Setup time (from input or feedback node) through PAL  
8.5  
10.5  
13.5  
tSU_PLA Setup time (from input or feedback node) through PAL + PLA  
11.5  
ns  
tH  
Hold time  
0
0
0
ns  
tCH  
Clock High time  
3
3
4
4
5
5
ns  
tCL  
Clock Low time  
ns  
tR  
Input rise time  
20  
20  
20  
20  
20  
20  
ns  
tF  
Input fall time  
Maximum FF toggle rate2 (1/tCH + tCL  
Maximum internal frequency2 (1/tSUPAL + tCF  
Maximum external frequency2 (1/tSUPAL + tCO  
ns  
fMAX1  
fMAX2  
fMAX3  
tBUF  
)
167  
83  
125  
63  
100  
50  
MHz  
MHz  
MHz  
ns  
)
)
74  
57  
47  
Output buffer delay time  
1.5  
6.5  
1.5  
8.5  
1.5  
tPDF_PAL Input (or feedback node) to internal feedback node delay time  
through PAL  
10.5  
ns  
tPDF_PLA Input (or feedback node) to internal feedback node delay time  
through PAL + PLA  
9
11.5  
13.5  
ns  
tCF  
Clock to internal feedback node delay time  
Delay from valid VCC to valid reset  
Input to output disable3  
5.5  
50  
15  
15  
16  
19  
7.5  
50  
17  
17  
18  
21  
9.5  
50  
19  
19  
20  
23  
ns  
µs  
ns  
ns  
ns  
ns  
tINIT  
tER  
tEA  
Input to output valid  
tRP  
Input to register preset  
tRR  
Input to register reset  
Notes:  
1. Specifications measured with one output switching. See Figure 6 and Table 2 for derating.  
2 . This parameter guaranteed by design and characterization, not by test.  
3. Output CL = 5 pF.  
9
www.xilinx.com  
DS038 (v1.3) October 9, 2000  
1-800-255-7778  
This product has been discontinued. Please see www.xilinx.com/partinfo/notify/pdn0007.htm for details.  
R
XCR3032: 32 Macrocell CPLD  
DC Electrical Characteristics For Industrial Grade Devices  
Industrial: -40°C TAMB +85°C; 3.0V VCC 3.6V  
Symbol  
VIL  
Parameter  
Input voltage low  
Test Conditions  
Min.  
Max.  
Unit  
V
VCC = 3.0V  
VCC = 3.6V  
0.8  
VIH  
VI  
Input voltage high  
2.0  
V
Input clamp voltage  
VCC = 3.0V, IIN = -18 mA  
VCC = 3.0V, IOL = 8 mA  
-1.2  
0.5  
V
VOL  
VOH  
IIL  
Output voltage low  
V
Output voltage high  
VCC = 3.0V, IOH = -8 mA  
VCC = 3.6V (except CKO), VIN = 0.4V  
VCC = 3.6V, VIN = 3.0V  
2.4  
-10  
-10  
-10  
-10  
-10  
V
Input leakage current low  
Input leakage current high  
Clock input leakage current  
10  
10  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
IIH  
IIL  
VCC = 3.6V, VIN = 0.4V  
10  
IOZL  
IOZH  
ICCQ  
ICCD  
3-stated output leakage current low VCC = 3.6V, VIN = 0.4V  
3-stated output leakage current high VCC = 3.6V, VIN = 3.0V  
10  
10  
1
Standby current  
Dynamic current  
VCC = 3.6V, TAMB = -40°C  
45  
1, 2  
VCC = 3.6V, TAMB = -40°C at 1 MHz  
VCC = 3.6V, TAMB = -40°C at 50 MHz  
0.5  
18  
IOS  
CIN  
Short circuit output current3  
One pin at a time for no longer than  
1 second  
-5  
5
-120  
Input pin capacitance3  
Clock input capacitance3  
I/O pin capacitance3  
TAMB = 25°C, f = 1 MHz  
TAMB = 25°C, f = 1 MHz  
TAMB = 25°C, f = 1 MHz  
8
pF  
pF  
pF  
CCLK  
CI/O  
12  
10  
Notes:  
1. See Table 1 on page 6 for typical values.  
2. This parameter measured with a 16-bit, loadable up/down counter loaded into every logic block, with all outputs enabled and  
unloaded. Inputs are tied to VCC or ground. This parameter guaranteed by design and characterization, not testing.  
