AD536ASD/883B [ADI]

Integrated Circuit True RMS-to-DC Converter; 集成电路真RMS至DC转换器
AD536ASD/883B
型号: AD536ASD/883B
厂家: ADI    ADI
描述:

Integrated Circuit True RMS-to-DC Converter
集成电路真RMS至DC转换器

转换器 模拟特殊功能转换器 CD
文件: 总17页 (文件大小:558K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Integrated Circuit  
True RMS-to-DC Converter  
AD536A  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AD536A  
True rms-to-dc conversion  
Laser trimmed to high accuracy  
0.2% maximum error (AD536AK)  
0.5% maximum error (AD536AJ)  
Wide response capability  
Computes rms of ac and dc signals  
450 kHz bandwidth: V rms > 100 mV  
2 MHz bandwidth: V rms > 1 V  
Signal crest factor of 7 for 1% error  
dB output with 60 dB range  
ABSOLUTE  
VALUE  
V
IN  
dB  
SQUARER/  
DIVIDER  
COM  
+
+V  
S
C
AV  
CURRENT  
MIRROR  
25kΩ  
R
L
Low power: 1.2 mA quiescent current  
Single- or dual-supply operation  
Monolithic integrated circuit  
I
OUT  
BUFFER IN  
−55°C to +125°C operation (AD536AS)  
BUF  
25kΩ  
BUFFER  
OUT  
GENERAL DESCRIPTION  
80kΩ  
–V  
The AD536A is a complete monolithic integrated circuit that  
performs true rms-to-dc conversion. It offers performance  
comparable or superior to that of hybrid or modular units costing  
much more. The AD536A directly computes the true rms value of  
any complex input waveform containing ac and dc components.  
A crest factor compensation scheme allows measurements with 1%  
error at crest factors up to 7. The wide bandwidth of the device  
extends the measurement capability to 300 kHz with less than 3 dB  
errors for signal levels greater than 100 m V.  
S
Figure 1.  
The AD536A is available in two accuracy grades (J and K) for  
commercial temperature range (0°C to 70°C) applications, and  
one grade (S) rated for the −55°C to +125°C extended range.  
The AD536AK offers a maximum total error of 2 mV 0.2%  
of reading, while the AD536AJ and AD536AS have maximum  
errors of 5 mV 0.5% of reading. All three versions are available  
in a hermetically sealed 14-lead DIP or a 10-pin TO-100 metal  
header package. The AD536AS is also available in a 20-terminal  
leadless hermetically sealed ceramic chip carrier.  
An important feature of the AD536A, not previously available  
in rms converters, is an auxiliary dB output pin. The logarithm  
of the rms output signal is brought out to a separate pin to allow  
the dB conversion, with a useful dynamic range of 60 dB. Using  
an externally supplied reference current, the 0 dB level can be  
conveniently set to correspond to any input level from 0.1 V to  
2 V rms.  
The AD536A computes the true root-mean-square level of a  
complex ac (or ac plus dc) input signal and provides an equiva-  
lent dc output level. The true rms value of a waveform is a more  
useful quantity than the average rectified value because it relates  
directly to the power of the signal. The rms value of a statistical  
signal also relates to its standard deviation.  
The AD536A is laser trimmed to minimize input and output offset  
voltage, to optimize positive and negative waveform symmetry  
(dc reversal error), and to provide full-scale accuracy at 7 V rms.  
As a result, no external trims are required to achieve the rated  
unit accuracy.  
An external capacitor is required to perform measurements to the  
fully specified accuracy. The value of this capacitor determines the  
low frequency ac accuracy, ripple amplitude, and settling time.  
The input and output pins are fully protected. The input circuitry  
can take overload voltages well beyond the supply levels. Loss of  
supply voltage with the input connected to external circuitry does  
not cause the device to fail. The output is short-circuit protected.  
The AD536A operates equally well from split supplies or a  
single supply with total supply levels from 5 V to 36 V. With  
1 mA quiescent supply current, the device is well suited for a  
wide variety of remote controllers and battery-powered  
instruments.  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©1976–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
IMPORTANT LINKS for the AD536A*  
Last content update 09/07/2013 04:37 pm  
PARAMETRIC SELECTION TABLES  
DESIGN COLLABORATION COMMUNITY  
Find Similar Products By Operating Parameters  
Collaborate Online with the ADI support team and other designers  
about select ADI products.  
DOCUMENTATION  
Follow us on Twitter: www.twitter.com/ADI_News  
Like us on Facebook: www.facebook.com/AnalogDevicesInc  
AD536A Military Data Sheet  
AN-653: Improving Temperature, Stability, and Linearity of High  
Dynamic Range RMS RF Power Detectors  
AN-214: Ground Rules for High Speed Circuits  
AN-268: RMS-to-DC Converters Ease Measurement Tasks  
RMS-to-DC Application Guide Second Edition  
DESIGN SUPPORT  
Submit your support request here:  
Linear and Data Converters  
Embedded Processing and DSP  
* Section I: RMS-DC Conversion - Theory  
* Section II: RMS-DC Conversion - Basic Design Considerations  
* Section III: RMS Application Circuits  
Telephone our Customer Interaction Centers toll free:  
Americas:  
Europe:  
China:  
1-800-262-5643  
00800-266-822-82  
4006-100-006  
1800-419-0108  
8-800-555-45-90  
* Appendix A: Testing the Critical Parameters of RMS Converters  
* Appendix B: Input Buffer Amplifier Requirements  
India:  
* Appendix C: Computer Programs for Determining Computational  
Errors, Output Ripple, and 1% Settling Time of RMS Converter  
Russia:  
Quality and Reliability  
Lead(Pb)-Free Data  
* Appendix D: New Products Appendix to the RMS-to-DC Conversion  
Application Guide (October 2002)  
* Download the entire guide in .zip format  
Introduction to Analog RMS-to-DC Technology: Converters and  
Applications Audio Version  
SAMPLE & BUY  
AD536A  
Introduction to Analog RMS-to-DC Technology: Converters and  
Applications Non-Audio Version  
ADI Warns Against Misuse of COTS Integrated Circuits  
Space Qualified Parts List  
View Price & Packaging  
Request Evaluation Board  
Request Samples  
Check Inventory & Purchase  
Find Local Distributors  
DESIGN TOOLS, MODELS, DRIVERS & SOFTWARE  
AD536A SPICE Macro Model  
EVALUATION KITS & SYMBOLS & FOOTPRINTS  
Symbols and Footprints  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet.  
Note: Dynamic changes to the content on this page (labeled 'Important Links') does not  
constitute a change to the revision number of the product data sheet.  
This content may be frequently modified.  
AD536A  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Frequency Response .....................................................................9  
AC Measurement Accuracy and Crest Factor...........................9  
Applications Information .............................................................. 11  
Typical Connections .................................................................. 11  
Optional External Trims For High Accuracy......................... 11  
Single-Supply Operation ........................................................... 12  
Choosing the Averaging Time Constant................................. 12  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 15  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Theory of Operation ........................................................................ 8  
Connections for dB Operation ................................................... 8  
REVISION HISTORY  
7/12—Rev. D to Rev. E  
Updated Outline Dimensions....................................................... 14  
Changes to Ordering Guide.......................................................... 15  
Reorganized Layout............................................................Universal  
Changes to Figure 1.......................................................................... 1  
Changes to Figure 6.......................................................................... 8  
Changes to Figure 7.......................................................................... 9  
Changes to Figure 13, Figure 14, and Figure 15 ......................... 11  
Changes to Figure 16, Figure 17, and Single-Supply Operation  
Section.............................................................................................. 12  
Changes to Figure 21...................................................................... 13  
Updated Outline Dimensions....................................................... 14  
3/06—Rev. B to Rev. C  
Updated Format..................................................................Universal  
Changed Product Description to General Description................1  
Changes to General Description .....................................................1  
Changes to Table 1.............................................................................3  
Changes to Table 2.............................................................................5  
Added Pin Configurations and Function Descriptions ...............6  
Changed Standard Connection to Typical Connections .............8  
Changed Single Supply Connection to Single Supply  
8/08—Rev. C to Rev. D  
Changes to Features Section............................................................ 1  
Changes to General Description Section ...................................... 1  
Changes to Figure 1.......................................................................... 1  
Changes to Table 2............................................................................ 5  
Change to Figure 2 ........................................................................... 5  
Changes to Figure 15...................................................................... 10  
Changes to Connections for dB Operation Section................... 11  
Changes to Figure 17...................................................................... 12  
Changes to Frequency Response Section .................................... 12  
Operation............................................................................................9  
Changes to Connections for dB Operation................................. 11  
Changes to Figure 17...................................................................... 12  
Updated Outline Dimensions....................................................... 14  
Changes to Ordering Guide.......................................................... 15  
6/99—Rev. A to Rev. B  
1/76—Revision 0: Initial Version  
Rev. E | Page 2 of 16  
 
