AD5064BRUZ-1REEL7 [ADI]

Fully Accurate, 12-/14-/16-Bit VOUT nanoDAC, Quad, SPI Interface, 4.5 V to 5.5 V in TSSOP; 完全准确, 12位/ 14位/ 16位VOUT属于nanoDAC ,四, SPI接口, 4.5 V至5.5 V的TSSOP
AD5064BRUZ-1REEL7
型号: AD5064BRUZ-1REEL7
厂家: ADI    ADI
描述:

Fully Accurate, 12-/14-/16-Bit VOUT nanoDAC, Quad, SPI Interface, 4.5 V to 5.5 V in TSSOP
完全准确, 12位/ 14位/ 16位VOUT属于nanoDAC ,四, SPI接口, 4.5 V至5.5 V的TSSOP

转换器 数模转换器 光电二极管 PC
文件: 总28页 (文件大小:2828K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Fully Accurate, 12-/14-/16-Bit VOUT nanoDAC, Quad,  
SPI Interface, 4.5 V to 5.5 V in TSSOP  
Data Sheet  
AD5024/AD5044/AD5064  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
VDD  
VREFIN  
Low power quad 12-/14-/16-bit DAC, 1 LSB INL  
Pin compatible and performance upgrade to AD5666  
Individual and common voltage reference pin options  
Rail-to-rail operation  
4.5 V to 5.5 V power supply  
Power-on reset to zero scale or midscale  
3 power-down functions and per-channel power-down  
AD5064-1  
LDAC  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
INPUT  
DAC  
VOUT  
A
DAC A  
DAC B  
DAC C  
DAC D  
REGISTER  
REGISTER  
SCLK  
INPUT  
REGISTER  
DAC  
REGISTER  
VOUTB  
INTERFACE  
LOGIC AND  
SHIFT  
SYNC  
DIN  
INPUT  
REGISTER  
DAC  
REGISTER  
VOUTC  
REGISTER  
INPUT  
REGISTER  
DAC  
REGISTER  
VOUTD  
SDO  
POWER-DOWN  
POWER-ON  
RESET  
LOGIC  
Hardware  
with software  
override function  
LDAC  
LDAC  
POR  
GND  
LDAC CLR  
function to programmable code  
CLR  
Figure 1. AD5064-1 Functional Equivalent and Pin Compatible with AD5666  
SDO daisy-chaining option  
14-/16-lead TSSOP  
Internal reference buffer and internal output amplifier  
VREFA VREFB  
VDD  
AD5024/  
AD5044/  
AD5064  
LDAC  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
INPUT  
DAC  
VOUT  
A
DAC A  
DAC B  
DAC C  
DAC D  
REGISTER  
REGISTER  
APPLICATIONS  
SCLK  
INPUT  
REGISTER  
DAC  
REGISTER  
VOUTB  
INTERFACE  
LOGIC AND  
SHIFT  
Process control  
Data acquisition systems  
Portable battery-powered instruments  
Digital gain and offset adjustment  
Programmable voltage and current sources  
Programmable attenuators  
SYNC  
DIN  
REGISTER  
INPUT  
REGISTER  
DAC  
REGISTER  
VOUT  
C
INPUT  
REGISTER  
DAC  
REGISTER  
VOUTD  
POWER-DOWN  
LOGIC  
POWER-ON  
RESET  
POR  
GND  
VREFC VREFD  
LDAC CLR  
Figure 2. AD5024/AD5044/AD5064 with Individual Reference Pins  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The AD5024/AD5044/AD5064/AD5064-1 are low power, quad  
12-/14-/16-bit buffered voltage output nanoDAC® converters  
that offer relative accuracy specifications of 1 LSB INL and 1 LSB  
DNL with the AD5024/AD5044/AD5064 individual reference  
pin and the AD5064-1 common reference pin options. The  
AD5024/AD5044/AD5064/AD5064-1 can operate from a single  
4.5 V to 5.5 V supply. The AD5024/AD5044/AD5064/AD5064-1  
also offer a differential accuracy specification of 1 LSB. The  
parts use a versatile 3-wire, low power Schmitt trigger serial  
interface that operates at clock rates up to 50 MHz and is compati-  
ble with standard SPI, QSPI™, MICROWIRE™, and DSP interface  
standards. Integrated reference buffers and output amplifiers are  
also provided on-chip. The AD5024/AD5044/AD5064/AD5064-1  
incorporate a power-on reset circuit that ensures the DAC  
output powers up to zero scale or midscale and remains there  
until a valid write takes place to the device. The AD5024/AD5044/  
AD5064/AD5064-1 contain a power-down feature that reduces  
the current consumption of the device to typically 400 nA at 5 V  
and provides software selectable output loads while in power-  
down mode. Total unadjusted error for the parts is <2 mV.  
1. Quad channel available in 14-/16-lead TSSOP packages.  
2. 16-bit accurate, 1 LSB INL.  
3. High speed serial interface with clock speeds up to 50 MHz.  
4. Reset to known output voltage (zero scale or midscale).  
Table 1. Related Devices  
Part No.  
Description  
AD5666  
Quad,16-bit buffered DAC,  
16 LSB INL, TSSOP  
AD5025/AD5045/AD5065 Dual, 16-bit buffered DACs,  
1 LSB INL, TSSOP  
AD5062, AD5063  
16-bit nanoDAC, 1 LSB INL, SOT-23,  
MSOP  
AD5061  
16-bit nanoDAC, 4 LSB INL, SOT-23  
AD5040/AD5060  
14-/16-bit nanoDAC, 1 LSB INL,  
SOT-23  
Rev. F  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2008–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD5024/AD5044/AD5064  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Output Amplifier........................................................................ 19  
Serial Interface ............................................................................ 19  
Shift Register............................................................................... 19  
Modes of Operation ................................................................... 21  
Power-On Reset.......................................................................... 22  
Power-Down Modes .................................................................. 22  
Clear Code Register ................................................................... 23  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description ......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Characteristics........................................................................ 4  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ........................................... 10  
Terminology .................................................................................... 17  
Theory of Operation ...................................................................... 19  
Digital-to-Analog Converter .................................................... 19  
DAC Architecture....................................................................... 19  
Reference Buffer ......................................................................... 19  
LDAC  
Function .......................................................................... 23  
Power Supply Bypassing and Grounding................................ 24  
Microprocessor Interfacing....................................................... 25  
Applications Information .............................................................. 26  
Using a Reference as a Power Supply....................................... 26  
Bipolar Operation....................................................................... 26  
Using the AD5024/AD5044/AD5064/AD5064-1 with a  
Galvanically Isolated Interface ................................................. 26  
Outline Dimensions....................................................................... 27  
Ordering Guide .......................................................................... 28  
REVISION HISTORY  
6/13—Rev. E to Rev. F  
Change to Standalone Mode Section ........................................... 21  
Added Figure 5...................................................................................6  
Changes to Figure 4...........................................................................6  
Added Figure 6...................................................................................8  
Added Table 6; Renumbered Sequentially .....................................8  
Changed Input Shift Register to Shift Register Throughout .......8  
Changes to Table 7.............................................................................9  
Changes to Typical Performance Characteristics Section ........ 10  
Changes to Terminology Section ................................................. 17  
Changes to Digital-to-Analog Converter Section, Reference  
Buffer Section, Output Amplifier Section, Serial Interface  
Section, Shift Register Section, and Table 8................................ 19  
Changes to Figure 47, Figure 48, and Figure 49 Captions ........ 20  
Added Modes of Operation Section, Daisy-Chaining Section,  
Table 10, and Table 11.................................................................... 21  
Changes to Table 13 and Power-Down Mode Section .............. 22  
Changes to Table 16 ....................................................................... 24  
Changes to Figure 52 to Figure 55................................................ 25  
Changes to Bipolar Operation Section and Figure 56 to  
5/11—Rev. D to Rev. E  
Changes to Table 4 ............................................................................ 5  
Changes to Figure 4 and Figure 5................................................... 6  
8/10—Rev. C to Rev. D  
Change to Minimum  
High Time (Single Channel  
SYNC  
Update) Parameter, Table 4 ............................................................. 5  
5/10—Rev. B to Rev. C  
Changes to Power-On Reset Section............................................ 22  
6/09—Rev. A to Rev. B  
Changes to Figure 1.......................................................................... 1  
3/09—Rev. 0 to Rev. A  
Figure 58 .......................................................................................... 26  
Added Figure 59 ............................................................................. 27  
Updated Outline Dimensions....................................................... 27  
Changes to Ordering Guide.......................................................... 28  
Added 14-Lead TSSOP ......................................................Universal  
Added Figure 1; Renumbered Sequentially .................................. 1  
Changes to Features Section, General Description Section,  
Product Highlights Section, Figure 2, and Table 1....................... 1  
Changes to Table 2............................................................................ 3  
Changes to Timing Characteristics Section and Table 4............. 5  
Added Circuit and Timing Diagrams Section and Figure 3....... 5  
8/08—Revision 0: Initial Version  
Rev. F | Page 2 of 28  
 
