1ED020I12FTXUMA1
更新时间:2024-12-03 19:14:32
品牌:INFINEON
描述:Half Bridge Based MOSFET Driver, 2A, PDSO16, GREEN, PLASTIC, SOP-16
1ED020I12FTXUMA1 概述
Half Bridge Based MOSFET Driver, 2A, PDSO16, GREEN, PLASTIC, SOP-16 MOSFET 驱动器
1ED020I12FTXUMA1 规格参数
是否Rohs认证: | 符合 | 生命周期: | Active |
包装说明: | SOP, | Reach Compliance Code: | compliant |
ECCN代码: | EAR99 | HTS代码: | 8542.39.00.01 |
Factory Lead Time: | 18 weeks | 风险等级: | 5.63 |
高边驱动器: | YES | 接口集成电路类型: | HALF BRIDGE BASED IGBT DRIVER |
JESD-30 代码: | R-PDSO-G16 | 长度: | 10.34 mm |
湿度敏感等级: | 3 | 标称负供电电压: | -8 V |
功能数量: | 1 | 端子数量: | 16 |
最高工作温度: | 105 °C | 最低工作温度: | -40 °C |
标称输出峰值电流: | 2 A | 封装主体材料: | PLASTIC/EPOXY |
封装代码: | SOP | 封装形状: | RECTANGULAR |
封装形式: | SMALL OUTLINE | 峰值回流温度(摄氏度): | NOT SPECIFIED |
座面最大高度: | 2.64 mm | 最大供电电压: | 5.5 V |
最小供电电压: | 4.5 V | 标称供电电压: | 5 V |
电源电压1-最大: | 20 V | 电源电压1-分钟: | 13 V |
电源电压1-Nom: | 15 V | 表面贴装: | YES |
温度等级: | INDUSTRIAL | 端子形式: | GULL WING |
端子节距: | 1.27 mm | 端子位置: | DUAL |
处于峰值回流温度下的最长时间: | NOT SPECIFIED | 断开时间: | 2 µs |
接通时间: | 2 µs | 宽度: | 7.52 mm |
Base Number Matches: | 1 |
1ED020I12FTXUMA1 数据手册
通过下载1ED020I12FTXUMA1数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。
PDF下载EiceDRIVER™
1ED020I12-FT
Single IGBT Driver IC
Final Data Sheet
Rev 2.0, 2012-07-31
Industrial Power Control
Edition 2012-07-31
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2012 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
EiceDRIVER™
1ED020I12-FT
Revision History
Page or Item
Subjects (major changes since previous revision)
Rev 2.0, 2012-07-31
Trademarks of Infineon Technologies AG
AURIX™, BlueMoon™, C166™, CanPAK™, CIPOS™, CIPURSE™, COMNEON™, EconoPACK™, CoolMOS™,
CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,
EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™,
MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OptiMOS™, ORIGA™, PRIMARION™,
PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™,
SINDRION™, SIPMOS™, SMARTi™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™,
TRENCHSTOP™, TriCore™, X-GOLD™, X-PMU™, XMM™, XPOSYS™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics
Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™
of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc.,
OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc.
RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc.
SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden
Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA.
UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™
of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of
Diodes Zetex Limited.
Last Trademarks Update 2010-10-26
Final Data Sheet
3
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1
2
3
3.1
3.2
Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4
4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.4
4.5
4.6
4.7
4.8
4.8.1
4.8.2
4.8.3
4.9
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Internal Protection Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
READY Status Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Active Shut-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Non-Inverting and Inverting Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Driver Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Two-Level Turn-Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Minimal On Time / Off Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
External Protection Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Desaturation Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Active Miller Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5
5.1
5.2
5.3
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Recommended Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Voltage Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Logic Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Active Miller Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Desaturation Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Active Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Two-level Turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.4.9
6
7
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8
8.1
8.2
Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Reference Layout for Thermal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Printed Circuit Board Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Final Data Sheet
4
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
List of Figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Block Diagram 1ED020I12-FT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Pin Configuration PG-DSO-16-15 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Application Example Bipolar Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Application Example Unipolar Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Propagation Delay, Rise and Fall Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Principle Switching Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Typical Switching Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
DESAT Switch-OFF Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 10 Short Switch ON Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 11 Short Switch OFF Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 12 Short Switch OFF Pulses, Ringing Surpression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 13 VCC2 Ramp Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 14 VCC2 Ramp Down and VCC2 Drop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 15 Typical TTLSET Time over CTLSET Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 16 PG-DSO-16-15 (Plastic (Green) Dual Small Outline Package) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 17 Reference Layout for Thermal Data (Copper thickness 102 μm) . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Final Data Sheet
5
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
List of Tables
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Recommended Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Voltage Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Logic Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Active Miller Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Desaturation Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Active Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Two-level Turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Final Data Sheet
6
Rev 2.0, 2012-07-31
EiceDRIVER™
Single IGBT Driver IC
1ED020I12-FT
1
Overview
Main Features
•
•
•
•
•
•
Single channel isolated IGBT Driver
For 600 V/1200 V IGBTs
2 A rail-to-rail output
Vcesat-detection
Active Miller Clamp
Two level turn off
Product Highlights
•
•
•
•
Coreless transformer isolated driver
Galvanic Insulation
Integrated protection features
Suitable for operation at high ambient temperature
Typical Application
•
•
•
Inverters for motor drives
UPS systems
Welding
Description
The 1ED020I12-FT is a galvanic isolated single channel IGBT driver in PG-DSO-16-15 package that provides an
output current capability of typically 2A.