Data Sheet  
AD536A  
SPECIFICATIONS  
TA = +25°C and 15 V dc, unless otherwise noted.  
Table 1.  
AD536AJ  
AD536AK  
Typ  
AD536AS  
Typ Max  
VOUT = √Avg(VIN)2  
Parameter  
Min  
Typ  
VOUT = √Avg(VIN)2  
Max  
Min  
Max  
Min  
Unit  
TRANSFER FUNCTION  
VOUT = √Avg(VIN)2  
CONVERSION ACCURACY  
Total Error, Internal Trim1  
(See Figure 13)  
5
0.5  
2
0.2  
5
0.5  
mV % of rdg  
vs. Temperature  
TMIN to +70°C  
0.1 0.01  
0.05 0.005  
0.1 0.005  
0.3 0.005  
mV % of rdg/°C  
mV % of rdg/°C  
mV % of rdg/°C  
+70°C to +125°C  
vs. Supply Voltage  
0.1  
0.01  
0.2  
3
0.1 0.01  
0.1  
0.1  
0.01  
0.2  
3 0.3  
dc Reversal Error  
Total Error, External Trim1  
(See Figure 16)  
mV % of rdg  
mV % of rdg  
0.3  
2
0.1  
ERROR VS. CREST FACTOR2  
Crest Factor 1 to Crest Factor 2  
Crest Factor = 3  
Crest Factor = 7  
FREQUENCY RESPONSE3  
Specified accuracy  
Specified accuracy  
Specified accuracy  
−0.1  
−1.0  
−0.1  
−1.0  
−0.1  
−1.0  
% of rdg  
% of rdg  
Bandwidth for 1% Additional  
Error (0.09 dB)  
VIN = 10 mV  
VIN = 100 mV  
VIN = 1 V  
5
45  
120  
5
45  
120  
5
45  
120  
kHz  
kHz  
kHz  
3 dB Bandwidth  
VIN = 10 mV  
VIN = 100 mV  
VIN = 1 V  
90  
90  
90  
kHz  
450  
2.3  
25  
450  
2.3  
25  
450  
2.3  
25  
kHz  
MHz  
ms/µF  
AVERAGING TIME CONSTANT  
(See Figure 19)  
INPUT CHARACTERISTICS  
Signal Range, 15 V Supplies  
Continuous RMS Level  
Peak Transient Input  
Continuous RMS Level,  
VS = 5 V  
0 to 7  
0 to 2  
0 to 7  
0 to 2  
0 to 7  
20  
0 to 2  
V rms  
V peak  
V rms  
20  
20  
Peak Transient Input,  
VS = 5 V  
Maximum Continuous  
Nondestructive Input Level  
(All Supply Voltages)  
7
7
7
V peak  
V peak  
25  
25  
25  
Input Resistance  
Input Offset Voltage  
OUTPUT CHARACTERISTICS  
13.33  
16.67  
0.8  
20  
2
13.33  
16.67  
0.5  
20  
1
13.33  
16.67  
0.8  
20  
2
kΩ  
mV  
Offset Voltage, VIN = COM  
(See Figure 13)  
1
2
0.5  
1
2
mV  
vs. Temperature  
vs. Supply Voltage  
Voltage Swing, 15 V Supplies  
5 V Supply  
0.1  
0.1  
0.1  
0.1  
+12.5  
0.2  
mV/°C  
mV/V  
V
0.2  
0 to +11 +12.5  
0 to +2  
0 to +11  
0 to +2  
0 to +11 +12.5  
0 to +2  
V
dB OUTPUT, 0 dB = 1 V rms  
(See Figure 7)  
Error, 7 mV < VIN < 7 V rms  
Scale Factor  
Scale Factor Temperature  
Coefficient  
0.4  
−3  
−0.033  
0.6  
0.2  
−3  
−0.033  
0.3  
0.5  
−3  
−0.033  
0.6  
dB  
mV/dB  
dB/°C  
Uncompensated  
IREF for 0 dB = 1 V rms  
IREF Range  
+0.33  
20  
+0.33  
20  
+0.33  
20  
% of rdg/°C  
µA  
µA  
5
1
80  
100  
5
1
80  
100  
5
1
80  
100  
Rev. E | Page 3 of 16  
 
