ZL60301MJD [ZARLINK]

Parallel Fiber Optic Transceiver (4 + 4) x 2.7 Gbps; 并行光纤收发器(4 + 4 )× 2.7 Gbps的
ZL60301MJD
型号: ZL60301MJD
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

Parallel Fiber Optic Transceiver (4 + 4) x 2.7 Gbps
并行光纤收发器(4 + 4 )× 2.7 Gbps的

光纤
文件: 总22页 (文件大小:480K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZL60301  
Parallel Fiber Optic Transceiver  
(4 + 4) x 2.7 Gbps  
Data Sheet  
June 2004  
Ordering Information  
ZL60301/MJD  
Parallel Fiber Transceiver  
Heat sink and EMI shield options  
are available upon request  
0°C to +80°C  
Features  
Industry standard MPO/MTPribbon fiber  
connector interface  
Pluggable MegArray® ball grid array connector  
Complies with POP4 MSA specification  
4 Transmit channels and 4 Receive channels  
Data rate up to 2.7 Gbps per channel  
850 nm VCSEL array  
Optionally available with EMI shield and external  
heat sink  
Laser class 1M IEC 60825-1:2001 compliant  
Low power consumption, max 1 W  
Power supply 3.3 V  
Data I/O is CML compatible with DC blocking  
capacitors  
Link reach 300 m with 50/125 µm 500 MHz.km  
fiber at 2.5 Gbps  
Channel BER better than 10-12  
VCCA Rx VCCB Rx VEE Rx  
Rx_EN Rx_SD SQ_EN  
RX0  
Trans-  
Impedance  
and  
Limiting  
Amplifier  
DOUT0+  
DOUT0-  
RX1  
PIN Array  
RX2  
DOUT3+  
DOUT3-  
RX3  
DIN3+  
DIN3-  
TX3  
TX2  
VCSEL  
Driver  
VCSEL  
Array  
TX1  
DIN0+  
DIN0-  
TX0  
VCSEL Driver Controller  
VCC Tx  
Tx_EN  
Tx_DIS  
RESET  
FAULT  
VEE TX  
Figure 1 - Transceiver Block Diagram  
1
Zarlink Semiconductor Inc.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2004, Zarlink Semiconductor Inc. All Rights Reserved.  
ZL60301  
Data Sheet  
Applications  
High-speed interconnects within and between switches, routers and transport equipment  
Proprietary backplanes  
Interconnects rack-to-rack, shelf-to-shelf, board-to-board, board-to-optical backplane  
Description  
The ZL60301 is a very high-speed transceiver for parallel fiber applications. This transceiver performs E/O and O/E  
conversions for data transmission over multimode fiber ribbon.  
The transmit section converts parallel electrical input signals via a laser driver and a VCSEL array into parallel  
optical output signals at a wavelength of 850 nm.  
The receive section converts parallel optical input signals via a PIN photodiode array and a transimpedance and  
limiting amplifier, into electrical output signals.  
The module is fitted with a pluggable industry-standard MegArray® BGA connector. This provides ease of assembly  
on the host board and enables provisioning of bandwidth on demand.  
2
Zarlink Semiconductor Inc.  
ZL60301  
Data Sheet  
Table of Contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Transmitter Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Transmitter Control and Status Signal Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Transmitter Control and Status Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Receiver Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Receiver Control and Status Signal Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Receiver Control and Status Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Transceiver Module Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Transceiver Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Regulatory Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Eye safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrostatic discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrostatic discharge immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electromagnetic Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Handling instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Cleaning the Optical Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
