AD5683RBRMZ-3-RL7 [ADI]

Tiny 16-/14-/12-Bit SPI nanoDAC;
AD5683RBRMZ-3-RL7
型号: AD5683RBRMZ-3-RL7
厂家: ADI    ADI
描述:

Tiny 16-/14-/12-Bit SPI nanoDAC

文件: 总28页 (文件大小:882K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Tiny 16-/14-/12-Bit SPI nanoDAC+, with  
2 (16-Bit) LSB INL and 2 ppm/°C Reference  
AD5683R/AD5682R/AD5681R/AD5683  
FUNCTIONAL BLOCK DIAGRAM  
Data Sheet  
FEATURES  
V
*
V
V
DD  
LOGIC  
REF  
Ultrasmall package: 2 mm × 2 mm, 8-lead LFCSP  
High relative accuracy (INL): 2 LSB maximum at 16 bits  
AD5683R/AD5682R/AD5681R  
Low drift, 2.5 V reference: 2 ppm/°C typical  
Selectable span output: 2.5 V or 5 V  
AD5683  
POWER-ON  
RESET  
AD5683R/  
AD5682R/  
AD5681R  
2.5V  
REF  
LDAC  
REF  
DAC  
REGISTER  
OUTPUT  
BUFFER  
V
16-/14-/12-BIT  
DAC  
OUT  
RESET  
External reference only  
Selectable span output: VREF or 2 × VREF  
Total unadjusted error (TUE): 0.06% of FSR maximum  
Offset error: 1.5 mV maximum  
Gain error: 0.05% of FSR maximum  
Low glitch: 0.1 nV-sec  
INPUT  
POWER-DOWN  
CONTROL LOGIC  
RESISTOR  
NETWORK  
CONTROL LOGIC  
*NOT AVAILABLE IN ALL THE MODELS  
GND  
SYNC SCLK SDI SDO*  
High drive capability: 20 mA  
Figure 1. AD5683R/AD5682R/AD5681R MSOP  
Low power: 1.2 mW at 3.3 V  
(For more information, see the Functional Block Diagrams—LFCSP section.)  
Independent logic supply: 1.62 V logic compatible  
Wide operating temperature range: −40°C to +105°C  
Robust 4 kV HBM ESD protection  
APPLICATIONS  
Process controls  
Data acquisition systems  
Digital gain and offset adjustment  
Programmable voltage sources  
GENERAL DESCRIPTION  
Table 1. Single-Channel nanoDAC+ Portfolio  
The AD5683R/AD5682R/AD5681R/AD5683, members of the  
nanoDAC+® family, are low power, single-channel, 16-/14-/12-bit  
buffered voltage out digital-to-analog converters (DACs). The  
devices, except the AD5683, include an enabled by default internal  
2.5 V reference, offering 2 ppm/°C drift. The output span can be  
programmed to be 0 V to VREF or 0 V to 2 × VREF. All devices  
operate from a single 2.7 V to 5.5 V supply and are guaranteed  
monotonic by design. The devices are available in a 2.00 mm ×  
2.00 mm, 8-lead LFCSP or a 10-lead MSOP.  
Interface  
Reference  
Internal  
External  
Internal  
External  
16-Bit  
14-Bit  
12-Bit  
SPI  
AD5683R  
AD5683  
AD5693R  
AD5693  
AD5682R  
AD5681R  
I2C  
AD5692R  
AD5691R  
PRODUCT HIGHLIGHTS  
1. High Relative Accuracy (INL).  
AD5683R/AD5683 (16-bit): 2 LSB maximum.  
2. Low Drift, 2.5 V On-Chip Reference.  
2 ppm/°C typical temperature coefficient.  
5 ppm/°C maximum temperature coefficient.  
3. Two Package Options.  
The internal power-on reset circuit ensures that the DAC register  
is written to zero scale at power-up while the internal output  
buffer is configured in normal mode. The AD5683R/AD5682R  
/AD5681R/AD5683 contain a power-down mode that reduces  
the current consumption of the device to 2 µA (maximum) at 5 V  
and provides software selectable output loads while in power-  
down mode.  
2.00 mm × 2.00 mm, 8-lead LFCSP.  
10-lead MSOP.  
The AD5683R/AD5682R/AD5681R/AD5683 use a versatile  
3-wire serial interface that operates at clock rates of up to 50 MHz.  
RESET  
Some devices also include asynchronous  
pin options, allowing 1.8 V compatibility.  
pin and VLOGIC  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2013–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD5683R/AD5682R/AD5681R/AD5683  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Digital-to-Analog Converter .................................................... 19  
Transfer Function....................................................................... 19  
DAC Architecture....................................................................... 19  
Serial Interface ................................................................................ 21  
SPI Serial Data Interface............................................................ 21  
Short Write Operation (AD5681R Only)................................ 21  
Internal Registers........................................................................ 23  
Commands.................................................................................. 23  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagrams—LFCSP............................................. 3  
Specifications..................................................................................... 4  
AC Characteristics........................................................................ 6  
Timing Characteristics ................................................................ 6  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configurations and Function Descriptions ........................... 9  
Typical Performance Characteristics ........................................... 11  
Terminology .................................................................................... 17  
Theory of Operation ...................................................................... 19  
LDAC  
Hardware  
Hardware  
......................................................................... 25  
RESET  
........................................................................ 25  
Thermal Hysteresis .................................................................... 26  
Power-Up Sequence ................................................................... 26  
Recommended Regulator.......................................................... 26  
Layout Guidelines....................................................................... 26  
Outline Dimensions ....................................................................... 27  
Ordering Guide .......................................................................... 28  
REVISION HISTORY  
12/2016—Rev. C to Rev. D  
10/2014—Rev. A to Rev. B  
Changed 1.8 V to 1.62 V, 1.8 V – 10% to 1.62 V, 5 V + 10% to 5.5 V,  
and 1.8 V ≤ VLOGIC ≤ 2.7 V to 1.62 V ≤ VLOGIC ≤ 2.7 V.....Throughout  
Changes to DC Power Supply Rejection Ratio, PSRR, Test  
Conditions/Comments Column, Table 2......................................... 4  
Changes to Table 1.............................................................................1  
Changes to Figure 14...................................................................... 11  
Added Recommended Regulator Section................................... 26  
Changes to Ordering Guide.......................................................... 28  
3/2016—Rev. B to Rev. C  
1/2014—Rev. 0 to Rev. A  
Changes to Features Section............................................................ 1  
Changes to Specifications Section.................................................. 4  
Changes to Table 2............................................................................ 5  
Changes to AC Characteristics Section, Timing Characteristics  
Section, and Table 4 .......................................................................... 6  
Changes to Figure 4.......................................................................... 7  
Changes to Table 7............................................................................ 9  
Changes to Table 8.......................................................................... 10  
Changes to Terminology Section.................................................. 17  
Changes to SPI Serial Data Interface Section ............................. 21  
Change to Features Section..............................................................1  
Removed Endnote 2, Endnote 3, Endnote 5, and Endnote 6,  
Table 2; Renumbered Sequentially..................................................5  
Removed Endnote 2, Table 3; Renumbered Sequentially ............6  
Removed Endnote 1, Table 4; Renumbered Sequentially ............6  
Changes to Table 5.............................................................................8  
Removed Solder Heat Reflow Section and Figure 53;  
Renumbered Sequentially ............................................................. 25  
12/2013—Revision 0: Initial Version  
Rev. D | Page 2 of 28  
 