All logic pins are 5V CMOS compatible and could be directly connected to a microcontroller.
The data transfer across galvanic isolation is realized by the integrated Coreless Transformer Technology.
The 1ED020I12-FT provides several protection features like IGBT two level turn off, desaturation protection, active
Miller clamping and active shut down.
Product Name
Gate Drive Current
Package
1ED020I12-FT
±2 A
PG-DSO-16-15
Final Data Sheet
7
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Overview
Input Side
VCC1
Output Side
VCC2_H
DESAT
CLAMP
OUT
EiceDRIVERTM
1ED020I12-FT
IN+, IN-, /RST
/FLT, RDY
TLSET
GND2
GND1
VCC1
VEE2_H
VCC2_L
CPU
DESAT
CLAMP
OUT
EiceDRIVERTM
1ED020I12-FT
IN+, IN-, /RST
/FLT, RDY
TLSET
GND2
GND1
VEE2_L
Figure 1
Typical Application
Final Data Sheet
8
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Block Diagram
2
Block Diagram
VCC1 15
IN+ 10
UVLO
UVLO
5
7
VCC2
&
K4
2V
delay
delay
CLAMP
&
TX
RX
1
VCC1
VCC2
VEE2
20MHz
&
IN-
11
VCC1
OSC LOGIC
6
4
2
OUT
RDY 12
/FLT 13
/RST 14
&
VCC2
/RDY
VEE2
VCC2
DECODER RX
TX ENCODER
500µA
1
TLSET
DESAT
VCC1
7V
&
S
K3
FLT Q
FLT2
Q
S
R
1
9V
R
VCC1
≥1
RST
delay
1
3
GND2
VEE2
1ED020I12-FT
1
9
16
GND1
1
8
GND1
VEE2
VEE2
Figure 2
Block Diagram 1ED020I12-FT
Final Data Sheet
9
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Pin Configuration and FunctionalityPin Configuration
3
Pin Configuration and Functionality
3.1
Pin Configuration
Table 1
Pin Configuration
Pin No. Name
Function
1
VEE2
DESAT
GND2
TLSET
VCC2
OUT
Negative power supply output side
Desaturation protection
Signal ground output side
Two level set
2
3
4
5
Positive power supply output side
Driver output
6
7
CLAMP
VEE2
GND1
IN+
Miller clamping
8
Negative power supply output side
Ground input side
9
10
11
12
13
14
15
16
Non inverted driver input
Inverted driver input
IN-
RDY
Ready output
/FLT
Fault output, low active
Reset input, low active
Positive power supply input side
Ground input side
/RST
VCC1
GND1
VEE2
GND1
VCC1
/RST
1
2
3
4
5
6
7
8
16
15
14
DESAT
GND2
TLSET
VCC2
OUT
/FLT 13
RDY 12
IN- 11
CLAMP
VEE2
IN+ 10
GND1
9
Figure 3
Pin Configuration PG-DSO-16-15 (top view)
Final Data Sheet
10
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Pin Configuration and FunctionalityPin Functionality
3.2
Pin Functionality
GND1
Ground connection of the input side.
IN+ Non Inverting Driver Input
IN+ control signal for the driver output if IN- is set to low. (The IGBT is on if IN+ = high and IN- = low)
A minimum pulse width is defined to make the IC robust against glitches at IN+. An internal Pull-Down-Resistor
ensures IGBT Off-State.
IN- Inverting Driver Input
IN- control signal for driver output if IN+ is set to high. (IGBT is on if IN- = low and IN+ = high)
A minimum pulse width is defined to make the IC robust against glitches at IN-. An internal Pull-Up-Resistor
ensures IGBT Off-State.
/RST Reset Input
Function 1: Enable/shutdown of the input chip. (The IGBT is off if /RST = low). A minimum pulse width is defined
to make the IC robust against glitches at /RST.
Function 2: Resets the DESAT-FAULT-state of the chip if /RST is low for a time TRST. An internal Pull-Up-Resistor
is used to ensure /FLT status output.
/FLT Fault Output
Open-drain output to report a desaturation error of the IGBT (/FLT is low if desaturation occurs)
RDY Ready Status
Open-drain output to report the correct operation of the device (RDY = high if both chips are above the UVLO level
and the internal chip transmission is faultless).
VCC1
5 V power supply of the input chip
VEE2
Negative power supply pins of the output chip. If no negative supply voltage is available, all VEE2 pins have to be
connected to GND2.
DESAT Desaturation Detection Input
Monitoring of the IGBT saturation voltage (VCE) to detect desaturation caused by short circuits. If OUT is high, VCE
is above a defined value and a certain blanking time has expired, the desaturation protection is activated and the
IGBT is switched off. The blanking time is adjustable by an external capacitor.
CLAMP Miller Clamping
Ties the gate voltage to ground after the IGBT has been switched off at a defined voltage to avoid a parasitic
switch-on of the IGBT.During turn-off, the gate voltage is monitored and the clamp output is activated when the
gate voltage goes below 2 V below VEE2.