AD536A  
Data Sheet  
AD536AJ  
Typ  
AD536AK  
Typ  
AD536AS  
Typ Max  
Parameter  
Min  
Max  
Min  
Max  
Min  
Unit  
IOUT TERMINAL  
IOUT Scale Factor  
40  
10  
25  
40  
10  
25  
40  
10  
25  
µA/V rms  
IOUT Scale Factor Tolerance  
Output Resistance  
Voltage Compliance  
20  
30  
20  
30  
20  
30  
%
kΩ  
V
20  
20  
20  
−VS to  
−VS to  
−VS to  
(+VS − 2.5 V)  
(+VS − 2.5 V)  
(+VS − 2.5 V)  
BUFFER AMPLIFIER  
Input and Output Voltage  
Range  
−VS to  
(+VS − 2.5V)  
−VS to  
(+VS − 2.5V)  
−VS to  
(+VS − 2.5V)  
V
Input Offset Voltage, RS = 25 kΩ  
Input Bias Current  
0.5  
20  
108  
4
60  
0.5  
20  
108  
4
60  
0.5  
20  
108  
4
60  
mV  
nA  
Input Resistance  
Output Current  
(+5 mA,  
(+5 mA,  
(+5 mA,  
−130 µA)  
−130 µA)  
−130 µA)  
Short-Circuit Current  
Output Resistance  
Small-Signal Bandwidth  
Slew Rate4  
20  
20  
20  
mA  
MHz  
V/µs  
0.5  
0.5  
0.5  
1
5
1
5
1
5
POWER SUPPLY  
Voltage Rated Performance  
Dual Supply  
Single Supply  
15  
1.2  
65  
15  
1.2  
65  
15  
1.2  
65  
V
V
V
3.0  
+5  
18  
+36  
3.0  
+5  
18  
+36  
3.0  
+5  
18  
+36  
Quiescent Current  
Total VS, 5 V to 36 V, TMIN to TMAX  
TEMPERATURE RANGE  
Rated Performance  
Storage  
2
2
2
mA  
0
−55  
+70  
+150  
0
−55  
+70  
+150  
−55  
−55  
+125  
+150  
°C  
°C  
NUMBER OF TRANSISTORS  
1 Accuracy is specified for 0 V to 7 V rms, dc or 1 kHz sine wave input with the AD536A connected as in the figure referenced.  
2 Error vs. crest factor is specified as an additional error for 1 V rms rectangular pulse input, pulse width = 200 μs.  
3 Input voltages are expressed in volts rms, and error is expressed as a percentage of the reading.  
4 With 2kΩ external pull-down resistor.  
Rev. E | Page 4 of 16  
Data Sheet  
AD536A  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage  
Dual Supply  
Single Supply  
18 V  
+36 V  
Internal Power Dissipation  
Maximum Input Voltage  
Buffer Maximum Input Voltage  
Maximum Input Voltage  
Storage Temperature Range  
Operating Temperature Range  
AD536AJ/AD536AK  
AD536AS  
500 mW  
25 V peak  
VS  
25 V peak  
−55°C to +150°C  
ESD CAUTION  
0°C to +70°C  
−55°C to +125°C  
300°C  
Lead Temperature (Soldering, 60 sec)  
ESD Rating  
Thermal Resistance θJA  
1000 V  
1
10-Pin Header (H-10 Package)  
20-Terminal LCC (E-20 Package)  
14-Lead SBDIP (D-14 Package)  
14-Lead CERDIP (Q-14 Package)  
150°C/W  
95°C/W  
95°C/W  
95°C/W  
1 θJA is specified for the worst-case conditions, that is, a device soldered in a  
circuit board for surface-mount packages.  
0.1315 (3.340)  
+V  
14  
COM  
10  
R
L
9
S
I
OUT  
8
0.0807  
(2.050)  
V
1A  
IN  
1
BUF IN  
7
V
1B  
IN  
1
–V  
3
C
4
dB  
5
BUF OUT  
6
S
AV  
PAD NUMBERS CORRESPOND TO PIN NUMBERS FOR THE  
TO-100 14-LEAD CERAMIC DIP PACKAGE.  
1
BOTH PADS SHOWN MUST BE CONNECTED TO V  
.
IN  
THE AD536A IS AVAILABLE IN LASER-TRIMMED CHIP FORM.  
SUBSTRATE CONNECTED TO –V  
.
S
Figure 2. Die Dimensions and Pad Layout  
Dimensions shown in inches and (millimeters)  
Rev. E | Page 5 of 16  
 
 
 