ESD handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Link Reach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Link Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Electrical Interface - Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3
Zarlink Semiconductor Inc.  
ZL60301  
Data Sheet  
Absolute Maximum Ratings  
Not necessarily applied together. Exceeding these values may cause permanent damage. Functional operation  
under these conditions is not implied.  
Parameter  
Symbol  
Min.  
Max.  
Unit  
Supply voltage  
VCC  
V  
-0.3  
4.0  
1.2  
V
V
Differential input voltage amplitude1  
Voltage on any pin  
VPIN  
MOS  
TSTG  
VESD  
-0.3  
5
VCC + 0.3  
95  
V
Relative humidity (non-condensing)  
Storage temperature  
%
°C  
kV  
-40  
100  
ESD resistance  
±1  
1. Differential input voltage amplitude is defined as V = DIN+ DIN-.  
Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
Max.  
Unit  
Power supply voltage  
VCC  
TCASE  
fD  
3.135  
0
3.465  
80  
V
°C  
Operating case temperature  
Signalling rate (per channel)1  
Link distance2  
1.0  
2
2.7  
Gbps  
m
LD  
Data I/O DC blocking capacitors3  
Power supply noise4  
CBLK  
VNPS  
100  
nF  
200  
mVp-p  
1. Data patterns are to have maximum run lengths and DC balance shifts no worse than that of a Pseudo Random Bit Sequence of  
length 223-1 (PRBS-23). Information on lower bit rates and longer run lengths are available on request.  
2. For maximum distance, see Table 4.  
3. For AC-coupling, DC blocking capacitors external to the module with a minimum value of 100 nF is recommended.  
4. Power supply noise is defined at the supply side of the recommended filter for all VCC supplies over the frequency range of 500 Hz  
to 2700 MHz with the recommended power supply filter in place.  
L1 1  
µ
H
L2 6.8 nH  
R1 100  
R2 1.0 kΩ  
Host  
Vcc  
Module  
Vcc  
C1  
10  
C2  
10  
C3  
0.1  
C4  
0.1  
µ
F
µ
F
µ
F
µ
F
Figure 2 - Recommended Power Supply Filter  
4
Zarlink Semiconductor Inc.  
ZL60301  
Data Sheet  
Transmitter Specifications  
All parameters below require operating conditions according to “Recommended Operating Conditions” on page 4.  
Parameter  
Symbol  
Min.  
Max.  
Unit  
Optical Parameters  
Launch power (50/125 µm MMF)1  
Extinguished output power  
Extinction ratio2  
POUT  
POFF  
ER  
-8  
-2  
dBm  
dBm  
dB  
-30  
6
Optical modulation amplitude3  
OMA  
λC  
0.30  
830  
mW  
nm  
Center wavelength  
860  
0.85  
-116  
150  
150  
120  
50  
Spectral width4  
∆λ  
nmrms  
dB/Hz  
ps  
Relative intensity noise OMA5  
Optical output rise time (20 - 80%)  
Optical output fall time (20 - 80%)  
Total jitter contributed (peak to peak)6  
Deterministic jitter contributed (peak to peak)  
Channel to channel skew7  
RIN12OMA  
tRO  
tFO  
ps  
TJ  
ps  
DJ  
ps  
tSK  
100  
ps  
Electrical Parameters  
Power dissipation  
PD  
ICC  
VIN  
ZIN  
500  
150  
800  
120  
160  
160  
mW  
mA  
mVp-p  
Supply current  
Differential input voltage amplitude (peak to peak)8  
Differential input impedance9  
Electrical input rise time (20 - 80%)  
Electrical input fall time (20 - 80%)  
200  
80  
tRE  
ps  
tFE  
ps  
1. The output optical power is compliant with IEC 60825-1 Amendment 2, Class 1M Accessible Emission Limits.  
2. The extinction ratio is measured at 622 Mbps.  
3. Informative. Corresponds to POUT = -8 dBm and ER = 6 dBm.  
4. Spectral width is measured as defined in EIA/TIA-455-127 Spectral Characterization of Multimode Laser Diodes.  
5. Corresponds to a Relative Intensity Noise (RIN) of -120 dB/Hz.  
