TDA5144ATD-T
更新时间:2024-12-03 13:10:56
品牌:NXP
描述:IC BRUSHLESS DC MOTOR CONTROLLER, 2.3 A, PDSO20, Motion Control Electronics
TDA5144ATD-T 概述
IC BRUSHLESS DC MOTOR CONTROLLER, 2.3 A, PDSO20, Motion Control Electronics 运动控制电子器件
TDA5144ATD-T 规格参数
生命周期: | Obsolete | 包装说明: | SOP, |
Reach Compliance Code: | unknown | ECCN代码: | EAR99 |
HTS代码: | 8542.39.00.01 | 风险等级: | 5.84 |
模拟集成电路 - 其他类型: | BRUSHLESS DC MOTOR CONTROLLER | JESD-30 代码: | R-PDSO-G20 |
长度: | 12.8 mm | 功能数量: | 1 |
端子数量: | 20 | 最大输出电流: | 2.3 A |
封装主体材料: | PLASTIC/EPOXY | 封装代码: | SOP |
封装形状: | RECTANGULAR | 封装形式: | SMALL OUTLINE |
认证状态: | Not Qualified | 座面最大高度: | 2.65 mm |
最大供电电流 (Isup): | 6.8 mA | 最大供电电压 (Vsup): | 18 V |
最小供电电压 (Vsup): | 4 V | 表面贴装: | YES |
技术: | BIPOLAR | 端子形式: | GULL WING |
端子节距: | 1.27 mm | 端子位置: | DUAL |
宽度: | 7.5 mm | Base Number Matches: | 1 |
TDA5144ATD-T 数据手册
通过下载TDA5144ATD-T数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。
PDF下载INTEGRATED CIRCUITS
DATA SHEET
TDA5144
Brushless DC motor drive circuit
June 1994
Product specification
Supersedes data of March 1992
File under Integrated Circuits, IC11
Philips Semiconductors
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5144
FEATURES
APPLICATIONS
• Full-wave commutation (using push/pull drivers at the
output stages) without position sensors
• General purpose spindle driver (e.g. for hard disk)
• Laser beam printer.
• Built-in start-up circuitry
• Three push-pull outputs:
– output current 2.0 A (typ.)
– low saturation voltage
– built-in current limiter
GENERAL DESCRIPTION
The TDA5144 is a bipolar integrated circuit used to drive
3-phase brushless DC motors in full-wave mode. The
device is sensorless (saving of 3 hall-sensors) using the
back-EMF sensing technique to sense the rotor position.
A special circuit is built-in to reduce the EMI (soft switching
output stages). It is ideally suited as a drive circuit for hard
disk drive spindle motor requiring powerful output stages
(current limit of 2.0 A). It can also be used in e.g. laser
beam printer and other applications.
– soft-switching outputs for low Electromagnetic
Interference (EMI)
• Thermal protection
• Flyback diodes
• Tacho output without extra sensor
• Transconductance amplifier for an external control
transistor.
QUICK REFERENCE DATA
Measured over full voltage and temperature range.
SYMBOL
VP
PARAMETER
supply voltage
CONDITIONS
MIN.
TYP.
MAX.
18
UNIT
note 1
note 2
4
−
−
V
VVMOT
input voltage to the output
driver stages
1.7
16
V
VDO
ILIM
drop-out output voltage
current limiting
IO = 100 mA
−
0.90
2.0
1.05
2.4
V
A
VVMOT = 10 V; RO = 1.2 Ω
1.8
Notes
1. An unstabilized supply can be used.
2. VVMOT = VP; +AMP IN = −AMP IN = 0 V; all outputs IO = 0 mA.
ORDERING INFORMATION
PACKAGE
PIN POSITION
TYPE NUMBER
PINS
MATERIAL
CODE
TDA5144AT
TDA5144T
20
28
SOL
SOL
plastic
plastic
SOT163-1
SOT136-1
June 1994
2
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5144
BLOCK DIAGRAM
Fig.1 Block diagram (SOT163-1; SO20L).
June 1994
3
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5144
PINNING
PIN
SYMBOL
DESCRIPTION
SO20
SO28
MOT1
TEST
n.c.