3. Typical values, not tested.  
DS038 (v1.3) October 9, 2000  
www.xilinx.com  
10  
1-800-255-7778  
This product has been discontinued. Please see www.xilinx.com/partinfo/notify/pdn0007.htm for details.  
R
XCR3032: 32 Macrocell CPLD  
AC Electrical Characteristics1 For Industrial Grade Devices  
Industrial: -40°C TAMB +85°C; 3.0V VCC 3.6V  
Symbol  
Parameter  
10  
12  
UNIT  
Min. Max. Min. Max.  
tPD_PAL  
tPD_PLA  
Propagation delay time, input (or feedback node) to output through PAL  
2
3
10  
2
3
12  
15  
ns  
ns  
Propagation delay time, input (or feedback node) to output through  
PAL + PLA  
12.5  
tCO  
Clock to out (global synchronous clock from pin)  
2
8
9
0
2
11  
ns  
ns  
tSU_PAL  
tSU_PLA  
tH  
Setup time (from input or feedback node) through PAL  
10.5  
13.5  
Setup time (from input or feedback node) through PAL + PLA  
10.5  
ns  
Hold time  
0
ns  
tCH  
Clock High time  
Clock Low time  
Input rise time  
Input fall time  
4
4
5
5
ns  
tCL  
ns  
tR  
20  
20  
20  
20  
ns  
tF  
ns  
fMAX1  
fMAX2  
fMAX3  
tBUF  
Maximum FF toggle rate2 (1/tCH + tCL  
Maximum internal frequency2 (1/tSUPAL + tCF  
)
125  
64.5  
58.8  
100  
50  
MHz  
MHz  
MHz  
ns  
)
Maximum external frequency2 (1/tSUPAL + tCO  
)
47  
Output buffer delay time  
1.5  
8
1.5  
tPDF_PAL Input (or feedback node) to internal feedback node delay time through PAL  
10.5  
13.5  
ns  
tPDF_PLA Input (or feedback node) to internal feedback node delay time through PAL  
+ PLA  
10.5  
ns  
tCF  
tINIT  
tER  
tEA  
tRP  
tRR  
Clock to internal feedback delay time  
Delay from valid VCC to valid reset  
Input to output disable3  
7.5  
50  
16  
16  
17  
20  
9.5  
50  
19  
19  
20  
23  
ns  
µs  
ns  
ns  
ns  
ns  
Input to output valid  
Input to register preset  
Input to register reset  
Notes:  
1. Specifications measured with one output switching. See Figure 6 and Table 2 for derating.  
2. This parameter guaranteed by design and characterization, not by test.  
3. Output CL = 5 pF.  
11  
www.xilinx.com  
DS038 (v1.3) October 9, 2000  
1-800-255-7778  
This product has been discontinued. Please see www.xilinx.com/partinfo/notify/pdn0007.htm for details.  
R
XCR3032: 32 Macrocell CPLD  
Switching Characteristics  
The test load circuit and load values for the AC Electrical Characteristics are illustrated below.  
V
CC  
COMPONENT  
VALUES  
390Ω  
S1  
R1  
R2  
C1  
390Ω  
R1  
R2  
35 pF  
V
IN  
V
OUT  
MEASUREMENT  
S1  
S2  
C1  
t
Open  
Closed  
Closed  
Closed  
PZH  
t
Closed  
Closed  
PZL  
t
P
S2  
Note: For tPHZ and tPLZ C = 5 pF, and 3-state levels are  
measured 0.5V from steady-state active level.  
SP00477  
V
= 3.3V, 25°C  
CC  
nS  
9.50  
8.50  
7.50  
6.50  
5.50  
4.50  
+3.0V  
90%  
10%  
0V  
t
t
F
R
1.5ns  
1.5ns  
TYPICAL  
SP00368  
MEASUREMENTS:  
All circuit delays are measured at the +1.5V level of  
inputs and outputs, unless otherwise specified.  
Input Pulses  
Figure 7: Voltage Waveform  
Table 2: tPD_PAL vs # of Outputs Switching  
(VCC = 3.3 V, T = 25°C)  
16  
SP00449A  
1
2
4
8
12  
# of Outputs  
1
2
4
8
12  
16  
Typical (ns)  
6.2  
6.4  
6.6  
6.9  
7.2  
7.5  
Figure 6: tPD_PAL vs. Output Switching  
DS038 (v1.3) October 9, 2000  
www.xilinx.com  
1-800-255-7778  
12  
This product has been discontinued. Please see www.xilinx.com/partinfo/notify/pdn0007.htm for details.  
