AD5671RBCPZ-RL [ADI]

Base station power amplifiers;
AD5671RBCPZ-RL
型号: AD5671RBCPZ-RL
厂家: ADI    ADI
描述:

Base station power amplifiers

文件: 总32页 (文件大小:841K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Octal, 12-/16-Bit nanoDAC+ with  
2 ppm/°C Reference, I2C Interface  
AD5671R/AD5675R  
Data Sheet  
FEATURES  
GENERAL DESCRIPTION  
The AD5671R/AD5675R are low power, octal, 12-/16-bit  
buffered voltage output digital-to-analog converters (DACs).  
They include a 2.5 V, 2 ppm/°C internal reference (enabled by  
default) and a gain select pin giving a full-scale output of 2.5 V  
(gain = 1) or 5 V (gain = 2). The devices operate from a single  
2.7 V to 5.5 V supply and are guaranteed monotonic by design.  
The AD5671R/AD5675R are available in a 20-lead TSSOP and in  
a 20-lead LFCSP and incorporate a power-on reset circuit and a  
RSTSEL pin that ensures the DAC outputs power up to zero scale  
or midscale and remain there until a valid write. The AD5671R/  
AD5675R contain a power-down mode, reducing the current  
consumption to 1 μA typical while in power-down mode.  
High performance  
High relative accuracy (INL): 3 LSB maximum at 16 bits  
Total unadjusted error (TUE): 0.14ꢀ of FSR maximum  
Offset error: 1.5 mꢁ maximum  
Gain error: 0.06ꢀ of FSR maximum  
Low drift 2.5 ꢁ reference: 2 ppm/°C typical  
Wide operating ranges  
−40°C to +125°C temperature range  
2.7 ꢁ to 5.5 ꢁ power supply  
Easy implementation  
User selectable gain of 1 or 2 (GAIN pin/bit)  
1.8 ꢁ logic compatibility  
400 kHz I2C-compatible serial interface  
Robust 2 kꢁ HBM and 1.5 kꢁ FICDM ESD rating  
20-lead, RoHS-compliant TSSOP and LFCSP  
Table 1. Octal nanoDAC+® Devices  
Interface  
Reference  
16-Bit  
12-Bit  
SPI  
Internal  
External  
Internal  
AD5676R  
AD5676  
AD5675R  
AD5672R  
Not applicable  
AD5671R  
APPLICATIONS  
Optical transceivers  
I2C  
Base station power amplifiers  
Process control (PLC input/output cards)  
Industrial automation  
PRODUCT HIGHLIGHTS  
1. High Relative Accuracy (INL)  
AD5671R (12-bit): ±1 LSB maximum  
AD5675R (16-bit): ±± LSB maximum  
2. Low Drift, 2.5 V On-Chip Reference  
Data acquisition systems  
FUNCTIONAL BLOCK DIAGRAM  
V
V
V
REFOUT  
LOGIC  
DD  
AD5671R/AD5675R  
2.5V  
REF  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
DAC  
STRING  
DAC 0  
INPUT  
V
V
V
V
V
V
V
V
0
1
2
3
4
5
6
7
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
REGISTER  
REGISTER  
DAC  
REGISTER  
STRING  
DAC 1  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC 2  
INPUT  
REGISTER  
SCL  
DAC  
REGISTER  
STRING  
DAC 3  
INPUT  
REGISTER  
SDA  
A1  
DAC  
REGISTER  
STRING  
DAC 4  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC 5  
INPUT  
REGISTER  
A0  
DAC  
REGISTER  
STRING  
DAC 6  
INPUT  
REGISTER  
LDAC  
DAC  
REGISTER  
STRING  
DAC 7  
INPUT  
REGISTER  
RESET  
GAIN POWER-DOWN  
POWER-ON  
RESET  
×1/×2  
LOGIC  
RSTSEL  
GAIN  
GND  
Figure 1.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2015 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD5671R/AD5675R  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
I2C Slave Address........................................................................ 24  
Serial Operation ......................................................................... 24  
Write Operation.......................................................................... 24  
Read Operation........................................................................... 25  
Multiple DAC Readback Sequence.......................................... 25  
Power-Down Operation............................................................ 26  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AD5671R Specifications.............................................................. 3  
AD5675R Specifications.............................................................. 5  
AC Characteristics........................................................................ 7  
Timing Characteristics ................................................................ 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configurations and Function Descriptions ......................... 10  
Typical Performance Characteristics ........................................... 11  
Terminology .................................................................................... 20  
Theory of Operation ...................................................................... 22  
Digital-to-Analog Converter (DAC) ....................................... 22  
Transfer Function ....................................................................... 22  
DAC Architecture....................................................................... 22  
Serial Interface ............................................................................ 23  
Write and Update Commands.................................................. 24  
LDAC  
Load DAC (Hardware  
Pin)........................................... 26  
Mask Register ................................................................. 27  
Hardware Reset ( ) .......................................................... 28  
LDAC  
RESET  
Reset Select Pin (RSTSEL) ........................................................ 28  
Internal Reference and Amplifier Gain Selection.................. 28  
Solder Heat Reflow..................................................................... 28  
Long-Term Temperature Drift ................................................. 28  
Thermal Hysteresis .................................................................... 29  
Applications Information.............................................................. 30  
Power Supply Recommendations............................................. 30  
Microprocessor Interfacing....................................................... 30  
AD5671R/AD5675R to ADSP-BF531 Interface .................... 30  
Layout Guidelines....................................................................... 30  
Galvanically Isolated Interface ................................................. 30  
Outline Dimensions....................................................................... 31  
Ordering Guide .......................................................................... 31  
REVISION HISTORY  
10/15—Rev. A to Rev. B  
Changes to Table 17 ....................................................................... 29  
Changes to Galvanically Isolated Interface Section and  
Figure 70 .......................................................................................... 30  
Updated Outline Dimensions....................................................... 31  
Changes to Ordering Guide.......................................................... 31  
Added 20-Lead LFCSP.......................................................Universal  
Changes to Features Section and Figure 1 .................................... 1  
Changes to Reference Temperature Coefficient Parameter,  
Table 2 and ILOGIC Parameter, Table 2 ............................................. 3  
Changes to Reference Temperature Coefficient Parameter,  
Table 3 and ILOGIC parameter, Table 3 ............................................. 5  
Changes to Table 6............................................................................ 9  
Added Thermal Resistance Section and Table 7; Renumbered  
Sequentially ...................................................................................... 9  
Added Figure 5; Renumbered Sequentially ................................ 10  
Changes to Table 8.......................................................................... 10  
Changes to Terminology Section.................................................. 20  
Change to Table 9 ........................................................................... 23  
Change to Read Operation Section.............................................. 25  
2/15—Rev. 0 to Rev. A  
Added AD5671R Specifications Section ........................................3  
Changes to Table 2.............................................................................3  
Added AD5675R Specifications Section and Table 3;  
Renumbered Sequentially ................................................................5  
Changes to Table 5.............................................................................8  
Added Figure 3; Renumbered Sequentially ...................................8  
Change to Terminology Section................................................... 20  
Change to Transfer Function Section .......................................... 22  
LDAC  
RESET  
Changes to  
Mask Register Section and Table 14............ 27  
Changes to Hardware Reset (  
) Section............................ 28  
Changed Internal Reference Setup Section to Internal Reference  
and Amplier Gain Selection Section............................................ 28  
Changes to Internal Reference and Amplier Gain Selection  
(LFCSP Only) Section and Table 16............................................. 28  
Changes to Ordering Guide.......................................................... 31  
10/14—Revision 0: Initial Version  
Rev. B | Page 2 of 32  
 
Data Sheet  
AD5671R/AD5675R  
SPECIFICATIONS  
AD5671R SPECIFICATIONS  
VDD = 2.7 V to 5.5 V, 1.8 V ≤ VLOGIC ≤ 5.5 V, RL = 2 kΩ, CL = 200 pF, all specifications TA = −40°C to +125°C, unless otherwise noted.  
Table 2.  
Parameter  
STATIC PERFORMANCE1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Resolution  
12  
Bits  
Relative Accuracy (INL)  
±±.12  
±±.12  
±±.±1  
±±.±1  
±.8  
±1  
±1  
±±.1  
±±.1  
1.6  
LSB  
LSB  
LSB  
LSB  
mV  
mV  
mV  
% of FSR  
% of FSR  
% of FSR  
% of FSR  
% of FSR  
% of FSR  
μV/°C  
mV/V  
μV  
Gain = 1  
Gain = 2  
Gain = 1  
Gain = 2  
Gain = 1 or gain = 2  
Gain = 1  
Gain = 2  
Gain = 1  
Gain = 2  
Gain = 1  
Gain = 2  
Gain = 1  
Gain = 2  
Differential Nonlinearity (DNL)  
Zero-Code Error  
Offset Error  
−±.75  
−±.1  
±2  
±1.5  
±±.1ꢀ  
±±.±7  
±±.12  
±±.±6  
±±.18  
±±.1ꢀ  
Full-Scale Error  
Gain Error  
TUE  
−±.±18  
−±.±13  
+±.±ꢀ  
−±.±2  
±±.±3  
±±.±±6  
±1  
±.25  
±2  
±3  
±2  
Offset Error Drift2  
DC Power Supply Rejection Ratio (PSRR)2  
DC Crosstalk2  
DAC code = midscale, VDD = 5 V ± 1±%  
Due to single channel, full-scale output change  
Due to load current change  
μV/mA  
μV  
Due to powering down (per channel)  
OUTPUT CHARACTERISTICS2  
Output Voltage Range  
±
±
2.5  
5
V
V
Gain = 1  
Gain = 2  
Output Current Drive  
Capacitive Load Stability  
15  
mA  
nF  
2
RL = ∞  
1±  
nF  
kΩ  
μV/mA  
RL = 1 kΩ  
Resistive Load3  
Load Regulation  
1
183  
177  
VDD = 5 V ± 1±%, DAC code = midscale,  
−3± mA ≤ IOUT ≤ +3± mA  
VDD = 3 V ± 1±%, DAC code = midscale,  
−2± mA ≤ IOUT ≤ +2± mA  
μV/mA  
Short-Circuit Currentꢀ  
Load Impedance at Rails5  
Power-Up Time  
ꢀ±  
25  
2.5  
mA  
Ω
μs  
Coming out of power-down mode, VDD = 5 V  
See the Terminology section  
REFERENCE OUTPUT  
Output Voltage6  
Reference Temperature Coefficient7, 8  
2.ꢀ975  
2.5±25  
V
2±-Lead TSSOP  
2±-Lead LFCSP  
Output Impedance2  
Output Voltage Noise2  
Output Voltage Noise Density2  
Load Regulation Sourcing2  
Load Regulation Sinking2  
Output Current Load Capability2  
Line Regulation2  
2
5
±.±ꢀ  
13  
2ꢀ±  
29  
7ꢀ  
±2±  
ꢀ3  
5
1±  
ppm/°C  
ppm/°C  
Ω
μV p-p  
nV/√Hz  
μV/mA  
μV/mA  
mA  
±.1 Hz to 1± Hz  
At ambient, f = 1± kHz, CL = 1± nF, gain = 1 or 2  
At ambient  
At ambient  
VDD ≥ 3 V  
μV/V  
At ambient  
After 1±±± hours at 125°C  
First cycle  
Long-Term Stability/Drift2  
Thermal Hysteresis2  
12  
125  
25  
ppm  
ppm  
ppm  
Additional cycles  
Rev. B | Page 3 of 32  
 