1
2
1 and 2 driver output 1
3
4
test input/output
not connected
3
MOT2
n.c.
4
5 and 6 driver output 2
not connected
8 and 9 input voltage for the output driver stages
−
7
VMOT
GND3
FG
5
6
10
11
12
13
14
15
16
17
18
19
20
ground supply; must be connected
7
frequency generator: output of the rotation speed (open collector digital output)
ground supply return for control circuits
GND2
VP
8
9
supply voltage
CAP-CD
CAP-DC
CAP-ST
CAP-TI
+AMP IN
−AMP IN
AMP OUT
n.c.
10
11
12
13
14
15
16
−
external capacitor connection for adaptive communication delay timing
external capacitor connection for adaptive communication delay timing copy
external capacitor connection for start-up oscillator
external capacitor connection for timing
non-inverting input of the transconductance amplifier
inverting input of the transconductance amplifier
transconductance amplifier output (open collector)
21 and 22 not connected
23 and 24 driver output 3
MOT3
n.c.
17
18
19
20
25
26
not connected
MOT0
GND1
input from the star point of the motor coils
27 and 28 ground (0 V) motor supply return for output stages
June 1994
4
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5144
Fig.2 Pin configuration (SOT163-1; SO20L).
Fig.3 Pin configuration (SOT136-1; SO28L).
• Three phase full-wave drive.
• High output current (2.0 A).
FUNCTIONAL DESCRIPTION
The TDA5144 offers a sensorless three phase motor drive
function. It is unique in its combination of sensorless motor
drive and full-wave drive. The TDA5144 offers protected
outputs capable of handling high currents and can be used
with star or delta connected motors. It can easily be
adapted for different motors and applications. The
TDA5144 offers the following features:
• Outputs protected by current limiting and thermal
protection of each output transistor.
• Low current consumption by adaptive base-drive.
• Soft-switching pulse output for low radiation.
• Accurate frequency generator (FG) by using the
motor EMF.
• Sensorless commutation by using the motor EMF.
• Built-in start-up circuit.
• Uncommitted operational transconductance amplifier
(OTA), with a high output current, for use as a control
amplifier.
• Optimum commutation, independent of motor type or
motor loading.
• Built-in flyback diodes.
June 1994
5
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5144
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
VP
PARAMETER
supply voltage
CONDITIONS
MIN.
MAX.
UNIT
−
18
V
V
VI
input voltage; all pins except
VMOT
VI < 18 V
−0.3
VP + 0.5
VVMOT
VO
VMOT input voltage
output voltage
−0.5
17
V
AMP OUT and FG
GND
−1
VP
V
V
V
MOT0, MOT1, MOT2 and MOT3
VVMOT + VDHF
VI
input voltage CAP-ST, CAP-TI,
CAP-CD and CAP-DC
−
2.5
Tstg
Tamb
Ptot
storage temperature
−55
0
+150
+70
−
°C
°C
W
V
operating ambient temperature
total power dissipation
electrostatic handling
see Figs 4 and 5
−
Ves
see Chapter “Handling”
−
500
MBD536
MBD557
3
2
3
P
P
tot
tot
(W)
(W)
2
1.62
1.38
1
1
0
0
50
0
50
100
150
200
50
0
50
100
150
200
70
o
o
T
( C)
T
( C)
amb
amb
Fig.4 Power derating curve (SOT163-1; SO20L).
Fig.5 Power derating curve (SOT136-1; SO28L).
HANDLING
Every pin withstands the ESD test according to “MIL-STD-883C class 2”. Method 3015 (HBM 1500 Ω, 100 pF) 3 pulses +
and 3 pulses − on each pin referenced to ground.
June 1994
6
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5144
CHARACTERISTICS
VP = 14.5 V; Tamb = 25 °C; unless otherwise specified.