Data Sheet  
AD5024/AD5044/AD5064  
SPECIFICATIONS  
VDD = 4.5 V to 5.5 V, RL = 5 kΩ to GND, CL = 200 pF to GND, 2.5 V ≤ VREFIN ≤ VDD, unless otherwise specified. All specifications TMIN to  
T
MAX, unless otherwise noted.  
Table 2.  
B Grade1  
Typ  
A Grade1, 2  
Typ  
Parameter  
STATIC PERFORMANCE3  
Min  
Max  
Min  
Max  
Unit  
Conditions/Comments  
Resolution  
16  
14  
12  
16  
Bits  
Bits  
Bits  
LSB  
AD5064/AD5064-1  
AD5044  
AD5024  
AD5064/AD5064-1; TA = −40°C to  
+105°C  
AD5064/AD5064-1; TA = −40°C to  
+125°C  
Relative Accuracy (INL)4  
0.5  
0.5  
1
2
0.5  
0.5  
4
4
LSB  
0.25  
0.12  
0.2  
1
0.5  
1
LSB  
LSB  
LSB  
mV  
AD5044  
AD5024  
Differential Nonlinearity (DNL)4  
Total Unadjusted Error  
Offset Error4, 5  
0.2  
1
2
1.8  
2
1.8  
VREF = 2.5 V, VDD = 5.5 V  
0.2  
2
0.2  
2
mV  
Offset Error Temperature  
µV/°C  
Coefficient4, 6  
Full-Scale Error4  
Gain Error4  
Gain Temperature Coefficient4, 6  
All 1s loaded to DAC register, VREF < VDD  
VREF < VDD  
0.01  
0.005  
1
0.07  
0.05  
0.01  
0.005  
1
0.07 % FSR  
0.05 % FSR  
ppm  
FSR/°C  
DC Crosstalk4, 6  
40  
40  
µV  
Due to single-channel, full-scale output  
change, RL = 5 kΩ to GND or VDD  
40  
40  
40  
40  
µV/mA  
µV  
Due to load current change  
Due to powering down (per channel)  
OUTPUT CHARACTERISTICS6  
Output Voltage Range  
Capacitive Load Stability  
DC Output Impedance  
Normal Mode  
0
VDD  
1
0
VDD  
1
V
nF  
RL = 5 kΩ, RL =100 kΩ, and RL = ∞  
0.5  
0.5  
Power-Down Mode  
Output Connected to  
100 kΩ Network  
Output Connected to  
1 kΩ Network  
100  
1
100  
1
kΩ  
kΩ  
Output impedance tolerance 20 kΩ  
Output impedance tolerance 400 Ω  
Short-Circuit Current  
60  
45  
4.5  
−92  
60  
45  
4.5  
−92  
mA  
mA  
µs  
DAC = full scale, output shorted to GND  
DAC = zero scale, output shorted to VDD  
Power-Up Time7  
DC PSRR  
dB  
VDD 10%, DAC = full scale, VREF < VDD  
REFERENCE INPUTS  
Reference Input Range  
Reference Current  
2.2  
VDD  
50  
2.2  
VDD  
50  
V
µA  
35  
35  
Per DAC channel; individual reference  
option  
140  
120  
32  
160  
140  
120  
32  
160  
µA  
kΩ  
kΩ  
Single reference option  
Individual reference option  
Single reference option  
Reference Input Impedance  
LOGIC INPUTS  
Input Current8  
1
0.8  
1
0.8  
µA  
V
V
Input Low Voltage, VINL  
Input High Voltage, VINH  
Pin Capacitance6  
2.2  
2.2  
4
4
pF  
Rev. F | Page 3 of 28  
 
AD5024/AD5044/AD5064  
Data Sheet  
B Grade1  
Typ  
A Grade1, 2  
Typ  
Parameter  
Min  
Max  
0.4  
1
Min  
Max  
0.4  
1
Unit  
Conditions/Comments  
LOGIC OUTPUTS (SDO)9  
Output Low Voltage, VOL  
Output High Voltage, VOH  
V
ISINK = 2 mA  
ISOURCE = 2 mA  
VDD − 1  
VDD − 1  
High Impedance Leakage  
Current  
High Impedance Output  
Capacitance6  
0.002  
7
0.002  
7
μA  
pF  
POWER REQUIREMENTS  
VDD  
IDD  
4.5  
5.5  
4.5  
5.5  
V
DAC active, excludes load current  
VIH = VDD, VIL = GND, Code = midscale  
10  
Normal Mode  
All Power-Down Modes11  
4
0.4  
6
2
30  
4
0.4  
6
2
30  
mA  
µA  
µA  
TA = −40°C to +105°C  
TA = −40°C to +125°C  
1 Temperature range is −40°C to +125°C, typical at 25°C.  
2 A grade offered in AD5064 only.  
3 Linearity and total unadjusted error are calculated using a reduced code range—AD5064/AD5064-1: Code 512 to Code 65,024; AD5044: Code 128 to Code 16,256;  
AD5024: Code 32 to Code 4064. Output unloaded.  
4 See the Terminology section.  
5 Offset error calculated using a reduced code range—AD5064/AD5064-1: Code 512 to Code 65,024; AD5044: Code 128 to Code 16,256; AD5024: Code 32 to Code 4064.  
Output unloaded  
6 Guaranteed by design and characterization; not production tested.  
7 Time to exit power-down mode to normal mode; 32nd clock edge to 90% of DAC midscale value, output unloaded.  
8 Current flowing into individual digital pins. VDD = 5.5 V; VREF = 4.096 V; Code = midscale.  
9 AD5064-1 only.  
10 Interface inactive. All DACs active. DAC outputs unloaded.  
11 All four DACs powered down.  
AC CHARACTERISTICS  
VDD = 4.5 V to 5.5 V, RL = 5 kΩ to GND, CL = 200 pF to GND, 2.5 V ≤ VREFIN ≤ VDD. All specifications TMIN to TMAX, unless otherwise  
noted.  
Table 3.  
Parameter1, 2  
Min Typ Max Unit  
Conditions/Comments3  
Output Voltage Settling Time  
5.8  
8
µs  
¼ to ¾ scale and ¾ to ¼ scale settling to 1 LSB, RL = 5 kΩ,  
single-channel update  
10.7 13  
µs  
¼ to ¾ scale and ¾ to ¼ scale settling to 1 LSB, RL = 5 kΩ, all channel  
update  
Slew Rate  
1.5  
3
−90  
0.1  
1.9  
2
V/µs  
nV-sec  
dB  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
kHz  
Digital-to-Analog Glitch Impulse  
Reference Feedthrough  
Digital Feedthrough  
Digital Crosstalk  
Analog Crosstalk  
DAC-to-DAC Crosstalk  
AC Crosstalk  
Multiplying Bandwidth  
Total Harmonic Distortion  
Output Noise Spectral Density  
1 LSB change around major carry  
VREF = 3 V 0.86 V p-p, frequency = 100 Hz to 100 kHz  
3.5  
6
340  
−80  
64  
60  
6
VREF = 3 V 0.86 V p-p  
VREF = 3 V 0.2 V p-p, frequency = 10 kHz  
dB  
nV/√Hz DAC code = 0x8400, frequency = 1 kHz  
nV/√Hz DAC code = 0x8400, frequency = 10 kHz  
μV p-p  
Output Noise  
0.1 Hz to 10 Hz  
1 Guaranteed by design and characterization; not production tested.  
2 See the Terminology section.  
3 Temperature range is −40°C to +125°C, typical at 25°C.  
Rev. F | Page 4 of 28  
 
Data Sheet  
AD5024/AD5044/AD5064  
TIMING CHARACTERISTICS  
All input signals are specified with tR = tF = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. See Figure 4 and  
Figure 5. VDD = 4.5 V to 5.5 V. All specifications TMIN to TMAX, unless otherwise noted.  
Table 4.  
Parameter1  
Symbol  
Min  
20  
10  
10  
17  
5
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
SCLK Cycle Time  
SCLK High Time  
SCLK Low Time  
SYNC to SCLK Falling Edge Setup Time  
Data Setup Time  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
Data Hold Time  
5
5
SCLK Falling Edge to SYNC Rising Edge  
Minimum SYNC High Time (Single Channel Update)  
Minimum SYNC High Time (All Channel Update)  
SYNC Rising Edge to SCLK Fall Ignore  
LDAC Pulse Width Low  
30  
t8  
3
t8  
8
t9  
17  
20  
20  
10  
10  
10.6  
t10  
t11  
t12  
t13  
t14  
SCLK Falling Edge to LDAC Rising Edge  
CLR Minimum Pulse Width Low  
SCLK Falling Edge to LDAC Falling Edge  
CLR Pulse Activation Time  
2, 3  
SCLK Rising Edge to SDO Valid  
SCLK Falling Edge to SYNC Rising Edge  
SYNC Rising Edge to SCLK Rising Edge  
SYNC Rising Edge to LDAC/CLR Falling Edge (Single Channel Update)  
SYNC Rising Edge to LDAC/CLR Falling Edge (All Channel Update)  
Power-up Time4  
t15  
t16  
22  
2
5
2
t17  
8
2
t18  
2
2
t18  
8
4.5  
1 Maximum SCLK frequency is 50 MHz at VDD = 4.5 V to 5.5 V. Guaranteed by design and characterization; not production tested.  
2 Daisy-chain mode only.  
3 Measured with the load circuit of Figure 3. t15 determines the maximum SCLK frequency in daisy-chain mode. AD5064-1 only.  
4 Time to exit power-down mode to normal mode of AD5024/AD5044/AD5064/AD5064-1, 32nd clock edge to 90% of DAC midscale value, with output unloaded.  
Circuit and Timing Diagrams  
2mA  
I
OL  
V
(MIN) + V (MAX)  
OL  
OH  
TO OUTPUT  
PIN  
2
C
L
50pF  
2mA  
I
OH  
Figure 3. Load Circuit for Digital Output (SDO) Timing Specifications  
Rev. F | Page 5 of 28  
 
 
 
 
AD5024/AD5044/AD5064  
Data Sheet  
t1  
t9  
SCLK  
t2  
t8  
t7  
t3  
t4  
SYNC  
t6  
t5  
DIN  
1
DB31  
DB0  
t13  
t10  
LDAC  
t11  
2
LDAC  
t12  
CLR  
t14  
V
OUT  
1
2
ASYNCHRONOUS LDAC UPDATE MODE.  
SYNCHRONOUS LDAC UPDATE MODE.  
Figure 4. Serial Write Operation  
SCLK  
32  
64  
t17  
t8  
t4  
t
16  
SYNC  
DIN  
t5  
t6  
DB0  
DB31  
DB0  
DB31  
INPUT WORD FOR DAC N  
INPUT WORD FOR DAC N + 1  
INPUT WORD FOR DAC N  
t15  
DB31  
DB0  
SDO  
UNDEFINED  
t18  
t10  
1
LDAC  
t18  
t12  
CLR  
1
IF IN DAISY-CHAIN MODE, LDAC MUST BE USED ASYNCHRONOUSLY.  
Figure 5. Daisy-Chain Timing Diagram  
Rev. F | Page 6 of 28  
 