AD536A  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
14 +V  
S
IN  
NC  
13 NC  
12 NC  
11 NC  
10 COM  
–V  
S
AD536A  
C
TOP VIEW  
AV  
(Not to Scale)  
dB  
BUF OUT  
BUF IN  
9
8
R
L
I
OUT  
NC = NO CONNECT  
Figure 3. D-14 and Q-14 Packages Pin Configuration  
Table 3. D-14 and Q-14 Packages Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
VIN  
Input Voltage  
2
NC  
No Connection  
3
4
5
6
7
8
9
−VS  
CAV  
dB  
BUF OUT  
BUF IN  
IOUT  
Negative Supply Voltage  
Averaging Capacitor  
Log (dB) Value of the RMS Output Voltage  
Buffer Output  
Buffer Input  
RMS Output Current  
Load Resistor  
RL  
10  
11  
12  
13  
14  
COM  
NC  
NC  
NC  
+VS  
Common  
No Connection  
No Connection  
No Connection  
Positive Supply Voltage  
I
OUT  
10  
R
BUF IN  
L
1
9
COM  
2
3
8
7
BUF OUT  
dB  
AD536A  
TOP VIEW  
(Not to Scale)  
+V  
S
4
6
5
V
C
AV  
IN  
–V  
S
Figure 4. H-10 Package Pin Configuration  
Table 4. H-10 Package Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
9
10  
RL  
COM  
+VS  
VIN  
−VS  
CAV  
dB  
BUF OUT  
BUF IN  
IOUT  
Load Resistor  
Common  
Positive Supply Voltage  
Input Voltage  
Negative Supply Voltage  
Averaging Capacitor  
Log (dB) Value of the RMS Output Voltage  
Buffer Output  
Buffer Input  
RMS Output Current  
Rev. E | Page 6 of 16  
 
Data Sheet  
AD536A  
3
2
1
20 19  
–V  
4
5
6
7
18  
S
NC  
AD536A  
17 NC  
NC  
TOP VIEW  
C
16  
15  
NC  
NC  
AV  
NC  
dB  
(Not to Scale)  
14 COM  
8
9
10 11 12 13  
NC = NO CONNECT  
Figure 5. E-20 Package Pin Configuration  
Table 5. E-20 Package Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
NC  
No Connection  
2
VIN  
Input Voltage  
3
NC  
No Connection  
4
5
−VS  
NC  
Negative Supply Voltage  
No Connection  
6
7
CAV  
NC  
Averaging Capacitor  
No Connection  
8
9
dB  
Log (dB) Value of the RMS Output Voltage  
Buffer Output  
Buffer Input  
No Connection  
RMS Output Current  
Load Resistor  
Common  
No Connection  
No Connection  
No Connection  
BUF OUT  
BUF IN  
NC  
IOUT  
RL  
COM  
NC  
NC  
NC  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
No Connection  
No Connection  
Positive Supply Voltage  
NC  
+VS  
Rev. E | Page 7 of 16  
AD536A  
Data Sheet  
THEORY OF OPERATION  
The AD536A embodies an implicit solution of the rms equation  
that overcomes the dynamic range as well as other limitations  
inherent in a straightforward computation of rms. The actual  
computation performed by the AD536A follows the equation  
The current mirror also produces the output current, IOUT, which  
equals 2I4. IOUT can be used directly or can be converted to a  
voltage with R2 and buffered by A4 to provide a low impedance  
voltage output. The transfer function of the AD536A results in  
the following:  
2
VIN  
V rms = Avg  
VOUT = 2R2 × I rms = VIN rms  
V rms  
The dB output is derived from the emitter of Q3 because the  
voltage at this point is proportional to –log VIN. The emitter  
follower, Q5, buffers and level shifts this voltage so that the dB  
output voltage is zero when the externally supplied emitter  
current (IREF) to Q5 approximates I3.  
Figure 6 is a simplified schematic of the AD536A. Note that it is  
subdivided into four major sections: absolute value circuit  
(active rectifier), squarer/divider, current mirror, and buffer  
amplifier. The input voltage (VIN), which can be ac or dc, is  
converted to a unipolar current (I1) by the active rectifiers  
(A1, A2). I1 drives one input of the squarer/divider, which has  
the transfer function  
CONNECTIONS FOR dB OPERATION  
The logarithmic (or decibel) output of the AD536A is one of  
its most powerful features. The internal circuit computing dB  
works accurately over a 60 dB range. The connections for dB  
measurements are shown in Figure 7.  
I4 = II2/I3  
The output current, I4, of the squarer/divider drives the current  
mirror through a low-pass filter formed by R1 and the exter-  
nally connected capacitor, CAV. If the R1 CAV time constant is  
much greater than the longest period of the input signal, then  
I4 is effectively averaged. The current mirror returns a current  
I3, which equals Avg[I4], back to the squarer/divider to complete  
the implicit rms computation. Thus,  
Select the 0 dB level by adjusting R1 for the proper 0 dB reference  
current (which is set to cancel the log output current from the  
squarer/divider at the desired 0 dB point). The external op amp  
provides a more convenient scale and allows compensation of  
the +0.33%/°C scale factor drift of the dB output pin.  
The temperature-compensating resistor, R2, is available online  
in several styles from Precision Resistor Company, Inc., (Part  
Number AT35 and Part Number ST35). The average temperature  
coefficients of R2 and R3 result in the +3300 ppm required to  
compensate for the dB output. The linear rms output is available  
at Pin 8 on the DIP or Pin 10 on the header device with an output  
impedance of 25 kΩ. Some applications require an additional  
buffer amplifier if this output is desired.  
I4 = Avg[II2/I4] = II rms  
CURRENT MIRROR  
14  
+V  
S
10  
COM  
R1  
0.4mA  
FS  
25kΩ  
0.2mA  
FS  
I
3
ABSOLUTE VALUE;  
VOLTAGE-CURRENT  
CONVERTER  
4
8
9
R2  
25kΩ  
A3  
I
R
OUT  
L
I
2
I
1
5
For dB calibration,  
BUF  
Q1  
R4  
50kΩ  
dB  
OUT  
IN  
BUFFER  
–1  
|V |R  
IN  
Q3  
V
IN  
7
1. Set VIN = 1.00 V dc or 1.00 V rms.  
2. Adjust R1 for dB output = 0.00 V.  
3. Set VIN = +0.1 V dc or 0.10 V rms.  
4. Adjust R5 for dB output = −2.00 V.  
A4  
1
Q5  
Q2  
A1  
Q4  
6
A2  
25kΩ  
80kΩ  
12kΩ  
BUF  
OUT  
ONE-QUADRANT  
SQUARER/DIVIDER  
R3  
25kΩ  
12kΩ  
3
–V  
Any other desired 0 dB reference level can be used by setting  
NOTES  
1. PINOUTS ARE FOR 14-LEAD DIP.  
S
V
IN and adjusting R1 accordingly. Note that adjusting R5 for the  
proper gain automatically provides the correct temperature  
compensation.  
Figure 6. Simplified Schematic  
Rev. E | Page 8 of 16  
 