 
AD5671R/AD5675R  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
LOGIC INPUTS2  
Input Current  
Input Voltage  
Low, VINL  
±±  
µA  
Per pin  
0.3 × VLOGIC  
V
High, VINH  
0.7 × VLOGIC  
V
Pin Capacitance  
LOGIC OUTPUTS (SDA)2  
Output Voltage  
Low, VOL  
3
4
pF  
0.4  
V
V
pF  
ISINK = 200 μA  
ISOURCE = 200 μA  
High, VOH  
VLOGIC − 0.4  
Floating State Output Capacitance  
POWER REQUIREMENTS  
VLOGIC  
±.8  
5.5  
3
3
3
3
V
ILOGIC  
µA  
µA  
µA  
µA  
V
Power-on, −40°C + ±05°C  
Power-on, −40°C + ±25°C  
Power-down, −40°C + ±05°C  
Power-down, −40°C + ±25°C  
Gain = ±  
VDD  
2.7  
VREF + ±.5  
5.5  
5.5  
V
Gain = 2  
IDD  
VIH = VDD, VIL = GND, VDD = 2.7 V to 5.5 V  
Internal reference off, −40°C to +85°C  
Internal reference on, −40°C to +85°C  
Internal reference off  
Normal Mode9  
±.±  
±.8  
±.±  
±.8  
±
±
±
±
±
±.26  
2.0  
±.3  
2.±  
±.7  
±.7  
2.5  
2.5  
5.5  
5.5  
mA  
mA  
mA  
mA  
µA  
µA  
µA  
µA  
µA  
µA  
Internal reference on  
All Power-Down Modes±0  
Tristate to ± kΩ, −40°C to +85°C  
Power down to ± kΩ, −40°Cto +85°C  
Tristate, −40°C to +±05°C  
Power down to ± kΩ, −40°C to +±05°C  
Tristate to ± kΩ, −40°C to +±25°C  
Power down to ± kΩ, −40°C to +±25°C  
±
± DC specifications tested with the outputs unloaded, unless otherwise noted. Upper dead band = ±0 mV and exists only when VREF = VDD with gain = ±, or when VREF/2 =  
V
DD with gain = 2. Linearity calculated using a reduced code range of ±2 to 4080.  
2 Guaranteed by design and characterization; not production tested.  
3 Together, Channel 0, Channel ±, Channel 2, and Channel 3 can source/sink 40 mA. Similarly, together, Channel 4, Channel 5, Channel 6, and Channel 7 can source/sink  
40 mA up to a junction temperature of ±25°C.  
4 VDD = 5 V. The devices include current limiting to protect the devices during temporary overload conditions. Junction temperature can be exceeded during current  
limit. Operation above the specified maximum operation junction temperature may impair device reliability.  
5 When drawing a load current at either rail, the output voltage headroom with respect to that rail is limited by the 25 Ω typical channel resistance of the output  
devices. For example, when sinking ± mA, the minimum output voltage = 25 Ω × ± mA = 25 mV.  
6 Initial accuracy presolder reflow is ±750 µV; output voltage includes the effects of preconditioning drift. See the Internal Reference and Amplifier Gain Selection  
section.  
7 Reference is trimmed and tested at two temperatures and is characterized from −40°C to +±25°C.  
8 Reference temperature coefficient calculated as per the box method. See the Terminology section for further information.  
9 Interface inactive. All DACs active. DAC outputs unloaded.  
±0 All DACs powered down.  
Rev. B | Page 4 of 32  
Data Sheet  
AD5671R/AD5675R  
AD5675R SPECIFICATIONS  
VDD = 2.7 V to 5.5 V, 1.8 V ≤ VLOGIC ≤ 5.5 V, RL = 2 kΩ, CL = 200 pF, all specifications TA = −40°C to +125°C, unless otherwise noted.  
Table 3.  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
STATIC PERFORMANCE±  
Min  
Max  
Min  
Max  
Unit  
Test Conditions/Comments  
Resolution  
Relative Accuracy (INL)  
±6  
±6  
Bits  
LSB  
LSB  
LSB  
LSB  
mV  
mV  
mV  
±±.8  
±±.7  
±0.7  
±0.5  
0.8  
±8  
±8  
±±  
±±  
4
±±.8  
±±.7  
±0.7  
±0.5  
0.8  
±3  
±3  
±±  
±±  
±.6  
±2  
±±.5  
Gain = ±  
Gain = 2  
Gain = ±  
Gain = 2  
Gain = ± or gain = 2  
Gain = ±  
Gain = 2  
Differential Nonlinearity (DNL)  
Zero-Code Error  
Offset Error  
−0.75  
−0.±  
±6  
±4  
−0.75  
−0.±  
Full-Scale Error  
Gain Error  
TUE  
−0.0±8 ±0.28  
−0.0±3 ±0.±4  
−0.0±8 ±0.±4  
−0.0±3 ±0.07  
% of FSR Gain = ±  
% of FSR Gain = 2  
% of FSR Gain = ±  
% of FSR Gain = 2  
% of FSR Gain = ±  
% of FSR Gain = 2  
µV/°C  
+0.04  
−0.02  
±0.03  
±0.24  
±0.±2  
±0.3  
+0.04  
−0.02  
±0.03  
±0.±2  
±0.06  
±0.±8  
±0.006 ±0.25  
±±  
0.25  
±0.006 ±0.±4  
±±  
0.25  
Offset Error Drift2  
DC PSRR2  
mV/V  
DAC code = midscale,  
VDD = 5 V ± ±0%  
Due to single channel,  
full-scale output change  
DC Crosstalk2  
±2  
±2  
µV  
±3  
±2  
±3  
±2  
µV/mA  
µV  
Due to load current change  
Due to powering  
down (per channel)  
OUTPUT CHARACTERISTICS2  
Output Voltage Range  
0
0
2.5  
5
0
0
2.5  
5
V
V
Gain = ±  
Gain = 2  
Output Current Drive  
Capacitive Load Stability  
±5  
±5  
mA  
nF  
2
2
RL = ∞  
±0  
±0  
nF  
kΩ  
µV/mA  
RL = ± kΩ  
Resistive Load3  
Load Regulation  
±
±
±83  
±77  
±83  
±77  
VDD = 5 V ± ±0%, DAC code =  
midscale, −30 mA ≤ IOUT ≤ +30 mA  
VDD = 3 V ± ±0%, DAC code =  
µV/mA  
midscale, −20 mA ≤ IOUT ≤ +20 mA  
Short-Circuit Current4  
Load Impedance at Rails5  
Power-Up Time  
40  
25  
2.5  
40  
25  
2.5  
mA  
Ω
µs  
Coming out of  
power-down mode, VDD = 5 V  
REFERENCE OUTPUT  
Output Voltage6  
Reference Temperature Coefficient7, 8  
2.4975  
2.5025 2.4975  
2.5025  
V
See the Terminology section  
5
20  
20  
2
5
ppm/°C  
ppm/°C  
Ω
µV p-p  
nV/√Hz  
20-Lead TSSOP  
20-Lead LFCSP  
Output Impedance2  
Output Voltage Noise2  
Output Voltage Noise Density2  
5
2
±0  
0.04  
±3  
240  
0.04  
±3  
240  
0.± Hz to ±0 Hz  
At ambient, f = ±0 kHz,  
CL = ±0 nF, gain = ± or 2  
At ambient  
At ambient  
VDD ≥ 3 V  
Load Regulation Sourcing2  
Load Regulation Sinking2  
Output Current Load Capability2  
Line Regulation2  
29  
74  
±20  
43  
29  
74  
±20  
43  
µV/mA  
µV/mA  
mA  
µV/V  
At ambient  
Rev. B | Page 5 of 32  
 
AD5671R/AD5675R  
Data Sheet  
A Grade  
Typ  
±2  
±25  
25  
B Grade  
Typ  
±2  
±25  
25  
Parameter  
Long-Term Stability/Drift2  
Thermal Hysteresis2  
Min  
Max  
Min  
Max  
Unit  
ppm  
ppm  
ppm  
Test Conditions/Comments  
After ±000 hours at ±25°C  
First cycle  
Additional cycles  
LOGIC INPUTS2  
Input Current  
Input Voltage  
Low, VINL  
±±  
±±  
µA  
Per pin  
0.3 ×  
VLOGIC  
0.3 ×  
VLOGIC  
V
High, VINH  
0.7 ×  
VLOGIC  
0.7 ×  
VLOGIC  
V
Pin Capacitance  
LOGIC OUTPUTS (SDA)2  
Output Voltage  
Low, VOL  
3
4
3
4
pF  
0.4  
0.4  
V
V
ISINK = 200 μA  
ISOURCE = 200 μA  
High, VOH  
VLOGIC  
0.4  
VLOGIC  
0.4  
Floating State Output Capacitance  
pF  
POWER REQUIREMENTS  
VLOGIC  
ILOGIC  
±.8  
5.5  
3
3
3
3
±.8  
5.5  
3
3
3
3
V
µA  
µA  
µA  
µA  
V
Power-on, −40°C + ±05°C  
Power-on, −40°C + ±25°C  
Power-down, −40°C + ±05°C  
Power-down, −40°C + ±25°C  
Gain = ±  
VDD  
2.7  
VREF  
±.5  
5.5  
5.5  
2.7  
VREF  
±.5  
5.5  
5.5  
+
+
V
Gain = 2  
IDD  
VIH = VDD, VIL = GND,  
VDD = 2.7 V to 5.5 V  
Internal reference off,  
−40°C to +85°C  
Internal reference on,  
−40°C to +85°C  
Normal Mode9  
±.±  
±.8  
±.26  
2.0  
±.±  
±.8  
±.26  
2.0  
mA  
mA  
±.±  
±.8  
±
±.3  
2.±  
±.7  
±.±  
±.8  
±
±.3  
2.±  
±.7  
mA  
mA  
µA  
Internal reference off  
Internal reference on  
Tristate to ± kΩ,  
−40°C to +85°C  
All Power-Down Modes±0  
±
±.7  
±
±.7  
µA  
Power down to ± kΩ,  
−40°C to +85°C  
±
±
2.5  
2.5  
±
±
2.5  
2.5  
µA  
µA  
Tristate, −40°C to +±05°C  
Power down to ± kΩ,  
−40°C to +±05°C  
±
±
5.5  
5.5  
±
±
5.5  
5.5  
µA  
µA  
Tristate to ± kΩ, −40°C to +±25°C  
Power down to ± kΩ,  
−40°C to +±25°C  
± DC specifications tested with the outputs unloaded, unless otherwise noted. Upper dead band = ±0 mV and exists only when VREF = VDD with gain = ±, or when VREF/2 =  
VDD with gain = 2. Linearity calculated using a reduced code range of 256 to 65,280.  
2 Guaranteed by design and characterization; not production tested.  
3 Together, Channel 0, Channel ±, Channel 2, and Channel 3 can source/sink 40 mA. Similarly, together, Channel 4, Channel 5, Channel 6, and Channel 7 can source/sink  
40 mA up to a junction temperature of ±25°C.  
4 VDD = 5 V. The devices include current limiting to protect the devices during temporary overload conditions. Junction temperature can be exceeded during current  
limit. Operation above the specified maximum operation junction temperature may impair device reliability.  
5 When drawing a load current at either rail, the output voltage headroom with respect to that rail is limited by the 25 Ω typical channel resistance of the output  
devices. For example, when sinking ± mA, the minimum output voltage = 25 Ω × ± mA = 25 mV.  
6 Initial accuracy presolder reflow is ±750 µV; output voltage includes the effects of preconditioning drift. See the Internal Reference and Amplifier Gain Selection  
section.  
7 Reference is trimmed and tested at two temperatures and is characterized from −40°C to +±25°C.  
8 Reference temperature coefficient calculated as per the box method. See the Terminology section for further information.  
9 Interface inactive. All DACs active. DAC outputs unloaded.  
±0 All DACs powered down.  
Rev. B | Page 6 of 32  
 