Data Sheet  
AD5683R/AD5682R/AD5681R/AD5683  
FUNCTIONAL BLOCK DIAGRAMS—LFCSP  
V
*
V
V
DD  
LOGIC  
REF  
POWER-ON  
RESET  
AD5683R/  
AD5682R/  
AD5681R  
2.5V  
REF  
LDAC*  
REF  
DAC  
REGISTER  
OUTPUT  
BUFFER  
V
16-/14-/12-BIT  
DAC  
OUT  
RESET*  
INPUT  
CONTROL LOGIC  
POWER-DOWN  
CONTROL LOGIC  
RESISTOR  
NETWORK  
*NOT AVAILABLE IN ALL THE MODELS  
GND  
SYNC SCLK SDI  
Figure 2. AD5683R/AD5682R/AD5681R LFCSP  
V
V
DD  
REF  
POWER-ON  
RESET  
AD5683  
REF  
16-BIT  
DAC  
REGISTER  
OUTPUT  
BUFFER  
V
OUT  
LDAC*  
DAC  
INPUT  
CONTROL LOGIC  
POWER-DOWN  
CONTROL LOGIC  
RESISTOR  
NETWORK  
SYNC SCLK SDI  
GND  
Figure 3. AD5683 LFCSP  
Rev. D | Page 3 of 28  
 
AD5683R/AD5682R/AD5681R/AD5683  
SPECIFICATIONS  
Data Sheet  
VDD = 2.7 V to 5.5 V, RL = 2 kΩ to GND, CL = 200 pF to GND, VREF = 2.5 V, VLOGIC= 1.62 V to 5.5 V, 40°C < TA < +105°C, unless otherwise  
noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
STATIC PERFORMANCE1  
AD5683R  
Resolution  
Relative Accuracy, INL  
A Grade  
16  
Bits  
LSB  
LSB  
LSB  
8
2
3
1
B Grade  
Gain = 2  
Gain = 1  
Differential Nonlinearity, DNL  
AD5683  
LSB  
Guaranteed monotonic by design  
Resolution  
Relative Accuracy, INL  
16  
Bits  
LSB  
LSB  
LSB  
2
3
1
Gain = 2  
Gain =1  
Differential Nonlinearity, DNL  
AD5682R  
Guaranteed monotonic by design  
Resolution  
14  
12  
Bits  
LSB  
LSB  
Relative Accuracy, INL  
Differential Nonlinearity, DNL  
AD5681R  
1
1
Guaranteed monotonic by design  
Resolution  
Bits  
LSB  
LSB  
mV  
mV  
Relative Accuracy, INL  
Differential Nonlinearity, DNL  
Zero-Code Error  
1
1
1.25  
1.5  
Guaranteed monotonic by design  
All 0s loaded to DAC register  
Offset Error  
Full-Scale Error  
Gain Error  
Total Unadjusted Error, TUE  
0.075  
% of FSR All 1s loaded to DAC register  
% of FSR  
0.05  
0.16  
0.14  
0.075  
0.06  
% of FSR Internal reference, gain = 1  
% of FSR Internal reference, gain = 2  
% of FSR External reference, gain = 1  
% of FSR External reference, gain = 2  
µV/°C  
Zero-Code Error Drift  
Offset Error Drift  
1
1
µV/°C  
Gain Temperature Coefficient  
DC Power Supply Rejection Ratio, PSRR  
OUTPUT CHARACTERISTICS  
Output Voltage Range  
1
0.2  
ppm/°C  
mV/V  
DAC code = midscale; VDD = 5 V  
0
0
VREF  
2 × VREF  
V
V
Gain = 1  
Gain = 2  
Capacitive Load Stability  
2
nF  
RL = ∞  
10  
nF  
RL = 2 kΩ  
Resistive Load  
1
kΩ  
CL = 0 µF  
Load Regulation  
10  
10  
30  
20  
µV/mA  
µV/mA  
mA  
5 V, DAC code = midscale; −30 mA ≤ IOUT ≤ +30 mA  
3 V, DAC code = midscale; −20 mA ≤ IOUT ≤ +20 mA  
Short-Circuit Current  
Load Impedance at Rails2  
20  
50  
Rev. D | Page 4 of 28  
 