6. Total jitter equals TP1 to TP2 as defined in IEEE 802.3 clauses 38.2 and 38.6 (Gigabit Ethernet).  
7. Channel skew is defined for the condition of equal amplitude, zero ps skew signals applied to the transmitter inputs.  
8. Differential input voltage is defined as the peak to peak value of the differential voltage between DIN+ and DIN-. Data inputs are CML  
compatible.  
9. Differential input impedance is measured between DIN+ and DIN-.  
5
Zarlink Semiconductor Inc.  
ZL60301  
Data Sheet  
Classified in accordance with IEC 60825-1/A2:2001, IEC 60825-2 : 2000  
Class 1M Laser Product  
Emited wavelength: 840 nm  
DIN+  
VCC  
50Ω  
50Ω  
13k  
11k  
VEE  
DIN-  
Figure 3 - Differential CML Input Equivalent Circuit  
6
Zarlink Semiconductor Inc.  
ZL60301  
Data Sheet  
Transmitter Control and Status Signal Requirements  
The following table shows the timing relationships of the status and control signals of the transmit section.  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Control input voltage high1  
Control input voltage low  
Control pull-up resistor2  
Control pull-down resistor3  
Status output voltage low4, 5  
Status pull-down resistor4  
FAULT assert time  
VIH  
VIL  
2.1  
V
0.62  
V
RPU  
RPD1  
VOL  
10  
10  
kΩ  
kΩ  
V
0.4  
RPD2  
TFA  
10  
kΩ  
µs  
µs  
µs  
µs  
ms  
ms  
µs  
µs  
ms  
100  
100  
FAULT lasers off  
TFD  
RESET duration  
TTDD  
TOFF  
TON  
TTEN  
TTD  
10  
RESET assert time  
5
10  
100  
1
RESET de-assert time  
Tx_EN assert time  
Tx_EN de-assert time  
Tx_DIS assert time  
5
5
10  
10  
1
TTD  
Tx_DIS de-assert time  
TTEN  
1. Applies to control signals RESET, Tx_DIS and Tx_EN.  
2. Applies to control signals RESET and Tx_EN. Internal pull-up resistor.  
3. Applies to control signal Tx_DIS. Internal pull-down resistor.  
4. Applies to status signal FAULT. Internal pull-down to VEE  
5. With status output sink current max. 2 mA.  
.
7
Zarlink Semiconductor Inc.  
ZL60301  
Data Sheet  
Transmitter Control and Status Timing Diagrams  
The following figures show the timing relationships of the status and control signals of the transmit section.  
VCC  
TTEN  
Tx Output [0:3]  
Data [0:3]  
Transmitter Not Ready  
Normal operation  
RESET: floating or high  
Figure 4 - Transmitter Power-up Sequence  
FAULT  
TFA  
TFD  
Data [0:3]  
Tx Output [0:3]  
No Fault  
Fault  
Figure 5 - Transmitter Fault Signal Timing Diagram  
8
Zarlink Semiconductor Inc.  
ZL60301  
Data Sheet  
RESET  
FAULT  
TTDD  
TON  
Data [0:3]  
Tx Output [0:3]  
Transmitter Not Ready  
Normal operation  
Figure 6 - Transmitter Reset Signal Timing Diagram  
Tx_DIS  
Tx_EN  
TTD  
TTD  
Lasers  
off  
Lasers  
off  
Data [0:3]  
Data [0:3]  
Normal operation  
Tx_EN  
Tx Off  
Normal operation  
Tx Off  
TTEN  
Data [0:3]  
Transmitter Not Ready  
Normal operation  
Figure 7 - Transmitter Enable and Disable Timing Diagram  
Tx_DIS High  
Tx_DIS Low  
Normal operation  
Transmitter disabled  
Tx_EN High  
Tx_EN Low  
Transmitter disabled  
Transmitter disabled  
Table 1 - TruthTable for Transmitter Operation (Pre-condition: RESET floating or HIGH)  
9
Zarlink Semiconductor Inc.  
ZL60301  
Data Sheet  
Receiver Specifications  
All parameters below require operating conditions according to “Recommended Operating Conditions” on page 4  
and a termination load of 100 differential at the electrical output.  
Parameter  
Symbol  
Min.  
Max.  
Unit  
Optical Parameters  
Input optical power1  
Center wavelength  
Return loss2  
PIN  
λC  
-16  
830  
12  
-2  
dBm  
nm  
860  
RL  
dB  
Stressed receiver sensitivity3  
Channel to channel skew4  
Signal detect assert  
PSS  
tSK  
-11.7  
100  
-17  
dBm  
ps  
PSA  
PSD  
dBm  
dBm  
Signal detect de-assert  