Data Sheet  
AD5671R/AD5675R  
AC CHARACTERISTICS  
VDD = 2.7 V to 5.5 V, RL = 2 kΩ to GND, CL = 200 pF to GND, 1.8 V ≤ VLOGIC ≤ 5.5 V, all specifications TA = −40°C to +125°C, unless  
otherwise noted. Guaranteed by design and characterization; not production tested.  
Table 4.  
Parameter  
OUTPUT VOLTAGE SETTLING TIME2  
Min Typ  
Max  
Unit  
Test Conditions/Comments1  
AD567±R  
AD5675R  
5
5
8
8
µs  
µs  
¼ to ¾ scale settling to ±2 LSB  
¼ to ¾ scale settling to ±2 LSB  
SLEW RATE  
DIGITAL-TO-ANALOG GLITCH IMPULSE2  
DIGITAL FEEDTHROUGH2  
CROSSTALK2  
Digital  
0.8  
±.4  
0.±3  
V/µs  
nV-sec  
nV-sec  
± LSB change around major carry (internal reference, gain = ±)  
0.±  
−0.25  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
dB  
Analog  
−±.3  
−2.0  
−80  
300  
6
Internal reference, gain = 2  
Internal reference, gain = 2  
DAC-to-DAC  
TOTAL HARMONIC DISTORTION (THD)3  
OUTPUT NOISE SPECTRAL DENSITY2  
OUTPUT NOISE2  
At TA, bandwidth = 20 kHz, VDD = 5 V, fOUT = ± kHz  
nV/√Hz DAC code = midscale, ±0 kHz; gain = 2  
µV p-p  
dB  
0.± Hz to ±0 Hz, gain = ±  
SIGNAL-TO-NOISE RATIO (SNR)  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
90  
At TA = 25°C, bandwidth = 20 kHz, VDD = 5 V, fOUT = ± kHz  
At TA = 25°C, bandwidth = 20 kHz, VDD = 5 V, fOUT = ± kHz  
At TA = 25°C, bandwidth = 20 kHz, VDD = 5 V, fOUT = ± kHz  
83  
dB  
SIGNAL-TO-NOISE-AND-DISTORTION  
RATIO (SINAD)  
80  
dB  
± The operating temperature range is −40°C to +±25°C; TA = 25°C.  
2 See the Terminology section. Measured using internal reference and gain = ±, unless otherwise noted.  
3 Digitally generated sine wave at ± kHz.  
Rev. B | Page 7 of 32  
 
AD5671R/AD5675R  
Data Sheet  
TIMING CHARACTERISTICS  
VDD = 2.7 V to 5.5 V, 1.8 V ≤ VLOGIC ≤ 5.5 V, all specifications −40°C to +125°C, unless otherwise noted.  
Table 5.  
Parameter1, 2  
Min  
0.92  
0.±±  
0.44  
0.04  
40  
−0.04  
−0.045  
0.±95  
0.±2  
0
Max  
Unit  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
Description  
t±  
t2  
t3  
t4  
t5  
SCL cycle time  
tHIGH, SCL high time  
tLOW, SCL low time  
tHD,STA, start/repeated start hold time  
tSU,DAT, data setup time  
tHD,DAT, data hold time  
tSU,STA, repeated start setup time  
tSU,STO, stop condition setup time  
tBUF, bus free time between a stop condition and a start condition  
tR, rise time of SCL and SDA when receiving  
tF, fall time of SCL and SDA when transmitting/receiving  
3
t6  
t7  
t8  
t9  
t±0  
t±±  
4
4, 5  
20 + 0.±CB  
20  
t±2  
t±3  
t±4  
LDAC  
pulse width  
0.4  
LDAC  
rising edge  
SCL rising edge to  
4.8  
RESET  
RESET  
RESET  
RESET  
minimum pulse width low, ±.8 V ≤ VLOGIC ≤ 2.7 V  
minimum pulse width low, 2.7 V ≤ VLOGIC ≤ 5.5 V  
activation time, ±.8 V ≤ VLOGIC ≤ 2.7 V  
6.2  
t±5  
±32  
80  
activation time, 2.7 V ≤ VLOGIC ≤ 5.5 V  
6
tSP  
CB  
0
Pulse width of suppressed spike  
Capacitive load for each bus line  
5
400  
± See Figure 2.  
2 Guaranteed by design and characterization; not production tested.  
3 A master device must provide a hold time of at least 300 ns for the SDA signal (referred to the minimum VIH of the SCL signal) to bridge the undefined region of the  
SCL falling edge.  
4 tR and tF are measured from 0.3 × VDD to 0.7 × VDD  
5 CB is the total capacitance of one bus line in pF.  
.
6 Input filtering on the SCL and SDA inputs suppresses noise spikes that are less than 50 ns.  
Timing Diagrams  
START  
REPEATED START  
CONDITION  
STOP  
CONDITION  
CONDITION  
SDA  
SCL  
t9  
t10  
t11  
t4  
t3  
t4  
t2  
t1  
t6  
t5  
t7  
t8  
t12  
1
2
t13  
LDAC  
LDAC  
t12  
NOTES  
1
ASYNCHRONOUS LDAC UPDATE MODE.  
SYNCHRONOUS LDAC UPDATE MODE.  
2
Figure 2. 2-Wire Serial Interface Timing Diagram  
t14  
RESET  
t15  
V
x
OUT  
RESET  
Figure 3.  
Timing Diagram  
Rev. B | Page 8 of 32  
 
 
 
Data Sheet  
AD5671R/AD5675R  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
The design of the thermal board requires close attention. Thermal  
resistance is highly impacted by the printed circuit board (PCB)  
being used, layout, and environmental conditions.  
Table 6.  
Parameter  
Rating  
VDD to GND  
VLOGIC to GND  
VOUTx to GND  
VREFOUT to GND  
Digital Input Voltage to GND  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
Reflow Soldering Peak Temperature,  
Pb Free (J-STD-020)  
−0.3 V to +7 V  
−0.3 V to +7 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VLOGIC + 0.3 V  
−40°C to +±25°C  
−65°C to +±50°C  
±25°C  
Table 7.Thermal Resistance  
Package Type  
θJA  
θJB  
θJC  
ΨJT  
ΨJB  
Unit  
20-Lead TSSOP  
(RU-20)±  
98.65 44.39 ±7.58 ±.77 43.9 °C/W  
20-Lead LFCSP  
(CP-20-8)2  
82  
±6.67 32.5  
0.43 22  
°C/W  
± Thermal impedance simulated values are based on a JEDEC 2S2P thermal  
test board. See JEDEC JESD5±  
260°C  
2 Thermal impedance simulated values are based on a JEDEC 2S2P thermal  
test board with nine thermal vias. See JEDEC JESD5±.  
ESD  
Human Body Model (HBM)  
Field Induced Charged Device Model  
(FICDM)  
2 kV  
±.5 kV  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 9 of 32  
 
 
 