Final Data Sheet
11
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Pin Configuration and FunctionalityPin Functionality
GND2 Reference Ground
Reference ground of the output chip.
OUT Driver Output
Output pin to drive an IGBT. The voltage is switched between VEE2 and VCC2. In normal operating mode Vout
is controlled by IN+, IN- and /RST. During error mode (UVLO, internal error or DESAT) Vout is set to VEE2
independent of the input control signals.
VCC2
Positive power supply pin of the output side.
TLSET Two Level Turn Off Adjust
Circuitry at TLSET adjust the two level turn off time with an external capacitor to GND2 and the two level voltage
with an external Zener diode to GND2, for wave forms please see Figure 9.
Final Data Sheet
12
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Functional DescriptionIntroduction
4
Functional Description
4.1
Introduction
The 1ED020I12-FT is an advanced IGBT gate driver for motor drives typical greater 10 kW. Control and protection
functions are included to make possible the design of high reliability systems.
The device consists of two galvanic separated parts. The input chip can be directly connected to a standard 5 V
DSP or microcontroller with CMOS in/output and the output chip is connected to the high voltage side.
An effective active Miller clamp function avoids the need of negative gate driving in some applications and allows
the use of a simple bootstrap supply for the high side driver.
A rail-to-rail driver output enables the user to provide easy clamping of the IGBTs gate voltage during short circuit
of the IGBT. So an increase of short circuit current due to the feedback via the Miller capacitance can be avoided.
Further, a rail-to-rail output reduces power dissipation.
The device also includes an IGBT desaturation protection with a /FAULT status output.
A two-level turn-off feature with adjustable delay protects against excessive overvoltage at turn-off in case of
overcurrent or short circuit condition. The same delay is applied at turn-on to prevent pulse width distortion.
A READY status output reports if the device is supplied and operates correctly.
+5V
+15V
VCC1
GND1
VCC2
100n
1µ
1k
DESAT
SGND
IN+
CLAMP
OUT
10R
IN+
TLSET
GND2
VEE2
IN-
10V
47p
220p
RDY
FLT
RST
RDY
/FLT
/RST
1µ
-8V
Figure 4
Application Example Bipolar Supply
4.2
Supply
The driver 1ED020I12-FT is designed to support two different supply configurations, bipolar supply and unipolar
supply.
In bipolar supply the driver is typically supplied with a positive voltage of 15V at VCC2 and a negative voltage of
-8V at VEE2, refer to Figure 4. Negative supply prevents a dynamic turn on due to the additional charge which
is generated from IGBT input capacitance times negative supply voltage. If an appropriate negative supply voltage
is used, connecting CLAMP to IGBT gate is redundant and therefore typically not necessary.
For unipolar supply configuration the driver is typically supplied with a positive voltage of 15V at VCC2. Erratically
dynamic turn on of the IGBT could be prevented with active Miller clamp function, so CLAMP output is directly
connected to IGBT gate, refer to Figure 5.
Final Data Sheet
13
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Functional DescriptionInternal Protection Features
+5V
+15V
VCC1
GND1
VCC2
1µ
100n
1k
DESAT
SGND
IN+
CLAMP
OUT
10R
IN+
TLSET
GND2
VEE2
IN-
10V
47p
220p
RDY
FLT
RST
RDY
/FLT
/RST
Figure 5
Application Example Unipolar Supply
4.3
Internal Protection Features
4.3.1
Undervoltage Lockout (UVLO)
To ensure correct switching of IGBTs the device is equipped with an undervoltage lockout for both chips, refer to
Figure 13 and Figure 14.
If the power supply voltage VVCC1 of the input chip drops below VUVLOL1 a turn-off signal is sent to the output chip
before power-down. The IGBT is switched off and the signals at IN+ and IN- are ignored as long as VVCC1 reaches
the power-up voltage VUVLOH1
.
If the power supply voltage VVCC2 of the output chip goes down below VUVLOL2 the IGBT is switched off and signals
from the input chip are ignored as long as VVCC2 reaches the power-up voltage VUVLOH2. VEE2 is not monitored,
otherwise negative supply voltage range from 0 V to -12 V would not be possible.
4.3.2
READY Status Output
The READY output at pin /RDY shows the status of three internal protection features.
•
•
•
UVLO of the input chip
UVLO of the output chip after a short delay
Internal signal transmission after a short delay
It is not necessary to reset the READY signal since its state only depends on the status of the former mentioned
protection signals.
4.3.3
Watchdog Timer
During normal operation the internal signal transmission is monitored by a watchdog timer. If the transmission fails
for a given time, the IGBT is switched off and the READY output reports an internal error.
4.3.4
Active Shut-Down
The Active Shut-Down feature ensures a safe IGBT off-state if the output chip is not connected to the power
supply, IGBT gate is clamped at OUT to VEE2.
Final Data Sheet
14
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Functional DescriptionNon-Inverting and Inverting Inputs
4.4
Non-Inverting and Inverting Inputs
There are two possible input modes to control the IGBT. At non-inverting mode IN+ controls the driver output while
IN- is set to low. At inverting mode IN- controls the driver output while IN+ is set to high, refer to Figure 7. A
minimum input pulse width is defined to filter occasional glitches.