 
Data Sheet  
AD5024/AD5044/AD5064  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 5.  
Parameter  
Rating  
VDD to GND  
−0.3 V to +7 V  
Digital Input Voltage to GND  
VOUT to GND  
VREF to GND  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
Operating Temperature Range  
Industrial  
Storage Temperature Range  
−40°C to +125°C  
−65°C to +150°C  
150°C  
ESD CAUTION  
Junction Temperature (TJ MAX  
)
TSSOP Package  
Power Dissipation  
θJA Thermal Impedance  
(TJ MAX − TA)/θJA  
113°C/W  
Reflow Soldering Peak Temperature  
Pb-Free  
260°C  
Rev. F | Page 7 of 28  
 
 
AD5024/AD5044/AD5064  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
14  
1
2
3
4
5
6
7
SCLK  
LDAC  
SYNC  
13 DIN  
V
12 GND  
DD  
AD5064-1  
TOP VIEW  
V
11  
B
D
V
A
C
OUT  
OUT  
V
V
10  
9
OUT  
CLR  
SDO  
OUT  
(Not to Scale)  
POR  
V
8
REFIN  
Figure 6. 14-Lead TSSOP (RU-14)  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
LDAC  
LDAC can be operated in two modes, asynchronously and synchronously, as shown in Figure 4. Pulsing  
this pin low allows any or all DAC registers to be updated if the input registers have new data. This allows  
all DAC outputs to simultaneously update. This pin can also be tied permanently low in standalone mode.  
When daisy-chain mode is enabled, this pin cannot be tied permanently low; the LDAC pin should be  
used in asynchronous LDAC update mode, as shown in Figure 5, and the LDAC pin must be brought  
high after pulsing.  
2
3
SYNC  
VDD  
Active Low Control Input. This is the frame synchronization signal for the input data. When SYNC goes  
low, it powers on the SCLK and DIN buffers and enables the shift register. Data is transferred in on the  
falling edges of the next 32 clocks. If SYNC is taken high before the 32nd falling edge, the rising edge of  
SYNC acts as an interrupt and the write sequence is ignored by the device.  
Power Supply Input. These parts can be operated from 4.5 V to 5.5 V, and the supply should be decoupled  
with a 10 μF capacitor in parallel with a 0.1 μF capacitor to GND.  
4
5
6
VOUT  
VOUT  
POR  
A
C
Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC C. The output amplifier has rail-to-rail operation.  
Power-On Reset Pin. Tying this pin to GND powers up all four DACs to zero scale. Tying this pin to VDD  
powers up all four DACs to midscale.  
7
8
VREFIN  
SDO  
This is a common pin for reference input for DAC A, DAC B, DAC C, and DAC D.  
Serial Data Output. Can be used to daisy-chain a number of AD5064-1 devices together. The serial data  
is transferred on the rising edge of SCLK and is valid on the falling edge of the clock.  
9
CLR  
Asynchronous Clear Input. The CLR input is falling edge sensitive. When CLR is low, all LDAC pulses are  
ignored. When CLR is activated, the input register and the DAC register are updated with the data  
contained in the clear code register—zero, midscale, or full scale. Default setting clears the output to 0 V.  
Analog Output Voltage from DAC D. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.  
Ground Reference Point for All Circuitry on the Part.  
10  
11  
12  
13  
VOUT  
VOUT  
GND  
DIN  
D
B
Serial Data Input. This device has a 32-bit shift register. Data is clocked into the shift register on the  
falling edge of the serial clock input.  
14  
SCLK  
Serial Clock Input. Data is clocked into the shift register on the falling edge of the serial clock input. Data  
can be transferred at rates of up to 50 MHz.  
Rev. F | Page 8 of 28  
 
Data Sheet  
AD5024/AD5044/AD5064  
LDAC  
SYNC  
1
2
3
4
5
6
7
8
16 SCLK  
15 DIN  
V
14  
13  
12  
11  
10  
9
GND  
DD  
AD5024/  
AD5044/  
AD5064  
V
B
D
OUT  
V
V
V
B
A
A
C
REF  
REF  
V
OUT  
TOP VIEW  
(Not to Scale)  
V
D
REF  
OUT  
OUT  
V
CLR  
V
C
POR  
REF  
Figure 7. 16-Lead TSSOP (RU-16) Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
LDAC  
LDAC can be operated in two modes, asynchronously and synchronously, as shown in Figure 4. Pulsing  
this pin low allows any or all DAC registers to be updated if the input registers have new data. This allows  
all DAC outputs to simultaneously update. This pin can also be tied permanently low in standalone mode.  
2
SYNC  
Active Low Control Input. This is the frame synchronization signal for the input data. When SYNC goes  
low, it powers on the SCLK and DIN buffers and enables the shift register. Data is transferred in on the  
falling edges of the next 32 clocks. If SYNC is taken high before the 32nd falling edge, the rising edge of  
SYNC acts as an interrupt and the write sequence is ignored by the device.  
3
VDD  
Power Supply Input. These parts can be operated from 4.5 V to 5.5 V, and the supply should be decoupled  
with a 10 µF capacitor in parallel with a 0.1 µF capacitor to GND.  
4
5
6
7
8
VREF  
B
DAC B Reference Input. This is the reference voltage input pin for DAC B.  
DAC A Reference Input. This is the reference voltage input pin for DAC A.  
Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC C. The output amplifier has rail-to-rail operation.  
Power-On Reset. Tying this pin to GND powers up the part to 0 V. Tying this pin to VDD powers up the  
part to midscale.  
VREFA  
VOUT  
VOUT  
POR  
A
C
9
VREFC  
DAC C Reference Input. This is the reference voltage input pin for DAC C.  
10  
CLR  
Asynchronous Clear Input. The CLR input is falling edge sensitive. When CLR is low, all LDAC pulses are  
ignored. When CLR is activated, the input register and the DAC register are updated with the data  
contained in the clear code register—zero, midscale, or full scale. Default setting clears the output to 0 V.  
DAC D Reference Input. This is the reference voltage input pin for DAC D.  
Analog Output Voltage from DAC D. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.  
Ground Reference Point for All Circuitry on the Part.  
11  
12  
13  
14  
15  
VREF  
VOUT  
VOUT  
D
D
B
GND  
DIN  
Serial Data Input. This device has a 32-bit shift register. Data is clocked into the shift register on the  
falling edge of the serial clock input.  
16  
SCLK  
Serial Clock Input. Data is clocked into the shift register on the falling edge of the serial clock input. Data  
can be transferred at rates of up to 50 MHz.  
Rev. F | Page 9 of 28  
AD5024/AD5044/AD5064  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
1.0  
0.8  
V
V
T
= 5V  
V
V
T
= 5V  
REF  
= 25°C  
DD  
DD  
= 4.096V  
= 4.096V  
REF  
0.8  
= 25°C  
A
A
0.6  
0.4  
0.2  
0
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.6  
–0.8  
–1.0  
512  
16,640  
32,768  
48,896  
65,024  
16,384  
16,384  
512  
16,640  
32,768  
48,896  
65,024  
DAC CODE  
DAC CODE  
Figure 11. AD5064/AD5064-1 DNL  
Figure 8. AD5064/AD5064-1 INL  
1.0  
0.8  
1.0  
0.8  
V
V
= 5V  
V
= 5V  
= 4.096V  
= 25°C  
DD  
DD  
= 4.096V  
V
REF  
= 25°C  
REF  
T
T
A
A
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
4096  
8192  
12,288  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
DAC CODE  
DAC CODE  
Figure 12. AD5044 DNL  
Figure 9. AD5044 INL  
1.00  
0.75  
0.50  
0.25  
0
1.0  
0.8  
V
V
T
= 5V  
V
V
T
= 5V  
DD  
DD  
= 4.096V  
= 4.096V  
REF  
REF  
= 25°C  
= 25°C  
A
A
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.25  
–0.50  
–0.75  
–1.00  
0
4096  
8192  
12,288  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
DAC CODE  
DAC CODE  
Figure 13. AD5024 DNL  
Figure 10. AD5024 INL  
Rev. F | Page 10 of 28  
 
 
 
 
 
 
 