Data Sheet  
AD5683R/AD5682R/AD5681R/AD5683  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
REFERENCE OUTPUT  
Output Voltage  
Voltage Reference TC3  
2.4975  
2.5025  
V
At ambient  
See the Terminology section  
A-Grade  
B-Grade  
5
2
20  
5
ppm/°C  
ppm/°C  
µV p-p  
nV/√Hz  
µF  
µV/mA  
µV/mA  
mA  
Output Impedance  
Output Voltage Noise  
Output Voltage Noise Density  
Capacitive Load Stability  
Load Regulation Sourcing  
Load Regulation Sinking  
Output Current Load Capability  
Line Regulation  
0.05  
16.5  
250  
5
50  
30  
5
80  
125  
25  
0.1 Hz to 10 Hz  
At ambient; f = 10 kHz, CL = 10 nF  
RL = 2 kΩ  
At ambient; VDD ≥ 3 V  
At ambient  
VDD ≥ 3 V  
At ambient  
First cycle  
Additional cycles  
µV/V  
ppm  
ppm  
Thermal Hysteresis  
REFERENCE INPUT  
Reference Current  
26  
47  
µA  
µA  
V
VREF = VDD =VLOGIC = 5 V, gain = 1  
VREF = VDD =VLOGIC = 5 V, gain = 2  
Reference Input Range  
1
VDD  
Reference Input Impedance  
120  
60  
kΩ  
kΩ  
Gain = 1  
Gain = 2  
LOGIC INPUTS  
IIN, Input Current  
1
µA  
V
V
Per pin  
VINL, Input Low Voltage4  
VINH, Input High Voltage4  
CIN, Pin Capacitance  
LOGIC OUTPUTS (SDO)5  
Output Low Voltage, VOL  
Output High Voltage, VOH  
Pin Capacitance  
0.3 ×VDD  
0.7 × VDD  
2
pF  
0.4  
V
V
pF  
ISINK = 200 μA  
ISOURCE = 200 μA  
VDD − 0.4  
1.62  
4
POWER REQUIREMENTS  
5
VLOGIC  
ILOGIC  
5.5  
3
5.5  
5.5  
V
µA  
V
5
0.25  
VIH = VLOGIC or VIL = GND  
Gain = 1  
Gain = 2  
VIH = VDD, VIL = GND  
Internal reference enabled  
Internal reference disabled  
VDD  
2.7  
VREF + 1.5  
V
6
IDD  
Normal Mode7  
350  
110  
500  
180  
2
µA  
µA  
µA  
Power-Down Modes8  
1 Linearity is calculated using a reduced code range: AD5683R and AD5683 (Code 512 to Code 65,535); AD5682R (Code 128 to Code 16,384); AD5681R (Code 32 to  
Code 4096). Output unloaded.  
2 When drawing a load current at either rail, the output voltage headroom, with respect to that rail, is limited by the 20 Ω typical channel resistance of the output  
devices; for example, when sinking 1 mA, the minimum output voltage = 20 Ω, 1 mA generates 20 mV. See Figure 38 (Headroom/Footroom vs. Load Current).  
3 Reference temperature coefficient is calculated as per the box method. See the Terminology section for more information.  
4 Substitute VLOGIC for VDD if device includes a VLOGIC pin.  
5 The VLOGIC and SDO pins are not available on all models.  
6 If the VLOGIC pin is not available, IDD = IDD + ILOGIC  
.
7 Interface inactive. DAC active. DAC output unloaded.  
8 DAC powered down.  
Rev. D | Page 5 of 28  
AD5683R/AD5682R/AD5681R/AD5683  
Data Sheet  
AC CHARACTERISTICS  
VDD = 2.7 V to 5.5 V, RL = 2 kΩ to GND, CL = 200 pF to GND, VREF = 2.5 V, VLOGIC= 1.62 V to 5.5 V, 40°C < TA < +105°C, unless otherwise  
noted.1  
Table 3.  
Parameter  
Output Voltage Settling Time2, 3  
Typ  
5
Max  
Unit  
µs  
Test Conditions/Comments  
7
Gain = 1  
Slew Rate  
0.7  
0.1  
0.1  
−83  
200  
6
V/µs  
nV-sec  
nV-sec  
dB  
nV/√Hz  
µV p-p  
dB  
Digital-to-Analog Glitch Impulse2  
Digital Feedthrough2  
Total Harmonic Distortion2  
Output Noise Spectral Density  
Output Noise  
1 LSB change around major carry, gain = 2  
VREF = 2 V 0.1 V p-p, frequency = 10 kHz  
DAC code = midscale, 10 kHz  
0.1 Hz to 10 Hz; internal reference, DAC = zero scale  
At ambient, BW = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
At ambient, BW = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
At ambient, BW = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
SNR  
90  
SFDR  
SINAD  
88  
82  
dB  
dB  
1 Temperature range = −40°C to +105°C, typical at 25°C.  
2 See the Terminology section.  
3 AD5683R/AD5683 to 2 LSB, AD5682R to 1 LSB, AD5681R to 0.5 LSB.  
TIMING CHARACTERISTICS  
VDD = 2.7 V to 5.5 V, VLOGIC= 1.62 V to 5.5 V, 40°C < TA < +105°C, unless otherwise noted.  
Table 4.  
1.62 V ≤ VLOGIC ≤ 2.7 V 2.7 V ≤ VLOGIC2 ≤ 5.5 V Daisy Chain and Readback  
Parameter 1  
Symbol  
t1  
t2  
t3  
t4  
Min  
33  
16  
16  
15  
5
Typ Max  
Min  
20  
10  
10  
10  
5
Typ  
Max  
Min  
40  
20  
20  
20  
5
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
SCLK Cycle Time  
SCLK High Time  
SCLK Low Time  
SYNC to SCLK Falling Edge Setup Time  
Data Setup Time  
t5  
t6  
t7  
Data Hold Time  
5
5
5
SCLK Falling Edge to SYNC Rising Edge  
Minimum SYNC High Time  
SYNC Falling Edge to SCLK Fall Ignore  
SDO Data Valid from SCLK Rising Edge  
SYNC Rising Edge to SCLK Falling Edge  
SYNC Rising Edge to SDO Disabled  
SYNC Rising Edge to LDAC Falling Edge  
LDAC Pulse Width Low  
15  
20  
16  
10  
40  
10  
10  
20  
10  
t8  
t9  
t10  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
35  
60  
10  
25  
25  
25  
20  
15  
15  
RESET Minimum Pulse Width Low  
RESET Pulse Activation Time  
75  
75  
75  
150  
1.9  
150  
1.7  
150  
1.7  
SYNC Rising Edge to SYNC Rising Edge  
(DAC Updates)  
LDAC Falling Edge to SYNC Rising Edge  
Reference Power-Up3  
Exit Shutdown3  
t18  
1.8  
1.65  
1.65  
µs  
µs  
µs  
4
tREF_POWER_UP  
tSHUTDOWN  
600  
6
600  
600  
5
6
6
1 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
2 Substitute VDD for VLOGIC on devices that do not include a VLOGIC pin.  
3 Not shown in Figure 4.  
4 Same timing must be expected when powering up the device after VDD = 2.7 V.  
5
SYNC  
Time required to exit power-down to normal mode of AD5683R/AD5682R/AD5681R operation;  
rising edge to 90% of DAC midscale value, with output unloaded.  
Rev. D | Page 6 of 28  
 
 
 