4.5
Driver Output
The output driver section uses only MOSFETs to provide a rail-to-rail output. This feature permits that tight control
of gate voltage during on-state and short circuit can be maintained as long as the drivers supply is stable. Due to
the low internal voltage drop, switching behaviour of the IGBT is predominantly governed by the gate resistor.
Furthermore, it reduces the power to be dissipated by the driver.
4.6
Two-Level Turn-Off
The Two-Level Turn-OFF introduces a second turn off voltage level at the driver output in between ON- and OFF-
level, refer to Figure 8. This additional level ensures lower VCE overshoots at turn off by reducing gate emitter
voltage of the IGBT at short circuits or over current events. The VGE level is adjusting the current of the IGBT at
the end two level turn off interval, the required timing is depending on stray inductance and over current at
beginning of two level turn off interval.
Reference voltage level and hold up time could be adjusted at TLSET pin. The reference voltage is set by the
required Zener diode connected between pin TLSET and GND2. The holdup time is set by the capacitor connected
to the same pin TLSET and GND2.
The hold time can be adjusted during switch on using the whole capacitance connected at pin TLSET including
capacitor, parasitic wiring capacitance and junction capacitance of Zener diode. When a switch on signal is given
the IC starts to discharge CTLSET. Discharging CTLSET is stopped after 500 ns. Then Ctlset is charged with an
internal charge current ITLSET. When the voltage of the capacitor CTLSET exceeds 7 V a second current source starts
charging CTLSET up to VZDIODE. At the end of this discharge-charge cycle the gate driver is switched on.
The time between IN initiated switch-on signal (minus an internal propagation delay of approximately 200 ns) and
switch-on of the gate drive is sampled and stored digitally. It represents the two level turn off set time TTLSET during
switch-off. Due to digitalization the tpdon time can vary in time steps of 50 ns.
If switch off is initiated from IN+, IN- or /RST signal, the gate driver is switched off immediately after internal
propagation delay of approximately 200 ns and VOUT begins to decrease to the second gate voltage level.
For switch off initiated by DESAT, the gate driver switch off is delayed by desaturation sense to OUT delay,
afterwards VOUT begins to decrease to the second gate voltage level.
For reaching second gate voltage level the output voltage VOUT is sensed and compared with the Zener voltage
V
ZDIODE. When VOUT falls below the reference voltage VZDIODE of the Zener diode the switch off process is
interrupted and VOUT is adjusted to VZDIODE. OUT is switched to VEE2 after the holdup time has passed.
The Two-Level Turn-OFF function cannot be disabled.
Final Data Sheet
15
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Functional DescriptionMinimal On Time / Off Time
4.7
Minimal On Time / Off Time
The 1ED020I12-FT driver requires minimal on and off time for proper operation in the application. Minimal on time
must be greater than the adjustable two level plateau time TTLSET, shorter on times will be suppressed by
generating of the plateau time refer to Figure 10. Due to the short on time, the voltage at TLSET pin does not
reach the comparator threshold; therefore the driver does not turn on. A similar principle takes place for off time.
Minimal off time must be greater than TTLSET; shorter off times will be suppressed, which means OUT stays on
refer to Figure 11. A two level turn off plateau cannot be shortened by the driver. If the driver has entered the turn
off sequence it cannot switch off due to the fact, that the driver has already entered the shut off mode. But if the
driver input signal is turned on again, it will leave the lower level after TTLSET time by switching OUT to high, refer
to Figure 12.
4.8
External Protection Features
4.8.1
Desaturation Protection
A desaturation protection ensures the protection of the IGBT at short circuit. When the DESAT voltage goes up
and reaches 9 V, the output is driven low, refer to Figure 9. Further, the FAULT output is activated. A
programmable blanking time is used to allow enough time for IGBT saturation. Blanking time is provided by a
highly precise internal current source and an external capacitor.
4.8.2
Active Miller Clamp
In a half bridge configuration the switched off IGBT tends to dynamically turn on during turn on phase of the
opposite IGBT. A Miller clamp allows sinking the Miller current across a low impedance path in this high dV/dt
situation. Therefore in many applications, the use of a negative supply voltage can be avoided.
During turn-off, the gate voltage is monitored and the clamp output is activated when the gate voltage goes below
typical 2 V (related to VEE2). The clamp is designed for a Miller current up to 2 A.
4.8.3
Short Circuit Clamping
During short circuit the IGBTs gate voltage tends to rise because of the feedback via the Miller capacitance. An
additional protection circuit connected to OUT and CLAMP limits this voltage to a value slightly higher than the
supply voltage. A current of maximum 500 mA for 10 μs may be fed back to the supply through one of this paths.
If higher currents are expected or a tighter clamping is desired external Schottky diodes may be added.
4.9
RESET
The reset input has two functions.
Firstly, /RST is in charge of setting back the FAULT output. If /RST is low longer than a given time, /FLT will be
cleared at the rising edge of /RST, refer to Figure 9; otherwise, it will remain unchanged. Moreover, it works as
enable/shutdown of the input logic, refer to Figure 7.