Data Sheet  
AD5024/AD5044/AD5064  
0.20  
1.2  
1.0  
V
V
= 5V  
T
= 25°C  
DD  
A
= 4.096V  
REF  
0.15  
T
= 25°C  
A
0.8  
0.10  
0.05  
0.6  
0.4  
0.2  
MAX TUE @ V = 5.5V  
DD  
0
0
MIN TUE @ V = 5.5V  
DD  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–0.05  
–0.10  
–0.15  
–0.20  
512  
16,640  
32,768  
48,896  
65,024  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
DAC CODE  
REFERENCE VOLTAGE (V)  
Figure 14. Total Unadjusted Error (TUE)  
Figure 17. TUE vs. Reference Input Voltage  
1.6  
1.4  
0.015  
0.010  
T
= 25°C  
A
1.2  
1.0  
DAC A  
0.8  
0.6  
MAX INL ERROR @ V = 5.5V  
DD  
0.005  
0
0.4  
0.2  
DAC B  
0
DAC D  
DAC C  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
MIN INL ERROR @ V = 5.5V  
DD  
–0.005  
–0.010  
–0.015  
V
V
= 5.5V  
DD  
= 4.096V  
REF  
120  
–60 –40 –20  
0
20  
40  
60  
80  
100  
140  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
TEMPERATURE (°C)  
REFERENCE VOLTAGE (V)  
Figure 15. INL vs. Reference Input Voltage  
Figure 18. Gain Error vs. Temperature  
1.6  
1.4  
0.6  
0.5  
V
= 5.5V  
= 4.096V  
T
= 25°C  
DD  
A
V
REF  
1.2  
DAC C  
1.0  
0.4  
0.3  
0.8  
0.6  
0.4  
0.2  
0.1  
MAX DNL ERROR @ V  
= 5.5V  
DD  
0.2  
DAC D  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
0
MIN DNL ERROR @ V = 5.5V  
DD  
–0.1  
–0.2  
DAC A  
DAC B  
0
–0.3  
–0.4  
–60 –40 –20  
20  
40  
60  
80  
100 120 140  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
TEMPERATURE (ºC)  
REFERENCE VOLTAGE (V)  
Figure 16. DNL vs. Reference Input Voltage  
Figure 19. Offset Error vs. Temperature  
Rev. F | Page 11 of 28  
AD5024/AD5044/AD5064  
Data Sheet  
10  
8
0.2  
V
V
A
= 5.5V  
REF  
= 25°C  
V
= 4.096V  
DD  
REF  
= 25°C  
= 4.096  
T
A
T
0.1  
0
6
GAIN ERROR  
4
FULL-SCALE ERROR  
–0.1  
2
0
–0.2  
4.50  
0
10,000 20,000 30,000 40,000 50,000 60,000 70,000  
DAC CODE  
4.75  
5.00  
(V)  
5.25  
5.50  
V
DD  
Figure 20. Gain Error and Full-Scale Error vs. Supply Voltage  
Figure 23. Supply Current vs. Code  
10  
8
0.12  
V
V
= 5.5V  
= 4.096  
V
T
= 4.096V  
DD  
REF  
= 25°C  
REF  
CODE = MIDSCALE  
A
0.09  
0.06  
0.03  
0
6
4
2
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
4.50  
4.75  
5.00  
(V)  
5.25  
5.50  
V
DD  
TEMPERATURE (°C)  
Figure 21. Offset Error Voltage vs. Supply Voltage  
Figure 24. Supply Current vs. Temperature  
40  
35  
30  
25  
20  
15  
10  
5
10  
MEAN: 4.11699  
SD: 0.0544403  
LIMITS: LOW: 3 HIGH: 4.3  
CPk: LOW: 6.84 HIGH: 1.12  
V
V
A
= 5.5V  
REF  
= 25°C  
DD  
= 4.096  
T
8
6
4
2
0
V
= 4.096V  
REF  
= 25°C  
T
A
CODE = MIDSCALE  
0
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
3.9  
4.0  
4.1  
4.2  
4.3  
SUPPLY VOLTAGE (V)  
I
(mA)  
DD POWER-UP  
Figure 25. Supply Current vs. Supply Voltage  
Figure 22. IDD Histogram, VDD = 5.0 V  
Rev. F | Page 12 of 28  
Data Sheet  
AD5024/AD5044/AD5064  
10  
V
T
= 4.096V  
V
V
= 5.5V  
REF  
= 25°C  
DD  
= 4.096  
A
REF  
OUTPUT UNLOADED  
T
= 25°C  
A
V
DD  
8
6
4
2
0
1
3
DAC A  
CH1 2V  
CH3 2V  
M2ms  
20.4%  
A CH1  
2.52V  
0
1
2
3
4
5
T
DIGITAL INPUT VOLTAGE (V)  
Figure 26. Supply Current vs. Digital Input Voltage  
Figure 29. Power-On Reset to Midscale  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
CH1 = SCLK  
1
V
= 5V, V = 4.096V  
REF  
DD  
= 25ºC  
T
A
1/4 SCALE TO 3/4 SCALE  
3/4 SCALE TO 1/4 SCALE  
OUTPUT LOADED WITH 5kΩ  
AND 200pF TO GND  
CH2 = V  
V
= 5V  
DD  
OUT  
2.0  
1.5  
1.0  
0.5  
0
POWER-UP TO MIDSCALE  
OUTPUT UNLOADED  
2
0
2
4
6
8
10  
12  
14  
CH1 5V  
CH2 500mV  
M2µs  
55%  
A CH2  
1.2V  
T
TIME (µs)  
Figure 30. Exiting Power-Down to Midscale  
Figure 27. Settling Time  
6
5
VDD = 5V  
= 4.096V  
V
T
= 4.096V  
= 25°C  
REF  
V
REF  
A
T
= 25°C  
A
V
DD  
CODE = 0x8000 TO 0x7FFF  
4
3
OUTPUT UNLOADED WITH 5kΩ  
AND 200pF  
2
1
3
1
0
DAC A  
–1  
–2  
–3  
0
2.5  
5.0  
7.5  
10.0  
CH1 2V  
CH3 2V  
M2ms  
20.4%  
A CH1  
2.52V  
TIME (μs)  
T
Figure 31. Digital-to-Analog Glitch Impulse  
Figure 28. Power-On Reset to 0 V  
Rev. F | Page 13 of 28  
 
 
AD5024/AD5044/AD5064  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
7
V
T
= 5V,  
V
T
= 5V, V = 4.096V  
REF  
DD  
= 25ºC  
DD  
= 25ºC  
6
5
A
A
DAC LOADED WITH MIDSCALE  
V
= 3.0V ± 200mV p-p  
REF  
4
3
2
1
0
–1  
–2  
–3  
–4  
–90  
–100  
0
2.5  
5.0  
7.5  
10.0  
5
10  
20  
30  
FREQUENCY (kHz)  
40  
50  
55  
TIME (μs)  
Figure 32. Analog Crosstalk  
Figure 35. Total Harmonic Distortion  
7
6
5
4
3
2
1
0
24  
22  
20  
18  
16  
14  
12  
10  
8
V
= 5V, V = 3.0V  
REF  
V
T
= 5V, V = 4.096V  
REF  
DD  
= 25°C  
DD  
= 25°C  
T
A
A
1/4 SCALE TO 3/4 SCALE  
WITHIN ±1LSB  
–1  
–2  
–3  
–4  
6
4
0
2.5  
5.0  
7.5  
10.0  
0
1
2
3
4
5
6
7
8
9
10  
TIME (μs)  
CAPACITANCE (nF)  
Figure 33. DAC-to-DAC Crosstalk  
Figure 36. Settling Time vs. Capacitive Load  
V
= 5V, V = 4.096V  
REF  
DD  
= 25ºC  
T
A
DAC LOADED WITH MIDSCALE  
CLR  
1
DAC A  
2
V
= 5V  
REF  
= 25ºC  
DD  
V
= 4.096V  
T
A
4s/DIV  
CH1 5V  
CH2 2V  
M2µs  
A CH1  
2.5V  
T 11%  
Figure 34. 0.1 Hz to 10 Hz Output Noise Plot  
CLR  
Figure 37. Hardware  
Rev. F | Page 14 of 28  
Data Sheet  
AD5024/AD5044/AD5064  
10  
0.10  
0.08  
0.06  
0.04  
0.02  
0
CODE = MIDSCALE  
= 5V, V = 4.096V  
V
DD  
REF  
0
–10  
–20  
–30  
–40  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
CH A  
CH B  
–50  
CH C  
CH D  
3dB POINT  
–60  
10  
100  
1000  
10000  
–25 –20 –15 –10 –5  
0
5
10  
15  
20  
25  
30  
FREQUENCY (kHz)  
I
(mA)  
OUT  
Figure 41. Typical Current Limiting Plot  
Figure 38. Multiplying Bandwidth  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
T
= 25°C  
DD  
A
V
= 5V, V  
= 4.096V  
REF  
DAC A 295mV p-p  
V
= 5V, V  
= 25°C  
= 4.096V  
DD  
REF  
T
A
1/4 SCALE TO 3/4 SCALE  
3/4 SCALE TO 1/4 SCALE  
2.0  
1.5  
1.0  
0.5  
0
OUTPUT LOADED WITH 5k  
AND 200pF TO GND  
0
2
4
6
8
10  
12  
14  
CH1 50mV CH2 5V  
M4µs  
A CH2  
1.2V  
T 8.6%  
TIME (µs)  
Figure 42. Glitch Upon Entering Power-Down (1 kΩ to GND) from Zero Scale,  
No Load  
Figure 39. Typical Output Slew Rate  
0.0010  
0.0008  
0.0006  
0.0004  
0.0002  
0
T
V
= 25°C  
A
CODE = MIDSCALE  
= 5V, V = 4.096V  
= 5V, V  
= 4.096V  
DD  
REF  
V
DD  
REF  
DAC A 200mV p-p  
–0.0002  
–0.0004  
–0.0006  
–0.0008  
SCLK  
CH1 50mV CH2 5V  
M4µs  
A CH2  
1.2V  
–25 –20 –15 –10 –5  
0
5
10  
15  
20  
25  
30  
T 8.6%  
CURRENT (mA)  
Figure 43. Glitch Upon Entering Power-Down (1 kΩ to GND) from Zero Scale,  
5 kΩ/200 pF Load  
Figure 40. Typical Output Load Regulation  
Rev. F | Page 15 of 28  
AD5024/AD5044/AD5064  
Data Sheet  
V
T
= 5V,V = 4.096V  
REF  
T
V
= 25°C  
= 5V, V  
DD  
= 25°C  
A
= 4.096V  
REF  
A
DD  
DAC A 170mV p-p  
DAC A 129mV p-p  
SCLK  
SCLK  
CH1 20mV CH2 5V  
M4µs  
A CH2  
1.2V  
CH1 20mV CH2 5V  
M4µs  
A CH2  
1.2V  
T 8.6%  
T 8.6%  
Figure 44. Glitch Upon Exiting Power-Down (1 kΩ to GND) to Zero Scale,  
No Load  
Figure 45. Glitch Upon Exiting Power-Down (1 kΩ to GND) to Zero Scale,  
5 kΩ/200 pF Load  
Rev. F | Page 16 of 28  
Data Sheet  
AD5024/AD5044/AD5064  
TERMINOLOGY  
Relative Accuracy (INL)  
DC Power Supply Rejection Ratio (PSRR)  
For the DAC, relative accuracy, or integral nonlinearity (INL),  
is a measure of the maximum deviation in LSBs from a straight  
line passing through the endpoints of the DAC transfer function.  
Figure 8, Figure 9, and Figure 10 show plots of typical INL vs.  
code.  
PSRR indicates how the output of the DAC is affected by changes  
in the supply voltage. PSRR is the ratio of the change in VOUT to  
a change in VDD for full-scale output of the DAC. It is measured  
in decibels. VREF is held at 2.5 V, and V DD is varied by 10%.  
Measured with VREF < VDD  
.
Differential Nonlinearity (DNL)  
DC Crosstalk  
DNL is the difference between the measured change and the  
ideal 1 LSB change between any two adjacent codes. A specified  
differential nonlinearity of 1 LSB maximum ensures monoto-  
nicity. This DAC is guaranteed monotonic by design. Figure 11,  
Figure 12, and Figure 13 show plots of typical DNL vs. code.  
DC crosstalk is the dc change in the output level of one DAC in  
response to a change in the output of another DAC. It is measured  
with a full-scale output change on one DAC (or soft power-down  
and power-up) while monitoring another DAC kept at midscale.  
It is expressed in microvolts.  
Offset Error  
DC crosstalk due to load current change is a measure of the  
impact that a change in load current on one DAC has to another  
DAC kept at midscale. It is expressed in microvolts per milliamp.  
Offset error is a measure of the difference between the actual  
V
OUT and the ideal VOUT, expressed in millivolts in the linear  
region of the transfer function. Offset error is calculated using  
a reduced code range—AD5064/AD5604-1: Code 512 to Code  
65,024; AD5044: Code 128 to Code 16,256; AD5024: Code 32 to  
Code 4064, with output unloaded. Offset error can be negative or  
positive and is expressed in millivolts.  
Reference Feedthrough  
Reference feedthrough is the ratio of the amplitude of the signal  
at the DAC output to the reference input when the DAC output  
is not being updated (that is,  
decibels.  
LDAC  
is high). It is expressed in  
Gain Error  
Digital Feedthrough  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from the  
ideal, expressed as a percentage of the full-scale range.  
Digital feedthrough is a measure of the impulse injected into  
the analog output of a DAC from the digital input pins of the  
device, but it is measured when the DAC is not being written  
Offset Error Temperature Coefficient  
SYNC  
to (  
held high). It is specified in nanovolt-seconds and  
Offset error temperature coefficient is a measure of the change  
in offset error with a change in temperature. It is expressed in  
microvolts per degree Celsius.  
measured with one simultaneous data and clock pulse loaded  
to the DAC.  
Digital Crosstalk  
Gain Temperature Coefficient  
Digital crosstalk is the glitch impulse transferred to the output  
of one DAC at midscale in response to a full-scale code change  
(all 0s to all 1s or vice versa) in the input register of another  
DAC. It is measured in standalone mode and is expressed in  
nanovolt-seconds.  
Gain error drift is a measure of the change in gain error with  
changes in temperature. It is expressed in parts per million of  
full-scale range per degree Celsius.  
Full-Scale Error  
Full-scale error is a measure of the output error when full-scale  
code (0xFFFF) is loaded into the DAC register. Ideally, the  
output should be VREF − 1 LSB. Full-scale error is expressed as a  
Analog Crosstalk  
Analog crosstalk is the glitch impulse transferred to the output  
of one DAC due to a change in the output of another DAC. It is  
measured by loading one of the input registers with a full-scale  
percentage of the full-scale range. Measured with VREF < VDD  
.
LDAC  
code change (all 0s to all 1s or vice versa) while keeping  
Digital-to-Analog Glitch Impulse  
LDAC  
high, and then pulsing  
low and monitoring the output of  
the DAC whose digital code has not changed. The area of the  
glitch is expressed in nanovolt-seconds.  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nanovolt-  
seconds and is measured when the digital input code is changed  
by 1 LSB at the major carry transition (0x7FFF to 0x8000). See  
Figure 31.  
Rev. F | Page 17 of 28  
 