Data Sheet  
AD5683R/AD5682R/AD5681R/AD5683  
Timing and Circuit Diagrams  
t4  
t7  
t1  
t9  
t2  
SCLK  
SYNC  
t11  
t3  
t8  
t17  
t5  
t6  
SDI  
DB23  
DB23  
DB22  
DB22  
DB21  
DB21  
DB20  
DB20  
DB2  
DB1  
DB0  
t12  
t10  
DB2  
DB1  
DB0  
SDO  
t13  
t14  
t18  
LDAC  
t15  
RESET  
t16  
V
OUT  
Figure 4. SPI Timing Diagram, Compatible with Mode 1 and Mode 2 (See the AN-1248 Application Note)  
200µA  
I
OL  
TO OUTPUT  
PIN  
V
(MIN)  
OH  
C
L
90pF  
200µA  
I
OH  
Figure 5. Load Circuit for Digital Output (SDO) Timing Specifications  
Rev. D | Page 7 of 28  
 
AD5683R/AD5682R/AD5681R/AD5683  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 5.  
Parameter  
VDD to GND  
VLOGIC to GND  
VOUT to GND  
Rating  
−0.3 V to +7 V  
−0.3 V to +7 V  
−0.3 V to VDD + 0.3 V or +7 V  
(whichever is less)  
VREF to GND  
−0.3 V to VDD + 0.3 V or +7 V  
(whichever is less)  
−0.3 V to VDD + 0.3 V or +7 V  
(whichever is less)  
THERMAL RESISTANCE  
θJA is defined by the JEDEC JESD51 standard, and the value is  
dependent on the test board and test environment.  
Digital Input Voltage to GND1  
Operating Temperature Range  
Industrial  
Table 6. Thermal Resistance1  
Package Type  
8-Lead LFCSP  
10-Lead MSOP  
−40°C to +105°C  
−65°C to +150°C  
135°C  
(TJ max − TA)/θJA  
4 kV  
θJA  
90  
135  
θJC  
25  
N/A  
Unit  
°C/W  
°C/W  
Storage Temperature Range  
Junction Temperature (TJ max)  
Power Dissipation  
ESD2  
1 JEDEC 2S2P test board, still air (0 m/sec airflow).  
FICDM3  
1.25 kV  
ESD CAUTION  
1 Substitute VDD with VLOGIC on devices that include a VLOGIC pin.  
2 Human body model (HBM) classification.  
3 Field-Induced Charged-Device Model classification.  
Rev. D | Page 8 of 28  
 
 
 
Data Sheet  
AD5683R/AD5682R/AD5681R/AD5683  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
8
7
V
V
DD  
OUT  
REF  
AD5681R/  
AD5682R/  
AD5683R/  
AD5683  
LDAC  
GND  
6 SDI  
TOP VIEW  
(Not to Scale)  
5 SYNC  
SCLK  
NOTES  
1. CONNECT THE EXPOSED PAD TO GND.  
LDAC  
Figure 6. Pin Configuration, 8-Lead LFCSP,  
Option  
V
1
2
3
4
8
7
6
5
V
V
DD  
OUT  
REF  
V
LOGIC  
GND  
AD5683R-1/  
AD5681R-1  
TOP VIEW  
(Not to Scale)  
SDI  
SYNC  
SCLK  
NOTES  
1. CONNECT THE EXPOSED PAD TO GND.  
Figure 7. Pin Configuration, 8-Lead LFCSP, VLOGIC Option  
V
1
2
8
7
V
V
DD  
OUT  
RESET  
REF  
AD5683R-2  
6 SDI  
GND 3  
TOP VIEW  
(Not to Scale)  
5 SYNC  
SCLK 4  
NOTES  
1. CONNECT THE EXPOSED PAD TO GND.  
RESET  
Figure 8. Pin Configuration, 8-Lead LFCSP,  
Option  
Table 7. Pin Function Descriptions, 8-Lead LFCSP  
Pin No.  
LDAC  
RESET  
VLOGIC  
1
N/A  
Mnemonic Description  
1
2
1
N/A  
VDD  
Power Supply Input. These devices can be operated from 2.7 V to 5.5 V. Decouple the supply to GND.  
LDAC  
LDAC can be operated in asynchronous mode (see Figure 4). Pulsing this pin low allows the DAC  
register to be updated if the input register has new data. This pin can be tied permanently low; in  
this case, the DAC is automatically updated when new data is written to the input register.  
N/A  
N/A  
2
N/A  
N/A  
2
VLOGIC  
RESET  
Digital Power Supply. Voltage ranges from 1.62 V to 5.5 V.  
Asynchronous Reset Input. The RESET input is low level sensitive. When RESET is low, all LDAC pulses  
are ignored, the input and DAC registers are at their default values, and the output is connected to  
GND. Data written to the AD5683R is ignored. If not used, this pin can be tied to VLOGIC  
.
3
4
3
4
3
4
GND  
SCLK  
Ground Reference Point for All Circuitry on the Device.  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock  
input. Data can be transferred at rates of up to 50 MHz.  
5
5
5
SYNC  
Active Low Control Input. This is the frame synchronization signal for the input data. When SYNC  
goes low, it powers on the SCLK and SDI buffers and enables the input shift register. Data is  
transferred in on the falling edges of the next 24 clocks.  
6
7
6
7
6
7
SDI  
VREF  
Serial Data Input. This device has a 24-bit shift register. Data is clocked into the register on the  
falling edge of the serial clock input.  
AD5683R/AD5682R/AD5681R Reference Output. When using the internal reference, this is the  
reference output pin. The default for this pin is as a reference output. It is recommended that this  
pin be decoupled to GND with a 10 nF capacitor.  
8
0
8
0
8
0
VOUT  
EPAD  
Analog Output Voltage from the DAC. The output amplifier has rail-to-rail operation.  
Exposed Pad. Connect the exposed pad to GND.  
Rev. D | Page 9 of 28  
 