-31  
Electrical Parameters  
Power dissipation  
PD  
ICC  
500  
150  
800  
120  
mW  
mA  
mVp-p  
Supply current  
Differential output voltage amplitude (peak to peak)5  
Output differential load impedance6  
Stressed receiver eye opening7  
Electrical output rise time (20 - 80%)  
Electrical output fall time (20 - 80%)  
VOUT  
ZL  
500  
80  
PSE  
tRE  
0.3  
UI  
160  
160  
ps  
tFE  
ps  
1. Receive power for a channel is measured for a BER of 10-12 and worst case extinction ratio. PIN (Min) is measured using a fast  
rise/fall time source with low RIN and adjacent channel(s) operating with incident power of 6 dB above PIN (Min).  
2. Return loss is measured as defined in TIA/EIA-455-107A Determination of Component Reflectance or Link/System Return Loss Us-  
ing a Loss Test Set.  
3. The stressed receiver sensitivity is measured using PRBS 223-1 pattern, 2.6 dB inter-symbol interference, ISI (Min), 30 ps duty cycle  
dependent deterministic jitter, DCD DJ (Min), and 6 dB extinction ratio, ER (Min) (ER penalty = 2.2 dB). All channels not under test  
are receiving signals with an average input power of 6 dB above PIN (Min).  
4. Channel skew is defined for the condition of equal amplitude, zero ps skew signals applied to the receiver inputs.  
5. Differential output voltage is defined as the peak to peak value of the differential voltage between DOUT+ and DOUT- and measured  
with a 100 differential load connected between DOUT+ and DOUT-. Data outputs are CML compatible.  
6. See Figure 13.  
7. The stressed receiver eye opening represents the eye at TP4 as defined in IEEE 802.3 clauses 38.2 and 38.6 (Gigabit Ethernet).  
The stressed receiver eye opening is measured using PRBS 223-1 pattern, 2.6 dB ISI min, 30 ps DCD DJ min, 6 dB ER min and an  
average input power of -11.2 dBm (0.5 dB above minimum stressed receiver sensitivity as defined in IEEE 802.3 clause 38.6). All  
channels not under test are receiving signals with an average input power of 6 dB above PIN (Min).  
10  
Zarlink Semiconductor Inc.  
ZL60301  
Data Sheet  
Receiver Control and Status Signal Requirements  
The following table shows the timing relationships of the status and control signals of the receive section.  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Control input voltage high1  
VIH  
VIL  
2.0  
V
V
Control input voltage low1  
0.9  
100  
0.4  
Control input pull-up current1  
Status output voltage low2, 3  
Status output pull-up resistor2  
Receiver signal detect assert time  
Receiver signal detect de-assert time  
Receiver enable assert time  
Receiver enable de-assert time  
IIN  
VOL  
10  
µA  
V
RPU  
3.25  
50  
50  
33  
5
kΩ  
µs  
µs  
ms  
µs  
TSD  
200  
200  
TLOS  
TRXEN  
TRXD  
1. Applies to control signals Rx_EN, SQ_EN.  
2. Applies to status signal Rx_SD. Internal pull-up to VCC  
3. With status output sink current max 2 mA.  
.
Receiver Control and Status Timing Diagrams  
The following figures show the timing relationships of the status and control signals of the receive section.  
Rx_EN  
TRXD  
ICC  
Normal Operation  
Rx Off  
Figure 8 - Receiver Enable Signal Timing Diagram  
11  
Zarlink Semiconductor Inc.  
ZL60301  
Data Sheet  
Rx_SD  
TLOS  
Signal  
No Signal  
Figure 9 - Receiver Signal Detect Timing Diagram  
Transceiver Module Signals  
The pluggable parallel optical transceiver uses a 100 position FCI MegArray electrical connector  
(FCI PN: 84513-101), and an industry standard MTP(MPO) optical receptacle compliant with  
IEC 61754-7.  
K
J
H
G
F
E
D
C
B
A
DOUT00-  
VEE Rx  
DOUT03+  
VEE Rx  
VEE Rx  
VEE Tx  
VEE Tx  
DIN03-  
VEE Tx  
DIN00+  
1
2
DOUT00+  
VEE Rx  
DOUT01+  
DOUT01-  
VEE Rx  
VCCB Rx  