R
XCR3032: 32 Macrocell CPLD  
XCR3032 Global, Power, and Ground Pins  
Pin Function and Layout  
Pin Type  
IN0  
PC44  
43  
1
VQ44  
37  
Notes  
XCR3032 I/O Pins  
Function  
Block  
IN1  
39  
Macrocell  
PC44  
VQ44  
Notes  
IN2  
44  
2
38  
1
1
2
4
42  
43  
44  
1
IN3  
40  
1
5
gtsn  
44  
43  
4
38  
(1)  
1
3
6
CLK0  
CLK1  
Vcc  
37  
1
4
7
42  
1
5
8
2
3, 15, 23, 35 9, 17, 29, 41  
1
6
9
3
GND  
10, 22, 30, 4, 16, 24, 36  
42  
1
7
11  
12  
13  
14  
16  
17  
18  
19  
20  
21  
41  
40  
39  
38  
37  
36  
34  
33  
32  
31  
29  
28  
27  
26  
25  
24  
5
1
8
6
(1) Global 3-State pin facilitates bed of nails testing without  
using logic resources.  
1
9
7
1
1
10  
11  
12  
13  
14  
15  
16  
1
8
10  
11  
12  
13  
14  
15  
35  
34  
33  
32  
31  
30  
28  
27  
26  
25  
23  
22  
21  
20  
19  
18  
1
XCR3032 - 44-pin PLCC  
1
1
6
1
40  
1
7
39  
29  
1
2
2
2
PLCC  
2
3
2
4
17  
2
5
18  
28  
2
2
6
7
SP00420A  
2
8
2
9
2
10  
11  
12  
13  
14  
15  
16  
2
XCR3032 - 44-pin VQFP  
2
2
44  
1
34  
33  
2
2
2
TQFP  
11  
12  
23  
22  
SP00433A  
13  
www.xilinx.com  
1-800-255-7778  
DS038 (v1.3) October 9, 2000  
This product has been discontinued. Please see www.xilinx.com/partinfo/notify/pdn0007.htm for details.  
R
XCR3032: 32 Macrocell CPLD  
Ordering Information  
Example: XCR3032 -8 PC 44 C  
Temperature Range  
Number of Pins  
Package Type  
Device Type  
Speed Options  
Temperature Range  
Speed Options  
C = Commercial, TA = 0°C to +70°C  
I = Industrial, TA = 40°C to +85°C  
-12: 12 ns pin-to-pin delay  
-10: 10 ns pin-to-pin delay  
-8: 8 ns pin-to-pin delay  
Packaging Options  
VQ44: 44-pin VQFP  
PC44: 44-pin PLCC  
Component Availability  
Pins  
44  
Type  
Plastic VQFP  
Plastic PLCC  
Code  
VQ44  
C, I  
C, I  
C
PC44  
C, I  
C, I  
C
XCR3032  
-12  
-10  
-8  
Revision History  
Date  
8/4/99  
Version #  
1.0  
Revision  
Initial Xilinx release.  
2/7/00  
1.1  
Converted to Xilinx format and updated  
Updated pinout table and features.  
Added Discontinuation Notice.  
8/10/00  
10/09/00  
1.2  
1.3  
DS038 (v1.3) October 9, 2000  
www.xilinx.com  
14  
1-800-255-7778  

XCR3032-8VQ44C 相关器件

型号 制造商 描述 价格 文档
XCR3032-8VQ44I XILINX 32 Macrocell CPLD 获取价格
XCR3032XL XILINX XCR3032XL 32 Macrocell CPLD 获取价格
XCR3032XL-10 XILINX XCR3032XL 32 Macrocell CPLD 获取价格
XCR3032XL-10CS48C XILINX XCR3032XL 32 Macrocell CPLD 获取价格
XCR3032XL-10CS48I XILINX XCR3032XL 32 Macrocell CPLD 获取价格
XCR3032XL-10CSG48C XILINX XCR3032XL 32 Macrocell CPLD 获取价格
XCR3032XL-10CSG48I XILINX XCR3032XL 32 Macrocell CPLD 获取价格
XCR3032XL-10PC44C XILINX XCR3032XL 32 Macrocell CPLD 获取价格
XCR3032XL-10PC44I XILINX XCR3032XL 32 Macrocell CPLD 获取价格
XCR3032XL-10VQ44C XILINX XCR3032XL 32 Macrocell CPLD 获取价格

XCR3032-8VQ44C 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    5
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    8
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6