AD5683R/AD5682R/AD5681R/AD5683  
Data Sheet  
V
1
2
3
4
5
10  
9
V
V
V
1
2
3
4
5
10  
9
V
V
DD  
OUT  
REF  
DD  
OUT  
RESET  
SDO  
V
AD5683R-3  
AD5683R/  
AD5681R  
LOGIC  
REF  
8
SDI  
RESET  
LDAC  
GND  
8
SDI  
TOP VIEW  
(Not to Scale)  
TOP VIEW  
LDAC  
GND  
7
SYNC  
SCLK  
7
SYNC  
SCLK  
(Not to Scale)  
6
6
Figure 10. Pin Configuration, 10-Lead MSOP, SDO Option  
Figure 9. Pin Configuration, 10-Lead MSOP, VLOGIC Option  
Table 8. Pin Function Descriptions, 10-Lead MSOP  
VLOGIC  
SDO  
Mnemonic Description  
1
2
3
1
N/A  
2
VDD  
VLOGIC  
RESET  
Power Supply Input. These devices can be operated from 2.7 V to 5.5 V. Decouple this pin to GND.  
Digital Power Supply. Voltage ranges from 1.62 V to 5.5 V. Decouple this pin to GND.  
Hardware Reset Pin. The RESET input is low level sensitive. When RESET is low, the device is reset and  
external pins are ignored. The input and DAC registers are loaded with a zero-scale value, and the write  
control register is loaded with default values. If not used, tie this pin to VLOGIC  
.
N/A  
4
3
4
SDO  
LDAC  
Serial Data Output. Can be used for daisy chaining or readback commands.  
Load DAC. Transfers the content of the input register to the DAC register. It can be operated in  
asynchronous mode (see Figure 4). This pin can be tied permanently low; in this case, the DAC register is  
automatically updated when new data is written to the input register.  
5
6
5
6
GND  
SCLK  
Ground Reference.  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock  
input. Data can be transferred at rates of up to 50 MHz.  
7
7
SYNC  
Synchronization Data Input. When SYNC goes low, it enables the SCLK and SDI buffers and the input  
shift register.  
8
9
8
9
SDI  
VREF  
Serial Data Input. Data is sampled on the falling edge of SCLK.  
Reference Input/Output. When using the internal reference, this is the reference output pin. The default  
for this pin is as a reference output. It is recommended that this pin be decoupled to GND with a 10 nF  
capacitor.  
10  
10  
VOUT  
Analog Output Voltage from the DAC. The output amplifier has rail-to-rail operation.  
Rev. D | Page 10 of 28  
Data Sheet  
AD5683R/AD5682R/AD5681R/AD5683  
TYPICAL PERFORMANCE CHARACTERISTICS  
2
2
V
= 5V  
V
= 5V  
DD  
DD  
T = 25°C  
A
T
= 25°C  
A
V
= 2.5V  
V
= 2.5V  
REF  
REF  
1
1
0
0
–1  
–2  
–1  
–2  
0
10000  
20000  
30000  
CODE  
40000  
50000  
60000 65535  
0
10000  
20000  
30000  
CODE  
40000  
50000  
60000 65535  
Figure 11. AD5683R/AD5683 INL  
Figure 14. AD5683R/AD5683 DNL  
2
1
1.0  
0.8  
V
T
= 5V  
= 25°C  
= 2.5V  
V
= 5V  
DD  
DD  
= 25°C  
T
A
A
V
V
= 2.5V  
REF  
REF  
0.6  
0.4  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1  
–2  
0
2000 4000 6000 8000 10000 12000 14000  
CODE  
16383  
0
2000 4000 6000 8000 10000 12000 14000  
CODE  
16383  
Figure 12. AD5682R INL  
Figure 15. AD5682R DNL  
2.0  
1.5  
1.0  
0.8  
V
T
V
= 5V  
= 25°C  
V
= 5V  
= 25°C  
= 2.5V  
DD  
DD  
T
A
A
= 2.5V  
V
REF  
REF  
0.6  
1.0  
0.4  
0.5  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
500  
1000 1500 2000 2500 3000 3500 4000  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
CODE  
Figure 13. AD5681R INL  
Figure 16. AD5681R DNL  
Rev. D | Page 11 of 28  
 
 
 
 
 
 
 
AD5683R/AD5682R/AD5681R/AD5683  
Data Sheet  
1.2  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
= 5V  
U1_DNL  
U3_DNL  
U2_INL  
U2_DNL  
U1_INL  
U3_INL  
V
= 5V  
DD  
DD  
T = 25°C  
A
= 2.5V  
REF  
1.0  
0.8  
0.6  
0.4  
0.2  
0
U1_DNL_INT  
U3_DNL_INT  
U2_DNL_EXT  
U1_INL_INT  
U3_INL_INT  
U2_INL_EXT  
U2_DNL_INT  
U1_DNL_EXT  
U3_DNL_EXT  
U2_INL_INT  
U1_INL_EXT  
U3_INL_EXT  
–0.2  
–0.2  
2
3
4
5
–40  
–20  
0
20  
40  
60  
80  
105  
V
(V)  
TEMPERATURE (°C)  
REF  
Figure 17. INL and DNL Error vs. Temperature (AD5683R/AD5683)  
Figure 20. INL Error and DNL Error vs. VREF (AD5683R/AD5683)  
0.02  
0.01  
0
1.4  
U1_DNL_INT  
U3_DNL_INT  
U2_DNL_EXT  
U1_INL_INT  
U3_INL_INT  
U2_INL_EXT  
U2_DNL_INT  
U1_DNL_EXT  
U3_DNL_EXT  
U2_INL_INT  
U1_INL_EXT  
U3_INL_EXT  
T
= 25°C  
A
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.01  
–0.02  
–0.03  
–0.04  
0
0
0
10000  
2000  
500  
20000  
4000  
1000  
30000  
6000  
1500  
40000  
8000  
2000  
50000  
10000  
2500  
60000 65535 (AD5683/AD5683R)  
12000 16383 (AD5682R)  
3000 4095 (AD5681R)  
CODE  
–0.2  
2.70  
3.30  
3.75  
4.25  
(V)  
4.75  
5.25  
V
DD  
Figure 18. INL and DNL Error vs. Supply Voltage  
Figure 21. TUE vs. Code  
0.06  
0.04  
0.02  
0
0.04  
0.03  
0.02  
0.01  
0
T
= 25°C  
U1_EXT  
U2_EXT  
U3_EXT  
U1_INT  
U2_INT  
U3_INT  
V
= 5V  
A
DD  
GAIN = 1  
= 2.5V  
GAIN = 1  
V
= 2.5V  
V
REF  
REF  
–0.02  
–0.04  
–0.01  
–0.02  
U1_INT  
U2_INT  
U3_INT  
U1_EXT  
U2_EXT  
U3_EXT  
2.70  
3.30  
3.75  
4.25  
(V)  
4.75  
5.25  
–40  
0
40  
TEMPERATURE (°C)  
80  
V
DD  
Figure 22. TUE vs. Supply  
Figure 19. TUE vs. Temperature  
Rev. D | Page 12 of 28  
Data Sheet  
AD5683R/AD5682R/AD5681R/AD5683  
0.030  
0.03  
0.02  
0.01  
0
T
= 25°C  
A
GAIN = 1  
V
0.025  
0.020  
0.015  
0.010  
0.005  
0
= 2.5V  
REF  
–0.01  
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
U1_INT  
–0.02  
–0.03  
–0.04  
U2_INT  
U3_INT  
U1_EXT  
U2_EXT  
U3_EXT  
V
= 5V  
U1_INT  
U2_INT  
U3_INT  
U1_EXT  
U2_EXT  
U3_EXT  
DD  
GAIN = 1  
= 2.5V  
V
REF  
2.70  
3.30  
3.75  
4.25  
(V)  
4.75  
5.25  
5.50  
–40  
0
40  
TEMPERATURE (°C)  
80  
V
DD  
Figure 23. Gain Error and Full-Scale Error vs. Temperature  
Figure 26. Gain Error and Full-Scale Error vs. Supply  
500  
400  
300  
200  
100  
0
350  
300  
250  
200  
150  
100  
50  
V
= 5V  
U1_INT  
U2_INT  
U3_INT  
U1_EXT  
U2_EXT  
U3_EXT  
T = 25°C  
A
GAIN = 1  
DD  
GAIN = 1  
= 2.5V  
V
V
= 2.5V  
REF  
REF  
U1_INT  
U2_INT  
U3_INT  
U1_EXT  
U2_EXT  
U3_EXT  
0
2.70  
3.30  
3.75  
4.25  
(V)  
4.75  
5.25  
5.50  
–40  
–20  
0
20  
40  
60  
80  
105  
V
TEMPERATURE (°C)  
DD  
Figure 24. Zero Code Error and Offset Error vs. Temperature  
Figure 27. Zero Code Error and Offset Error vs. Supply  
2.505  
2.503  
2.501  
2.499  
2.497  
2.495  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
U1  
U2  
U3  
V
T
= 5V  
DD  
DD  
= 25°C  
A
GAIN = 1  
–40  
10  
TEMPERATURE (°C)  
60  
V
(V)  
REF  
Figure 25. Internal Reference Voltage vs. Temperature (Grade B)  
Figure 28. Reference Output Spread  
Rev. D | Page 13 of 28  
 