NIC  
VEE Rx  
VEE Rx  
VEE Rx  
VEE Rx  
VEE Rx  
VCCB Rx  
DNC  
DOUT03-  
VEE Rx  
DOUT02-  
DOUT02+  
VEE Rx  
VCCB Rx  
DNC  
VEE Rx  
VEE Rx  
NIC  
VEE Rx  
VEE Rx  
NIC  
VEE Tx  
VEE Tx  
NIC  
VEE Tx  
VEE Tx  
NIC  
DIN03+  
VEE Tx  
DIN02+  
DIN02-  
VEE Tx  
VCC Tx  
DNC  
VEE Tx  
VEE Tx  
VEE Tx  
VEE Tx  
VEE Tx  
VCC Tx  
DNC  
DIN00-  
VEE Tx  
DIN01-  
DIN01+  
VEE Tx  
VCC Tx  
DNC  
3
4
NIC  
NIC  
NIC  
NIC  
5
NIC  
NIC  
NIC  
NIC  
6
NIC  
NIC  
NIC  
NIC  
7
DNC  
SD  
RX_EN  
SQ_EN  
NIC  
TX_DIS  
RESET  
NIC  
TX_EN  
FAULT  
NIC  
8
NIC  
DNC  
DNC  
DNC  
DNC  
DNC  
9
VCCA Rx  
VCCA Rx  
VEE Rx  
NIC  
VEE Tx  
VCC Tx  
VCC Tx  
10  
Table 2 - Transceiver Pinout Assignments (Top view, toward MPO/MTPconnector end)  
(10x10 array, 1.27 mm pitch)  
Module front view - MTP key up  
Tx0  
Tx1  
Tx2  
Tx3  
Rx3  
Rx2  
Rx1  
Rx0  
Host printed circuit board  
Table 3 - Transceiver Optical Channel Assignment  
12  
Zarlink Semiconductor Inc.  
ZL60301  
Data Sheet  
Transceiver Pin Description  
The transceiver module case is electrically isolated from Transmitter signal common and Receiver signal common.  
Connection through mounting screw holes or frontplate whichever is applicable. Make the appropriate electrical  
connection for EMI shield integrity.  
Signal Name  
Type  
Description  
Comments  
DIN[0:3] +/-  
Data input Transmitter data in, channel 0 to 3  
Internal differential  
termination at 100 Ω.  
VCC Tx  
VEE Tx  
Transmitter power supply rail  
Transmitter signal common. All transmitter  
voltages are referenced to this potential unless  
otherwise stated.  
Directly connect these pads  
to the PC board transmitter  
signal ground plane.  
TX_EN  
TX_DIS  
Control  
input  
Transmitter enable.  
HIGH: normal operation  
LOW: disable transmitter  
Active high, internal pull-up.  
See Table 1.  
Control  
input  
Transmitter disable.  
HIGH: disable transmitter  
LOW: normal operation  
Active high, internal pull-  
down. See Table 1.  
FAULT  
Status  
output  
Transmitter fault.  
HIGH: normal operation  
When active, all channels  
are disabled. Clear by reset  
LOW: laser fault detected on at least one channel signal. Internal pull-up.  
RESET  
Control  
input  
Transmitter reset.  
HIGH: normal operation  
LOW:reset to clear fault signal  
Internal pull-up.  
DOUT[0:3] +/-  
Data  
Receiver data out, channel 0 to 3.  
output  
V
CCA Rx  
PIN preamplifier power supply rail.  
Receiver quantizer power supply rail.  
VCCB Rx  
VEE Rx  
Receiver signal common. All receiver voltages  
are referenced to this potential unless otherwise  
stated.  
Directly connect these pads  
to the PC board receiver  
signal ground plane.  
RX_EN  
RX_SD  
SQ_EN  
Control  
input  
Receiver enable.  
HIGH: normal operation  
LOW: disable receiver  
Internal pull-up.  
Internal pull-up.  
Internal pull-up.  
Status  
output  
Receiver signal detect.  
HIGH: valid optical input on all channels  
LOW: loss of signal on at least one channel  
Control  
input  
Squelch enable.  
HIGH: squelch function enabled. Data OUT is  
squelched on any channels that have loss of  
signal  
LOW: squelch function disabled  
DNC  
NIC  
Do not connect to any potential, including ground.  
No internal connection.  
13  
Zarlink Semiconductor Inc.  
ZL60301  
Data Sheet  
VCCA and VCCB Rx can be connected to the same power supply. However, to insure maximum receiver sensitivity  
and minimize the impact of noise from the power supply, it is recommended to keep the power supplies separate  
and to use the recommended power supply filtering network on VCCA Rx, see Figure 2.  
Thermal Characteristics  