SYMBOL
Supply
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VP
supply voltage
note 1
note 2
4
−
18
V
IP
supply current
−
6.3
7.2
16
mA
V
VVMOT
input voltage to the output driver
stages
see Fig.1
1.7
−
Thermal protection
TSD
local temperature at temperature
130
140
150
°C
sensor causing shut-down
∆T
reduction in temperature before
switch-on
after shut-down
−
TSD − 30 −
K
MOT0; centre tap
VI
input voltage
−0.5
−
VVMOT
0
V
II
input bias current
0.5 V < VI < VVMOT − 1.5 V −10
−
µA
mV
mV
VCSW
∆VCSW
comparator switching level
note 3
±20
−3
±25
0
±30
+3
variation in comparator switching
levels
Vhys
comparator input hysteresis
−
75
−
µV
MOT1, MOT2 and MOT3
VDO
drop-out output voltage
IO = 100 mA
IO = 1000 mA
IO = 100 mA
−
−
−
0.9
1.6
−
1.05
1.85
180
V
V
∆VOL
∆VOH
variation in saturation voltage
between lower transistors
mV
variation in saturation voltage
between upper transistors
IO = −100 mA
−
−
180
mV
ILIM
tr
current limiting
VVMOT = 10 V; RO = 1.2 Ω 1.8
2.0
10
15
−
2.5
15
A
rise time switching output
fall time switching output
diode forward voltage (diode DH)
VVMOT = 15 V; see Fig.6
VVMOT = 15 V; see Fig.6
5
µs
µs
V
tf
10
−
20
VDHF
IO = −500 mA;
1.5
notes 4 and 5; see Fig.1
VDLF
IDM
diode forward voltage (diode DL)
IO = 500 mA;
notes 4 and 5; see Fig.1
−1.5
−
−
−
V
A
peak diode current
note 5
−
2.5
+AMP IN and −AMP IN
VI
input voltage
−0.3
−
−
VP − 1.7
±VP
V
V
differential mode voltage without
‘latch-up’
−
Ib
input bias current
input capacitance
input offset voltage
−
−
−
−
4
−
650
−
nA
pF
CI
Voffset
10
mV
June 1994
7
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5144
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
AMP OUT (open collector)
Isink
Vsat
VO
output sink current
saturation voltage
output voltage
slew rate
40
−
−
mA
II = 40 mA
−
1.5
−
2.1
+18
−
V
−0.5
−
V
SR
Gtr
RL = 330 Ω; CL = 50 pF
60
−
mA/µs
transfer gain
0.3
−
S
FG (open collector)
VOL
LOW level output voltage
IO = 1.6 mA
−
−
−
0.4
V
V
VOH(max)
maximum HIGH level output
voltage
VP
−
tTHL
HIGH-to-LOW transition time
CL = 50 pF; RL = 10 kΩ
−
−
0.5
−
−
µs
ratio of FG frequency and
commutation frequency
1 : 2
δ
duty factor
−
50
−
%
CAP-ST
Isink
output sink current
1.5
−2.5
−
2.0
2.5
−1.5
−
µA
µA
V
Isource
VSWL
VSWH
output source current
−2.0
0.20
2.20
LOW level switching voltage
HIGH level switching voltage
−
−
V
CAP-TI
Isink
output sink current
−
−
−
−
−
−
28
−
−
−
−
−
−
µA
µA
µA
mV
V
Isource
output source current
0.2 V < VCAP-TI < 0.3 V
0.3 V < VCAP-TI < 2.2 V
−57
−5
VSWL
VSWM
VSWH
LOW level switching voltage
MIDDLE level switching voltage
HIGH level switching voltage
50
0.30
2.20
V
CAP-CD
Isink
output sink current
10.6
−5.3
1.85
800
2.3
16.2
−8.1
2.05
875
2.4
22
µA
µA
Isource
output source current
−11
2.25
900
2.55
Isink/Isource ratio of sink to source current
VIL
VIH
LOW level input voltage
HIGH level input voltage
mV
V
CAP-DC
Isink
output sink current
10.1
−20.9
0.9
15.5
−15.5
1.025
875
20.9
−10.1
1.15
900
µA
µA
Isource
output source current
Isink/Isource ratio of sink to source current
VIL
VIH
LOW level input voltage
HIGH level input voltage
800
2.3
mV
V
2.4
2.55
June 1994
8
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5144
Notes to the characteristics
1. An unstabilized supply can be used.
2. VVMOT = VP, all other inputs at 0 V; all outputs at VP;
IO = 0 mA.