AD5024/AD5044/AD5064  
Data Sheet  
DAC-to-DAC Crosstalk  
The multiplying bandwidth, expressed in kilohertz, is the  
frequency at which the output amplitude falls to 3 dB below  
the input.  
DAC-to-DAC crosstalk is the glitch impulse transferred to the  
output of one DAC due to a digital code change and subsequent  
output change of another DAC. This includes both digital and  
analog crosstalk. It is measured by loading one of the DACs  
with a full-scale code change (all 0s to all 1s or vice versa) with  
Total Harmonic Distortion (THD)  
Total harmonic distortion is the difference between an ideal  
sine wave and its attenuated version using the DAC. The sine  
wave is used as the reference for the DAC, and the THD is a  
measure of the harmonics present on the DAC output. It is  
measured in decibels.  
LDAC  
low and monitoring the output of another DAC. The  
energy of the glitch is expressed in nanovolt-seconds.  
Multiplying Bandwidth  
The multiplying bandwidth is a measure of the finite bandwidth  
of the amplifiers within the DAC. A sine wave on the reference  
(with full-scale code loaded to the DAC) appears on the output.  
Rev. F | Page 18 of 28  
Data Sheet  
AD5024/AD5044/AD5064  
THEORY OF OPERATION  
DIGITAL-TO-ANALOG CONVERTER  
OUTPUT AMPLIFIER  
The AD5024/AD5044/AD5064/AD5064-1 are single 12-/14-/  
16-bit, serial input, voltage output DACs with an individual  
reference pin. The AD5064-1 model (see the Ordering Guide)  
is a 16-bit, serial input, voltage output DAC that is identical to  
other AD5064 models but with a single reference pin for all  
DACs. The parts operate from supply voltages of 4.5 V to 5.5 V.  
Data is written to the AD5024/AD5044/AD5064/AD5064-1 in a  
32-bit word format via a 3-wire serial interface. The AD5024/  
AD5044/AD5064/AD5064-1 incorporate a power-on reset circuit  
that ensures that the DAC output powers up to a known output  
state. The devices also have a software power-down mode that  
reduces the typical current consumption to typically 400 nA.  
The output buffer amplifier can generate rail-to-rail voltages  
on its output, which gives an output range of 0 V to VDD. The  
amplifier is capable of driving a load of 5 kΩ in parallel with  
200 pF to GND. The slew rate is 1.5 V/µs with a ¼ to ¾ scale  
settling time of 5.8 µs.  
SERIAL INTERFACE  
The AD5024/AD5044/AD5064/AD5064-1 have a 3-wire serial  
SYNC  
interface (  
, SCLK, and DIN) that is compatible with SPI,  
QSPI, and MICROWIRE interface standards as well as most  
DSPs. See Figure 4 for a timing diagram of a typical write  
sequence. The AD5064-1 model contains an SDO pin to allow  
the user to daisy-chain multiple devices together (see the Daisy-  
Chaining section).  
Because the input coding to the DAC is straight binary, the ideal  
output voltage when using an external reference is given by  
SHIFT REGISTER  
D
VOUT =VREFIN  
×
The AD5024/AD5044/AD5064/AD5064-1 shift register is 32 bits  
wide. The first four bits are don’t cares. The next four bits are the  
command bits, C3 to C0 (see Table 8), followed by the 4-bit  
DAC address bits, A3 to A0 (see Table 9), and finally the bit  
data-word. The data-word comprises 12-bit, 14-bit, or 16-bit input  
code, followed by eight, six, or four don’t care bits for the AD5024,  
AD5044, and AD5064/AD5064-1, respectively (see Figure 47,  
Figure 48, and Figure 49). These data bits are transferred to the  
DAC register on the 32nd falling edge of SCLK. Commands can be  
executed on individually selected DAC channels or on all DACs.  
2N  
where:  
D is the decimal equivalent of the binary code that is loaded to  
the DAC register (0 to 65,535 for the 16-bit AD5064).  
N is the DAC resolution.  
DAC ARCHITECTURE  
The DAC architecture of the AD5064 consists of two matched  
DAC sections. A simplified circuit diagram is shown in Figure 46.  
The four MSBs of the 16-bit data word are decoded to drive  
15 switches, E1 to E15. Each of these switches connects one of  
15 matched resistors to either GND or the VREF buffer output.  
The remaining 12 bits of the data-word drive the S0 to S11  
switches of a 12-bit voltage mode R-2R ladder network.  
Table 8. Command Definitions  
Command  
C3 C2 C1 C0 Description  
0
0
0
0
0
0
0
0
1
0
1
0
Write to Input Register n  
Update DAC Register n  
Write to Input Register n, update all  
(software LDAC)  
V
OUT  
2R  
E1  
2R  
E2  
2R  
2R  
2R  
S0  
2R  
S1  
2R  
E15  
S11  
0
0
0
0
0
1
1
1
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
1
Write to and update DAC Channel n  
Power down/power up DAC  
Load clear code register  
Load LDAC register  
V
REF  
12-BIT R-2R LADDER  
FOUR MSBs DECODED INTO  
15 EQUAL SEGMENTS  
Reset (power-on reset)  
Set up DCEN register1 (daisy-chain enable)  
Reserved  
Figure 46. DAC Ladder Structure  
REFERENCE BUFFER  
Reserved  
The AD5024/AD5044/AD5064/AD5064-1 operate with an exter-  
nal reference. For most models, each DAC has a dedicated voltage  
reference pin. The AD5064-1 model has a single voltage reference  
pin for all DACs. The reference input pin has an input range of  
2.2 V to VDD. This input voltage is then buffered internally to  
provide a reference for the DAC core.  
1 Available in the AD5064-1 14-lead TSSOP package only.  
Table 9. Address Commands  
Address (n)  
A3  
0
0
0
0
A2  
0
0
0
0
A1  
0
A0  
0
1
0
1
Selected DAC Channel  
DAC A  
DAC B  
DAC C  
DAC D  
All DACs  
0
1
1
1
1
1
1
Rev. F | Page 19 of 28  
 
