SI9130CG-T1

更新时间:2024-09-15 01:50:23
品牌:VISHAY
描述:Pin-Programmable Dual Controller?Portable PCs

SI9130CG-T1 概述

Pin-Programmable Dual Controller?Portable PCs 引脚可编程双路控制器,便携式电脑 开关式稳压器或控制器

SI9130CG-T1 规格参数

是否无铅:含铅是否Rohs认证:不符合
生命周期:Active零件包装代码:SSOP
包装说明:SSOP, SSOP28,.3针数:28
Reach Compliance Code:unknownECCN代码:EAR99
HTS代码:8542.39.00.01风险等级:5.18
Is Samacsys:N模拟集成电路 - 其他类型:DUAL SWITCHING CONTROLLER
控制模式:CURRENT-MODE控制技术:PULSE WIDTH MODULATION
最大输入电压:30 V最小输入电压:5.5 V
标称输入电压:15 VJESD-30 代码:R-PDSO-G28
JESD-609代码:e0长度:10.2 mm
功能数量:1端子数量:28
最高工作温度:70 °C最低工作温度:
封装主体材料:PLASTIC/EPOXY封装代码:SSOP
封装等效代码:SSOP28,.3封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, SHRINK PITCH峰值回流温度(摄氏度):240
认证状态:Not Qualified座面最大高度:2 mm
子类别:Switching Regulator or Controllers表面贴装:YES
切换器配置:PUSH-PULL最大切换频率:330 kHz
技术:BICMOS温度等级:COMMERCIAL
端子面层:Tin/Lead (Sn/Pb)端子形式:GULL WING
端子节距:0.65 mm端子位置:DUAL
处于峰值回流温度下的最长时间:30宽度:5.3 mm
Base Number Matches:1

SI9130CG-T1 数据手册

通过下载SI9130CG-T1数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
Si9130  
Vishay Siliconix  
Pin-Programmable Dual Controller—Portable PCs  
FEATURES  
D Fixed 5-V and Programmable 3.3-V, 3.45 V, or 3.6 V Step-Down  
Converters  
D Less than 500-mA Quiescent Current per Converter  
D 25-mA Shutdown Current  
D 5.5-V to 30-V Operating Range  
DESCRIPTION  
The Si9130 Pin-programmable Dual Controller for Portable  
PCs is a pin-programmable version of the Si786 dual-output  
power supply controller for notebook computers. The Buck  
controllers provide 5 V and a pin-programmable output delivering  
3.3 V, 3.45 V, or 3.6 V.  
A complete power conversion and management system can  
be implemented with the Si9130 Pin-programmable Dual  
Controller for Portable PCs, an inexpensive linear regulator,  
the Si9140 SMP Controller for High Performance Processor  
Power Supplies, five Si4410 n-channel TrenchFETr Power  
MOSFETs, one Si4435 p-channel TrenchFET Power  
MOSFET, and two Si9712 PC Card (PCMCIA) Interface  
Switches.  
The circuit is a system level integration of two step-down  
controllers and micropower 5-V and 3.3-V linear regulators.  
The controllers perform high efficiency conversion of the  
battery pack energy (typically 12 V) or the output of an ac to dc  
wall converter (typically 18-V to 24-V dc) to 5-V and 3.3-V  
system supply voltages. The micropower linear regulator can  
be used to keep power management and back-up circuitry  
alive during the shutdown of the step-down converters.  
The Si9130 is available in both standard and lead (Pb)-free  
28-pin SSOP packages and specified to operate over the  
commercial (0_C to 70_C) and extended commercial (10_C  
to 90_C) temperature ranges. See Ordering Information for  
corresponding part numbers.  
FUNCTIONAL BLOCK DIAGRAM  
5.5 V to 30 V  
3.3 V  
mP  
Power  
Memory  
Section  
Si9130  
5 V  
SHUTDOWN  
Peripherals  
5-V ON/OFF  
3.3-V ON/OFF  
SYNC  
Document Number: 70190  
S-40805—Rev. F, 26-Apr-04  
www.vishay.com  
1
Si9130  
Vishay Siliconix  
ABSOLUTE MAXIMUM RATINGS  
V+ to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V t0 36 V  
REF, V Short to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Momentary  
L
REF Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
PGND to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "2 V  
V
L
Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
V
L
to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 7 V  
Continuous Power Dissipation (T = 70_C)a  
BST , BST to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 36 V  
A
3
5
b
28-Pin SSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762 mW  
LX to BST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -7 V to 0.3 V  
3
3
Operating Temperature Range:  
LX to BST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -7 V to 0.3 V  
5
5
Si9130CG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to 70_C  
Inputs/Outputs to GND  
(3.45ADJ, 3.6ADJ, SHDN, ON , REF, SS , CS . FB , SYNC, CS , FB , SS ,  
Si9130LG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10_ to 90_C .  