3. Switching levels with respect to MOT1, MOT2 and
MOT3.
4. Drivers are in the high-impedance OFF-state.
5. The outputs are short-circuit protected by limiting the
current and the IC temperature.
Fig.6 Output transition time measurement.
APPLICATION INFORMATION
(1) Value selected for 3 Hz start-up oscillator frequency.
Fig.7 Application diagram without use of the operational transconductance amplifier (OTA).
June 1994
9
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5144
A timing function is incorporated into the device for internal
timing and for timing of the reverse rotation detection.
Introduction (see Fig.8)
Full-wave driving of a three phase motor requires three
push-pull output stages. In each of the six possible states
two outputs are active, one sourcing (H) and one sinking
(L). The third output presents a high impedance (Z) to the
motor, which enables measurement of the motor
back-EMF in the corresponding motor coil by the EMF
comparator at each output. The commutation logic is
responsible for control of the output transistors and
selection of the correct EMF comparator. In Table 1 the
sequence of the six possible states of the outputs has
been depicted.
The TDA5144 also contains an uncommitted
transconductance amplifier (OTA) that can be used as a
control amplifier. The output is capable of directly driving
an external power transistor.
The TDA5144 is designed for systems with low current
consumption: use of I2L logic, adaptive base drive for the
output transistors (patented).
Adjustments
The system has been designed in such a way that the
tolerances of the application components are not critical.
However, the approximate values of the following
components must still be determined:
Table 1 Output states.
STATE
MOT1(1)
MOT2(1)
MOT3(1)
1
2
3
4
5
6
Z
H
H
Z
L
L
L
H
Z
L
• The start capacitor; this determines the frequency of the
start oscillator.
Z
H
H
Z
• The two capacitors in the adaptive commutation delay
circuit; these are important in determining the optimum
moment for commutation, depending on the type and
loading of the motor.
L
Z
H
L
• The timing capacitor; this provides the system with its
timing signals.
Note
1. H = HIGH state;
L = LOW state;
THE START CAPACITOR (CAP-ST)
Z = high-impedance OFF-state.
This capacitor determines the frequency of the start
oscillator. It is charged and discharged, with a current of
2 µA, from 0.05 to 2.2 V and back to 0.05 V. The time
taken to complete one cycle is given by:
The zero-crossing in the motor EMF (detected by the
comparator selected by the commutation logic) is used to
calculate the correct moment for the next commutation,
that is, the change to the next output state. The delay is
calculated (depending on the motor loading) by the
adaptive commutation delay block.
tstart = (2.15 × C) s (with C in µF)
The start oscillator is reset by a commutation pulse and so
is only active when the system is in the start-up mode. A
pulse from the start oscillator will cause the outputs to
change to the next state (torque in the motor). If the
movement of the motor generates enough EMF the
TDA5144 will run the motor. If the amount of EMF
generated is insufficient, then the motor will move one step
only and will oscillate in its new position. The amplitude of
the oscillation must decrease sufficiently before the arrival
of the next start pulse, to prevent the pulse arriving during
the wrong phase of the oscillation.
Because of high inductive loading the output stages
contain flyback diodes. The output stages are also
protected by a current limiting circuit and by thermal
protection of the six output transistors.
The detected zero-crossings are used to provide speed
information. The information has been made available on
the FG output pin. This is an open collector output and
provides an output signal with a frequency that is half the
commutation frequency.
The system will only function when the EMF voltage from
the motor is present. Therefore, a start oscillator is
provided that will generate commutation pulses when no
zero-crossings in the motor voltage are available.
June 1994
10
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5144
The oscillation of the motor is given by:
1
fosc
=
----------------------------------
Kt × I × p
2π ----------------------
J
where:
Kt = torque constant (N.m/A)
I = current (A)
p = number of magnetic pole-pairs
J = inertia J (kg.m2)
Example: J = 72 × 10−6 kg.m2, K = 25 × 10−3 N.m/A, p = 6
and I = 0.5 A; this gives fosc = 5 Hz. If the damping is high
then a start frequency of 2 Hz can be chosen or
t = 500 ms, thus C = 0.5/2 = 0.25 µF (choose 220 nF).