 
 
AD5683R/AD5682R/AD5681R/AD5683  
Data Sheet  
2.50015  
2.5009  
2.5008  
2.5007  
2.5006  
2.5005  
2.5004  
2.5003  
5.5V  
5.0V  
3.0V  
2.7V  
T
= 25°C  
T
= 25°C  
A
A
2.50010  
2.50005  
2.50000  
2.49995  
2.49990  
2.49985  
2.49980  
D11  
D12  
D13  
2.5  
3.5  
4.5  
5.5  
–0.005  
–0.003  
–0.001  
0.001  
0.003  
0.005  
V
(V)  
DD  
LOAD CURRENT (A)  
Figure 29. Internal Reference Voltage vs. Supply Voltage  
Figure 32. Internal Reference Voltage vs. Load Current  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
V
= 5V  
T
DD  
= 25°C  
T
V
= 25°C  
A
T
A
= 5V  
DD  
1
CH1 10µV  
M1.00s  
A
CH1  
2.00µV  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 30. Internal Reference Noise, 0.1 Hz to 10 Hz  
Figure 33. Internal Reference Noise Spectral Density vs. Frequency  
T
T
T
V
= 25°C  
T
V
= 25°C  
= 5V  
A
A
= 5V  
DD  
DD  
1
1
CH1 10µV  
M1.00s  
A
CH1  
2.00µV  
CH1 10µV  
M1.00s  
A
CH1  
2.00µV  
Figure 34. 0.1 Hz to 10 Hz Output Noise Plot, External Reference  
Figure 31. 0.1 Hz to 10 Hz Output Noise Plot, Internal Reference On  
Rev. D | Page 14 of 28  
 
 
 
 
Data Sheet  
AD5683R/AD5682R/AD5681R/AD5683  
1200  
1000  
800  
1.4  
V
= 5V  
FULL-SCALE  
MIDSCALE  
ZEROSCALE  
DD  
= 25°C  
SINKING, V = 3V  
DD  
T = 25°C  
A
T
A
SOURCING, V = 5V  
DD  
GAIN = 1  
1.0  
0.6  
SINKING, V = 5V  
DD  
SOURCING, V = 3V  
DD  
0.2  
600  
–0.2  
–0.6  
–1.0  
–1.4  
400  
200  
0
10  
100  
1k  
10k  
100k  
1M  
0
0.01  
0.02  
0.03  
FREQUENCY (Hz)  
LOAD CURRENT (A)  
Figure 35. Noise Spectral Density vs. Frequency, Gain = 1  
Figure 38. Headroom/Footroom vs. Load Current  
6
5
7
V
T
= 5V  
V
T
= 5V  
0xFFFF  
0xC000  
0x8000  
0x4000  
0x0000  
0xFFFF  
0xC000  
0x8000  
0x4000  
0x0000  
DD  
= 25°C  
DD  
= 25°C  
A
A
6
5
GAIN = 1  
GAIN = 2  
4
4
3
3
2
2
1
1
0
0
–1  
–1  
–2  
–50  
0
50  
–50  
0
50  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 36. Source and Sink Capability, Gain = 1  
Figure 39. Source and Sink Capability, Gain = 2  
0.0015  
0.0010  
0.0005  
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
= 5V  
GAIN = 1  
GAIN = 2  
DD  
V
T
= 5V  
DD  
= 25°C  
A
REFERENCE = 2.5V  
CODE = 0x7FFF TO 0x8000  
ZS_INT_GAIN = 1  
FS_EXT_GAIN = 2  
FS_INT_GAIN = 2  
ZS_INT_GAIN = 2  
FS_INT_GAIN = 1  
FS_EXT_GAIN = 1  
–0.0005  
–0.0010  
–0.0015  
–0.0020  
–0.0025  
0
–40  
–20  
0
20  
40  
60  
80  
105  
0
1
2
3
4
5
6
7
TEMPERATURE (°C)  
TIME (µs)  
Figure 37. Supply Current vs. Temperature  
Figure 40. Digital-to-Analog Glitch Impulse  
Rev. D | Page 15 of 28  
 
 
 