 
 
 
 
 
 
 
 
 
AD5024/AD5044/AD5064  
Data Sheet  
DB31 (MSB)  
DB0 (LSB)  
X
X
X
X
C3 C2 C1 C0 A3 A2 A1 A0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
X
X
X
X
X
DATA BITS  
COMMAND BITS  
ADDRESS BITS  
Figure 47. AD5024 Shift Register Content  
DB31 (MSB)  
DB0 (LSB)  
X
X
X
X
C3 C2 C1 C0 A3 A2 A1 A0 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
X
X
X
DATA BITS  
COMMAND BITS  
ADDRESS BITS  
Figure 48. AD5044 Shift Register Content  
DB31 (MSB)  
DB0 (LSB)  
X
X
X
X
C3 C2 C1 C0 A3 A2 A1 A0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
X
DATA BITS  
COMMAND BITS  
ADDRESS BITS  
Figure 49. AD5064/AD5064-1 Shift Register Content  
SCLK  
SYNC  
DIN  
DB31  
DB0  
DB31  
DB0  
INVALID WRITE SEQUENCE:  
ND  
VALID WRITE SEQUENCE, OUTPUT UPDATES  
ND  
SYNC HIGH BEFORE 32 FALLING EDGE  
ON THE 32 FALLING EDGE  
SYNC  
Figure 50.  
Interrupt Facility  
Rev. F | Page 20 of 28  
 
 
 
 
Data Sheet  
AD5024/AD5044/AD5064  
reserved for this DCEN function (see Table 8). The daisy-chain  
mode is enabled by setting Bit DB1 in the DCEN register. The  
default setting is standalone mode, where DB1 = 0.  
MODES OF OPERATION  
There are three main modes of operation: standalone mode  
where a single device is used, daisy-chain mode for a system  
that contains several DACs, and power-down mode when the  
supply current falls to 0.4 µA at 5 V.  
Table 10 shows how the state of the bit corresponds to the mode  
of operation of the device.  
Standalone Mode  
Table 10. DCEN (Daisy-Chain Enable) Register  
SYNC  
The write sequence begins by bringing the  
line low. Data  
DB1  
DB0  
Description  
from the DIN line is clocked into the 32-bit shift register on the  
falling edge of SCLK. The serial clock frequency can be as high  
as 50 MHz, making the AD5024/AD5044/AD5064/AD5064-1  
compatible with high speed DSPs. On the 32nd falling clock edge,  
the last data bit is clocked in and the programmed function is  
0
1
X
X
Standalone mode (default)  
DCEN mode  
The SCLK is continuously applied to the shift register when  
SYNC  
is low. If more than 32 clock pulses are applied, the data  
ripples out of the shift register and appears on the SDO line.  
This data is clocked out on the rising edge of SCLK and is valid  
on the falling edge. By connecting this line to the DIN input on  
the next DAC in the chain, a daisy-chain interface is constructed.  
Each DAC in the system requires 32 clock pulses; therefore, the  
total number of clock cycles must equal 32N, where N is the  
total number of devices that are updated. If  
at a clock that is not a multiple of 32, it is considered an invalid  
frame and the data is discarded.  
LDAC  
executed, that is, an  
-dependent change in DAC register  
contents and/or a change in the mode of operation. At this  
SYNC  
stage, the  
line can be kept low or be brought high. In  
either case, it must be brought high for a minimum of 3 µs  
(single channel, see Table 4, t8 parameter) before the next write  
SYNC  
sequence so that a falling edge of  
can initiate the next  
should be idled at rails between write  
sequences for even lower power operation of the part.  
SYNC  
SYNC  
is taken high  
SYNC  
write sequence.  
Interrupt  
In a normal write sequence, the  
least 32 falling edges of SCLK, and the DAC is updated on the  
SYNC  
SYNC  
When the serial transfer to all devices is complete,  
taken high. This prevents any further data from being clocked  
into the shift register.  
is  
SYNC  
line is kept low for at  
32nd falling edge. However, if  
is brought high before the  
LDAC  
In daisy-chain mode, the  
low. The  
mode, as shown in Figure 5. The  
high after pulsing. This allows all DAC outputs to simulta-  
neously update.  
pin cannot be tied permanently  
32nd falling edge, this acts as an interrupt to the write sequence.  
The write sequence is seen as invalid. Neither an update of the  
DAC register contents nor a change in the operating mode  
occurs (see Figure 50).  
LDAC  
LDAC  
update  
pin must be used in asynchronous  
LDAC  
pin must be brought  
Daisy-Chaining  
The serial clock can be continuous or a gated clock. A continuous  
For systems that contain several DACs the SDO pin can be  
used to daisy-chain several devices together and provide serial  
readback.  
SYNC  
SCLK source can be used only if  
can be held low for the  
correct number of clock cycles. In gated clock mode, a burst  
clock containing the exact number of clock cycles must be used,  
SYNC  
and  
must be taken high after the final clock to latch the data.  
The daisy-chain mode is enabled through a software executable  
daisy-chain enable (DCEN) command. Command 1000 is  
Table 11. 32-Bit Shift Register Contents for Daisy-Chain Enable  
MSB  
LSB  
DB31 to DB28  
X
DB27  
DB26  
DB25  
DB24  
DB23  
DB22  
DB21  
DB20  
DB19 to DB2  
X
DB1  
DB0  
1
0
0
0
X
X
X
X
1/0  
X
Don’t cares  
Command bits (C3 to C0)  
Address bits (A3 to A0)  
Don’t cares  
DCEN register  
Rev. F | Page 21 of 28  
 
 
 
AD5024/AD5044/AD5064  
Data Sheet  
POWER-ON RESET  
Any or all DACs (DAC D to DAC A) can be powered down to  
the selected mode by setting the corresponding four bits (DB3,  
DB2, DB1, DB0) to 1. See Table 13 for the contents of the shift  
register during power-down/power-up operation.  
The AD5024/AD5044/AD5064/AD5064-1 contain a power-on  
reset circuit that initializes the registers to their default values  
and controls the output voltage during power-up. By connecting  
the POR pin low, the AD5024/AD5044/AD5064/AD5064-1  
output powers up to zero scale. Note that this is outside the  
linear region of the DAC; by connecting the POR pin high, the  
AD5024/AD5044/AD5064/AD5064-1 output powers up to  
midscale. The output remains powered up at this level until a  
valid write sequence is made to the DAC. This is useful in  
applications where it is important to know the state of the  
output of the DAC while it is in the process of powering up.  
There is also a software executable reset function that resets the  
DAC to the power-on reset code. Command 0111 is designated  
When both Bit DB9 and Bit D8 in the shift register are set to 0,  
the part works normally with its normal power consumption of  
4 mA at 5 V. However, for the three power-down modes, the  
supply current falls to 0.4 μA at 5 V. Not only does the supply  
current fall, but the output stage is also internally switched from  
the output of the amplifier to a resistor network of known values.  
This has the advantage that the output impedance of the part is  
known while the part is in power-down mode. There are three  
different power-down options. The output is connected inter-  
nally to GND through either a 1 kΩ or a 100 kΩ resistor, or it is  
left open-circuited (three-state). The output stage is illustrated in  
Figure 51.  
LDAC  
for this reset function (see Table 8). Any events on  
or  
CLR  
during power-on reset are ignored. The power-on reset  
circuit is triggered when VDD passes 2.6 V approximately and  
takes 50 µs to complete. No writes to the AD5024/AD5044/  
AD5064/AD5064-1 should take place during this time. For  
applications which have a slow VDD ramp time (for example,  
more than 2 ms to 3ms), it is recommended that a software  
reset command is written when the power supplies have  
reached their final value.  
AMPLIFIER  
V
DAC  
OUT  
POWER-DOWN  
CIRCUITRY  
RESISTOR  
NETWORK  
POWER-DOWN MODES  
Figure 51. Output Stage During Power-Down  
The AD5024/AD5044/AD5064/AD5064-1 contain three  
separate power-down modes. Command 0100 is designated for  
the power-down function (see Table 8). These power-down  
modes are software-programmable by setting two bits, Bit DB9  
and Bit DB8, in the shift register. Table 12 shows how the state of  
the bits corresponds to the mode of operation of the device.  
The bias generator, output amplifier, resistor string, and other  
associated linear circuitry are shut down when the power-down  
mode is activated. However, the contents of the DAC register  
are unaffected when in power-down. The DAC register can be  
updated while the device is in power-down mode. The time to  
exit power-down is typically 4.5 µs for VDD = 5 V (see Figure 30).  
Table 12. Modes of Operation  
DB9 DB8 Operating Mode  
0
0
Normal operation  
Power-down modes:  
1 kΩ to GND  
100 kΩ to GND  
Three-state  
0
1
1
1
0
1
Table 13. 32-Bit Shift Register Contents for Power-Up/Power-Down Function  
MSB  
LSB  
DB31  
to  
DB19  
to  
DB7  
to  
DB28  
DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB10  
DB9 DB8 DB4  
DB3  
DB2  
DB1  
DB0  
X
0
1
0
0
X
X
X
X
X
PD1  
PD0  
X
DAC D DAC C DAC B DAC A  
Don’t  
cares  
Command bits (C3 to C0)  
Address bits (A3 to A0)—  
don’t cares  
Don’t  
cares  
Power-  
down mode cares  
Don’t  
Power-down/power-up channel  
selection—set bit to 1 to select  
Rev. F | Page 22 of 28  
 