AD5671R/AD5675R  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
AD5671R/AD5675R  
TOP VIEW  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
1
V
V
V
2
OUT  
OUT  
(Not to Scale)  
2
V
0
3
OUT  
OUT  
3
V
DD  
REFOUT  
AD5671R/  
AD5675R  
TOP VIEW  
(Not to Scale)  
4
V
RESET  
SDA  
LOGIC  
SCL  
A0  
5
15  
V
REFOUT  
V
1
2
3
4
5
6
LDAC  
RSTSEL  
GND  
DD  
14 RESET  
13 SDA  
V
LOGIC  
SCL  
7
A1  
8
GAIN  
A0  
A1  
12 LDAC  
11 GND  
9
V
7
6
V
V
4
5
OUT  
OUT  
OUT  
10  
V
OUT  
NOTES  
1. NIC = NO INTERNAL CONNECTION.  
2. EXPOSED PAD. THE EXPOSED PAD MUST BE TIED TO GND.  
Figure 4. TSSOP Pin Configuration  
Figure 5. LFCSP Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No.  
TSSOP LFCSP Mnemonic Description  
1
2
N/A1  
3
19  
20  
0
VOUT  
VOUT  
EPAD  
VDD  
1
0
Analog Output Voltage from DAC 1. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 0. The output amplifier has rail-to-rail operation.  
Exposed Pad. The exposed pad must be tied to GND.  
Power Supply Input. These devices operate from 2.7 V to 5.5 V. Decouple the VDD supply with a 10 μF  
capacitor in parallel with a 0.1 μF capacitor to GND.  
1
4
5
2
3
VLOGIC  
SCL  
Digital Power Supply. The voltage on this pin ranges from 1.8 V to 5.5 V.  
Serial Clock Line. In conjunction with the SDA line, this pin clocks data into or out of the 24-bit input shift  
register.  
6
7
8
4
5
A0  
A1  
GAIN  
Address Input. Sets the first LSB of the 7-bit slave address.  
Address Input. Sets the second LSB of the 7-bit slave address.  
Span Set Pin. When this pin is tied to GND, all eight DAC outputs have a span from 0 V to VREF. If this pin is  
tied to VLOGIC, all eight DACs output a span of 0 V to 2 × VREF  
.
9
6
7
8
9
VOUT  
VOUT  
VOUT  
VOUT  
7
6
5
4
Analog Output Voltage from DAC 7. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 6. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 5. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 4. The output amplifier has rail-to-rail operation.  
No Internal Connection.  
Ground Reference Point for All Circuitry on the Device.  
Power-On Reset Pin. Tie this pin to GND to power up all eight DACs to zero scale. Tie this pin to VLOGIC to  
power up all eight DACs to midscale.  
10  
11  
12  
N/A1  
13  
14  
10, 16 NIC  
11  
GND  
RSTSEL  
15  
16  
17  
12  
13  
14  
LDAC  
Load DAC. LDAC operates in two modes, asynchronously and synchronously. Pulsing this pin low updates  
any or all DAC registers if the input registers have new data, which simultaneously updates all DAC outputs.  
This pin can also be tied permanently low.  
Serial Data Input. In conjunction with the SCL line, this pin clocks data into or out of the 24-bit input shift  
register. SDA is a bidirectional, open-drain data line that must be pulled to the supply with an external  
pull-up resistor.  
Asynchronous Reset Input. The RESET input is falling edge sensitive. When RESET is low, all LDAC pulses are  
ignored. When RESET is activated, the input register and the DAC register are updated with zero scale or  
midscale, depending on the state of the RSTSEL pin.  
SDA  
RESET  
18  
15  
VREFOUT  
Reference Output Voltage. When using the internal reference, this is the reference output pin. This pin is  
the reference output by default.  
19  
20  
17  
18  
VOUT  
VOUT  
3
2
Analog Output Voltage from DAC 3. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 2. The output amplifier has rail-to-rail operation.  
1 N/A means not applicable.  
Rev. B | Page 10 of 32  
 
Data Sheet  
AD5671R/AD5675R  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.0  
1.0  
0.8  
1.5  
0.6  
1.0  
0.4  
0.5  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
CODE  
Figure 6. AD5675R INL Error vs. Code  
Figure 9. AD5671R DNL Error vs. Code  
2.0  
0.04  
0.03  
0.02  
0.01  
0
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.01  
–0.02  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
CODE  
Figure 7. AD5671R INL Error vs. Code  
Figure 10. AD5675R TUE vs. Code  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.04  
0.03  
0.02  
0.01  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.01  
–0.02  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
CODE  
Figure 8. AD5675R DNL Error vs. Code  
Figure 11. AD5671R TUE vs. Code  
Rev. B | Page ±± of 32  
 