Final Data Sheet
16
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Electrical ParametersAbsolute Maximum Ratings
5
Electrical Parameters
5.1
Absolute Maximum Ratings
Note:Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction of
the integrated circuit. Unless otherwise noted all parameters refer to GND1.
Table 2
Absolute Maximum Ratings
Parameter
Symbol
Values
Max.
Unit
Note /
Test Condition
Min.
-0.3
-12
–
1)
Positive power supply output side
VVCC2
VVEE2
Vmax2
20
0.3
28
V
V
V
1)
Negative power supply output side
Maximum power supply voltage output side
–
(VVCC2 - VVEE2
)
Gate driver output
VOUT
IOUT
IOUT
V
–
–
VEE2-0.3 Vmax2+0.3 V
–
Gate driver high output maximum current
2.4
2.4
A
A
t = 2 µs
t = 2 µs
Gate & Clamp driver low output maximum
current
Maximum short circuit clamping time
tCLP
–
10
μs
ICLAMP/OUT =
500 mA
Positive power supply input side
VVCC1
-0.3
-0.3
6.5
6.5
V
V
–
–
Logic input voltages
(IN+,IN-,RST)
VLogicIN
Opendrain Logic output voltage (FLT)
Opendrain Logic output voltage (RDY)
Opendrain Logic output current (FLT)
Opendrain Logic output current (RDY)
Pin DESAT voltage
VFLT#
VRDY
IFLT#
-0.3
-0.3
–
6.5
6.5
10
V
–
–
–
V
mA
mA
V
IRDY
–
10
–
1)
VDESAT
-0.3
VVCC2
+0.3
3)
Pin CLAMP voltage
VCLAMP
-0.3
VVCC2
V
+0.32)
Input to output isolation voltage (GND2)
Junction temperature
VISO
-1200
1200
150
150
100
700
160
125
1.5
V
TJ
-40
-55
–
°C
–
–
Storage temperature
TS
°C
Power dissipation, per input part
Power dissipation, per output part
Thermal resistance (Input part)
Thermal resistance (Output chip active)
ESD Capability
PD, IN
PD, OUT
RTHJA,IN
RTHJA,OUT
VESD
mW
mW
K/W
K/W
kV
4) @TA = 25°C
4) @TA = 25°C
4) @TA = 25°C
4) @TA = 25°C
–
–
–
–
Human Body
Model5)
1) With respect to GND2.
Final Data Sheet
17
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Electrical ParametersOperating Parameters
2) May be exceeded during short circuit clamping.
3) With respect to VEE2.
4) Output IC power dissipation is derated linearly at 10 mW/°C above 62°C. Input IC power dissipation does not require
derating. See Figure 17 for reference layouts for these thermal data. Thermal performance may change significantly with
layout and heat dissipation of components in close proximity.
5) According to EIA/JESD22-A114-B (discharging a 100 pF capacitor through a 1.5 kΩ series resistor).
5.2
Operating Parameters
Note:Within the operating range the IC operates as described in the functional description. Unless otherwise
noted all parameters refer to GND1.
Table 3
Operating Parameters
Parameter
Symbol
Values
Max.
Unit
Note /
Test Condition
Min.
13
1)
Positive power supply output side
VVCC2
VVEE2
Vmax2
20
0
V
V
V
1)
Negative power supply output side
-12
–
Maximum power supply voltage output side
28
–
(VVCC2 - VVEE2
)
Positive power supply input side
VVCC1
4.5
5.5
5.5
V
V
–
–
Logic input voltages
(IN+,IN-,RST)
VLogicIN
-0.3
2)
Pin CLAMP voltage
Pin DESAT voltage
Pin TLSET voltage
Ambient temperature
VCLAMP
VDESAT
VTLSET
TA
V
VEE2-0.3 VVCC2
V
–
1)
-0.3
-0.3
-40
–
VVCC2
VVCC2
105
V
1)
V
°C
kV/μs
–
Common mode transient immunity3)
|DVISO/dt|
50
@ 500 V
1) With respect to GND2.
2) May be exceeded during short circuit clamping.
3) The parameter is not subject to production test - verified by design/characterization
5.3
Recommended Operating Parameters
Note:Unless otherwise noted all parameters refer to GND1.
Table 4
Recommended Operating Parameters
Symbol
Parameter
Value
15
Unit
V
Note / Test Condition
1)
Positive power supply output side
Negative power supply output side
VVCC2
1)
VVEE2
VVCC1
-8
V
Positive power supply input side
1) With respect to GND2.
5
V
–
Final Data Sheet
18
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Electrical ParametersElectrical Characteristics
5.4
Electrical Characteristics
Note:The electrical characteristics include the spread of values in supply voltages, load and junction temperatures
given below. Typical values represent the median values at TA = 25°C. Unless otherwise noted all voltages
are given with respect to their respective GND (GND1 for pins 9 to 16, GND2 for pins 1 to 8).
5.4.1
Voltage Supply
Table 5
Voltage Supply
Parameter
Symbol
Values
Typ.
4.1
Unit
Note / Test Condition
Min.
–
Max.