 
 
 
 
Data Sheet  
AD5024/AD5044/AD5064  
LDAC  
Synchronous  
: After new data is read, the DAC registers  
CLEAR CODE REGISTER  
are updated on the falling edge of the 32nd SCLK pulse, provided  
The AD5024/AD5044/AD5064/AD5064-1 have a hardware  
LDAC  
is held low.  
CLR  
CLR  
pin that is an asynchronous clear input. The  
input is  
CLR  
falling edge sensitive. Bringing the  
line low clears the  
LDAC  
Asynchronous  
: The outputs are not updated at the same  
LDAC  
contents of the input register and the DAC registers to the data  
CLR  
time that the input registers are written to. When  
pulsed low, the DAC registers are updated with the contents of  
the input registers.  
is  
contained in the user-configurable  
register and sets the  
analog outputs accordingly (see Table 14). This function can be  
used in system calibration or reset to load zero scale, midscale,  
or full scale to all channels together. Note that zero scale and full  
scale are outside the linear region of the DAC. These clear code  
values are user-programmable by setting two bits, Bit DB1 and  
Bit DB0, in the shift register (see Table 14). The default setting  
clears the outputs to 0 V. Command 0101 is designated for  
loading the clear code register (see Table 8).  
LDAC  
Software  
Alternatively, the outputs of all DACs can be updated simulta-  
LDAC  
Function  
neously or individually using the software  
writing to Input Register n and updating all DAC registers.  
LDAC  
function by  
Command 0010 is reserved for this software  
function.  
Writing to the DAC using Command 0110 loads the 4-bit  
LDAC  
is 0; that is, the  
register (DB3 to DB0). The default for each channel  
Table 14. Clear Code Register  
LDAC  
pin works normally. Setting the bits to 1  
DB1 (CR1)  
DB0 (CR0)  
Clears to Code  
0x0000  
0x8000  
0xFFFF  
No operation  
updates the DAC channel regardless of the state of the hardware  
pin, so that it effectively sees the hardware  
being tied low (see Table 15 for the  
operation.) This flexibility is useful in applications where the  
user wants to simultaneously update select channels while the  
remainder of the channels are synchronously updating.  
0
0
1
1
0
1
0
1
LDAC  
LDAC  
pin as  
LDAC  
register mode of  
The part exits clear code mode on the 32nd falling edge of the  
CLR  
next write to the part. If hardware  
write sequence, the write is aborted.  
CLR  
pin is activated during a  
LDAC  
Table 15.  
Load  
Overwrite Definition  
Register  
LDAC  
CLR  
pulse activation time, which is the falling edge of  
The  
to when the output starts to change, is typically 10.6 μs. See  
Bits  
LDAC  
Pin  
Operation  
LDAC  
LDAC  
1 or 0  
X1  
(DB3 to DB0)  
Table 16 for contents of the shift register while loading the clear  
code register.  
0
1
Determined by the LDAC pin.  
DAC channels update, overrides  
LDAC FUNCTION  
the  
LDAC as 0.  
pin. DAC channels see  
LDAC  
LDAC  
Hardware  
The outputs of all DACs can be updated simultaneously using  
LDAC LDAC  
Pin  
1 X = don’t care.  
LDAC  
The  
over the hardware  
bits (DB0 to DB3) to 0 for a DAC channel means that this  
LDAC  
register gives the user extra flexibility and control  
the hardware  
permanently low or pulsed. There are two methods of using the  
LDAC  
pin, as shown in Figure 4.  
can be  
LDAC LDAC  
pin (see Table 17). Setting the  
hardware  
pin, synchronously and asynchronously.  
channels update is controlled by the hardware  
pin.  
Table 16. 32-Bit Shift Register Contents for Clear Code Function  
MSB  
LSB  
DB31 to DB28  
X
DB27  
DB26  
DB25  
DB24  
DB23  
DB22  
DB21  
DB20  
DB19 to DB2  
X
DB1  
1/0  
DB0  
0
1
0
1
X
X
X
X
1/0  
Don’t cares  
Command bits (C3 to C0)  
Address bits (A3 to A0)  
Don’t cares  
Clear code register  
(CR1 to CR0)  
LDAC  
Table 17. 32-Bit Shift Register Contents for  
Overwrite Function  
MSB  
LSB  
DB31 to  
DB28  
DB19  
DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 to DB4 DB3  
DB2  
DB1  
DB0  
X
0
1
1
0
X
X
X
X
X
DAC D  
DAC C  
DAC B  
DAC A  
Don’t  
cares  
Command bits (C3 to C0)  
Address bits (A3 to A0)—  
don’t cares  
Don’t  
cares  
Setting LDAC bits to 1 overrides LDAC pin  
Rev. F | Page 23 of 28  
 
 
 
 
 
 
AD5024/AD5044/AD5064  
Data Sheet  
low effective series inductance (ESI), such as is typical of common  
ceramic types of capacitors. This 0.1 µF capacitor provides a low  
impedance path to ground for high frequencies caused by  
transient currents due to internal logic switching.  
POWER SUPPLY BYPASSING AND GROUNDING  
When accuracy is important in a circuit, it is helpful to carefully  
consider the power supply and ground return layout on the board.  
The printed circuit board (PCB) containing the AD5024/AD5044/  
AD5064/AD5064-1 should have separate analog and digital  
sections. If the AD5024/AD5044/AD5064/AD5064-1 are in a  
system where other devices require an AGND-to-DGND  
connection, the connection should be made at one point only.  
This ground point should be as close as possible to the  
AD5024/AD5044/AD5064/AD5064-1.  
The power supply line should have as large a trace as possible to  
provide a low impedance path and reduce glitch effects on the  
supply line. Clocks and other fast switching digital signals should  
be shielded from other parts of the board by digital ground. Avoid  
crossover of digital and analog signals, if possible. When traces  
cross on opposite sides of the board, ensure that they run at right  
angles to each other to reduce feedthrough effects through the  
board. The best board layout technique is the microstrip tech-  
nique, where the component side of the board is dedicated to the  
ground plane only and the signal traces are placed on the solder  
side. However, this is not always possible with a 2-layer board.  
The power supply to the AD5024/AD5044/AD5064/AD5064-1  
should be bypassed with 10 µF and 0.1 µF capacitors. The capaci-  
tors should be as physically close as possible to the device, with  
the 0.1 µF capacitor ideally right up against the device. The 10 µF  
capacitors are the tantalum bead type. It is important that the  
0.1 µF capacitor have low effective series resistance (ESR) and  
Rev. F | Page 24 of 28  
 
Data Sheet  
AD5024/AD5044/AD5064  
AD5024/AD5044/AD5064/AD5064-1 to 80C51/80L51  
Interface  
MICROPROCESSOR INTERFACING  
AD5024/AD5044/AD5064/AD5064-1 to Blackfin ADSP-  
BF53x Interface  
Figure 54 shows a serial interface between the AD5024/AD5044/  
AD5064/AD5064-1 and the 80C51/80L51 microcontroller. The  
setup for the interface is as follows: TxD of the 80C51/80L51  
drives SCLK of the AD5024/AD5044/AD5064/AD5064-1, and  
Figure 52 shows a serial interface between the AD5024/AD5044/  
AD5064/AD5064-1 and the Blackfin® ADSP-BF53x microproces-  
sor. The ADSP-BF53x processor family incorporates two dual-  
channel synchronous serial ports, SPORT1 and SPORT0, for  
serial and multiprocessor communications. Using SPORT0 to  
connect to the AD5024/AD5044/AD5064/AD5064-1, the setup  
for the interface is as follows: DT0PRI drives the DIN pin of the  
AD5024/AD5044/AD5064/AD5064-1, and TSCLK0 drives the  
SYNC  
RxD drives the serial data line of the part. The  
signal is  
again derived from a bit-programmable pin on the port. In this  
case, Port Line P3.3 is used. When data is to be transmitted to the  
AD5024/AD5044/AD5064/AD5064-1, P3.3 is taken low. The  
80C51/80L51 transmit data in 8-bit bytes only; thus, only eight  
falling clock edges occur in the transmit cycle. To load data to  
the DAC, P3.3 is left low after the first eight bits are transmitted,  
and a second write cycle is initiated to transmit the second byte of  
data. P3.3 is taken high following the completion of this cycle.  
The 80C51/80L51 output the serial data in a format that has the  
LSB first. The AD5024/AD5044/AD5064/AD5064-1 must  
receive data with the MSB first. The 80C51/80L51 transmit  
routine should take this into account.  
SYNC  
SCLK of the parts. The  
pin is driven from TFS0.  
ADSP-BF53x*  
AD5024/  
AD5044/  
AD5064/  
AD5064-1  
*
TFS0  
SYNC  
DT0PRI  
DIN  
TSCLK0  
SCLK  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
80C51/80L51*  
AD5024/  
AD5044/  
AD5064/  
Figure 52. AD5024/AD5044/AD5064/AD5064-1 to Blackfin ADSP-BF53x  
Interface  
AD5064-1  
*
P3.3  
TxD  
RxD  
SYNC  
AD5024/AD5044/AD5064/AD5064-1 to 68HC11/68L11  
Interface  
SCLK  
DIN  
Figure 53 shows a serial interface between the AD5024/AD5044/  
AD5064/AD5064-1 and the 68HC11/68L11 microcontroller.  
SCK of the 68HC11/68L11 drives the SCLK of the AD5024/  
AD5044/AD5064/AD5064-1, and the MOSI output drives the  
serial data line of the DAC.  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 54. AD5024/AD5044/AD5064/AD5064-1 to 80C512/80L51 Interface  
AD5024/AD5044/AD5064/AD5064-1 to MICROWIRE  
Interface  
68HC11/68L11*  
AD5024/  
AD5044/  
AD5064/  
Figure 55 shows an interface between the AD5024/AD5044/  
AD5064/AD5064-1 and any MICROWIRE-compatible device.  
Serial data is shifted out on the falling edge of the serial clock and is  
clocked into the AD5024/AD5044/AD5064/AD5064-1 on the  
rising edge of the SCLK.  
AD5064-1  
*
PC7  
SCK  
SYNC  
SCLK  
DIN  
MOSI  
MICROWIRE*  
AD5024/  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
AD5044/  
AD5064/  
Figure 53. AD5024/AD5044/AD5064/AD5064-1 to 68HC11/68L11 Interface  
AD5064-1  
*
CS  
SK  
SO  
SYNC  
SYNC  
The  
signal is derived from a port line (PC7). The setup  
DIN  
conditions for correct operation of this interface are as follows:  
The 68HC11/68L11 is configured with its CPOL bit as 0, and its  
CPHA bit as 1. When data is being transmitted to the DAC, the  
SCLK  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
SYNC  
line is taken low (PC7). When the 68HC11/68L11 is  
Figure 55. AD5024/AD5044/AD5064/AD5064-1 to MICROWIRE Interface  
configured as described previously, data appearing on the MOSI  
output is valid on the falling edge of SCK. Serial data from the  
68HC11/68L11 is transmitted in 8-bit bytes with only eight  
falling clock edges occurring in the transmit cycle. Data is  
transmitted MSB first. To load data to the AD5024/AD5044/  
AD5064, PC7 is left low after the first eight bits are transferred,  
and a second serial write operation is performed to the DAC.  
PC7 is taken high at the end of this procedure.  
Rev. F | Page 25 of 28  
 