5
5
5
5
3
3
3
Lead Temperature (soldering, 10 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . 300_C  
ON ) -0.3 V, (V + 0.3 V)  
3)  
L
DL , DL to PGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V, (V + 0.3 V)  
3
5
L
Notes  
DH to LX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V (BST + 0.3 )  
3
3
3
a. Device mounted with all leads soldered or welded to PC board.  
DH to LX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V (BST + 0.3 )  
b. Derate 9.52 mW/_C above 70_C.  
5
5
5
Exposure to Absolute Maximum rating conditions for extended periods may affect device reliability. Stresses beyond those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied.  
SPECIFICATIONS  
LIMITS  
Specific Test Conditions  
V+ = 15 V, I = I  
= 0 mA, SHDN = ON = ON = 5 V  
VL  
REF  
3
5
A
B
A
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Other Digital Input Levels 0 V or 5 V, T = T  
to T  
A
MIN  
MAX  
3.3-V and 5-V Step-Down Controllers  
Input Supply Range  
5.5  
30  
0 mV < (CS -FB ) < 70 mV, 6 V < V + < 30 V  
5
5
FB Output Voltage  
4.80  
3.17  
3.32  
5.08  
3.35  
3.50  
5.20  
3.46  
3.60  
5
(includes load and line regulation)  
3.6ADJ = 3.45ADJ = OPEN  
0 mV < (CS -FB ) <  
3
3
V
70 mV  
3.6ADJ = OPEN  
3.45ADJ = GND  
FB Output Voltage  
3
6 V < V + < 30 V  
(includes load and  
line regulation)  
3.6ADJ = GND  
3.46  
3.65  
3.75  
3.45ADJ = OPEN  
Load Regulation  
Line Regulation  
Either Controller (CS_ to FB_ = 0 to 70 mV)  
Either Controller (V+ = 6 V to 30 V)  
2.5  
0.03  
100  
4.0  
%
%/V  
mV  
mA  
Current-Limit Voltage  
CS -FB or CS -FB  
5
80  
2.5  
2
120  
6.5  
3
3
5
SS /SS Source Current  
3
5
SS /SS Fault Sink Current  
mA  
3
5
Internal Regulator and Reference  
ON = ON = 0 V, 5.5 V < V+ < 30 V  
5
3
V
V
Output Voltage  
4.5  
5.5  
L
L
0 mA < I < 25 mA  
L
Fault Lockout Voltage  
Falling Edge, Hysteresis = 1%  
3.6  
4.2  
4.2  
4.7  
3.36  
3.2  
75  
V
V /FB Switchover Voltage  
L
Rising Edge of FB , Hysteresis = 1%  
5
5
c
REF Output Voltage  
No External Load  
3.24  
2.4  
REF Fault Lockout Voltage  
REF Load Regulation  
Falling Edge  
d
0 mA < I < 5 mA  
30  
mV  
L
Document Number: 70190  
S-40805—Rev. F, 26-Apr-04  
www.vishay.com  
2
 
Si9130  
Vishay Siliconix  
SPECIFICATIONS  
LIMITS  
TYP  
Specific Test Conditions  
V+ = 15 V, I = I  
= 0 mA, SHDN = ON = ON = 5 V  
VL  
REF  
3
5
to T  
A
B
A
PARAMETER  
MIN  
MAX  
UNIT  
Other Digital Input Levels 0 V or 5 V, T = T  
A
MIN  
MAX  
Internal Regulator and Reference (Cont’d)  
V+ Shutdown Current  
V+ Standby Current  
SHDN = ON = ON = 0 V, V+ = 30 V  
25  
70  
40  
3
5
mA  
ON = ON = 0 V, V+ = 30 V  
110  
3
5
Quiescent Power Consumption  
(both PWM controllers on)  
FB = CS = 5.25 V  
5 5  
5.5  
30  
8.6  
60  
mW  
FB = CS = 3.5 V  
3
3
V+ Off Current  
FB = CS = 5.25 V, V Switched Over to FB  
mA  
5
5
L
5
Oscillator and Inputs/Outputs  
SYNC = 3.3 V  
270  
170  
200  
200  
300  
200  
330  
230  
Oscillator Frequency  
kHz  
ns  
SYNC = 0 V, 5 V  
SYNC High Pulse Width  
SYNC Low Pulse Width  
SYNC Rise/Fall Time  
Oscillator SYNC Range  
Not Tested  
200  
350  
240  
89  
kHz  
%
SYNC = 3.3 V  
92  
95  
Maximum Duty Cycle  
Input Low Voltage  
SYNC = 0 V, 5 V  
92  
SHDN, ON , ON SYNC  
0.8  
3
5
SHDN, ON , ON  
3
2.4  
V
5
Input High Voltage  
Input Current  
SYNC  
V
L
- 0.5 V  
SHDN, ON , ON  
V = 0 V, 5 V  
IN  
"1  
mA  
3
5
DL /DL Sink/Source Current  
V = 2 V  
OUT  
1
1
3
5
A
DH /DH Sink/Source Current  
BST - LX = BST - LX = 4.5 V, V = 2 V  
OUT  
3
5
3
3
5
5
DL /DL On-Resistance  
High or Low  
High or Low  
7
7
3
5
W
DH /DH On-Resistance  
3
5
BST - LX = BST - LX = 4.5 V  
3
3
5
5
Notes  
a. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum.  
b. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.  
c. The main switching outputs track the reference voltage. Loading the reference reduces the main outputs slightly according to the closed-loop gain (AV ) and  
CL  
the reference voltage load-regulation error. AV for the 3.3-V supply is unity gain. AV for the 5-V supply is 1.54.  