4.3
–
UVLO Threshold Input Chip
VUVLOH1
VUVLOL1
VHYS1
V
V
V
–
–
–
3.5
0.15
3.8
UVLO Hysteresis Input Chip
–
–
(VUVLOH1 - VUVLOL1
)
UVLO Threshold Output Chip VUVLOH2
VUVLOL2
–
12.0
11.0
0.9
12.6
–
V
V
V
–
–
–
10.4
0.7
UVLO Hysteresis Output Chip VHYS2
–
(VUVLOH1 - VUVLOL1
)
Quiescent Current Input Chip IQ1
–
7
9
mA
VVCC1 =5 V
IN+ = High,
IN- = Low
=>OUT = High,
RDY = High,
/FLT = High
Quiescent Current Output Chip IQ2
–
4.5
6
mA
V
V
VCC2 =15 V
VEE2 =-8 V
IN+ = High,
IN- = Low
=>OUT = High,
RDY = High,
/FLT = High
Final Data Sheet
19
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Electrical ParametersElectrical Characteristics
5.4.2
Logic Input and Output
Table 6
Logic Input and Output
Symbol
Parameter
Values
Typ.
–
Unit
Note /
Test Condition
Min.
Max.
IN+,IN-, RST Low Input Voltage VIN+L
VIN-L
VRSTL#
IN+,IN-, RST High Input Voltage VIN+H
VIN-H
,
,
–
1.5
V
–
,
,
3.5
–
–
–
V
–
VRSTH#
IN-, RST Input Current
IIN-, IRST#
-400
–
-100
μA
V
V
IN- = GND1
RST# = GND1
IN+ Input Current
IIN+
,
100
400
–
μA
μA
V
IN+ = VCC1
RDY,FLT Pull Up Current
I
PRDY, IPFLT# -400
-100
V
V
RDY = GND1
FLT# = GND1
Input Pulse Suppression IN+,
IN-
TMININ+
TMININ-
,
30
40
40
–
–
–
–
ns
ns
ns
–
–
–
Input Pulse Suppression RST
for ENABLE/SHUTDOWN
TMINRST
30
Pulse Width RST
for Reseting FLT
TRST
800
FLT Low Voltage
RDY Low Voltage
VFLTL
–
–
–
–
300
300
mV
mV
I
I
SINK(FLT#) = 5 mA
SINK(RDY) = 5 mA
VRDYL
Final Data Sheet
20
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Electrical ParametersElectrical Characteristics
5.4.3
Gate Driver
Table 7
Gate Driver
Parameter
Symbol
Values
Typ.
Unit
Note / Test Condition
Min.
Max.
High Level Output
Voltage
VOUTH1
VOUTH2
VOUTH3
VOUTH4
V
V
V
–
VCC2-1.2
V
V
V
V
VCC2-0.8
VCC2-2.0
VCC2-5
–
–
–
–
–
V
V
V
V
A
I
I
I
I
OUTH = -20 mA
OUTH = -200 mA
OUTH = -1 A
VCC2-2.5
VCC2-9
VCC2-10
OUTH = -2 A
High Level Output Peak IOUTH
Current
-1.5
-2.0
IN+ = High, IN- = Low;
OUT = High
Low Level Output
Voltage
VOUTL1
VOUTL2
VOUTL3
VOUTL4
–
V
V
V
V
VEE2+0.04
V
V
V
–
VEE2+0.09
V
V
V
V
A
I
I
I
I
OUTL = 20 mA
OUTL = 200 mA
OUTL = 1 A
–
VEE2+0.3
VEE2+2.1
VEE2+7
VEE2+0.85
VEE2+5.0
–
–
OUTL = 2 A
Low Level Output Peak IOUTL
Current
1.5
2.0
–
IN+ = Low, IN- = Low;
OUT = Low,
V
V
VCC2 =15 V,
VEE2 =-8 V
5.4.4
Active Miller Clamp
Table 8
Active Miller Clamp
Symbol
Parameter
Values
Typ.
Unit
Note / Test Condition
Min.
Max.
Low Level Clamp
Voltage
VCLAMPL1
VCLAMPL2
VCLAMPL3
ICLAMPL
–
–
–
2
V
V
V
–
VEE2+0.03
V
V
V
–
VEE2 +0.08 V
I
I
I
OUTL = 20 mA
OUTL = 200 mA
OUTL = 1 A
VEE2+0.3
VEE2+1.9
VEE2 +0.8
VEE2 +4.8
V
V
A
1)
Low Level Clamp
Current
Clamp Threshold
Voltage
VCLAMP
1.6
2.1
2.4
V
Related to VEE2
1) The parameter is not subject to production test - verified by design/characterization
Final Data Sheet
21
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Electrical ParametersElectrical Characteristics
5.4.5
Short Circuit Clamping
Table 9
Short Circuit Clamping
Symbol
Parameter
Values
Typ.
Unit
Note / Test Condition
Min.
Max.