AD5671R/AD5675R  
Data Sheet  
10  
10  
8
8
6
6
4
4
2
2
0
0
–2  
–4  
–2  
–4  
–6  
–8  
–10  
V
T
= 5V  
= 25°C  
V
T
= 5V  
= 25°C  
–6  
–8  
DD  
DD  
A
A
INTERNAL REFERENCE = 2.5V  
INTERNAL REFERENCE = 2.5V  
–10  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
120  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. AD5675R INL Error vs. Temperature  
Figure 15. AD5671R DNL Error vs. Temperature  
10  
8
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
6
4
2
0
V
T
= 5V  
= 25°C  
DD  
–2  
–4  
–6  
–8  
–10  
A
INTERNAL REFERENCE = 2.5V  
V
= 5V  
= 25°C  
DD  
T
A
INTERNAL REFERENCE = 2.5V  
–40  
–20  
0
20  
40  
60  
80  
100  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 16. AD5675R TUE vs. Temperature  
Figure 13. AD5671R INL Error vs. Supply Voltage  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
10  
8
6
4
2
0
V
T
= 5V  
= 25°C  
DD  
–2  
–4  
–6  
–8  
–10  
A
INTERNAL REFERENCE = 2.5V  
V
T
= 5V  
DD  
= 25°C  
A
INTERNAL REFERENCE = 2.5V  
–40  
–20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. AD5671R TUE vs. Temperature  
Figure 14. AD5675R DNL Error vs. Temperature  
Rev. B | Page ±2 of 32  
Data Sheet  
AD5671R/AD5675R  
10  
0.10  
0.08  
0.06  
0.04  
0.02  
0
8
6
4
2
0
–2  
–4  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
V
= 5V  
= 25°C  
V
= 5V  
DD  
–6  
–8  
DD  
T
T = 25°C  
A
A
INTERNAL REFERENCE = 2.5V  
INTERNAL REFERENCE = 2.5V  
–10  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 18. AD5675R INL Error vs. Supply Voltage  
Figure 21. AD5675R TUE vs. Supply Voltage  
10  
8
0.10  
0.08  
0.06  
0.04  
0.02  
0
6
4
2
0
–2  
–4  
–6  
–8  
–10  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
V
= 5V  
= 25°C  
V
= 5V  
DD  
DD  
T
T = 25°C  
A
A
INTERNAL REFERENCE = 2.5V  
INTERNAL REFERENCE = 2.5V  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 19. AD5675R DNL Error vs. Supply Voltage  
Figure 22. AD5671R TUE vs. Supply Voltage  
10  
8
0.10  
0.08  
0.06  
0.04  
0.02  
0
6
4
2
FULL-SCALE ERROR  
GAIN ERROR  
0
–2  
–4  
–6  
–8  
–10  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
V
T
= 5V  
= 25°C  
DD  
V
T
= 5V  
= 25°C  
DD  
A
INTERNAL REFERENCE = 2.5V  
A
INTERNAL REFERENCE = 2.5V  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 20. AD5671R DNL Error vs. Supply Voltage  
Figure 23. AD5675R Gain Error and Full-Scale Error vs. Temperature  
Rev. B | Page ±3 of 32  
AD5671R/AD5675R  
Data Sheet  
0.10  
0.08  
0.06  
0.04  
0.02  
0
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
V
T
= 5V  
= 25°C  
DD  
A
INTERNAL REFERENCE = 2.5V  
ZERO CODE ERROR  
OFFSET ERROR  
GAIN ERROR  
–0.02  
–0.04  
–0.06  
FULL-SCALE ERROR  
V
= 5V  
DD  
–0.3  
–0.08  
–0.10  
T = 25°C  
A
INTERNAL REFERENCE = 2.5V  
–0.6  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 27. AD5675R Zero-Code Error and Offset Error vs. Temperature  
Figure 24. AD5671R Gain Error and Full-Scale Error vs. Temperature  
1.8  
0.10  
0.08  
0.06  
0.04  
0.02  
V
T
= 5V  
= 25°C  
DD  
1.5  
1.2  
0.9  
0.6  
0.3  
0
A
INTERNAL REFERENCE = 2.5V  
ZERO CODE ERROR  
GAIN ERROR  
OFFSET ERROR  
0
–0.02  
FULL-SCALE ERROR  
–0.04  
–0.06  
V
= 5V  
DD  
–0.3  
–0.6  
–0.08  
–0.10  
T = 25°C  
A
INTERNAL REFERENCE = 2.5V  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 25. AD5675R Gain Error and Full-Scale Error vs. Supply Voltage  
Figure 28. AD5671R Zero-Code Error and Offset Error vs. Temperature  
0.10  
0.08  
0.06  
0.04  
0.02  
1.5  
1.0  
ZERO CODE ERROR  
0.5  
OFFSET ERROR  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
GAIN ERROR  
0
FULL-SCALE ERROR  
–0.5  
–1.0  
–1.5  
V
= 5V  
DD  
= 25°C  
V
= 5V  
= 25°C  
DD  
T
T
A
A
INTERNAL REFERENCE = 2.5V  
INTERNAL REFERENCE = 2.5V  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 29. AD5675R Zero-Code Error and Offset Error vs. Supply Voltage  
Figure 26. AD5671R Gain Error and Full-Scale Error vs. Supply Voltage  
Rev. B | Page ±4 of 32  
Data Sheet  
AD5671R/AD5675R  
1.5  
1.0  
0.5  
0
6
5
0xFFFF  
0xC000  
0x8000  
ZERO CODE ERROR  
OFFSET ERROR  
4
3
2
0x4000  
0x0000  
1
–0.5  
0
–1.0  
–1.5  
V
= 5V  
DD  
= 25°C  
–1  
–2  
T
A
INTERNAL REFERENCE = 2.5V  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
–0.06  
–0.04  
–0.02  
0
0.02  
0.04  
0.06  
SUPPLY VOLTAGE (V)  
LOAD CURRENT (A)  
Figure 33. Source and Sink Capability at 5 V  
Figure 30. AD5671R Zero-Code Error and Offset Error vs. Supply Voltage  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
70  
V
= 5V  
= 25°C  
DD  
T
A
60  
50  
40  
30  
20  
10  
0
INTERNAL REFERENCE = 2.5V  
0xFFFF  
0xC000  
0x8000  
0x4000  
0x0000  
–0.5  
–1.0  
–0.06  
–0.04  
–0.02  
0
0.02  
0.04  
0.06  
LOAD CURRENT (A)  
I
FULL SCALE (µA)  
DD  
Figure 34. Source and Sink Capability at 3 V  
Figure 31. Supply Current (IDD) Histogram with Internal Reference  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
1.4  
DEVICE1  
DEVICE2  
DEVICE3  
1.0  
0.6  
SINKING, V = –2.7V  
DD  
SINKING, V = –3.0V  
DD  
SINKING, V = –5.0V  
DD  
SOURCING, V = –5.0V  
DD  
SOURCING, V = –3.0V  
DD  
SOURCING, V = –2.7V  
DD  
0.2  
–0.2  
–0.6  
–1.0  
–1.4  
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
0
0.005  
0.010  
0.015  
0.020  
0.025  
0.030  
CODE  
LOAD CURRENT (A)  
Figure 35. Supply Current (IDD) vs. Code  
Figure 32. Headroom/Footroom vs. Load Current  
Rev. B | Page ±5 of 32  
AD5671R/AD5675R  
Data Sheet  
2.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.8  
FULL-SCALE  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
DAC 1  
DAC 2  
DAC 3  
DAC 4  
DAC 5  
DAC 5  
DAC 7  
DAC 8  
ZERO CODE  
EXTERNAL REFERENCE, FULL-SCALE  
V
= 5.5V  
DD  
GAIN = +1  
INTERNAL REFERENCE = 2.5V  
1/4 TO 3/4 SCALE  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
80  
100  
120  
140  
160  
180  
200  
TEMPERATURE (°C)  
TIME (µs)  
Figure 36. Supply Current (IDD) vs. Temperature  
Figure 39. Full-Scale Settling Time  
6
5
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
V
V
(V)  
DD  
0 (V)  
1 (V)  
2 (V)  
3 (V)  
4 (V)  
5 (V)  
6 (V)  
7 (V)  
OUT  
4
FULL-SCALE  
V
OUT  
V
V
OUT  
3
OUT  
V
OUT  
ZERO CODE  
V
OUT  
2
V
V
OUT  
OUT  
EXTERNAL REFERENCE, FULL-SCALE  
1
0
–1  
–0.001  
10  
0
2
4
6
8
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
TIME (ms)  
SUPPLY VOLTAGE (V)  
Figure 37. Supply Current (IDD) vs. Supply Voltage  
Figure 40. Power-On Reset to 0 V and Midscale  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
MIDSCALE, GAIN = 2  
FULL-SCALE  
ZERO CODE  
MIDSCALE, GAIN = 1  
EXTERNAL REFERENCE, FULL-SCALE  
V
T
= 5V  
= 25°C  
DD  
A
INTERNAL REFERENCE = 2.5V  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
–5  
0
5 10  
SUPPLY VOLTAGE (V)  
TIME (µs)  
Figure 41. Exiting Power-Down to Midscale  
Figure 38. Supply Current (IDD) vs. Logic Input Voltage  
Rev. B | Page ±6 of 32  
Data Sheet  
AD5671R/AD5675R  
0.004  
0.003  
0.002  
0.001  
0
1
–0.001  
–0.002  
–0.003  
–0.004  
V
= 5V  
DD  
GAIN = 1  
= 25°C  
T
D
REFERENCE = 2.5V  
CODE = 7FFF TO 8000  
ENERGY = 1.209376nV-s  
2
CH1 50.0mV  
M1.00s  
A
CH1  
401mV  
15  
16  
17  
18  
19  
20  
21  
22  
TIME (µs)  
Figure 42. Digital-to-Analog Glitch Impulse  
Figure 45. 0.1 Hz to 10 Hz Output Noise Plot  
0.003  
0.002  
0.001  
0
1200  
1000  
800  
600  
400  
200  
0
V
T
= 5V  
= 25°C  
DD  
A
GAIN = 1  
INTERNAL REFERENCE = 2.5V  
–0.001  
–0.002  
–0.003  
–0.004  
–0.005  
–0.006  
FULL SCALE  
MID SCALE  
CHANNEL 1  
CHANNEL 2  
CHANNEL 3  
CHANNEL 4  
CHANNEL 5  
CHANNEL 6  
CHANNEL 7  
ZERO SCALE  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
10  
100  
1k  
10k  
100k  
1M  
TIME (µs)  
FREQUENCY (Hz)  
Figure 46. Noise Spectral Density (NSD)  
Figure 43. Analog Crosstalk  
0
–20  
0.012  
0.010  
0.008  
0.006  
0.004  
0.002  
0
V
= 5V  
= 25°C  
CHANNEL 1  
CHANNEL 2  
CHANNEL 3  
CHANNEL 4  
CHANNEL 5  
CHANNEL 6  
CHANNEL 7  
DD  
T
A
INTERNAL REFERENCE = 2.5V  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (kHz)  
TIME (µs)  
Figure 44. DAC-to-DAC Crosstalk  
Figure 47. Total Harmonic Distortion (THD) at 1 kHz  
Rev. B | Page ±7 of 32  
AD5671R/AD5675R  
Data Sheet  
2.0  
1.9  
1.8  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
V
A
= 5V  
DD  
T
= 25°C  
C
C
C
C
C
= 0nF  
= 0.1nF  
= 1nF  
= 4.7nF  
= 10nF  
L
L
L
L
L
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
10  
100  
1k  
10k  
100k  
1M  
0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20  
TIME (ms)  
FREQUENCY (Hz)  
Figure 48. Settling Time vs. Capacitive Load  
Figure 51. Internal Reference NSD vs. Frequency  
2.0  
2.5020  
2.5015  
2.5010  
2.5005  
2.5000  
2.4995  
2.4990  
2.4985  
2.4980  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
DEVICE1  
DEVICE2  
DEVICE3  
DEVICE4  
DEVICE5  
DAC 1  
DAC 2  
DAC 3  
DAC 4  
DAC 5  
DAC 6  
DAC 7  
DAC 8  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
80  
100  
120  
140  
160  
180  
200  
TIME (µs)  
TEMPERATURE (°C)  
Figure 49. Settling Time, 5.5 V  
Figure 52. Internal Reference Voltage (VREF) vs. Temperature (A Grade)  
3
2
1
0
0.3  
2.5020  
DEVICE1  
DEVICE2  
DEVICE3  
DEVICE4  
DEVICE5  
2.5015  
2.5010  
2.5005  
2.5000  
2.4995  
2.4990  
2.4985  
2.4980  
0.2  
0.1  
0
RESET  
MIDSCALE, GAIN = 1  
ZERO SCALE, GAIN = 1  
–20  
0
20  
40  
60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TIME (µs)  
TEMPERATURE (°C)  
Figure 53. Internal Reference Voltage (VREF) vs. Temperature (B Grade)  
Figure 50. Hardware Reset  
Rev. B | Page ±8 of 32  
Data Sheet  
AD5671R/AD5675R  
2.5035  
2.50050  
2.50045  
2.50040  
2.50035  
2.50030  
2.50025  
2.50020  
2.50015  
2.50010  
T = 25°C  
A
V
T
= 5V  
= 25°C  
DD  
2.5030  
2.5025  
2.5020  
2.5015  
2.5010  
2.5005  
2.5000  
2.4995  
A
DEVICE1  
DEVICE2  
DEVICE3  
–0.035 –0.025  
–0.015 –0.005  
0.005  
0.015  
0.025  
0.035  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
LOAD CURRENT (A)  
V
(V)  
DD  
Figure 54. Internal Reference Voltage (VREF) vs. Load Current and Supply  
Voltage (VDD  
Figure 55. Internal Reference Voltage (VREF) vs. Supply Voltage (VDD  
)
)
Rev. B | Page ±9 of 32  
AD5671R/AD5675R  
Data Sheet  
TERMINOLOGY  
Relative Accuracy or Integral Nonlinearity (INL)  
For the DAC, relative accuracy or integral nonlinearity is a  
measurement of the maximum deviation, in LSBs, from a  
straight line passing through the endpoints of the DAC transfer  
function.  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-sec,  
and is measured when the digital input code is changed by  
1 LSB at the major carry transition (0x7FFF to 0x8000).  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity. These DACs are guaranteed monotonic  
by design.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into the  
analog output of the DAC from the digital inputs of the DAC,  
but is measured when the DAC output is not updated. It is  
specified in nV-sec, and measured with a full-scale code change  
on the data bus, that is, from all 0s to all 1s and vice versa.  
Zero-Code Error  
Zero-code error is a measurement of the output error when  
zero code (0x0000) is loaded to the DAC register. The ideal  
output is 0 V. The zero-code error is always positive because the  
output of the DAC cannot go below 0 V due to a combination of  
the offset errors in the DAC and the output amplifier. Zero-  
code error is expressed in mV.  
Noise Spectral Density  
Noise spectral density is a measurement of the internally  
generated random noise. Random noise is characterized as a  
spectral density (nV/√Hz). It is measured by loading the DAC  
to midscale and measuring noise at the output. It is measured in  
nV/√Hz.  
Full-Scale Error  
DC Crosstalk  
Full-scale error is a measurement of the output error when full-  
scale code (0xFFFF) is loaded to the DAC register. The ideal  
output is VREF − 1 LSB (Gain = 1) or 2 × VREF (Gain = 2). Full-  
scale error is expressed in percent of full-scale range (% of FSR).  
DC crosstalk is the dc change in the output level of one DAC in  
response to a change in the output of another DAC. It is measured  
with a full-scale output change on one DAC (or soft power-down  
and power-up) while monitoring another DAC kept at midscale.  
It is expressed in μV.  
Gain Error  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from the  
ideal expressed as % of FSR.  
DC crosstalk due to load current change is a measure of the  
impact that a change in load current on one DAC has on  
another DAC kept at midscale. It is expressed in μV/mA.  
Offset Error Drift  
Digital Crosstalk  
Offset error drift is a measurement of the change in offset error  
with a change in temperature. It is expressed in µV/°C.  
Digital crosstalk is the glitch impulse transferred to the output  
of one DAC at midscale in response to a full-scale code change  
(all 0s to all 1s and vice versa) in the input register of another  
DAC. It is measured in standalone mode and is expressed in  
nV-sec.  
Offset Error  
Offset error is a measure of the difference between VOUT (actual)  
and VOUT (ideal) expressed in mV in the linear region of the  
transfer function. Offset error is measured with Code 256  
loaded in the DAC register. It can be negative or positive.  
Analog Crosstalk  
Analog crosstalk is the glitch impulse transferred to the output  
of one DAC due to a change in the output of another DAC. It is  
measured by first loading one of the input registers with a full-  
scale code change (all 0s to all 1s and vice versa). Then, execute  
DC Power Supply Rejection Ratio (PSRR)  
The dc power supply rejection ratio indicates how the output of  
the DAC is affected by changes in the supply voltage. PSRR is  
the ratio of the change in VOUT to a change in VDD for full-scale  
output of the DAC. It is measured in mV/V. VREF is held at 2 V,  
and VDD is varied by 10%.  
LDAC  
a software  
and monitor the output of the DAC whose  
digital code was not changed. The area of the glitch is expressed  
in nV-sec.  
DAC-to-DAC Crosstalk  
Output Voltage Settling Time  
DAC-to-DAC crosstalk is the glitch impulse transferred to the  
output of one DAC due to a digital code change and subsequent  
analog output change of another DAC. It is measured by  
loading the attack channel with a full-scale code change (all 0s  
to all 1s and vice versa), using the write to and update commands  
while monitoring the output of the victim channel that is at  
midscale. The energy of the glitch is expressed in nV-sec.  
The output voltage settling time is the amount of time it takes  
for the output of a DAC to settle to a specified level for a ¼ to ¾  
full-scale input change.  
Rev. B | Page 20 of 32  
 