CL  
CL  
d. Since the reference uses V as its supply, its V+ line regulation error is insignificant.  
L
Document Number: 70190  
S-40805—Rev. F, 26-Apr-04  
www.vishay.com  
3
 
Si9130  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (25_C UNLESS NOTED)  
Efficiency vs. 5-V Output Current, 200 kHz  
Efficiency vs. 5-V Output Current, 300 kHz  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
V
IN  
= 6 V  
V
IN  
= 6 V  
V
IN  
= 15 V  
V
IN  
= 15 V  
V
IN  
= 30 V  
V
IN  
= 30 V  
SYNC = 0 V, 3.3 V Off  
3.3 V Off  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
5-V Output Current (A)  
1
10  
5-V Output Current (A)  
Efficiency vs. 3.3-V Output Current, 200 kHz  
Efficiency vs. 3.3-V Output Current, 300 kHz  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
V
IN  
= 6 V  
V
IN  
= 6 V  
V
IN  
= 15 V  
V
IN  
= 15 V  
V
IN  
= 30 V  
V
IN  
= 30 V  
SYNC = 0 V, 5 V On  
5 V On  
0.001  
0.01  
0.1  
3.3-V Output Current (A)  
1
10  
0.001  
0.01  
0.1  
1
10  
3.3-V Output Current (A)  
Quiescent Supply Current vs. Supply Voltage  
Standby Supply Current vs. Supply Voltage  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
30  
25  
20  
15  
10  
5
ON = ON = High  
ON = ON = 0 V  
3
5
3
5
0
0
6
12  
18  
24  
30  
0
6
12  
18  
24  
30  
Supply Voltage (V)  
Supply Voltage (V)  
Document Number: 70190  
S-40805—Rev. F, 26-Apr-04  
www.vishay.com  
4
Si9130  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (25_C UNLESS NOTED)  
Minimum V to V  
Differential  
IN  
OUT  
vs. 5-V Output Current  
Shutdown Supply Current vs. Supply Voltage  
1.0  
100  
75  
50  
25  
0
5-V Output  
Still Regulating  
SHDN = 0 V  
0.8  
0.6  
0.4  
0.2  
0.0  
300 kHz  
200 kHz  
0
6
12  
18  
24  
30  
0.001  
0.01  
0.1  
5-V Output Current (A)  
1
10  
Supply Voltage (V)  
Switching Frequency vs. Load Current  
1000.0  
SYNC = REF (300 kHz)  
ON = ON = 5 V  
3
5
100.0  
10.0  
1.0  
5 V, V = 30 V  
IN  
5 V, V = 7.5 V  
IN  
3.3 V, V = 7.5 V  
IN  
0.1  
0.1  
1
10  
100  
1000  
Load Current (mA)  
t  
LX 10 V/div  
5-V Output  
50 mV/div  
I
= 100 mA  
5-V Output Current = 1 A  
Load  
V
IN  
= 10 V  
V
IN  
= 16 V  
Document Number: 70190  
S-40805—Rev. F, 26-Apr-04  
www.vishay.com  
5
Si9130  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (25_C UNLESS NOTED)  
RREN
RRENT  
t  
put  
IN  
= 15 V  
V
= 15 V  
V
IN  
t  
t  
16 V  
10 V  
LOAD  
LOAD  
I
= 2 A  
I
= 2 A  
put  
ut  
16 V  
10 V  
LOAD  
LOAD  
I
= 2 A  
I
= 2 A  
Document Number: 70190  
S-40805—Rev. F, 26-Apr-04  
www.vishay.com  
6
Si9130  
Vishay Siliconix  
PIN CONFIGURATION AND DESCRIPTION  
CS  
FB  
3
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
3
SS  
3
DH  
LX  
3
Ordering Information  
ON  
3
3
3
Standard  
Part Number  
Lead (Pb)-Free  
Part Number  
Temperature  
NC  
NC  
BST  
3
4
Range  
VOUT  
DL  
V+  
5
3
NC  
6
Si9130CG  
0 to 70_C  
3.6ADJ  
3.45ADJ  
GND  
V
L
7
Si9130CG-T1  
Si9130LG  
Si9130CG-T1—E3  
Si9130LG-T1—E3  
5 V and 3.3 V  
3.45 V or 3.6 V  
SSOP-28  
FB  
5
8
10 to 90_C  
PGND  
9
Si9130LG-T1  
REF  
DL  
5
10  
11  
12  
13  
14  
SYNC  
SHDN  
BST  
5
Demo Board  
Temperature Range  
Board Type  
LX  
5
ON  
5
DH  
5
Si9130DB  
0 to 70_C  
Surface Mount  
SS  
5
CS  
5
Top View  
Pin  
Symbol  
Description  
1
2
CS  
Current-sense input for 3.3-V Buck controller—this pins over current threshold is 100 mV with respect to FB .  