Clamping voltage (OUT)
(VOUT-VVCC2
VCLPout
–
0.8
1.3
0.7
1.3
V
IN+=High, IN- = Low,
OUT = High
)
I
OUT = 500 mA
(pulse test,
CLPmax = 10 μs)
t
Clamping voltage
(CLAMP) (VVCLAMP-VVCC2
VCLPclamp
–
–
–
V
V
IN+ = High, IN- = Low,
OUT = High
)
I
CLAMP = 500 mA
(pulse test,
CLPmax = 10 μs)
t
Clamping voltage (CLAMP) VCLPclamp
1.1
IN+ = High, IN- = Low,
OUT = High
I
CLAMP = 20 mA
5.4.6
Dynamic Characteristics
Dynamic characteristics are measured with VVCC1 = 5 V VCC2 = 15 V and VVEE2 = -8 V.
Table 10
Dynamic Characteristics
Symbol
Parameter
Values
Typ.
Unit
Note / Test Condition
Min.
Max.
IN+, IN- input to output
propagation delay ON and
OFF
TPDON
1.5
1.75
-10
–
2.0
μs
C
C
TLSET = 0, TA = 25°C
TLSET = 0, TA = 25°C
IN+, IN- input to output
propagation delay distortion
TPDISTO
TPDONt
TPDOFFt
TPDISTOt
-40
–
20
ns
ns
ns
ns
(TPDOFF-TPDON
)
IN+, IN- input to output
propagation delay ON
variation due to temp
200
230
25
1)CTLSET = 0
1)CTLSET = 0
1)CTLSET =0
IN+, IN- input to output
propagation delay OFF
variation due to temp
–
–
IN+, IN- input to output
propagation delay distortion
variation due to temp
–
–
(TPDOFF-TPDON
)
Rise Time
TRISE
10
30
60
ns
ns
C
LOAD = 1 nF,
VL 10%, VH 90%
LOAD = 34 nF
VL 10%, VH 90%
150
400
800
C
Final Data Sheet
22
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Electrical ParametersElectrical Characteristics
Table 10
Dynamic Characteristics (cont’d)
Parameter
Symbol
Min.
Values
Typ.
Unit
Note / Test Condition
Max.
Fall Time
TFALL
10
20
40
ns
ns
C
LOAD = 1 nF
VL 10%, VH 90%
CLOAD = 34 nF
100
250
500
VL 10%, VH 90%
1) The parameter is not subject to production test - verified by design/characterization
5.4.7
Desaturation Protection
Table 11
Desaturation Protection
Symbol
Parameter
Values
Typ.
Unit
Note / Test Condition
Min.
Max.
Blanking Capacitor Charge IDESATC
Current
450
500
550
μA
V
V
V
VCC2 =15 V,
VEE2 =-8 V
DESAT = 2 V
Blanking Capacitor
Discharge Current
IDESATD
11
15
–
mA
V
V
V
VCC2 =15 V,
VEE2 =-8 V
DESAT =6 V
Desaturation Reference
Level
VDESAT
8.5
–
9
9.5
V
V
VCC2 =15 V
Desaturation Sense to OUT TDESATOUT
TLTO
250
–
320
2.25
110
ns
μs
mV
V
OUT =90%
C
LOAD = 1 nF
FLT #=10%;
IFLT #=5 mA
Desaturation Sense to FLT TDESATFLT
Low Delay
–
V
Desaturation Low Voltage
VDESATL
40
70
IN+=Low, IN-=Low,
OUT=Low
5.4.8
Active Shut Down
Table 12
Active Shut Down
Parameter
Symbol
Values
Typ.
Unit
Note /
Test Condition
Min.
Max.
1)
Active Shut Down Voltage
1) With reference to VEE2
VACTSD
–
–
2.0
V
I
V
OUT = -200 mA,
CC2 open
Final Data Sheet
23
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Electrical ParametersElectrical Characteristics
5.4.9
Two-level Turn-off
Table 13
Two-level Turn-off
Parameter
Symbol
Values
Typ.
Unit
Note /
Test Condition
Min.
Max.