THE ADAPTIVE COMMUTATION DELAY (CAP-CD AND
CAP-DC)
In this circuit capacitor CAP-CD is charged during one
commutation period, with an interruption of the charging
current during the diode pulse. During the next
commutation period this capacitor (CAP-CD) is discharged
at twice the charging current. The charging current is
8.1 µA and the discharging current 16.2 µA; the voltage
range is from 0.9 to 2.2 V. The voltage must stay within
this range at the lowest commutation frequency of
interest, fC1
:
8.1 × 10–6
-------------------------
f × 1.3
6231
------------
fC1
C =
=
(C in nF)
If the frequency is lower, then a constant commutation
delay after the zero-crossing is generated by the discharge
from 2.2 to 0.9 V at 16.2 µA;
maximum delay = (0.076 × C) ms (with C in nF).
Example: nominal commutation frequency = 900 Hz and
the lowest usable frequency = 400 Hz; so:
6231
CAP-CD =
= 15.6 (choose 18 nF)
------------
400
The other capacitor, CAP-DC, is used to repeat the same
delay by charging and discharging with 15.5 µA. The same
value can be chosen as for CAP-CD. Figure 9 illustrates
typical voltage waveforms.
June 1994
11
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5144
Fig.8 Typical application of the TDA5144 as a scanner driver, with use of OTA.
June 1994
12
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5144
Fig.9 CAP-CD and CAP-DC typical voltage waveforms in normal running mode.
The capacitor is charged, with a current of 57 µA, from
0.2 to 0.3 V. Above this level it is charged, with a current of
5 µA, up to 2.2 V only if the selected motor EMF remains
in the wrong polarity (watchdog function). At the end, or, if
the motor voltage becomes positive, the capacitor is
discharged with a current of 28 µA. The watchdog time is
the time taken to charge the capacitor, with a current of
5 µA, from 0.3 to 2.2 V.
THE TIMING CAPACITOR (CAP-TI)
Capacitor CAP-TI is used for timing the successive steps
within one commutation period; these steps include some
internal delays.
The most important function is the watchdog time in which
the motor EMF has to recover from a negative diode-pulse
back to a positive EMF voltage (or vice versa). A watchdog
timer is a guarding function that only becomes active when
the expected event does not occur within a predetermined
time.
To ensure that the internal delays are covered CAP-TI
must have a minimum value of 2 nF. For the watchdog
function a value for CAP-TI of 10 nF is recommended.
The EMF usually recovers within a short time if the motor
is running normally (<<ms). However, if the motor is
motionless or rotating in the reverse direction, then the
time can be longer (>>ms).
To ensure a good start-up and commutation, care must be
taken that no oscillations occur at the trailing edge of the
flyback pulse. Snubber networks at the outputs should be
critically damped.
A watchdog time must be chosen so that it is long enough
for a motor without EMF (still) and eddy currents that may
stretch the voltage in a motor winding; however, it must be
short enough to detect reverse rotation. If the watchdog
time is made too long, then the motor may run in the wrong
direction (with little torque).
Typical voltage waveforms are illustrated by Fig.10.
June 1994
13
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5144
If the chosen value of CAP-TI is too small oscillations can occur in certain positions of a blocked rotor. If the chosen value is too large, then it
is possible that the motor may run in the reverse direction (synchronously with little torque).
Fig.10 Typical CAP-TI and VMOT1 voltage waveforms in normal running mode.
Other design aspects
THE OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA)
There are other design aspects concerning the application
of the TDA5144 besides the commutation function. They
are:
The OTA is an uncommitted amplifier with a high output
current (40 mA) that can be used as a control amplifier.
The common mode input range includes ground (GND)
and rises to VP − 1.7 V. The high sink current enables the
OTA to drive a power transistor directly in an analog
control amplifier.
• Generation of the tacho signal FG
• General purpose operational transconductance
amplifier (OTA)
Although the gain is not extremely high (0.3 S), care must
be taken with the stability of the circuit if the OTA is used
as a linear amplifier as no frequency compensation has
been provided.