3
3
SS  
3
Soft-start input for 3.3 V. Connect capacitor from SS to GND.  
3
3
ON  
ON/OFF logic input disables the 3.3-V Buck controller. Connect directly to V for automatic turn-on.  
L
3
4
NC  
Not internally connected.  
5
NC  
NC  
Not internally connected.  
6
Not internally connected.  
7
3.6ADJ  
3.45ADJ  
GND  
Control input to select 3.6-V output. See Voltage Selection Table for input and output combinations.  
Control input to select 3.45-V output. See Voltage Selection Table for input and output combinations.  
Analog ground.  
8
9
10  
REF  
3.3-V reference output. Supplies external loads up to 5 mA.  
Oscillator control/synchronization input. Connect capacitor to GND, 1-mF/mA output or 0.22 mF minimum. For external clock  
synchronization, a rising edge starts a new cycle to start. To use internal 200-kHz oscillator, connect to VL or GND. For 300-kHz  
oscillator, connect to REF.  
11  
12  
SYNC  
SHDN  
Shutdown logic input, active low. Connect to V for automatic turn-on. The 5-V V supply will not be disabled in shutdown allowing  
L
L
connection to SHDN.  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
ON  
5
ON/OFF logic input disables the 5-V Buck Controller. Connect to V for automatic turn-on.  
L
SS  
5
Soft-start control input for 5-V Buck controller. Connect capacitor from SS to GND.  
5
CS  
5
Current-sense input for 5-V Buck controller—this pins over current threshold is 100 mV referenced to FB .  
3
DH  
Gate-drive output for the 5-V supply high-side n-channel MOSFET.  
Inductor connection for the 5-V supply.  
5
LX  
5
BST  
Boost capacitor connection for the 5-V supply.  
Gate-drive output for the 5-V supply rectifying n-channel MOSFET.  
Power Ground.  
5
DL  
5
PGND  
FB  
Feedback input for the 5-V Buck controller.  
5
V
L
5-V logic supply voltage for internal circuitry—able to source 5-mA external loads. V remains on with valid voltage at V+.  
L
V+  
DL  
Supply voltage input.  
Gate-drive output for the 3.3-V supply rectifying n-channel MOSFET.  
Boost capacitor connection for the 3.3-V supply.  
Inductor connection for the 3.3-V supply.  
3
BST  
3
LX  
3
DH  
Gate-drive output for the 3.3-V supply high-side n-channel MOSFET.  
Feedback input for the 3.3-V Buck controller.  
3
3
FB  
Document Number: 70190  
S-40805—Rev. F, 26-Apr-04  
www.vishay.com  
7
Si9130  
Vishay Siliconix  
Voltage Selection Table  
Input  
Output  
3.45ADJ  
OPEN  
3.6ADJ  
OPEN  
OPEN  
GND  
FB3  
3.3 V  
3.45 V  
3.6 V  
GND  
OPEN  
DESCRIPTION OF OPERATION  
The Si9130 is a dual step-down converter, which takes a 5.5-V  
to 30-V input and supplies power via two PWM controllers (see  
Figure 1). These 5-V and 3.3-V supplies run on an optional  
300-kHz or 200-kHz internal oscillator, or an external sync  
signal. Amount of output current is limited by external  
components, but can deliver greater than 6 A on either supply.  
As well as these two main Buck controllers, additional loads  
can be driven from two micropower linear regulators, one 5 V  
(VL) and the other 3.3 V (REF)—see Figure 2. These supplies  
are each rated to deliver 5 mA. If the linear regulator circuits fall  
out of regulation, both Buck controllers are shut down.  
3.3-V PWM Voltage Selection  
(Pins 3.45ADJ, 3.6ADJ)  
The voltage at this output can be selected to 3.3 V, 3.45 V or  
3.6 V, depending on the configuration of pins 3.45ADJ and  
3.6ADJ. Leaving both pins open results in 3.3V nominal  
output. Grounding pin 3.45ADJ while leaving 3.6ADJ open  
delivers 3.45-V nominal output. Grounding 3.6 ADJ while  
leaving 3.45ADJ open sets a 3.6-V nominal output.  