 
 
Data Sheet  
AD536A  
+V  
V
S
IN  
+V  
ABSOLUTE  
VALUE  
S
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
4.6V TO 18V  
+E  
AD536A  
NC  
NC  
NC  
E
–V  
OUT  
SQUARER/  
DIVIDER  
S
AD580J  
–E  
–V  
+V  
S
dB SCALE  
C1, C  
C2  
2.5V  
AV  
C
AV  
FACTOR ADJUST  
R4  
NC  
S
33.2kΩ  
COM  
R1  
500kΩ  
dB  
CURRENT  
MIRROR  
+V  
R5  
5kΩ  
S
0.1µF  
R
L
BUF OUT  
BUF IN  
0dB  
7
R6  
24.9kΩ  
dB OUT  
3mV/dB  
REF  
25kΩ  
2
ADJUST  
BUF  
8
R3  
60.4Ω  
OP77  
6
I
OUT  
LINEAR  
rms  
OUTPUT  
TEMPERATURE  
COMPENSATED  
dB OUTPUT  
3
4
1
R2  
1kΩ  
+100mV/dB  
–V  
S
1
SPECIAL TC COMPENSATION RESISTOR, +3300ppm/°C,  
PRECISION RESISTOR COMPANY PART NUMBER AT 35 OR PART NUMBER ST35.  
Figure 7. dB Connection  
Figure 9 illustrates a curve of reading error for the AD536A for  
a 1 V rms input signal with crest factors from 1 to 11. A rectan-  
gular pulse train (pulse width = 100 µs) was used for this test  
because it is the worst-case waveform for rms measurement (all  
of the energy is contained in the peaks). The duty cycle and  
peak amplitude were varied to produce crest factors from 1 to  
11 while maintaining a constant 1 V rms input amplitude.  
T
FREQUENCY RESPONSE  
The AD536A utilizes a logarithmic circuit in performing the  
implicit rms computation. As with any log circuit, bandwidth  
is proportional to signal level. The solid lines in the graph of  
Figure 8 represent the frequency response of the AD536A at  
input levels from 10 mV rms to 7 V rms. The dashed lines indicate  
the upper frequency limits for 1%, 10%, and 3 dB of reading  
additional error. For example, note that a 1 V rms signal produces  
less than 1% of reading additional error up to 120 kHz. A 10 mV  
signal can be measured with 1% of reading additional error  
(100 µV) up to only 5 kHz.  
ө
O
100µs  
T
V
η = DUTY CYCLE =  
CF = 1/√η  
P
0
ө
(rms) = 1 V rms  
IN  
100µs  
1
10  
7V rms INPUT  
1V rms INPUT  
1%  
10%  
0
–1  
–2  
1
±3dB  
0.1  
100mV rms INPUT  
0.01  
10mV rms INPUT  
10k  
–3  
–4  
1k  
100k  
1M  
10M  
FREQUENCY (Hz)  
1
2
3
4
5
6
7
8
9
10  
11  
CREST FACTOR  
Figure 8. High Frequency Response  
Figure 9. Error vs. Crest Factor  
AC MEASUREMENT ACCURACY AND CREST  
FACTOR  
Crest factor is often overlooked when determining the accuracy  
of an ac measurement. The definition of crest factor is the ratio  
of the peak signal amplitude to the rms value of the signal  
(CF = VP/V rms). Most common waveforms, such as sine and  
triangle waves, have relatively low crest factors (<2). Waveforms  
that resemble low duty cycle pulse trains, such as those occurring  
in switching power supplies and SCR circuits, have high crest  
factors. For example, a rectangular pulse train with a 1% duty  
cycle has a crest factor of 10 (CF = 1√n).  
10  
1V rms CF = 10  
1V rms CF = 3  
1
0.1  
1µs  
10µs  
100µs  
1000µs  
PULSE WIDTH (µs)  
Figure 10. Error vs. Pulse Width Rectangular Pulse  
Rev. E | Page 9 of 16  
 
 
 
 
 
AD536A  
Data Sheet  
25  
20  
25  
20  
15  
V
IN  
V
IN  
15  
V
OUT  
10  
5
10  
5
V
OUT  
2.5  
0
0
5
10  
20  
30  
±6  
±10  
VOLTS (DUAL SUPPLY)  
±16  
±18  
VOLTS (SINGLE SUPPLY)  
Figure 12. Input and Output Voltage Ranges vs.  
Single Supply  
Figure 11. Input and Output Voltage Ranges vs.  
Dual Supply  
Rev. E | Page 10 of 16  
 