Data Sheet  
AD5671R/AD5675R  
Multiplying Bandwidth  
Voltage Reference Temperature Coefficient (TC)  
The multiplying bandwidth is a measure of the finite bandwidth  
of the amplifiers within the DAC. A sine wave on the reference  
(with full-scale code loaded to the DAC) appears on the output.  
The multiplying bandwidth is the frequency at which the output  
amplitude falls to 3 dB below the input.  
Voltage reference TC is a measure of the change in the reference  
output voltage with a change in temperature. The reference TC  
is calculated using the box method, which defines the TC as the  
maximum change in the reference output over a given tempera-  
ture range expressed in ppm/°C, as follows:  
Total Harmonic Distortion (THD)  
V
REF(MAX) VREF(MIN)  
TC =  
×106  
THD is the difference between an ideal sine wave and its  
attenuated version using the DAC. The sine wave is used as the  
reference for the DAC, and the THD is a measurement of the  
harmonics present on the DAC output. It is measured in dB.  
V
×TempRange  
REF(NOM)  
where:  
REF (MAX) is the maximum reference output measured over the  
total temperature range.  
REF (MIN) is the minimum reference output measured over the  
total temperature range.  
REF (NOM) is the nominal reference output voltage, 2.5 V.  
V
V
V
TempRange is the specified temperature range of −40°C to  
+125°C.  
Rev. B | Page 2± of 32  
AD5671R/AD5675R  
Data Sheet  
THEORY OF OPERATION  
V
REF  
DIGITAL-TO-ANALOG CONVERTER (DAC)  
The AD5671R/AD5675R are octal, 12-/16-bit, serial input, voltage  
output DACs with an internal reference. The devices operate from  
supply voltages of 2.7 V to 5.5 V. Data is written to the AD5671R/  
AD5675R in a 24-bit word format via a 2-wire serial interface.  
The AD5671R/AD5675R incorporate a power-on reset circuit  
to ensure that the DAC output powers up to a known output  
state. The devices also have a software power-down mode that  
reduces the typical current consumption to 1 µA.  
R
R
R
TO OUTPUT  
AMPLIFIER  
TRANSFER FUNCTION  
The internal reference is on by default.  
R
R
Gain is the gain of the output amplifier and is set to 1 by default.  
This can be set to ×1 or ×2 using the gain select pin (GAIN). When  
this pin is tied to GND, all eight DAC outputs have a span from  
0 V to VREF. If this pin is tied to VLOGIC, all eight DACs output a  
span of 0 V to 2 × VREF  
.
Figure 57. Resistor String Structure  
DAC ARCHITECTURE  
Internal Reference  
The AD5671R/AD5675R on-chip reference is enabled at power-up,  
but can be disabled via a write to the control register. See the  
Internal Reference and Amplifier Gain Selection section for  
details.  
The AD5671R/AD5675R implement segmented string DAC  
architecture with an internal output buffer. Figure 56 shows the  
internal block diagram.  
V
REF  
2.5V  
REF  
The AD5671R/AD5675R have a 2.5 V, 2 ppm/°C reference, giving  
a full-scale output of 2.5 V or 5 V, depending on the state of the  
GAIN pin. The internal reference associated with the device is  
available at the VREFOUT pin. This buffered reference is capable of  
driving external loads of up to 15 mA.  
REF (+)  
INPUT  
REGISTER  
DAC  
REGISTER  
RESISTOR  
STRING  
V
X
OUT  
REF (–)  
GAIN  
(GAIN = 1 OR 2)  
Output Amplifiers  
GND  
The output buffer amplifier generates rail-to-rail voltages on its  
output, which gives an output range of 0 V to VDD. The actual  
range depends on the value of VREF, the GAIN pin, the offset  
error, and the gain error. The GAIN pin selects the gain of the  
output. If the GAIN pin is tied to GND, all eight outputs have a  
gain of 1, and the output range is 0 V to VREF. If the GAIN pin is  
tied to VLOGIC, all eight outputs have a gain of 2, and the output  
Figure 56. Single DAC Channel Architecture Block Diagram  
The resistor string structure is shown in Figure 57. The code  
loaded to the DAC register determines the node on the string  
where the voltage is tapped off and fed into the output amplifier.  
The voltage is tapped off by closing one of the switches and  
connecting the string to the amplifier. Because each resistance  
in the string has same value, R, the string DAC is guaranteed  
monotonic.  
range is 0 V to 2 × VREF  
.
These amplifiers are capable of driving a load of 1 kΩ in parallel  
with 10 nF to GND. The slew rate is 0.8 V/µs with a typical ¼ to  
¾ scale settling time of 5 µs.  
Rev. B | Page 22 of 32  
 
 
 
 
 
 
Data Sheet  
AD5671R/AD5675R  
Table 9. Command Definitions  
Command  
SERIAL INTERFACE  
The AD5671R/AD5675R use a 2-wire, I2C-compatible serial  
interface. These devices can be connected to an I2C bus as a  
slave device under the control of the master devices. The  
AD5671R/AD5675R support standard (100 kHz) and fast  
(400 kHz) data transfer modes. Support is not provided for  
10-bit addressing and general call addressing.  
C3 C2 C1 C0 Description  
0
0
0
0
0
0
0
1
No operation  
Write to Input Register n (dependent on  
LDAC)  
0
0
1
0
Update DAC Register n with contents of  
Input Register n  
Input Shift Register  
0
0
0
0
0
1
1
1
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
Write to and update DAC Channel n  
Power down/power up DAC  
Hardware LDAC mask register  
Software reset (power-on reset)  
Internal reference and gain setup register  
Reserved  
Reserved  
Update all channels of input register  
simultaneously with the input data  
The input shift register of the AD5671R/AD5675R is 24 bits wide.  
Data is loaded MSB first (DB23), and the first four bits are the  
command bits, C3 to C0 (see Table 9), followed by the 4-bit  
DAC address bits, A3 to A0 (see Table 10), and finally, the bit  
data-word.  
The data-word comprises 16-bit or 12-bit input code, followed by  
zero or four don’t care bits for the AD5675R and AD5671R,  
respectively (see Figure 58 and Figure 59). These data bits are  
transferred to the input register on the 24 falling edges of SCL.  
1
0
1
1
Update all channels of DAC register and  
input register simultaneously with the  
input data  
Commands execute on individual DAC channels, combined DAC  
channels, or on all DACs, depending on the address bits selected.  
1
1
0
0
Reserved  
1
1
1
1
Reserved  
Table 10. Address Commands  
Channel Address[3:0]  
A3  
0
A2  
0
A1  
0
A0  
0
Selected Channel1  
DAC 0  
0
0
0
1
DAC 1  
0
0
1
0
DAC 2  
0
0
1
1
DAC 3  
0
1
0
0
DAC 4  
0
1
0
1
DAC 5  
0
1
1
0
DAC 6  
0
1
1
1
DAC 7  
1 Any combination of DAC channels can be selected using the address bits.  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C3 C2 C1 C0 A3 A2 A1 A0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
COMMAND  
DAC ADDRESS  
DAC DATA  
DAC DATA  
COMMAND BYTE  
DATA HIGH BYTE  
DATA LOW BYTE  
Figure 58. AD5675R Input Shift Register Content  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C3 C2 C1 C0 A3 A2 A1 A0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
X
COMMAND  
DAC ADDRESS  
DAC DATA  
DAC DATA  
COMMAND BYTE  
DATA HIGH BYTE  
DATA LOW BYTE  
Figure 59. AD5671R Input Shift Register Content  
Rev. B | Page 23 of 32  
 
 
 
 
 
AD5671R/AD5675R  
Data Sheet  
WRITE AND UPDATE COMMANDS  
Write to Input Register n (Dependent on  
SERIAL OPERATION  
The 2-wire I2C serial bus protocol operates as follows:  
)
LDAC  
Command 0001 allows the user to write the dedicated input  
LDAC  
1. The master initiates a data transfer by establishing a start  
condition when a high to low transition on the SDA line  
occurs while SCL is high. The following byte is the address  
byte, which consists of the 7-bit slave address.  
register of each DAC individually. When  
register is transparent, if not controlled by the  
is low, the input  
LDAC  
mask register.  
Update DAC Register n with Contents of Input Register n  
2. The slave device with the transmitted address responds by  
pulling SDA low during the ninth clock pulse (this is called  
the acknowledge bit, or ACK). At this stage, all other  
devices on the bus remain idle while the selected device waits  
for data to be written to or read from its input shift register.  
3. Data is transmitted over the serial bus in sequences of nine  
clock pulses (eight data bits followed by an acknowledge bit).  
Transitions on the SDA line must occur during the low period  
of SCL; SDA must remain stable during the high period of SCL.  
4. After all data bits are read or written, a stop condition is  
established. In write mode, the master pulls the SDA line high  
during the 10th clock pulse to establish a stop condition. In  
read mode, the master issues a no acknowledge (NACK)  
for the ninth clock pulse (that is, the SDA line remains  
high). The master then brings the SDA line low before the  
10th clock pulse, and then high again during the 10th clock  
pulse to establish a stop condition.  
Command 0010 loads the DAC registers and outputs with the  
contents of the input registers selected and updates the DAC  
outputs directly.  
Write to and Update DAC Channel n (Independent of  
)
LDAC  
Command 0011 allows the user to write to the DAC registers  
and updates the DAC outputs directly.  
I2C SLAVE ADDRESS  
The AD5671R/AD5675R have a 7-bit I2C slave address. The five  
MSBs are 00011, and the two LSBs (A1 and A0) are set by the  
state of the A1 and A0 address pins. The ability to make hardwired  
changes to A1 and A0 allows the user to incorporate up to four  
AD5671R/AD5675R devices on one bus (see Table 11).  
Table 11. Device Address Selection  
A1 Pin Connection  
A0 Pin Connection  
A1  
0
0
±
±
A0  
0
±
0
±
GND  
GND  
VLOGIC  
VLOGIC  
GND  
VLOGIC  
GND  
VLOGIC  
WRITE OPERATION  
When writing to the AD5671R/AD5675R, begin with a start  
W
command followed by an address byte (R/ = 0), after which  
the DAC acknowledges that it is prepared to receive data by pulling  
SDA low. The AD5671R/AD5675R require two bytes of data for the  
DAC, and a command byte that controls various DAC functions.  
Three bytes of data must therefore be written to the DAC with  
the command byte followed by the most significant data byte and  
the least significant data byte, as shown in Figure 60. All these data  
bytes are acknowledged by the AD5671R/AD5675R. A stop  
condition follows.  
1
9
1
9
SCL  
0
0
0
1
1
A1  
A0  
R/W  
ACK BY  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16  
SDA  
ACK BY  
START BY  
MASTER  
AD5671R/AD5675R  
AD5671R/AD5675R  
FRAME 1  
SLAVE ADDRESS  
FRAME 2  
COMMAND BYTE  
1
9
1
9
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB7  
DB6 DB5 DB4  
DB3  
DB2  
DB1  
DB0  
DB8  
ACK BY  
AD5671R/AD5675R  
ACK BY  
STOP BY  
AD5671R/AD5675R MASTER  
FRAME 3  
MOST SIGNIFICANT  
DATA BYTE  
FRAME 4  
LEAST SIGNIFICANT  
DATA BYTE  
Figure 60. I2C Write Operation  
Rev. B | Page 24 of 32  
 