INPUT  
5.5 V to 30 V  
C1  
22 mF  
C10  
22 mF  
100 W  
D2A  
1N4148  
D2B  
1N4148  
0.1 mF  
+5 V at 5 mA  
Si9130  
4.7 mF  
C4  
0.1 mF  
C5  
0.1 mF  
23  
22  
18  
16  
17  
V
V+  
L
25  
27  
26  
BST  
BST  
3
5
N1  
N3  
N2  
N3  
DH  
DH  
5
3
R1  
25 mW  
L1  
L2  
R2  
25 mW  
10 mH  
10 mH  
LX  
3
LX  
5
+5 V at 3 A  
+3.3 V at 3 A  
D1  
D1FS4  
D1  
D1FS4  
24  
19  
C7  
150 mF  
C6  
330 mF  
DL  
DL  
CS  
3
5
1
28  
2
15  
21  
14  
CS  
3
5
5
C12  
150 mF  
(Note 1)  
(Note 1)  
FB  
SS  
FB  
SS  
3
C9  
0.01 mF  
C8  
0.01 mF  
3
5
3
ON  
8
7
+3.3 V ON/OFF  
+5 V ON/OFF  
SHUTDOWN  
3
5
3.45-V Voltage Adjust  
3.6-V Voltage Adjust  
3.45ADJ  
3.6ADJ  
13  
12  
11  
9
ON  
SHDN  
SYNC  
GND  
OSC SYNC  
10  
20  
REF  
PGND  
+3.3 V at 5 mA  
C3  
1 mF  
Note 1: Use short, Kelvin-connected PC board  
traces placed very close to one another.  
FIGURE 1. Si9130 Application Circuit  
Document Number: 70190  
S-40805—Rev. F, 26-Apr-04  
www.vishay.com  
8
Si9130  
Vishay Siliconix  
3.3-V Switching Supply  
at power-on are avoided, and power-supplies can be  
sequenced with different turn-on delay times by selecting the  
correct capacitor value.  
The 3.3-V supply is regulated by a current-mode PWM  
controller in conjunction with several externals: two n-channel  
MOSFETs, a rectifier, an inductor and output capacitors (see  
Figure 1). The gate drive supplied by DH3 needs to be greater  
than VL , so it is provided by the bootstrap circuit consisting of  
a 100-nF capacitor and diode connected to BST3.  
5-V Switching Supply  
The 5-V supply is regulated by a current-mode PWM controller  
which is nearly the same as the 3.3-V output. The dropout  
voltage across the 5-V supply, as shown in the schematic in  
Figure 1, is 400 mV (typ) at 2 A. If the voltage at V+ falls, nearing  
5 V, the 5-V supply will lower as well, until the VL linear regulator  
output falls below the 4-V undervoltage lockout threshold.  
Below this threshold, the 5-V controller is shut off.  
A low-side switching MOSFET connected to DL3 increases  
efficiency by reducing the voltage across the rectifier diode. A  
low value sense resistor in series with the inductor sets the  
maximum current limit, to disallow current overloads at  
power-on or in short-circuit situations.  
The soft-start feature on the Si9130 is capacitor  
programmable; pin SS3 functions as a constant current source  
to the external capacitor connected to GND. Excess currents  
The frequency of both PWM controllers is set at 300 kHz when  
the SYNC pin is tied to REF. Connecting SYNC to either GND  
or VL sets the frequency at 200 kHz.  
FB  
+5-V LDO  
3
V+  
Linear  
CS  
3
Regulator  
BST  
3.3-V  
PWM  
Controller  
(See Figure 3)  
3
V
L
DH  
3
3.45ADJ  
3.6ADJ  
REF  
+3.3-V  
Reference  
ON  
LX  
3
DL  
3
ON  
SS  
3
4.5 V  
SHDN  
PGND  
ON  
4 V  
3
FB  
5
CS  
5
2.8 V  
5-V  
PWM  
Controller  
(See Figure 3)  
BST  
5
DH  
STANDBY  
300 kHz/200 kHz  
Oscillator  
5
SYNC  
ON  
LX  
5
DL  
5
ON  
SS  
5
ON  
5
FIGURE 2. Si9130 Block Diagram  
Document Number: 70190  
S-40805—Rev. F, 26-Apr-04  
www.vishay.com  
9
Si9130  
Vishay Siliconix  
CS_  
FB_  
1X  
REF,  
3.3 V  
(or Internal  
5-V Reference)  
60 kHz  
LPF  
Summing  
Comparator  
BST_  
DH_  
LX_  
R
S
Q
Level  
Shift  
OSC  
Slope  
Comp  
25 mV  
Minimum Current  
(Pulse-Skipping Mode)  
V
L
Current  
Limit  
4 mA  
Shoot-  
Through  
Control  
0 mV to  
100 mV  
SS_  
ON_  
30R  
3.3 V  
1R  
Synchronous  
Rectifier Control  
V
L
R
Q
S
Level  
Shift  
DL_  
PGND  
FIGURE 3. Si9130 Controller Block Diagram  
3.3-V and 5-V Switching Controllers  
The main PWM comparator is an open loop device which is  
comprised of three comparators summing four signals: the  
feedback voltage error signal, current sense signal,  
slope-compensation ramp and voltage reference as shown in  
Figure 3. This method of control comes closer to the ideal of  
maintaining the output voltage on a cycle-by-cycle basis.  