There are three options for heat sinks depending on the cooling needs. They are:  
1. Direct application without any attached external heat sink  
2. Use a generic external heat sink specified by Zarlink  
3. Use a customer designed external heat sink  
In Figure 10 and Figure 11, the temperature rise and thermal resistance as a function of air velocity (free air velocity  
at the top of the module) is shown for option 1 and 2. The thermal resistance is defined as the temperature  
difference between the case temperature and ambient flowing air divided by the total heat dissipation of the  
module.  
Improved thermal properties can be achieved by using a larger heat sink especially if more height is available  
(option 3). For this option, a more detailed discussion with Zarlink is recommended regarding heat sink design  
attachment materials.  
Temperature rise at 1.0W  
(Free stream air velocity)  
Option ZL60301/MLD  
Option ZL60301/MJD  
16  
12  
8
4
0
0
1
2
3
4
5
Air velocity (m/s)  
Figure 10 - Temperature Difference Between Ambient Flowing Air and Case at a Heat Dissipation  
of 1.0 W  
14  
Zarlink Semiconductor Inc.  
ZL60301  
Data Sheet  
Thermal resistance to air  
(Free stream air velocity)  
15  
10  
5
Option ZL60301/MLD  
Option ZL60301/MJD  
0
0
1
2
3
4
5
Air velocity (m/s)  
Figure 11 - Thermal Resistance, as a Function of Air Velocity (the airflow is along the shortest  
side of the module)  
For any other orientation, the thermal resistance is 75-100% of the values shown above.  
15  
Zarlink Semiconductor Inc.  
ZL60301  
Data Sheet  
Regulatory Compliance  
Eye safety  
The maximum optical output power is specified to comply with Class 1M in accordance with IEC 608251:2001. In  
addition the transmitter complies with FDA performance standards for laser products except for deviations pursuant  
to Laser Notice No.50, dated July 26, 2001. No maintenance or service of the product may be performed.  
Electrostatic discharge  
The module is classified as Class 1 (> 1000 Volts) according to MILSTD883, test method 3015.7, with regards to  
the electrical pads.  
Electrostatic discharge immunity  
The part withstand a 15 kV (air discharge) and 8 kV (contact discharge) either indirect or directly to receptacle;  
tested according to IEC 6100042, while in operation without addition of bit errors.  
Electromagnetic Interference  
Emission  
The electromagnetic emission is tested in front of the module (module fitted with EMI shield), with the module  
mounted in a frontplate cutout. The part is tested with FCC Part 15, 30 1000 MHz and 1 GHz to 5th harmonic of  
the highest fundamental frequency (6.75 GHz), and is specified to be Class B with > 6 dB margin.  
Immunity  
The electromagnetic immunity is tested without a front panel or enclosure. The module specification is maintained  
with an applied field of 10 V/m for frequencies between 10 kHz and 10 GHz, according to IEC 6100043 and GR−  
1089CORE.  
Handling instructions  
Cleaning the Optical Interface  
A protective connector plug is supplied with each module. This plug should remain in place whenever a fiber cable  
is not inserted. This will keep the optical port free from dust or other contaminants, which may potentially degrade  
the optical signal. Before reattaching the connector plug to the module, visually inspect the plug and remove any  
contamination. If the module’s optical port becomes contaminated, it can be cleaned with high-pressure nitrogen  
(the use of fluids, or physical contact, is not advised due to potential for damage).  
Before a fiber cable connector is attached to the module, it is recommended to clean the fiber cable connector  
using an optical connector cleaner, or according to the cable manufacturer's instructions. It is also recommended to  