AD5683R/AD5682R/AD5681R/AD5683  
Data Sheet  
2.5  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0nF  
0.2nF  
1nF  
4.7nF  
10nF  
0nF  
0.2nF  
1nF  
4.7nF  
10nF  
2.0  
1.5  
1.0  
V
= 5V  
V
= 5V  
DD  
= 25°C  
DD  
T = 25°C  
A
0.5  
0
T
A
GAIN = 1  
R
INTERNAL REFERENCE = 2.5V  
GAIN = 2  
R = 2kΩ  
L
INTERNAL REFERENCE = 2.5V  
= 2kΩ  
L
0
0.01  
TIME (ms)  
0.02  
0
0.01  
TIME (ms)  
0.02  
Figure 41. Capacitive Load vs. Settling Time, Gain = 1  
Figure 44. Capacitive Load vs. Settling Time, Gain = 2  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
20  
V
= 5V  
= 25°C  
GAIN = 2  
GAIN = 1  
DD  
T
A
INTERNAL REFERENCE = 2.5V  
–30  
–80  
–130  
–180  
V
= 5V  
= 25°C  
DD  
T
A
V
= MIDSCALE  
EXTERNAL REFERENCE = 2.5V, ±0.1V p-p  
OUT  
1k  
10k  
100k  
1M  
10M  
0
5
10  
15  
20  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 45. Multiplying Bandwidth, External Reference 2.5 V 0.1 V p-p,  
10 kHz to 10 MHz  
Figure 42. Total Harmonic Distortion at 1 kHz  
6
5
4
3
2
1
0
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
3
V
= 5V  
DD  
= 25°C  
T
A
MIDSCALE, GAIN = 2  
2
1
0
V
DD  
SYNC  
MIDSCALE, GAIN = 1  
V
OUT  
–1  
0
–0.01  
1
2
3
4
5
6
7
8
–5  
0
5
10  
15  
TIME (ms)  
TIME (µs)  
Figure 43. Power-On Reset to 0 V  
Figure 46. Exiting Power-Down to Midscale  
Rev. D | Page 16 of 28  
 
 
Data Sheet  
AD5683R/AD5682R/AD5681R/AD5683  
TERMINOLOGY  
Relative Accuracy or Integral Nonlinearity (INL)  
For the DAC, relative accuracy or integral nonlinearity is a  
measurement of the maximum deviation, in LSBs, from a straight  
line passing through the endpoints of the DAC transfer function.  
See Figure 11, Figure 12, and Figure 13 for typical INL vs.  
code plots.  
Output Voltage Settling Time  
Output voltage settling time is the amount of time it takes for  
the output of a DAC to settle to a specified level for a ¼ to ¾  
scale input change.  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-sec  
and is measured when the digital input code is changed by 1 LSB  
at the major carry transition (0x7FFF to 0x8000), as shown in  
Figure 40.  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity. This DAC is guaranteed monotonic by  
design. See Figure 14, Figure 15, and Figure 16 for typical DNL  
vs. code plots.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC, but it is measured when the DAC output is not updated.  
Digital feedthrough is specified in nV-sec and measured with  
a full-scale code change on the data bus, that is, from all 0s to all  
1s and vice versa.  
Zero Code Error  
Zero code error is a measurement of the output error when zero  
code (0x0000) is loaded to the DAC register. Ideally, the output  
must be 0 V. The zero code error is always positive in the  
AD5683R/AD5682R/AD5681R because the output of the DAC  
cannot fall below 0 V due to a combination of the offset errors  
in the DAC and the output amplifier. Zero code error is expressed  
in mV. A plot of zero code error vs. temperature is shown in  
Figure 24.  
Reference Feedthrough  
Reference feedthrough is the ratio of the amplitude of the signal  
at the DAC output to the reference input when the DAC output  
is not being updated. It is expressed in dB.  
Full-Scale Error  
Output Noise Spectral Density  
Full-scale error is a measurement of the output error when full-  
scale code (0xFFFF) is loaded to the DAC register. Ideally, the  
output must be VREF – 1 LSB or |2 × VREF| – 1 LSB. Full-scale error is  
expressed in percent of full-scale range (% of FSR). See Figure 23  
and Figure 26 for plots of full-scale error.  
Noise spectral density is a measurement of the internally generated  
random noise. Random noise is characterized as a spectral density  
(nV/√Hz). It is measured by loading the DAC to midscale and  
measuring noise at the output. It is measured in nV/√Hz. See  
Figure 31, Figure 34, and Figure 35 for a plot of noise spectral  
density. The noise spectral density for the internal reference is  
shown in Figure 30 and Figure 33.  
Gain Error  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from the  
ideal expressed as % of FSR.  
Multiplying Bandwidth  
The amplifiers within the DAC have a finite bandwidth. The  
multiplying bandwidth is a measure of this finite bandwidth.  
A sine wave on the reference (with full-scale code loaded to the  
DAC) appears on the output. The multiplying bandwidth is the  
frequency at which the output amplitude falls to 3 dB below  
the input.  
Zero-Code Error Drift  
Zero-code error drift is a measurement of the change in zero-  
code error with a change in temperature. It is expressed in µV/°C.  
Gain Temperature Coefficient  
Gain temperature coefficient is a measurement of the change in  
gain error with changes in temperature. It is expressed in ppm  
of FSR/°C.  
Total Harmonic Distortion (THD)  
THD is the difference between an ideal sine wave and the  
attenuated version using the DAC. The sine wave is used as the  
reference for the DAC, and the THD is a measurement of the  
harmonics present on the DAC output. It is measured in dB.  
Offset Error  
Offset error is a measure of the difference between VOUT (actual)  
and VOUT (ideal) expressed in mV in the linear region of the  
transfer function. Offset error is measured on the AD5683R with  
Code 512 loaded in the DAC register. It can be negative or positive.  
DC Power Supply Rejection Ratio (PSRR)  
PSRR indicates how the output of the DAC is affected by changes  
in the supply voltage. PSRR is the ratio of the change in VOUT to  
a change in VDD for mid-scale output of the DAC. It is measured  
in dB. VREF is held at 2 V, and VDD is varied by 10%.  
Rev. D | Page 17 of 28  
 