 
Data Sheet  
AD536A  
APPLICATIONS INFORMATION  
V
+V  
S
C
IN  
AV  
TYPICAL CONNECTIONS  
NC  
3
NC  
1
NC  
20 19  
The AD536A is simple to connect to for the majority of high  
accuracy rms measurements, requiring only an external capaci-  
tor to set the averaging time constant. The standard connection  
is shown in Figure 13 through Figure 15. In this configuration,  
the AD536A measures the rms of the ac and dc levels present at  
the input, but shows an error for low frequency input as a function  
of the filter capacitor, CAV, as shown in Figure 19. Thus, if a 4 µF  
capacitor is used, the additional average error at 10 Hz is 0.1%;  
at 3 Hz, the additional average error is 1%.  
2
–V  
ABSOLUTE  
VALUE  
S
–V  
4
18  
17  
16  
15  
14  
S
NC  
NC  
NC  
AD536A  
5
6
7
8
NC  
SQUARER/  
DIVIDER  
C
AV  
CURRENT  
MIRROR  
NC  
dB  
NC  
COM  
BUF  
25kΩ  
9
10 11 12  
13  
V
OUT  
The accuracy at higher frequencies is according to specification.  
To reject the dc input, add a capacitor in series with the input,  
as shown in Figure 17. Note that the capacitor must be nonpolar.  
If the AD536A supply rails contain a considerable amount of  
high frequency ripple, it is advisable to bypass both supply pins  
to ground with 0.1 µF ceramic capacitors, located as close to the  
device as possible.  
Figure 15. 20-Terminal Standard RMS Connection  
The input and output signal ranges are a function of the supply  
voltages; these ranges are shown in Figure 11 and Figure 12.  
The AD536A can also be used in an unbuffered voltage output  
mode by disconnecting the input to the buffer. The output then  
appears unbuffered across the 25 kΩ resistor. The buffer ampli-  
fier can then be used for other purposes. Further, the AD536A  
can be used in a current output mode by disconnecting the  
25 kΩ resistor from ground. The output current is available at  
Pin 8 (IOUT, Pin 10 on the H-10 package) with a nominal scale of  
40 μA per V rms input positive output.  
C
AV  
AD536A  
+V  
V
S
IN  
ABSOLUTE  
V
IN  
14  
13  
12  
11  
10  
9
+V  
S
1
2
3
4
5
6
7
VALUE  
NC  
–V  
NC  
NC  
S
SQUARER/  
DIVIDER  
–V  
S
NC  
COM  
C
AV  
OPTIONAL EXTERNAL TRIMS FOR HIGH  
ACCURACY  
CURRENT  
MIRROR  
dB  
BUF OUT  
V
OUT  
R
L
25kΩ  
The accuracy and offset voltage of the AD536A is adjustable  
with external trims, as shown in Figure 16. R4 trims the offset.  
Note that the offset trim circuit adds 365 Ω in series with the  
internal 25 kΩ resistor. This causes a 1.5% increase in scale factor,  
which is compensated for by R1. The scale factor adjustment  
range is 1.5%.  
BUF  
8
BUF IN  
I
OUT  
Figure 13. 14-Lead Standard RMS Connection  
I
OUT  
R
L
BUF IN  
BUF OUT  
25kΩ  
The trimming procedure is as follows:  
AD536A  
COM  
V
BUF  
OUT  
CURRENT  
MIRROR  
1. Ground the input signal, VIN, and adjust R4 to provide 0 V  
output from Pin 6. Alternatively, adjust R4 to provide the  
correct output with the lowest expected value of VIN.  
+V  
S
SQUARER/  
DIVIDER  
+V  
S
dB  
2. Connect the desired full-scale input level to VIN, either dc  
or a calibrated ac signal (1 kHz is the optimum frequency).  
3. Trim R1 to provide the correct output at Pin 6. For example,  
1.000 V dc input provides 1.000 V dc output. A 1.000 V  
peak-to-peak sine wave should provide a 0.707 V dc output.  
Any residual errors are caused by device nonlinearity.  
ABSOLUTE  
VALUE  
V
IN  
C
AV  
C
AV  
–V  
S
Figure 14. 10-Pin Standard RMS Connection  
The major advantage of external trimming is to optimize device  
performance for a reduced signal range; the AD536A is  
internally trimmed for a 7 V rms full-scale range.  
Rev. E | Page 11 of 16  
 
 
 