When the load demands high current levels, the controller is in  
full PWM mode. Every cycle from the oscillator asserts the  
output latch and drives the gate of the high-side MOSFET for  
a period determined by the duty cycle (approximately  
Each PWM controller on the Si9130 is identical with the exception  
of the preset output voltages. The controllers only share three  
functional blocks (see Figure 3): the oscillator, the voltage  
reference (REF) and the 5-V logic supply (VL). The 3.3-V and 5-V  
controllers are independently enabled with pins ON3 and ON5,  
respectively. The PWMs are a direct-summing type, without the  
typical integrating error amplifier along with the phase shift which  
is a side effect of this type of topology. Feedback compensation  
is not needed, as long as the output capacitance and its ESR  
requirements are met, according to the Design Considerations  
section of this data sheet.  
VOUT/VIN   100%) and the frequency.  
Document Number: 70190  
S-40805—Rev. F, 26-Apr-04  
www.vishay.com  
10  
Si9130  
Vishay Siliconix  
The high-side switch turns off, setting the synchronous rectifier  
latch and 60 ns later, the rectifier MOSFET turns on. The low-side  
switch stays on until the start of the next clock cycle in continuous  
mode, or until the inductor current becomes positive again, in  
discontinuous mode. In over-current situations, where the  
inductor current is greater than the 100-mV current-limit threshold,  
the high-side latch is reset and the high-side gate drive is shut off.  
Shoot-through current is the result when both the high-side and  
rectifying MOSFETs are turned on at the same time.  
Break-before-make timing internal to the Si9130 manages this  
potential problem. During the time when neither MOSFET is on,  
the Schottky is conducting, so that the body diode in the low-side  
MOSFET is not forced to conduct.  
Synchronous rectification is always active when the Si9130 is  
powered-up, regardless of the operational mode.  
During low-current load requirements, the inductor current will not  
deliver the 25-mV minimum current threshold. The Minimum  
Current comparator signals the PWM to enter pulse-skipping  
mode when the threshold has not been reached. pulse-skipping  
mode skips pulses to reduce switching losses, the losses which  
decrease efficiency the most at light load. Entering this mode  
causes the minimum current comparator to reset the high-side  
latch at the beginning of each oscillator cycle.  
Gate-Driver Boost  
The high-side n-channel drive is supplied by a flying-capacitor  
boost circuit (see Figure 4). The capacitor takes a charge from  
VL and then is connected from gate to source of the high-side  
MOSFET to provide gate enhancement. At power-up, the  
low-side MOSFET pulls LX_ down to GND and charges the  
BST_ capacitor connected to 5 V. During the second half of the  
oscillator cycle, the controller drives the gate of the high-side  
MOSFET by internally connecting node BST_ to DH_. This  
supplies a voltage 5 V higher than the battery voltage to the gate  
of the high-side MOSFET.  
Soft-Start  
To slowly bring up the 3.3-V and 5-V supplies, connect capacitors  
from SS3 and SS5 to GND. Asserting ON3 or ON5 starts a 4-A  
constant current source to charge these capacitors to 4 V. As the  
voltage on these pins ramps up, so does the current limit  
comparator threshold, to increase the duty cycle of the MOSFETs  
to their maximum level. If ON3 or ON5 are left low, the respective  
capacitor is discharged to GND. Leaving the SS3 or SS5 pins  
open will cause either controller to reach the terminal over-current  
level within 10 ms.  
Oscillations on the gates of the high-side MOSFET in  
discontinuous mode are a natural occurrence caused by the LC  
network formed by the inductor and stray capacitance at the LX_  
pins. The negative side of the BST_ capacitor is connected to the  
LX_ node, so ringing at the inductor is translated through to the  
gate drive.  
Soft start helps prevent current spikes at turn-on and allows  
separate supplies to be delayed using external programmability.  
BATTERY  
INPUT  
Synchronous Rectifiers  
Synchronous rectification replaces the Schottky rectifier with a  
MOSFET, which can be controlled to increase the efficiency of the  
circuit.  
V
L
V
L
BST_  
DH_  
When the high-side MOSFET is switched off, the inductor will try  
to maintain its current flow, inverting the inductor’s polarity. The  
path of current then becomes the circuit made of the Schottky  
diode, inductor and load, which will charge the output capacitor.  
The diode has a 0.5-V forward voltage drop, which contributes a  
significant amount of power loss, decreasing efficiency. A  
low-side switch is placed in parallel with the Schottky diode and  
is turned on just after the diode begins to conduct. Because the  
Level  
Translator  
LX_  
PWM  
V
L
DL_  
rDS(ON) of the MOSFET is low, the I*R voltage drop will not be as  
large as the diode, which increases efficiency.  