• Possibilities of motor control
• Reliability.
FG SIGNAL
The convention for the inputs (inverting or not) is the same
as for a normal operational amplifier: with a resistor (as
load) connected from the output (AMP OUT) to the positive
supply, a positive-going voltage is found when the
non-inverting input (+AMP IN) is positive with respect to
the inverting input (−AMP IN). Confusion is possible
because a ‘plus’ input causes less current, and so a
positive voltage.
The FG signal is generated in the TDA5144 by using the
zero-crossing of the motor EMF from the three motor
windings. Every zero-crossing in a (star connected) motor
winding is used to toggle the FG output signal. The FG
frequency is therefore half the commutation frequency. All
transitions indicate the detection of a zero-crossing.
The accuracy of the FG output signal depends on the
symmetry of the motor's electromagnetic construction,
which also effects the satisfactory functioning of the motor
itself.
Example: a 3-phase motor with 6 magnetic pole-pairs at
1500 rpm and with a full-wave drive has a commutation
frequency of 25 × 6 × 6 = 900 Hz, and generates a tacho
signal of 450 Hz.
June 1994
14
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5144
MOTOR CONTROL
DC motors can be controlled in an analog manner using
the OTA.
For the analog control an external transistor is required.
The OTA can supply the base current for this transistor
and act as a control amplifier (see Fig.8).
RELIABILITY
It is necessary to protect high current circuits and the
output stages are protected in two ways:
• Current limiting of the ‘lower’ output transistors. The
‘upper’ output transistors use the same base current as
the conducting ‘lower’ transistor (+15%). This means
that the current to and from the output stages is limited.
• Thermal protection of the six output transistors is
achieved by each transistor having a thermal sensor
that is active when the transistor is switched on. The
transistors are switched off when the local temperature
becomes too high.
It is possible, that when braking, the motor voltage (via the
flyback diodes and the impedance on VMOT) may cause
higher currents than allowed (>0.6 A). These currents
must be limited externally.
June 1994
15
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5144
PACKAGE OUTLINES
13.0
12.6
7.6
7.4
A
10.65
10.00
0.1 S
S
0.9
0.4
(4x)
20
11
1.1
1.0
2.45
2.25
2.65
0.3
0.1
0.32
2.35
0.23
pin 1
index
1.1
0.5
o
0 to 8
1
10
detail A
MBC234 - 1
0.49
0.36
0.25 M
(20x)
1.27
Dimensions in mm.
Fig.11 Plastic small outline package; 20 leads; large body (SOT163-1; SO20L).
June 1994
16
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5144
18.1
17.7
7.6
7.4
A
10.65
10.00
0.1 S
S
0.9
0.4
(4x)
28
15
1.1
1.0
2.45
2.25
2.65
0.3
0.1
0.32
2.35
0.23
pin 1
index
1.1
0.5
o
0 to 8
1
14
detail A
MBC236 - 1
0.49
0.36
0.25 M
(28x)
1.27
Dimensions in mm.
Fig.12 Plastic small outline package; 28 leads; large body (SOT136-1; SO28L).
June 1994
17
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5144
applied to the substrate by screen printing, stencilling or
pressure-syringe dispensing before device placement.
SOLDERING
Plastic small-outline packages
BY WAVE
Several techniques exist for reflowing; for example,
thermal conduction by heated belt, infrared, and
vapour-phase reflow. Dwell times vary between 50 and
300 s according to method. Typical reflow temperatures
range from 215 to 250 °C.
During placement and before soldering, the component
must be fixed with a droplet of adhesive. After curing the
adhesive, the component can be soldered. The adhesive
can be applied by screen printing, pin transfer or syringe
dispensing.
Preheating is necessary to dry the paste and evaporate
the binding agent. Preheating duration: 45 min at 45 °C.
Maximum permissible solder temperature is 260 °C, and
maximum duration of package immersion in solder bath is
10 s, if allowed to cool to less than 150 °C within 6 s.
Typical dwell time is 4 s at 250 °C.
REPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING
IRON OR PULSE-HEATED SOLDER TOOL)
Fix the component by first soldering two, diagonally
opposite, end pins. Apply the heating tool to the flat part of
the pin only. Contact time must be limited to 10 s at up to
300 °C. When using proper tools, all other pins can be
soldered in one operation within 2 to 5 s at between 270
and 320 °C. (Pulse-heated soldering is not recommended
for SO packages.)
A modified wave soldering technique is recommended
using two solder waves (dual-wave), in which a turbulent
wave with high upward pressure is followed by a smooth
laminar wave. Using a mildly-activated flux eliminates the
need for removal of corrosive residues in most
applications.
For pulse-heated solder tool (resistance) soldering of VSO
packages, solder is applied to the substrate by dipping or
by an extra thick tin/lead plating before package
placement.
BY SOLDER PASTE REFLOW
Reflow soldering requires the solder paste (a suspension
of fine solder particles, flux and binding agent) to be
DEFINITIONS
Data sheet status
Objective specification
Preliminary specification
Product specification
This data sheet contains target or goal specifications for product development.
This data sheet contains preliminary data; supplementary data may be published later.
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
June 1994
18
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5144
NOTES
June 1994
19
Philips Semiconductors – a worldwide company
Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428)
Norway: Box 1, Manglerud 0612, OSLO,
BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367
Tel. (022)74 8000, Fax. (022)74 8341
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. (02)805 4455, Fax. (02)805 4466
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213,
Pakistan: Philips Electrical Industries of Pakistan Ltd.,
Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton,
KARACHI 75600, Tel. (021)587 4641-49,
Fax. (021)577035/5874546.
Tel. (01)60 101-1236, Fax. (01)60 101-1211
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474
Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands,
Tel. (31)40 783 749, Fax. (31)40 788 399
Brazil: Rua do Rocio 220 - 5th floor, Suite 51,
CEP: 04552-903-SÃO PAULO-SP, Brazil.
P.O. Box 7383 (01064-970).
Portugal: PHILIPS PORTUGUESA, S.A.,
Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores,
Apartado 300, 2795 LINDA-A-VELHA,
Tel. (01)14163160/4163333, Fax. (01)14163174/4163366.
Tel. (011)821-2327, Fax. (011)829-1849
Canada: INTEGRATED CIRCUITS:
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. (800)234-7381, Fax. (708)296-8556
DISCRETE SEMICONDUCTORS: 601 Milner Ave,
SCARBOROUGH, ONTARIO, M1B 1M8,
Tel. (0416)292 5161 ext. 2336, Fax. (0416)292 4477
Tel. (65)350 2000, Fax. (65)251 6500
South Africa: S.A. PHILIPS Pty Ltd., Components Division,
195-215 Main Road Martindale, 2092 JOHANNESBURG,
P.O. Box 7430 Johannesburg 2000,
Tel. (011)470-5911, Fax. (011)470-5494.
Spain: Balmes 22, 08007 BARCELONA,
Tel. (03)301 6312, Fax. (03)301 42 43
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM,
Tel. (0)8-632 2000, Fax. (0)8-632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Chile: Av. Santa Maria 0760, SANTIAGO,
Tel. (02)773 816, Fax. (02)777 6730
Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17,
77621 BOGOTA, Tel. (571)249 7624/(571)217 4609,
Fax. (571)217 4549
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. (032)88 2636, Fax. (031)57 1949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. (01)488 2211, Fax. (01)481 77 30
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West
Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978,
TAIPEI 100, Tel. (02)388 7666, Fax. (02)382 4382.
Tel. (9)0-50261, Fax. (9)0-520971
France: 4 Rue du Port-aux-Vins, BP317,
92156 SURESNES Cedex,
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong,
Bangkok 10260, THAILAND,
Tel. (662)398-0141, Fax. (662)398-3319.
Turkey:Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. (01)4099 6161, Fax. (01)4099 6427
Germany: PHILIPS COMPONENTS UB der Philips G.m.b.H.,
P.O. Box 10 63 23, 20043 HAMBURG,
Tel. (040)3296-0, Fax. (040)3296 213.
Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. (0212)279 2770, Fax. (0212)269 3094
Tel. (01)4894 339/4894 911, Fax. (01)4814 240
United Kingdom: Philips Semiconductors Limited, P.O. Box 65,
Philips House, Torrington Place, LONDON, WC1E 7HD,
Tel. (071)436 41 44, Fax. (071)323 03 42
Hong Kong: PHILIPS HONG KONG Ltd., Components Div.,
6/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, N.T.,
Tel. (852)424 5121, Fax. (852)428 6729
India: Philips INDIA Ltd, Components Dept,
Shivsagar Estate, A Block ,
Dr. Annie Besant Rd. Worli, Bombay 400 018
Tel. (022)4938 541, Fax. (022)4938 722
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4,
P.O. Box 4252, JAKARTA 12950,
United States:INTEGRATED CIRCUITS:
811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. (800)234-7381, Fax. (708)296-8556
DISCRETE SEMICONDUCTORS: 2001 West Blue Heron Blvd.,
P.O. Box 10330, RIVIERA BEACH, FLORIDA 33404,
Tel. (800)447-3762 and (407)881-3200, Fax. (407)881-3300
Uruguay: Coronel Mora 433, MONTEVIDEO,
Tel. (021)5201 122, Fax. (021)5205 189
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. (02)70-4044, Fax. (02)92 0601
For all other countries apply to: Philips Semiconductors,
International Marketing and Sales, Building BAF-1,
P.O. Box 218, 5600 MD, EINDHOVEN, The Netherlands,
Telex 35000 phtcnl, Fax. +31-40-724825
Tel. (01)640 000, Fax. (01)640 200
Italy: PHILIPS COMPONENTS S.r.l.,
Viale F. Testi, 327, 20162 MILANO,
Tel. (02)6752.3302, Fax. (02)6752 3300.
Japan: Philips Bldg 13-37, Kohnan2-chome, Minato-ku, TOKYO 108,
SCD31
© Philips Electronics N.V. 1994
Tel. (03)3740 5028, Fax. (03)3740 0580
Korea: (Republic of) Philips House, 260-199 Itaewon-dong,
All rights are reserved. Reproduction in whole or in part is prohibited without the
prior written consent of the copyright owner.
Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,
SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880
Mexico: Philips Components, 5900 Gateway East, Suite 200,
The information presented in this document does not form part of any quotation
or contract, is believed to be accurate and reliable and may be changed without
notice. No liability will be accepted by the publisher for any consequence of its
use. Publication thereof does not convey nor imply any license under patent- or
other industrial or intellectual property rights.
EL PASO, TX 79905, Tel. 9-5(800)234-7381, Fax. (708)296-8556
Printed in The Netherlands
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB
Tel. (040)783749, Fax. (040)788399
373061/1500/02/pp20
Date of release: June 1994
9397 735 60011
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. (09)849-4160, Fax. (09)849-7811
Document order number:
Philips Semiconductors
TDA5144ATD-T 相关器件
型号 | 制造商 | 描述 | 价格 | 文档 |
TDA5144T | NXP | Brushless DC motor drive circuit | 获取价格 | |
TDA5145 | NXP | Brushless DC motor drive circuit | 获取价格 | |
TDA5145T | NXP | Brushless DC motor drive circuit | 获取价格 | |
TDA5145TS | NXP | Brushless DC motor drive circuit | 获取价格 | |
TDA5145TS/C1 | PHILIPS | Motion Control Electronic, BIPolar, PDSO24, | 获取价格 | |
TDA5146T | NXP | Brushless DC motor drive circuit | 获取价格 | |
TDA5147CH | NXP | 12 V Voice Coil Motor VCM driver and spindle motor drive combination chip | 获取价格 | |
TDA5147K | NXP | 12 V Voice Coil Motor VCM driver and spindle motor drive combination chip | 获取价格 | |
TDA5147K-T | NXP | IC VOICE COIL MOTOR CONTROLLER, PQCC52, Motion Control Electronics | 获取价格 | |
TDA5149 | NXP | 12 V Voice Coil Motor VCM driver and spindle motor pre-driver combination chip | 获取价格 |
TDA5144ATD-T 相关文章
- 2024-12-05
- 12
- 2024-12-05
- 10
- 2024-12-05
- 12
- 2024-12-05
- 11