 
AD536A  
Data Sheet  
C
C
AV  
AV  
SCALE  
FACTOR  
ADJUST  
C2  
1µF  
+V  
+V  
S
S
V
+V  
S
IN  
ABSOLUTE  
VALUE  
ABSOLUTE  
VALUE  
V
V
+V  
14  
13  
12  
11  
10  
9
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
1
2
3
4
5
6
7
IN  
IN  
S
R1  
500Ω  
0.1µF  
+V  
S
AD536A  
AD536A  
NONPOLARIZED  
NC  
NC  
NC  
–V  
NC  
NC  
NC  
R4  
OFFSET  
–V  
S
SQUARER/  
DIVIDER  
SQUARER/  
DIVIDER  
S
–V  
S
50kΩ ADJUST  
20kΩ  
–V  
S
NC  
NC  
C
C
AV  
AV  
R3  
750kΩ  
COM  
COM  
CURRENT  
MIRROR  
CURRENT  
MIRROR  
dB  
dB  
0.1µF  
V
BUF OUT  
OUT  
R
L
BUF OUT  
V
OUT  
R
L
R2  
25kΩ  
25kΩ  
R
BUF IN  
BUF IN  
L
365Ω  
BUF  
25kΩ  
8
8
BUF  
10kΩ  
10kΩ  
I
I
OUT  
OUT  
TO  
1kΩ  
Figure 17. Single-Supply Connection  
Figure 16. Optional External Gain and Output Offset Trims  
CHOOSING THE AVERAGING TIME CONSTANT  
SINGLE-SUPPLY OPERATION  
The AD536A computes the rms of both ac and dc signals. If the  
input is a slowly varying dc signal, the output of the AD536A  
tracks the input exactly.  
Refer to Figure 17 for single supply-rail configurations between  
5 V and 36 V. When powered from a single supply, the input  
stage (VIN pin) is internally biased at a voltage between ground  
and the supply, and the input signal ac coupled. Biasing the  
device between the supply and ground is simply a matter of  
connecting the COM pin to an external resistor divider and  
bypassing to ground. The resistor values are large, minimizing  
power consumption, as the COM pin current is only 5 μA.  
At higher frequencies, the average output of the AD536A  
approaches the rms value of the input signal. The actual output  
of the AD536A differs from the ideal output by a dc (or average)  
error and some amount of ripple, as shown in Figure 18.  
E
O
Note that the 10 kΩ and 20 kΩ resistors connected to the COM pin  
(Figure 17) are asymmetrical, that is, the voltage at the COM pin is  
1/3 of the supply. This ratio of input bias to supply is optimum  
for the precision rectifier (aka absolute value circuit) input  
circuit employed for rectifying ac input waveforms and ensures  
full input symmetry for low signal voltages.  
IDEAL E  
O
DC ERROR = E – E (IDEAL)  
O
O
AVERAGE E – E  
O
O
DOUBLE FREQUENCY  
RIPPLE  
Capacitor C2 is required for AC input coupling, however an  
external dc return is unnecessary because biasing occurs  
internally. SelectC2 for the desired low frequency breakpoint  
using an input resistance of 16.7 kΩ for the 1/ωRC calculation;  
C2 = 1 μF for a cutoff at 10 Hz. Figure 11 and Figure 12 show  
the input and output signal ranges for dual and single supply  
configurations, respectively. The load resistor, RL, provides a  
path to sink output sink current when an input signal is  
disconnected.  
TIME  
Figure 18. Typical Output Waveform for Sinusoidal Input  
The dc error is dependent on the input signal frequency and  
the value of CAV. Use Figure 19 to determine the minimum value  
of CAV, which yields a given percentage of dc error above a given  
frequency using the standard rms connection.  
The ac component of the output signal is the ripple. There are  
two ways to reduce the ripple. The first method involves using a  
large value of CAV. Because the ripple is inversely proportional  
to CAV, a tenfold increase in this capacitance affects a tenfold  
reduction in ripple.  
When measuring waveforms with high crest factors, such as low  
duty cycle pulse trains, the averaging time constant should be at  
least 10 times the signal period. For example, a 100 Hz pulse  
rate requires a 100 ms time constant, which corresponds to a  
4 μF capacitor (time constant = 25 ms per μF).  
Rev. E | Page 12 of 16  
 
 
 
 
 
Data Sheet  
AD536A  
The primary disadvantage in using a large CAV to remove ripple  
is that the settling time for a step change in input level is  
increased proportionately. Figure 19 illustrates that the  
relationship between CAV and 1% settling time is 115 ms for  
each microfarad of CAV. The settling time is twice as great for  
decreasing signals as it is for increasing signals. The values in  
Figure 19 are for decreasing signals. Settling time also increases  
for low signal levels, as shown in Figure 20.  
The settling time, however, is increased by approximately a  
factor of 3. Therefore, the values of CAV and C2 can be reduced  
to permit faster settling times while still providing substantial  
ripple reduction.  
The two-pole postfilter uses an active filter stage to provide  
even greater ripple reduction without substantially increasing  
the settling times over a circuit with a one-pole filter. The values  
of CAV, C2, and C3 can then be reduced to allow extremely fast  
settling times for a constant amount of ripple. Caution should  
be exercised in choosing the value of CAV, because the dc error  
is dependent on this value and is independent of the postfilter.  
100  
10  
1
100  
10  
1
0.  
01% E  
RRO  
0.  
1% E  
R
For a more detailed explanation of these topics, refer to the RMS to  
DC Conversion Application Guide, 2nd Edition, available online  
from Analog Devices, Inc., at www.analog.com.  
RRO  
1% E  
R
RRO  
10% E  
R
RRO  
+V  
V
S
R
IN  
VALUES FOR C AND  
1% SETTLING TIME  
ABSOLUTE  
VALUE  
AV  
V
14  
+V  
S
1
2
3
4
5
6
7
IN  
0.1  
0.1  
FOR STATED % OF READING  
AD536A  
13 NC  
12 NC  
NC  
1
AVERAGING ERROR  
–V  
S
SQUARER/  
DIVIDER  
ACCURACY ± 20% DUE TO  
COMPONENT TOLERANCE  
–V  
AV  
S
C
AV  
0.01  
0.01  
100k  
NC  
11  
10  
9
1
10  
100  
1k  
10k  
C
COM  
CURRENT  
MIRROR  
INPUT FREQUENCY (Hz)  
dB  
R
L
BUF OUT  
1
PERCENT DC ERROR AND PERCENT RIPPLE (PEAK)  
25kΩ  
I
BUF IN  
OUT  
Figure 19. Error/Settling Time Graph for Use with the Standard RMS  
Connection (See Figure 13 Through Figure 15)  
BUF  
8
Rx  
24kΩ  
+
C2  
1
C3  
+
10.0  
7.5  
V
OUT  
rms  
1
FOR SINGLE POLE, SHORT Rx, REMOVE C3.  
Figure 21. Two-Pole Postfilter  
5.0  
10  
2.5  
1.0  
PEAK-TO-PEAK RIPPLE  
= 1µF  
C
PEAK-TO-PEAK  
RIPPLE (ONE POLE)  
AV  
C
= 1µF, C2 = 2.2µF  
AV  
1m  
10m  
100m  
1
10  
Rx = 0Ω  
DC ERROR  
1
rms INPUT LEVEL (V)  
C
= 1µF  
AV  
(ALL FILTERS)  
Figure 20. Settling Time vs. Input Level  
A better method to reduce output ripple is the use of a postfilter.  
Figure 21 shows a suggested circuit. If a single-pole filter is used  
(C3 removed, RX shorted) and C2 is approximately twice the  
value of CAV, the ripple is reduced, as shown in Figure 22, and  
settling time is increased. For example, with CAV = 1 µF and C2  
= 2.2 μF, the ripple for a 60 Hz input is reduced from 10% of  
reading to approximately 0.3% of reading.  
PEAK-TO-PEAK RIPPLE  
= 1µF  
C
AV  
C2 = C3 = 2.2µF (TWO-POLE)  
0.1  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 22. Performance Features of Various Filter Types  
(See Figure 13 to Figure 15 for Standard RMS Connection)  
Rev. E | Page 13 of 16  
 