The low-side rectifier is shut off when the inductor current drops  
to zero.  
FIGURE 4. Boost Supply for Gate Drivers  
Document Number: 70190  
S-40805—Rev. F, 26-Apr-04  
www.vishay.com  
11  
Si9130  
Vishay Siliconix  
OPERATIONAL MODES  
PWM Mode  
The SYNC pin can be driven with an external CMOS level signal  
with frequency from 240 kHz and 350 kHz to synchronize to the  
internal oscillator. Tying SYNC to either VL or GND sets the  
frequency to 200 kHz and to REF sets the frequency to 300 kHz.  
The 3.3-V and 5-V Buck controllers operate in continuous-current  
PWM mode when the load demands more than approximately  
25% of the maximum current (see typical curves). The duty cycle  
can be approximated as Duty_Cycle = VOUT/VIN.  
Operation at 300 kHz is typically used to minimize output passive  
component sizes. Slower switching speeds of 200 kHz may be  
needed for lower input voltages.  
In this mode, the inductor current is continuous; in the first half of  
the cycle, the current slopes up when the high-side MOSFET  
conducts and then, in the second half, slopes back down when  
the inductor is providing energy to the output capacitor and load.  
As current enters the inductor in the first half-cycle, it is also  
continuing through to the load; hence, the load is receiving  
continuous current from the inductor. By using this method, output  
ripple is minimized and smaller form-factor inductors can be used.  
The output capacitor’s ESR has the largest effect on output ripple.  
It is typically under 50mV; the worst case condition is under light  
load with higher input battery voltage.  
Internal VL and REF  
A 5-V linear regulator supplies power to the internal logic circuitry.  
The regulator is available for external use from pin VL , able to  
source 5 mA. A 4.7-mF capacitor should be connected between  
VL and GND. To increase efficiency, when the 5-V switching  
supply has voltage greater than 4.5 V, VL is internally switched  
over to the output of the 5-V switching supply and the linear  
regulator is turned off.  
Pulse-Skipping Mode  
When the load requires less than 25% of its maximum, the  
Si9130 enters a mode which drives the gate for one clock cycle  
and skips the majority of the remaining cycles. Pulse-skipping  
mode cuts down on the switching losses, the dominant power  
consumer at low current levels.  
The 5-V linear regulator provides power to the internal 3.3-V  
bandgap reference (REF). The 3.3-V reference can supply 5 mA  
to an external load, connected to pin REF. Between REF and  
GND connect a capacitor, 0.22 mF plus 1 mF per mA of load  
current. The switching outputs will vary with the reference;  
therefore, placing a load on the REF pin will cause the main  
outputs to decrease slightly, within the specified regulation  
tolerance.  
In the region between pulse-skipping mode and PWM mode, the  
controller may transition between the two modes, delivering  
spurts of pulses. This may cause the current waveform to look  
irregular, but will not overly affect the ripple voltage. Even in this  
transitioning mode efficiency will stay high.  
VL and REF supplies stay on as long as V+ is greater than 4.5  
V, even if the switching supplies are not enabled. This feature is  
necessary when using the micropower regulators to keep  
memory alive during shutdown.  
Current Limit  
The current through an external resistor, is constantly monitored  
to protect against over-current. A low value resistor is placed in  
series with the inductor. The voltage across it is measured by  
connecting it between CS_ and FB_. If this voltage is larger than  
100 mV, the high-side MOSFET drive is shut down. Eliminating  
over-currents protects the MOSFET, the load and the power  
source. Typical values for the sense resistors with a 3-A load will  
be 25 mW.  
Both linear regulators can be connected to their respective  
switching supply outputs. For example, REF would be tied to the  
output of the 3.3 V and VL to 5 V. This will keep the main supplies  
up in standby mode, provided that each load current in shutdown  
is not larger than 5 mA.  
Fault Protection  
Oscillator and SYNC  
The 3.3-V and 5-V switching controllers are shut down when one  
of the linear regulators drops below 85% of its nominal value; that  
is, shut down will occur when VL < 4.0 V or REF < 2.8 V.  
There are two ways to set the Si9130 oscillator frequency: by  
using an external SYNC signal, or using the internal oscillator.  
Document Number: 70190  
S-40805—Rev. F, 26-Apr-04  
www.vishay.com  
12  
Si9130  
Vishay Siliconix  
DESIGN CONSIDERATIONS  
Inductor Design  
VREF  
CF  
u ǒ  
ǒ
Ǔ
Ǔ
VOUT RCS (2)(p)(GPWP)  
and,  
Three specifications are required for inductor design: inductance  
(L), peak inductor current (ILPEAK), and coil resistance (RL). The  
equation for computing inductance is:  
ǒ
Ǔ
Ǔ
ǒ
VOUT RCS  
ESRCF t  
VREF  
ǒV ǓǒV  
OUTǓ  
IN(MAX)–V  
Where:  
C
= Output filter capacitance (F)  
OUT  
F
L + ǒ  
Ǔ( )ǒ Ǔ(  
VIN(MAX) f IOUT LIR  
V
V
= Reference voltage, 3.3 V;  
= Output voltage, 3.3 V or 5 V;  
= Sense resistor (W);  
REF  
OUT  
CS  
)
R
GBWP = Gain-bandwidth product, 60 kHz;  
ESR = Output filter capacitor ESR (W).  