clean the optical port of the module with high-pressure nitrogen.  
Connectors  
For optimum performance, it is recommended that the number of insertions is limited to 50 for the electrical  
MegArray connector and 200 for the optical MPO/MTP connector.  
ESD handling  
When handling the modules, precautions for ESD sensitive devices should be taken. These include use of ESD  
protected work areas with wrist straps, controlled work-benches, floors etc.  
16  
Zarlink Semiconductor Inc.  
ZL60301  
Data Sheet  
Link Reach  
The following table lists the minimum reach distance of the pluggable parallel fiber optic transceiver for different  
multi-mode fiber (MMF) types and bandwidths assuming worst case parameters. Each case allows for a maximum  
of 2 dB per channel connection loss for patch cables and other connectors.  
Fiber Type  
Modal Bandwidth ReachDistance ReachDistance ReachDistance  
@ 850 nm  
@ 1 Gbps  
@ 2.5 Gbps  
@ 2.7 Gbps  
[core / cladding µm]  
[MHz*km]  
[m]  
[m]  
[m]  
62.5/125 MMF  
200  
400  
500  
350  
650  
750  
135  
260  
300  
115  
220  
270  
62.5/125 or 50/125 MMF  
50/125 MMF  
Table 4 - Link Reach for Different Fiber Types and Data Rates  
Link Model Parameters  
The link reaches above have been calculated using the following link model parameters and Gigabit Ethernet link  
model version 2.3.5 (filename: 5pmd047.xls).  
Parameter  
Mode partition noise k-factor  
Symbol  
Value  
Unit  
k
0.3  
0.3  
Modal noise  
MN  
SO  
UO  
αdB  
C1  
Q
dB  
ps/nm2*km  
nm  
Dispersion slope parameter  
Wavelength of zero dispersion  
Attenuation coefficient at 850 nm  
Conversion factor  
0.11  
1320  
3.5  
dB/km  
ns.MHz  
480  
7.04  
0.3  
Q-factor [BER 10-12  
]
TP4 eye opening  
UI  
UI  
DCD allocation at TP3  
RMS baseline wander S.D.  
RIN coefficient  
DCD DJ  
σBLW  
kRIN  
0.08  
0.025  
0.70  
329  
Conversion factor  
c_rx  
ns.MHz  
17  
Zarlink Semiconductor Inc.  
ZL60301  
Data Sheet  
Electrical Interface - Application Examples  
Recommended CML output  
Transmitter CML input  
Host PCB  
100nF  
100nF  
ZOUT=100  
Differential  
ZIN=100  
Differential  
Z0=100Differential  
Figure 12 - Recommended Differential CML Input Interface  
Receiver CML output  
Recommended CML input  
Host PCB  
100nF  
100nF  
ZTERM=100  
Differential  
Z0=100Differential  
ZL  
Figure 13 - Recommended Differential CML Output Interface  
18  
Zarlink Semiconductor Inc.  
17  
1,5 (5x)  
FRONT VIEW ( 2 : 1 )  
27  
12,6  
8,5  
NOTES:-  
1, All dimensions in mm.  
2, Tolerancing per ASME Y14.5M-1994  
Washplug Assembly  
External Heatink  
Module *  
* For details of the module, see separate data sheet and/or package drawing.  
© Zarlink Semiconductor 2002. All rights reserved.  
Projection Method  
Package code  
Drawing type  
Package Drawing,  
ML  
ISSUE  
ACN  
2
Previous package codes  
104518 rev2  
Module Layout External Heatsink  
11-AUG-04  
DATE  
Title  
APPRD. MD/MA  
104518  
NOTES:-  
1. All dimensions in mm.  
2. Tolerancing per ASME Y14.5M-1994.  
© Zarlink Semiconductor 2002. All rights reserved.  
Package code  
Drawing type  
Package drawing - module layout  
MJ  
ISSUE  
ACN  
1
Previous package codes  
JS004296R1A  
12-JUN-03  
DATE  
Title  
APPRD. TD/BE  
JS004296  
NOTES:-  
1. All dimensions in mm.  
2. Tolerancing per ASME Y14.5M-1994.  
© Zarlink Semiconductor 2002. All rights reserved.  
Package code  
Drawing type  
MJ  
ISSUE  
ACN  
1
Previous package codes  
Package Drawing,  
JS004296R1A  
Host circuit board footprint layout  
12-JUN-03  
DATE  
Title  
APPRD. TD/BE  
JS004296  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