External reference voltage range VZDIODE
7.5
–
VCC2-0.5
V
–
(Zener-Diode)
Reference Voltage for setting
two-level delay time
VTLSET
ITLSET
6.6
7
7.3
550
V
–
Current for setting two-level
delay time and external
420
500
μA
V
TLSET = 10 V
reference voltage (Zener-Diode)
External Capacitance Range
CTLSET
0
–
220
pF
–
Final Data Sheet
24
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Timing DiagramsElectrical Characteristics
6
Timing Diagrams
All diagrams related to the Two-level switch-off feature
50%
IN+
90%
10%
50%
OUT
TRISE
TFALL
TPDON
TPDOFF
Figure 6
Propagation Delay, Rise and Fall Time
IN+
IN-
/RST
OUT
Figure 7
Principle Switching Behavior
IN+
VZDIODE
VTLSET , typ. 7V
TLSET
TADJ1
TTLSET
TPD
VZDIODE
TPD
TTLFALL
OUT
TPDONADJ
TTLSET
Figure 8
Typical Switching Behavior
Final Data Sheet
25
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Timing DiagramsElectrical Characteristics
IN+
TPDON
TTLSET
TTLSET
OUT
TDESATOUT
TDESATOUT
VDESAT typ. 9V
DESAT
/FLT
TDESATFLT
TDESATFLT
/RST
>TRSTmin
Figure 9
DESAT Switch-OFF Behavior
IN+
TLSET
OUT
TPD
TPD
TTLSET
TTLSET
TTLSET
TPDON
TPDON
TPDOFF
Figure 10 Short Switch ON Pulses
Final Data Sheet
26
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Timing DiagramsElectrical Characteristics
IN+
TTLSET
TTLSET
TTLSET
TLSET
TPD
TPD
TPDON
TPDOFF
TPDON
TPDOFF
TPDOFF
OUT
Figure 11 Short Switch OFF Pulses
IN+
TLSET
TPD
TTLSET
TTLSET
TTLSET
TTLSET
TPD
TPDON
TPDOFF
TPDOFF
TPDOFF
TPDON
OUT
forced turn off after three
consecutive on -cycles
Figure 12 Short Switch OFF Pulses, Ringing Surpression
Final Data Sheet
27
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Timing DiagramsElectrical Characteristics
VUVLOH2
VCC2
IN+
TPDON
TPDOFF
OUT
IDESAT
RDY
Figure 13 VCC2 Ramp Up
VUVLOH2
VUVLOL2
VCC2
TPDD
TPDD
TPDD
IN+
TTLSET
TLSET
Vz
TPDON
OUT
RDY
/FLT
Figure 14 VCC2 Ramp Down and VCC2 Drop
Final Data Sheet
28
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Timing DiagramsElectrical Characteristics
5
4
3
2
1
0
0
50
100
150
200
CTLSET [pF]
Figure 15 Typical TTLSET Time over CTLSET Capacitance
Final Data Sheet
29
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Package OutlinesElectrical Characteristics
7
Package Outlines
DOCUMENT NO.
Z8B00166131
0
SCALE
1.0
0
1.0
MILLIMETERS
INCHES
DIM
MIN
-
MAX
2.64
0.29
0.48
0.32
10.47
10.41
7.59
MIN
-
MAX
0.104
0.011
0.019
0.013
0.412
0.410
0.299
2mm
A
A1
b
c
D
E
E1
e
N
L
h
ꢀ
0.12
0.35
0.23
10.21
10.16
7.42
1.27 BSC
16
0.005
0.014
0.009
0.402
0.400
0.292
EUROPEAN PROJECTION
0.050 BSC
16
ISSUE DATE
31.07.2012
0.61
0.25
0°
1.02
0.41
8°
0.024
0.010
0°
0.040
0.016
8°
REVISION
02
Figure 16 PG-DSO-16-15 (Plastic (Green) Dual Small Outline Package)
Final Data Sheet 30
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Application NotesReference Layout for Thermal Data
8
Application Notes
8.1
Reference Layout for Thermal Data
The PCB layout shown in Figure 17 represents the reference layout used for the thermal characterisation. Pins 9
and 16 (GND1) and pins 1 and 8 (VEE2) require ground plane connections for achiving maximum power
dissipation. The 1ED020I12-FT is conceived to dissipate most of the heat generated through this pins.
Top Layer
Bottom Layer
Figure 17 Reference Layout for Thermal Data (Copper thickness 102 μm)
8.2
Printed Circuit Board Guidelines
Following factors should be taken into account for an optimum PCB layout.
•
•
Sufficient spacing should be kept between high voltage isolated side and low voltage side circuits.
The same minimum distance between two adjacent high-side isolated parts of the PCB should be maintained
to increase the effective isolation and reduce parasitic coupling.
•
•
In order to ensure low supply ripple and clean switching signals, bypass capacitor trace lengths should be kept
as short as possible.
Lowest trace length for VEE2 to GND2 decoupling could be achieved with capacitor closed to pins 1 and 3.
Final Data Sheet
31
Rev 2.0, 2012-07-31
w w w . i n f i n e o n . c o m
Published by Infineon Technologies AG
1ED020I12FTXUMA1 相关器件
型号 | 制造商 | 描述 | 价格 | 文档 |
1ED020I12FXUMA1 | INFINEON | Half Bridge Based MOSFET Driver, 2A, PDSO16, GREEN, PLASTIC, SOP-16 | 获取价格 | |
1ED1 | TE | High Performance Compact RFI Power Line Filters with IEC Connectors | 获取价格 | |
1ED1 | MACOM | Medium Performance Compact EMI Power Inlet Filter | 获取价格 | |
1ED1_11 | MACOM | Medium Performance Compact EMI Power Inlet Filter | 获取价格 | |
1ED2 | MACOM | Medium Performance Compact EMI Power Inlet Filter | 获取价格 | |
1ED3120MC12H | INFINEON | EiceDRIVER⢠1ED31xxMC12H Compact | 获取价格 | |
1ED3120MU12H | INFINEON | EiceDRIVER⢠1ED31xxMU12H Compact | 获取价格 | |
1ED3121MC12H | INFINEON | EiceDRIVER⢠1ED31xxMC12H Compact | 获取价格 | |
1ED3121MU12H | INFINEON | EiceDRIVER⢠1ED31xxMU12H Compact | 获取价格 | |
1ED3122MC12H | INFINEON | EiceDRIVER⢠1ED31xxMC12H Compact | 获取价格 |
1ED020I12FTXUMA1 相关文章
- 2024-12-05
- 12
- 2024-12-05
- 10
- 2024-12-05
- 12
- 2024-12-05
- 11