 
 
 
 
 
Data Sheet  
AD5671R/AD5675R  
READ OPERATION  
MULTIPLE DAC READBACK SEQUENCE  
When reading data back from the AD5671R/AD5675R, begin  
When reading data back from multiple AD5671R/AD5675R  
W
W
with a start command followed by an address byte (R/ = 0),  
DACs, the user begins with an address byte (R/ = 0), after  
after which the DAC acknowledges that it is prepared to receive  
data by pulling SDA low. The address byte must be followed by  
the command byte, which determines both the read command  
that is to follow and the pointer address to read from; the  
command byte is also acknowledged by the DAC. The user  
configures the channel to read back the contents of one or more  
DAC input registers and sets the read back command to active  
using the command byte.  
which the DAC acknowledges that it is prepared to receive data  
by pulling SDA low. The address byte must be followed by the  
command byte, which is also acknowledged by the DAC. The  
user selects the first channel to read back using the command  
byte.  
Following this sequence, the master establishes a repeated start  
W
condition, and the address is resent with R/ = 1. This byte is  
acknowledged by the DAC, indicating that it is prepared to  
transmit data. The first two bytes of data are then read from  
DAC Input Register n (selected using the command byte), MSB  
first, as shown in Figure 61. The next two bytes read back are the  
contents of DAC Input Register n + 1, and the next bytes read  
back are the contents of DAC Input Register n + 2. Data is read  
from the DAC input registers in this autoincremented fashion  
until a NACK followed by a stop condition follows. If the contents  
of DAC Input Register 7 are read out, the next two bytes of data  
read are the contents of DAC Input Register 0.  
Then, the master establishes a repeated start condition, and the  
W
address is resent with R/ = 1. This byte is acknowledged by the  
DAC, indicating that it is prepared to transmit data. Two bytes  
of data are then read from the DAC, as shown in Figure 61. A  
NACK condition from the master, followed by a stop condition,  
completes the read sequence. If more than one DAC is selected,  
DAC 0 is read back by default.  
1
9
1
9
SCL  
SDA  
0
0
0
1
1
A1  
A0  
R/W  
ACK BY  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16  
ACK BY  
START BY  
MASTER  
AD5671R/AD5675R  
AD5671R/AD5675R  
FRAME 1  
SLAVE ADDRESS  
FRAME 2  
COMMAND BYTE  
1
9
1
9
SCL  
SDA  
0
0
0
1
1
A1  
A0  
R/W  
ACK BY  
DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
REPEATED START BY  
MASTER  
ACK BY  
MASTER  
AD5671R/AD5675R  
FRAME 3  
SLAVE ADDRESS  
FRAME 4  
MOST SIGNIFICANT  
DATA BYTE n  
1
9
1
9
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
DB7 DB6  
DB5 DB4  
DB3 DB2  
DB1  
DB0  
ACK BY  
MASTER  
NACK BY  
MASTER  
STOP BY  
MASTER  
FRAME 5  
LEAST SIGNIFICANT  
DATA BYTE n  
FRAME 6  
MOST SIGNIFICANT  
DATA BYTE n + 1  
Figure 61. I2C Read Operation  
Rev. B | Page 25 of 32  
 
 
 
AD5671R/AD5675R  
Data Sheet  
The bias generator, output amplifier, resistor string, and other  
associated linear circuitry are shut down when power-down  
mode is activated. However, the contents of the DAC registers  
are unaffected in power-down mode, and the DAC registers can  
be updated while the device is in power-down mode. The time  
required to exit power-down is typically 2.5 µs for VDD = 5 V.  
POWER-DOWN OPERATION  
The AD5671R/AD5675R contain two separate power-down  
modes. Command 0100 is designated for the power-down  
function (see Table 9). These power-down modes are software  
programmable by setting 16 bits, Bit DB15 to Bit DB0, in the  
input shift register. There are two bits associated with each DAC  
channel. Table 12 shows how the state of the two bits corresponds  
to the mode of operation of the device.  
LOAD DAC (HARDWARE LDAC PIN)  
The AD5671R/AD5675R DACs have double buffered interfaces  
consisting of two banks of registers: input registers and DAC  
registers. The user can write to any combination of the input  
registers. Updates to the DAC registers are controlled by  
Any or all DACs (DAC 0 to DAC 7) power down to the selected  
mode by setting the corresponding bits. See Table 13 for the  
contents of the input shift register during the power-down/  
power-up operation.  
LDAC  
the  
Instantaneous DAC Updating (  
For instantaneous updating of the DACs,  
pin.  
LDAC  
Held Low)  
Table 12. Modes of Operation  
Operating Mode  
Normal Operation  
Power-Down Modes  
± kΩ to GND  
PD1  
PD0  
LDAC  
is held low while  
0
0
data is clocked into the input register using Command 0001. Both  
the addressed input register and the DAC register are updated on  
the 24th clock, and the output changes immediately.  
0
±
±
±
Tristate  
LDAC  
Deferred DAC Updating (  
is Pulsed Low)  
LDAC  
When both Bit PD1 and Bit PD0 in the input shift register are set  
to 0, the device works normally with its normal power  
For deferred updating of the DACs,  
is held high while data  
is clocked into the input register using Command 0001. All DAC  
consumption of typically 1 mA at 5 V. However, for the two  
power-down modes, the supply current falls to typically 1 µA.  
In addition to this fall, the output stage switches internally from  
the amplifier output to a resistor network of known values. This  
has the advantage that the output impedance of the devices are  
known while the devices are in power-down mode. There are  
two different power-down options. The output is connected  
internally to GND through either a 1 kΩ resistor, or it is left  
open-circuited (tristate). The output stage is shown in Figure 62.  
LDAC  
outputs are asynchronously updated by pulling  
low after the  
LDAC  
th  
24 clock. The update occurs on the falling edge of  
.
AMPLIFIER  
12-/16-BIT  
DAC  
V
V
X
OUT  
REF  
DAC  
REGISTER  
LDAC  
INPUT  
REGISTER  
AMPLIFIER  
V
DAC  
OUT  
SCL  
SDA  
INTERFACE  
LOGIC  
POWER-DOWN  
CIRCUITRY  
RESISTOR  
NETWORK  
Figure 63. Simplified Diagram of Input Loading Circuitry for a Single DAC  
Figure 62. Output Stage During Power-Down  
Table 13. 24-Bit Input Shift Register Contents of Power-Down/Power-Up Operation  
DAC 7  
[DB15: B14] [DB13: B12] [DB11: B10] [DB9:DB8]  
[PD±:PD0] [PD±:PD0] [PD±:PD0] [PD±:PD0]  
DAC 6  
DAC 5  
DAC 4  
DAC 3  
DAC 2  
DAC 1  
DAC 0  
[DB23:DB20]  
DB19  
[DB18:DB16]  
XXX±  
[DB7:DB6]  
[PD±:PD0]  
[DB5:DB4]  
[PD±:PD0]  
[DB3:DB2]  
[PD±:PD0]  
[DB1:DB0]  
[PD±:PD0]  
0±00  
0
± X means don’t care.  
Rev. B | Page 26 of 32  
 
 
 
 
 
Data Sheet  
AD5671R/AD5675R  
LDAC  
The  
register gives the user extra flexibility and control  
LDAC MASK REGISTER  
LDAC  
LDAC  
pin (see Table 15). Setting the  
over the hardware  
bits (DB0 to DB7) to 0 for a DAC channel means that this  
LDAC  
LDAC  
Command 0101 is reserved for this software  
function.  
The address bits are ignored. Writing to the DAC using  
LDAC  
channel update is controlled by the hardware  
pin.  
Command 0101 loads the 8-bit  
The default for each channel is 0, that is, the  
normally. Setting the bits to 1 forces this DAC channel to ignore  
LDAC  
register (DB7 to DB0).  
LDAC  
pin works  
transitions on the  
pin, regardless of the state of the  
pin. This flexibility is useful in applications  
where the user wants to select which channels respond to  
LDAC  
hardware  
LDAC  
the  
pin.  
LDAC  
Table 14.  
Overwrite Definition  
Load LDAC Register  
LDAC Bits (DB7 to DB0)  
00000000  
LDAC Pin  
± or 0  
X±  
LDAC Operation  
Determined by the LDAC pin.  
DAC channels update and override the LDAC pin. DAC channels see LDAC as ±.  
±±±±±±±±  
± X means don’t care.  
1
LDAC  
Table 15. Write Commands and  
Command Description  
Pin Truth Table  
Hardware LDAC Pin State  
Input Register Contents  
Data update  
Data update  
DAC Register Contents  
No change (no update)  
Data update  
000±  
Write to Input Register n  
(dependent on LDAC)  
VLOGIC  
GND2  
VLOGIC  
GND  
00±0  
Update DAC Register n  
with contents of Input  
Register n  
No change  
Updated with input register contents  
Updated with input register contents  
No change  
00±±  
Write to and update DAC VLOGIC  
Channel n  
Data update  
Data update  
Data update  
Data update  
GND  
±
LDAC  
A high to low hardware  
pin transition always updates the contents of the contents of the DAC register with the contents of the input register on channels that  
LDAC  
are not masked (blocked) by the mask register.  
is permanently tied low, the LDAC mask bits are ignored.  
2
LDAC  
When  
Rev. B | Page 27 of 32  
 