ZL60301MLDC

Parallel Fiber Optic Transceiver (4 + 4) x 2.72 Gbps
ZARLINK

ZL60301MMDC

Parallel Fiber Optic Transceiver (4 + 4) x 2.72 Gbps
ZARLINK

ZL60301_07

Parallel Fiber Optic Transceiver (4 + 4) x 2.72 Gbps
ZARLINK

ZL60304

Parallel Fiber Optic Transceiver (4 + 4) x 3.125 Gbps
ZARLINK

ZL60304MJDA

Parallel Fiber Optic Transceiver (4 + 4) x 3.125 Gbps
ZARLINK

ZL60304MLDC

FIBER OPTIC TRANSCEIVER PARALLEL INTERFACE, 3125Mbps(Tx), 3125Mbps(Rx), BOARD MOUNT, RIBBON FIBER CONNECTOR, ROHS COMPLIANT PACKAGE
MICROSEMI

ZL60304MLDC

Parallel Fiber Optic Transceiver Parallel Fiber Optic Transceiver
ZARLINK

ZL60304MMDC

FIBER OPTIC TRANSCEIVER PARALLEL INTERFACE, 3125Mbps(Tx), 3125Mbps(Rx), BOARD MOUNT, RIBBON FIBER CONNECTOR, ROHS COMPLIANT PACKAGE
MICROSEMI

ZL60304MMDC

Parallel Fiber Optic Transceiver Parallel Fiber Optic Transceiver
ZARLINK

ZL60304_07

Parallel Fiber Optic Transceiver Parallel Fiber Optic Transceiver
ZARLINK

ZL60401

622 Mbps, 1310 nm Uncooled Fabry-Perot Laser Diode Module with Monitor
ZARLINK

ZL60401TBD

622 Mbps, 1310 nm Uncooled Fabry-Perot Laser Diode Module with Monitor
ZARLINK