 
 
 
AD536A  
Data Sheet  
OUTLINE DIMENSIONS  
0.005 (0.13) MIN  
0.080 (2.03) MAX  
8
14  
0.310 (7.87)  
1
0.220 (5.59)  
7
PIN 1  
0.100 (2.54)  
BSC  
0.320 (8.13)  
0.290 (7.37)  
0.765 (19.43) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.070 (1.78)  
0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
\
Figure 23. 14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]  
(D-14)  
Dimensions shown in inches and (millimeters)  
0.200 (5.08)  
0.075 (1.91)  
REF  
REF  
0.100 (2.54)  
0.064 (1.63)  
0.100 (2.54) REF  
0.095 (2.41)  
0.015 (0.38)  
MIN  
0.075 (1.90)  
3
19  
18  
20  
4
8
0.028 (0.71)  
0.022 (0.56)  
1
0.358 (9.09)  
0.342 (8.69)  
SQ  
0.358  
0.011 (0.28)  
0.007 (0.18)  
R TYP  
(9.09)  
MAX  
SQ  
BOTTOM  
VIEW  
0.050 (1.27)  
BSC  
14  
0.075 (1.91)  
13  
9
REF  
45° TYP  
0.088 (2.24)  
0.054 (1.37)  
0.055 (1.40)  
0.045 (1.14)  
0.150 (3.81)  
BSC  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 24. 20-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-20-1)  
Dimensions shown in inches and (millimeters)  
0.098 (2.49) MAX  
8
0.005 (0.13) MIN  
14  
0.310 (7.87)  
0.220 (5.59)  
1
7
PIN 1  
0.100 (2.54) BSC  
0.785 (19.94) MAX  
0.320 (8.13)  
0.290 (7.37)  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 25. 14-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-14)  
Dimensions shown in inches and (millimeters)  
Rev. E | Page 14 of 16  
 
Data Sheet  
AD536A  
REFERENCE PLANE  
0.500 (12.70)  
MIN  
0.160 (4.06)  
0.110 (2.79)  
0.185 (4.70)  
0.165 (4.19)  
6
7
5
8
0.021 (0.53)  
0.016 (0.40)  
0.115  
(2.92)  
BSC  
4
0.045 (1.14)  
0.025 (0.65)  
9
3
10  
0.034 (0.86)  
0.025 (0.64)  
2
1
0.230 (5.84)  
BSC  
BASE & SEATING PLANE  
0.040 (1.02) MAX  
0.050 (1.27) MAX  
36° BSC  
DIMENSIONS PER JEDEC STANDARDS MO-006-AF  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 26. 10-Pin Metal Header Package [TO-100]  
(H-10)  
Dimensions shown in inches and (millimeters)  
ORDERING GUIDE  
Model1  
AD536AJD  
AD536AJDZ  
AD536AKD  
Temperature Range  
Package Description  
Package Option  
D-14  
D-14  
D-14  
D-14  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]  
14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]  
14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]  
14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]  
10-Pin Metal Header Package [TO-100]  
AD536AKDZ  
AD536AJH  
0°C to +70°C  
H-10  
AD536AJHZ  
0°C to +70°C  
10-Pin Metal Header Package [TO-100]  
H-10  
AD536AKH  
0°C to +70°C  
10-Pin Metal Header Package [TO-100]  
H-10  
AD536AKHZ  
AD536AJQ  
AD536AKQ  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
10-Pin Metal Header Package [TO-100]  
H-10  
Q-14  
Q-14  
D-14  
D-14  
E-20-1  
H-10  
14-Lead Ceramic Dual In-Line Package [CERDIP]  
14-Lead Ceramic Dual In-Line Package [CERDIP]  
14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]  
14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]  
20-Terminal Ceramic Leadless Chip Carrier [LCC]  
10-Pin Metal Header Package [TO-100]  
10-Pin Metal Header Package [TO-100]  
Die  
20-Terminal Ceramic Leadless Chip Carrier [LCC]  
14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]  
10-Pin Metal Header Package [TO-100]  
AD536ASD  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
AD536ASD/883B  
AD536ASE/883B  
AD536ASH  
AD536ASH/883B  
AD536ASCHIPS  
5962-89805012A  
5962-8980501CA  
5962-8980501IA  
H-10  
E-20-1  
D-14  
H-10  
1 Z = RoHS Compliant Part.  
Rev. E | Page 15 of 16  
 
 
AD536A  
NOTES  
Data Sheet  
©1976–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00504-0-7/12(E)  
Rev. E | Page 16 of 16  

相关型号:

AD536ASE

Integrated Circuit True RMS-to-DC Converter
ADI

AD536ASE/883B

Integrated Circuit True RMS-to-DC Converter
ADI

AD536ASH

Integrated Circuit True RMS-to-DC Converter
ADI

AD536ASH/883B

Integrated Circuit True RMS-to-DC Converter
ADI

AD536ASQ

RMS-to-DC Converter
ETC

AD536ASQ/883B

RMS-to-DC Converter
ETC

AD537

Integrated Circuit Voltage-to-Frequency Converter
ADI

AD537*

Integrated Circuit Voltage-to-Frequency Converter
ETC

AD5370

40-Channel, 16-Bit, Serial Input, Voltage-Output DACs
ADI

AD5370BCPZ

40-Channel, 16-Bit, Serial Input, Voltage-Output DACs
ADI

AD5370BCPZ-REEL7

40-Channel, 16-Bit, Serial Input, Voltage-Output DAC
ADI

AD5370BSTZ

40-Channel, 16-Bit, Serial Input, Voltage-Output DACs
ADI