 
AD5671R/AD5675R  
Data Sheet  
HARDWARE RESET (  
)
SOLDER HEAT REFLOW  
RESET  
As with all IC reference voltage circuits, the reference value  
experiences a shift induced by the soldering process. Analog  
Devices, Inc., performs a reliability test called precondition to  
mimic the effect of soldering a device to a board. The output  
voltage specification quoted previously includes the effect of  
this reliability test.  
RESET  
The  
be cleared to either zero scale or midscale. The clear code value  
RESET  
pin is an active low reset that allows the outputs to  
is user selectable via the RSTSEL pin. Keep  
minimum time (see Table 5) to complete the operation. When  
RESET  
low for a  
the  
cleared value until a new value is programmed. While  
RESET  
signal is returned high, the output remains at the  
Figure 64 shows the effect of solder heat reflow (SHR) as  
measured through the reliability test (precondition).  
the  
pin is low, the outputs cannot be updated with a new  
value. A software executable reset function is also available that  
resets the DAC to the power-on reset code. Command 0110 is  
designated for this software reset function. Any events  
35  
POSTSOLDER  
HEAT REFLOW  
30  
LDAC RESET  
on  
or  
during power-on reset are ignored.  
PRESOLDER  
HEAT REFLOW  
25  
20  
15  
10  
5
RESET SELECT PIN (RSTSEL)  
The AD5671R/AD5675R contain a power-on reset circuit that  
controls the output voltage during power-up. By connecting the  
RSTSEL pin low, the output powers up to zero scale. Note that  
this power-up is outside the linear region of the DAC; by  
connecting the RSTSEL pin high, VOUT powers up to midscale.  
The output remains powered up at this level until a valid write  
sequence is made to the DAC.  
0
2.497  
2.498  
2.499  
2.500  
(V)  
2.501  
2.502  
INTERNAL REFERENCE AND AMPLIFIER GAIN  
SELECTION  
V
REF  
Figure 64. Solder Heat Reflow Reference Voltage Shift  
The on-chip reference is on at power-up by default. To reduce  
the supply current, turn off this reference by setting the software  
programmable bit, DB0, in the internal reference and gain setup  
register.  
LONG-TERM TEMPERATURE DRIFT  
Figure 65 shows the change in VREF value after 1000 hours in the  
life test at 150°C.  
70  
The state of Bit DB2 in the internal reference and gain setup  
register determines the output amplifier gain setting for the  
LFCSP package (see Table 16 and Table 17). Ignore Bit DB2 for  
the TSSOP package. Command 0111 is reserved for setting up the  
internal reference and amplifier gain.  
0 HOURS  
168 HOURS  
500 HOURS  
1000 HOURS  
60  
50  
40  
30  
20  
10  
0
Table 16. Internal Reference and Gain Setup Register  
Bit  
Description  
DB2  
Amplifier gain setting  
DB2 = 0; amplifier gain = ± (default)  
DB2 = ±; amplifier gain = 2  
Reserved; set to 0  
DB±  
DB0  
Internal reference  
2.498  
2.499  
2.500  
(V)  
2.501  
2.502  
DB0 = 0; reference is on (default)  
DB± = ±; reference is off  
V
REF  
Figure 65. Reference Drift Through to 1000 Hours  
Rev. B | Page 28 of 32  
 
 
 
 
 
 
 
 
Data Sheet  
AD5671R/AD5675R  
3
2
1
0
THERMAL HYSTERESIS  
FIRST TEMPERATURE SWEEP  
SUBSEQUENT TEMPERATURE SWEEPS  
Thermal hysteresis is the voltage difference induced on the  
reference voltage by sweeping the temperature from ambient to  
cold, to hot, and then back to ambient.  
Thermal hysteresis data is shown in Figure 66. It is measured by  
sweeping the temperature from ambient to −40°C, then to +125°C,  
and returning to ambient. The VREF delta is then measured  
between the two ambient measurements and shown in blue in  
Figure 66. The same temperature sweep and measurements  
were immediately repeated, and the results are shown in red in  
Figure 66.  
–130 –110 –90 –70 –50 –30 –10  
10  
30  
50  
70  
DISTORTION (ppm)  
Figure 66. Thermal Hysteresis  
Table 17. 24-Bit Input Shift Register Contents for Internal Reference and Amplifier Gain Setup Command1  
DB23 (MSB) DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB1 to DB3 DB2  
DB1  
DB0 (LSB)  
0
±
±
±
X
X
X
X
X
±/0  
0
±/0  
Command bits (C3 to C0)  
Address bits (A3 to A0)  
Don’t care  
Amplifier  
gain  
Reserved Reference setup  
register  
± X means don’t care.  
Rev. B | Page 29 of 32  
 
 
 
AD5671R/AD5675R  
Data Sheet  
APPLICATIONS INFORMATION  
series inductance (ESI), such as the common ceramic types,  
POWER SUPPLY RECOMMENDATIONS  
which provide a low impedance path to ground at high  
frequencies to handle transient currents due to internal logic  
switching.  
The AD5671R/AD5675R is typically powered by the following  
supplies: VDD = 3.3 V and VLOGIC = 1.8 V.  
The ADP7118 can be used to power the VDD pin. The ADP160  
can be used to power the VLOGIC pin. This setup is shown in  
Figure 67. The ADP7118 can operate from input voltages up to  
20 V. The ADP160 can operate from input voltages up to 5.5 V.  
In systems where there are many devices on one board, it is  
often useful to provide some heat sinking capability to allow  
the power to dissipate easily.  
The GND plane on the device can be increased (as shown in  
Figure 69) to provide a natural heat sinking effect.  
5V  
INPUT  
ADP7118  
LDO  
3.3V: V  
DD  
ADP160  
LDO  
AD5671R/  
AD5675R  
1.8V: V  
LOGIC  
Figure 67. Low Noise Power Solution for the AD5671R/AD5675R  
MICROPROCESSOR INTERFACING  
Microprocessor interfacing to the AD5671R/AD5675R is done  
via a serial bus that uses a standard protocol that is compatible  
with DSP processors and microcontrollers. The communications  
channel requires a 2-wire interface consisting of a clock signal  
and a data signal.  
GND  
PLANE  
BOARD  
AD5671R/AD5675R TO ADSP-BF531 INTERFACE  
Figure 69. Pad Connection to Board  
The I2C interface of the AD5671R/AD5675R is designed for  
easy connection to industry-standard DSPs and microcontrollers.  
Figure 68 shows the AD5671R/AD5675R connected to the Analog  
Devices, Inc., Blackfin® processor. The Blackfin processor has  
an integrated I2C port that can be connected directly to the I2C  
pins of the AD5671R/AD5675R.  
GALVANICALLY ISOLATED INTERFACE  
In many process control applications, it is necessary to provide  
an isolation barrier between the controller and the unit being  
controlled to protect and isolate the controlling circuitry from  
any hazardous common-mode voltages that may occur. iCoupler®  
products from Analog Devices provide voltage isolation in excess  
of 2.5 kV. The serial loading structure of the AD5671R/AD5675R  
makes the devices ideal for isolated interfaces because the number  
of interface lines is kept to a minimum. Figure 70 shows a  
2-channel isolated interface to the AD5671R/AD5675R  
using an ADuM1251. For further information, visit  
AD5671R/  
AD5675R  
ADSP-BF531  
GPIO1  
GPIO2  
SCL  
SDA  
www.analog.com/icoupler.  
PF9  
PF8  
LDAC  
RESET  
ADuM12511  
CONTROLLER  
TO  
DECODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
Figure 68. AD5671R/AD5675R to ADSP-BF531 Interface  
SCL  
LAYOUT GUIDELINES  
TO  
SDA  
SDA  
SCL  
In any circuit where accuracy is important, careful consideration  
of the power supply and ground return layout helps to ensure  
the rated performance. Design the printed circuit board (PCB) on  
which the AD5671R/AD5675R are mounted so that the devices  
lie on the analog plane.  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 70. Isolated Interface  
The AD5671R/AD5675R must have ample supply bypassing of  
10 µF in parallel with 0.1 µF on each supply, located as close to  
the package as possible, ideally right up against the device. The  
10 µF capacitors are tantalum bead type. The 0.1 µF capacitor  
must have low effective series resistance (ESR) and low effective  
Rev. B | Page 30 of 32  
 
 
 
 
 
 
 
 
 
 
Data Sheet  
AD5671R/AD5675R  
OUTLINE DIMENSIONS  
6.60  
6.50  
6.40  
20  
11  
10  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-153-AC  
Figure 71. 20-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-20)  
Dimensions shown in millimeters  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
16  
15  
20  
0.50  
BSC  
1
EXPOSED  
PAD  
2.75  
2.60 SQ  
2.35  
11  
5
6
10  
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD.  
Figure 72. 20-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-20-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Resolution Range  
Reference Temperature  
Coefficient (ppm/°C)  
Package  
Description  
Package  
Option  
Model1  
Accuracy  
AD567±RBRUZ  
AD567±RBRUZ-REEL7 ±2 Bits  
AD567±RBCPZ-REEL7 ±2 Bits  
AD567±RBCPZ-RL  
AD5675RARUZ  
AD5675RARUZ-REEL7 ±6 Bits  
AD5675RBRUZ ±6 Bits  
AD5675RBRUZ-REEL7 ±6 Bits  
AD5675RACPZ-REEL7 ±6 Bits  
AD5675RACPZ-RL  
AD5675RBCPZ-REEL7 ±6 Bits  
EVAL-AD5675RSDZ  
±2 Bits  
−40°C to +±25°C ±± LSB INL 2 (typical)  
−40°C to +±25°C ±± LSB INL 2 (typical)  
−40°C to +±25°C ±± LSB INL 2 (typical)  
−40°C to +±25°C ±± LSB INL 2 (typical)  
−40°C to +±25°C ±8 LSB INL 5 (typical)  
−40°C to +±25°C ±8 LSB INL 5 (typical)  
−40°C to +±25°C ±3 LSB INL 2 (typical)  
−40°C to +±25°C ±3 LSB INL 2 (typical)  
−40°C to +±25°C ±8 LSB INL 5 (typical)  
−40°C to +±25°C ±8 LSB INL 5 (typical)  
−40°C to +±25°C ±3 LSB INL 5 (typical)  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead LFCSP_WQ  
20-Lead LFCSP_WQ  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead LFCSP_WQ  
20-Lead LFCSP_WQ  
20-Lead LFCSP_WQ  
AD5675R Evaluation Board  
RU-20  
RU-20  
CP-20-8  
CP-20-8  
RU-20  
RU-20  
RU-20  
RU-20  
±2 Bits  
±6 Bits  
CP-20-8  
CP-20-8  
CP-20-8  
±6 Bits  
± Z = RoHS Compliant Part.  
Rev. B | Page 3± of 32  
 
 
AD5671R/AD5675R  
NOTES  
Data Sheet  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2014–2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12664-0-10/15(B)  
Rev. B | Page 32 of 32  

相关型号:

AD5671RBRUZ

Octal, 12-Bit nanoDAC+ with 2 ppm/°C Reference, I2 Interface
ADI

AD5671RBRUZ-REEL7

Base station power amplifiers
ADI

AD5672R

Easy implementation
ADI

AD5672RBCPZ-REEL7

Octal, 12-/16-Bit nanoDAC with ppm/°C Reference, SPI Interface
ADI

AD5672RBCPZ-RL

Octal, 12-/16-Bit nanoDAC with ppm/°C Reference, SPI Interface
ADI

AD5672RBRUZ

Octal, 12-/16-Bit nanoDAC with ppm/°C Reference, SPI Interface
ADI

AD5672RBRUZ-REEL7

Octal, 12-/16-Bit nanoDAC with ppm/°C Reference, SPI Interface
ADI

AD5675

Easy implementation
ADI

AD5675ACPZ-REEL7

Octal, 16-Bit nanoDAC
ADI

AD5675ACPZ-RL

Octal, 16-Bit nanoDAC
ADI

AD5675ARUZ

Octal, 16-Bit nanoDAC
ADI

AD5675ARUZ-REEL7

Octal, 16-Bit nanoDAC+ with I<sup>2</sup>C Interface
ADI