 
 
 
 
AD5024/AD5044/AD5064  
Data Sheet  
APPLICATIONS INFORMATION  
This is an output voltage range of 5 V, with 0x0000 corre-  
sponding to a −5 V output, and 0xFFFF corresponding to a  
USING A REFERENCE AS A POWER SUPPLY  
Because the supply current required by the AD5024/AD5044/  
AD5064/AD5064-1 is extremely low, an alternative option is to  
use a voltage reference to supply the required voltage to the parts  
(see Figure 56). This is especially useful if the power supply is  
quite noisy or if the system supply voltages are at some value  
other than 5 V (for example, 15 V). The voltage reference outputs  
a steady supply voltage for the AD5024/AD5044/AD5064/  
AD5064-1. If the low dropout REF195 is used, it must supply  
3 mA of current to the AD5024/AD5044/AD5064/AD5064-1,  
with no load on the output of the DAC. When the DAC output is  
loaded, the REF195 also needs to supply the current to the load.  
The total current required (with a 5 kΩ load on the DAC output) is  
+5 V output.  
R2 = 10kΩ  
+5V  
+5V  
R1 = 10kΩ  
AD8638/  
AD8639  
5V  
±5V  
V
V
V
REF  
REFA  
V
DD  
OUTA  
0.1µF  
10µF  
AD5024/  
AD5044/  
AD5064/  
AD5064-1  
–5V  
3-WIRE  
SERIAL INTERFACE  
3 mA + (5 V/5 kΩ) = 4 mA  
Figure 57. Bipolar Operation  
The load regulation of the REF195 is typically 2 ppm/mA,  
which results in a 3 ppm (15 µV) error for the 4 mA current  
drawn from it. This corresponds to a 0.196 LSB error.  
15V  
USING THE AD5024/AD5044/AD5064/AD5064-1  
WITH A GALVANICALLY ISOLATED INTERFACE  
In process control applications in industrial environments, it  
is often necessary to use a galvanically isolated interface to  
protect and isolate the controlling circuitry from any hazardous  
common-mode voltages that can occur in the area where the  
DAC is functioning. iCoupler® provides isolation in excess of  
2.5 kV. The AD5024/AD5044/AD5064/AD5064-1 use a 3-wire  
serial logic interface, so the ADuM1300 three-channel digital  
isolator provides the required isolation (see Figure 58). The  
power supply to the part also needs to be isolated, which is done  
by using a transformer. On the DAC side of the transformer, a  
5 V regulator provides the 5 V supply required for the AD5024/  
AD5044/AD5064/AD5064-1.  
5V  
REF195  
V
DD  
SYNC  
SCLK  
DIN  
AD5024/  
AD5044/  
AD5064/  
AD5064-1  
3-WIRE  
SERIAL  
INTERFACE  
V
= 0V TO 5V  
OUT  
Figure 56. REF195 as Power Supply to the AD5024/AD5044/AD5064/AD5064-1  
BIPOLAR OPERATION  
The AD5024/AD5044/AD5064/AD5064-1 have been designed  
for single-supply operation, but a bipolar output range is also  
possible using the circuit shown in Figure 57. The circuit gives an  
output voltage range of 5 V. R a i l-to-rail operation at the  
amplifier output is achievable using an AD8638 or an AD8639  
as the output amplifier.  
5V  
REGULATOR  
10µF  
0.1µF  
POWER  
V
DD  
SCLK  
V
V
V
V
SCLK  
Assuming VDD = VREF, the output voltage for any input code can  
be calculated as follows:  
IA  
OA  
AD5024/  
AD5044/  
AD5064/  
AD5064-1  
ADuM1300  
V
D
65,536  
R1 + R2  
R1  
R2  
R1  
SDI  
V
x
SYNC  
DIN  
IB  
OUT  
OB  
VOUT = VDD  
×
×
V  
×
DD  
where D represents the input code in decimal (0 to 65,535).  
V
DATA  
OC  
IC  
GND  
With VDD = 5 V, R1 = R2 = 10 kΩ,  
10× D  
VOUT  
=
5 V  
65,536  
Figure 58. AD5024/AD5044/AD5064/AD5064-1 with a Galvanically Isolated  
Interface  
Rev. F | Page 26 of 28  
 
 
 
 
 
 
 
Data Sheet  
AD5024/AD5044/AD5064  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 59. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 60. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
Rev. F | Page 27 of 28  
 
AD5024/AD5044/AD5064  
Data Sheet  
ORDERING GUIDE  
Model1  
Temperature Range  
Accuracy  
4 LSB INL  
4 LSB INL  
1 LSB INL  
1 LSB INL  
1 LSB INL  
1 LSB INL  
1 LSB INL  
1 LSB INL  
0.5 LSB INL  
0.5 LSB INL  
Resolution Package Description  
Package Option  
RU-14  
RU-14  
RU-14  
RU-14  
AD5064ARUZ-1  
AD5064ARUZ-1REEL7  
AD5064BRUZ-1  
AD5064BRUZ-1REEL7  
AD5064BRUZ  
AD5064BRUZ-REEL7  
AD5044BRUZ  
AD5044BRUZ-REEL7  
AD5024BRUZ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
14 Bits  
14 Bits  
12 Bits  
12 Bits  
14-lead TSSOP  
14-lead TSSOP  
14-lead TSSOP  
14-lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
RU-16  
RU-16  
16-Lead TSSOP  
16-Lead TSSOP  
RU-16  
RU-16  
16-Lead TSSOP  
16-Lead TSSOP  
RU-16  
RU-16  
AD5024BRUZ-REEL7  
EVAL-AD5064-1EBZ  
EVAL-AD5064EBZ  
14-Lead TSSOP Evaluation Board  
16-Lead TSSOP Evaluation Board  
1 Z = RoHS Compliant Part.  
©2008–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06803-0-6/13(F)  
Rev. F | Page 28 of 28  
 

相关型号:

AD5064BRUZ-REEL7

Fully Accurate, 12-/14-/16-Bit VOUT nanoDAC, Quad, SPI Interface, 4.5 V to 5.5 V in TSSOP
ADI

AD5065

Fully Accurate, 12-/14-/16-Bit, Dual, VOUT nanoDAC SPI Interface, 4.5 V to 5.5 V in a TSSOP
ADI

AD50651

Fully Accurate, 16-Bit, Unbuffered VOUT, Quad SPI Interface, 2.7 V to 5.5 V nanoDAC in a TSSOP
ADI

AD5065ARUZ

Fully Accurate, 12-/14-/16-Bit, Dual, VOUT nanoDAC SPI Interface, 4.5 V to 5.5 V in a TSSOP
ADI

AD5065ARUZ-REEL7

Fully Accurate, 12-/14-/16-Bit, Dual, VOUT nanoDAC SPI Interface, 4.5 V to 5.5 V in a TSSOP
ADI

AD5065BRUZ

Fully Accurate, 12-/14-/16-Bit, Dual, VOUT nanoDAC SPI Interface, 4.5 V to 5.5 V in a TSSOP
ADI

AD5065BRUZ-1

Fully Accurate 12-/14-/16-Bit VOUT DAC SPI Interface 2.7 V to 5.5 V in a TSSOP
ADI

AD5065BRUZ-1REEL7

Fully Accurate 12-/14-/16-Bit VOUT DAC SPI Interface 2.7 V to 5.5 V in a TSSOP
ADI

AD5065BRUZ-REEL7

Fully Accurate, 12-/14-/16-Bit, Dual, VOUT nanoDAC SPI Interface, 4.5 V to 5.5 V in a TSSOP
ADI

AD5066

Fully Accurate 16-Bit UnBuffered VOUT DAC SPI Interface 2.7 V to 5.5 V in a TSSOP
ADI

AD5066ARUZ

Fully Accurate 16-Bit UnBuffered VOUT DAC SPI Interface 2.7 V to 5.5 V in a TSSOP
ADI

AD5066ARUZ-REEL7

Fully Accurate 16-Bit UnBuffered VOUT DAC SPI Interface 2.7 V to 5.5 V in a TSSOP
ADI