Where:  
V
= Output voltage (3.3 V or 5 V);  
OUT  
CF  
V
= Maximum input voltage (V);  
IN(MAX)  
f = Switching frequency, normally  
300 kHz;  
I
= Maximum dc load current (A);  
OUT  
Both minimum capacitance and maximum ESR requirements  
must be met. In order to get the low ESR, a capacitance value two  
to three times greater than the required minimum may be  
necessary.  
LIR = Ratio of inductor pea-to-peak ac current to  
average dc load current, typically 0.3.  
The equation for output ripple in continuous current mode is:  
1
ǒ
)Ǔ  
VOUT(RPL) + ILPP(MAX)  
  ESRCF )  
When LIR is higher, smaller inductance values are acceptable, at  
the expense of increased ripple and higher losses.  
(
2   f   CF  
The equations for capacitive and resistive components of the  
ripple in pulse-skipping mode are:  
The peak inductor current (ILPEAK) is equal to the steady-state  
load current (IOUT) plus one half of the peak-to-peak ac current  
(ILPP). Typically, a designer will select the ac inductor current to be  
30% of the steady-state current, which gives ILPEAK equal to 1.15  
VOUT(RPL)(C) +  
–4  
ǒ
Ǔ
(4) 10 (L)  
1
1
ǒ
ǓVolts  
 
)
2
VOUT VIN–VOUT  
ǒ
Ǔǒ  
Ǔ
RCS CF  
times IOUT  
.
ǒ
Ǔ
(0.02) ESRCF  
RCS  
VOUT(RPL)(R) +  
Volts  
The equation for computing peak inductor current is:  
ǒVOUT  
Ǔ
ǒVIN(MAX) OUTǓ  
–V  
The total ripple, V  
as follows:  
, can be approximated  
OUT(RPL)  
I
+ I  
)
LPEAK  
OUT  
(2)(f)(L)ǒVIN(MAX)Ǔ  
if  
then  
otherwise,  
V
V
V
V
(R) < 0.5 V  
(C),  
OUT(RPL)  
OUT(RPL)  
OUT(RPL)  
OUT(RPL)  
OUT(RPL)  
= V  
= V  
(R).  
(C),  
OUT(RPL)  
OUT(RPL)  
(C) +  
Lower Voltage Input  
OUTPUT CAPACITORS  
The application circuit shown here can be easily modified to work  
with 5.5-V to 12-V input voltages. Oscillation frequency should be  
set at 200 kHz and increase the output capacitance to 660 mF on  
the 5-V output to maintain stable performance up to 2 A of load  
current. Operation on the 3.3-V supply will not be affected by this  
reduced input voltage.  
The output capacitors determine loop stability and ripple voltage  
at the output. In order to maintain stability, minimum capacitance  
and maximum ESR requirements must be met according to the  
following equations:  
Document Number: 70190  
S-40805—Rev. F, 26-Apr-04  
www.vishay.com  
13  

SI9130CG-T1 相关器件

型号 制造商 描述 价格 文档
SI9130CG-T1-E3 VISHAY Pin-Programmable Dual Controller - Portable PCs 获取价格
SI9130DB VISHAY 5- and 3.3-V Step-Down Synchronous Converters 获取价格
SI9130LG VISHAY Pin-Programmable Dual Controller?Portable PCs 获取价格
SI9130LG-E3 VISHAY DUAL PWM BUCK CONTROLLER -10 TO 90C-LEAD - Tape and Reel 获取价格
SI9130LG-T1 VISHAY Pin-Programmable Dual Controller?Portable PCs 获取价格
SI9130LG-T1-E3 VISHAY Pin-Programmable Dual Controller - Portable PCs 获取价格
SI9130_11 VISHAY Pin-Programmable Dual Controller - Portable PCs 获取价格
SI9135 VISHAY SMBus Multi-Output Power-Supply Controller 获取价格
SI9135LG VISHAY SMBus Multi-Output Power-Supply Controller 获取价格
SI9135LG-E3 VISHAY TRIPLE PWM BUCK CNTR (5V,3.3V,12V)SM-LEA - Tape and Reel 获取价格

SI9130CG-T1 相关文章

  • CTS EMI/RFI 滤波器和电容器产品选型手册(英文版)
    2024-09-18
    6
  • CTS Controls 产品线手册(英文版)
    2024-09-18
    9
  • CTS先进材料和解决方案—产品手册(英文版)
    2024-09-18
    9
  • 松下(Panasonic)机器用传感器[产品选型手册(2024)
    2024-09-14
    22