AD5683R/AD5682R/AD5681R/AD5683  
Data Sheet  
Voltage Reference Temperature Coefficient (TC)  
Thermal Hysteresis  
Voltage reference TC is a measure of the change in the reference  
output voltage with a change in temperature. The reference TC  
is calculated using the box method, which defines the TC as the  
maximum change in the reference output over a given tempera-  
ture range expressed in ppm/°C, as follows:  
Thermal hysteresis is the voltage difference induced on the  
reference voltage by sweeping the temperature from ambient  
to cold, to hot, and then back to ambient.  
VREFmax VREFmin  
TC =  
×106  
V
×TempRange  
REFnom  
where:  
REFmax is the maximum reference output measured over the  
total temperature range.  
REFmin is the minimum reference output measured over the total  
temperature range.  
REFnom is the nominal reference output voltage, 2.5 V.  
V
V
V
TempRange is the specified temperature range, −40°C to  
+105°C.  
Rev. D | Page 18 of 28  
Data Sheet  
AD5683R/AD5682R/AD5681R/AD5683  
THEORY OF OPERATION  
The simplified segmented resistor string DAC structure is  
shown in Figure 48. The code loaded to the DAC register  
determines the switch on the string that is connected to the  
output buffer.  
DIGITAL-TO-ANALOG CONVERTER  
The AD5683R/AD5682R/AD5681R are single 16-bit, 14-bit, and  
12-bit, serial input, voltage output DACs with a 2.5 V internal  
reference. The devices operate from supply voltages of 2.7 V to  
5.5 V. Data is written to the AD5683R/AD5682R/AD5681R in  
a 24-bit word format via a 3-wire serial interface. The AD5683R/  
AD5682R/AD5681R incorporate a power-on reset circuit that  
ensures that the DAC output powers up to a zero scale. The devices  
also have a software power-down mode that reduces the typical  
current consumption to 2 µA maximum.  
Because each resistance in the string has same value, R, the  
string DAC is guaranteed monotonic.  
V
REF  
R
R
TRANSFER FUNCTION  
The internal reference is on by default. For users that need an  
external reference, the AD5683 is available. The input coding to  
the DAC is straight binary. The ideal output voltage is given by  
the following equations:  
TO OUTPUT  
BUFFER  
R
For the AD5683R,  
R
R
D
65,536  
V
OUT(D) = Gain × VREF  
×
×
×
For the AD5682R,  
D
16,384  
VOUT(D) = Gain × VREF  
Figure 48. Simplified Resistor String Structure  
For the AD5681R,  
Internal Reference  
D
4096  
VOUT(D) = Gain × VREF  
The AD5683R/AD5682R/AD5681R on-chip reference is on at  
power-up but can be disabled via a write to the write control  
register.  
where:  
D is the decimal equivalent of the binary code that is loaded to  
The AD5683R/AD5682R/AD5681R each have a 2.5 V, 2 ppm/°C  
reference, giving a full-scale output of 2.5 V or 5 V, depending  
on the state of the gain bit.  
the DAC register.  
Gain is the gain of the output amplifier. By default, it is set to  
×1. The gain can also be set to ×2 using the gain bit in the write  
control register.  
The internal reference is available at the VREF pin. It is internally  
buffered and capable of driving external loads of up to 50 mA.  
DAC ARCHITECTURE  
External Reference  
The AD5683R/AD5682R/AD5681R/AD5683 implements  
segmented string DAC architecture with an internal output  
buffer. Figure 47 shows the internal block diagram.  
The VREF pin is an input pin in the AD5683. It can also be con-  
figured as an input pin on the AD5683R/AD5682R/AD5681R,  
allowing the use of an external reference if the application  
requires it.  
V
REF  
2.5V  
REF  
In the AD5683R/AD5682R/AD5681R, the default condition of  
the on-chip reference is on at power-up. Before connecting an  
external reference to the pin, disable the internal reference by  
writing to the REF bit (Bit DB16) in the write control register.  
REF (+)  
INPUT  
REGISTER  
DAC  
REGISTER  
RESISTOR  
STRING  
V
OUT  
REF (–)  
GND  
Figure 47. DAC Channel Architecture Block Diagram  
Rev. D | Page 19 of 28  
 
 
 
 
 
 
AD5683R/AD5682R/AD5681R/AD5683  
Data Sheet  
Output Buffer  
The output buffer can drive a 10 nF capacitance with a 2 kΩ  
resistor in parallel, as shown in Figure 41 and Figure 44. If  
a higher capacitance load is required, use the snubber method  
or a shunt resistor to isolate the load from the output amplifier.  
The slew rate is 0.7 V/µs with a ¼ to ¾ scale settling time of 5 µs.  
The output buffer is designed as an input/output rail-to-rail,  
which gives a maximum output voltage range of up to VDD  
The gain bit sets the segmented string DAC gain to ×1 or ×2,  
as shown in Table 12.  
.
The output buffer voltage is determined by VREF, the gain bit,  
and the offset and gain errors.  
Rev. D | Page 20 of 28  
Data Sheet  
AD5683R/AD5682R/AD5681R/AD5683  
SERIAL INTERFACE  
The AD5683R/AD5682R/AD5681R/AD5683 uses a 3-wire  
serial interface that is compatible with some SPI modes, Mode 1  
and Mode 2, as well as with completely synchronous interfaces  
such as SPORT. See Figure 4 for a timing diagram of a typical  
write sequence. See the AN-1248 Application Note for more  
information about the SPI interface.  
SHORT WRITE OPERATION (AD5681R ONLY)  
The AD5681R SPI serial interface allows data to be transferred  
using a smaller number of clocks, if required. The last eight bits  
are don’t care bits if the input or DAC registers are written as  
shown in Table 9. To increase the DAC update rate, the size of  
the data-word can be reduced.  
SPI SERIAL DATA INTERFACE  
SYNC  
If  
interpreted as a valid write and only the first 16 bits are decoded,  
SYNC  
is brought high between 16 and 24 clock edges, this is  
SYNC  
Pulling low  
enabled, the data in the SDI pin is sampled into the input shift  
SYNC  
pin, the internal input shift register is  
as shown in Figure 49. If  
is brought high before 16 falling  
register on the falling edge of SCLK. The  
held low until the complete data-word (24-bits) is loaded from  
SYNC  
pin must be  
clock edges, the serial write is ignored and the write sequence is  
considered invalid. If the DCEN bit is enabled, this functionality  
is not available (see Table 11).  
the SDI pin (see Figure 4). When  
data-word is decoded, following the instructions in Table 9.  
SYNC  
returns high, the serial  
SDO Pin  
Between consecutive data-words,  
must be held high for a  
SYNC  
The serial data output pin (SDO), which is available only in the  
AD5683R, serves two purposes: to read back the contents of the  
DAC registers and to connect the device in daisy-chain mode.  
minimum of 20 ns. Between consecutive DAC updates,  
must be held high for more than 20 ns to satisfy the DAC  
update condition as shown in Figure 4.  
The SDO pin contains a push-pull output that internally includes  
a weak pull-down resistor. The data is clocked out of SDO on  
the rising edge of SCLK, as shown in Figure 4, and the pin is  
active only when the DCEN bit is enabled in the write control  
register or automatically enabled during a readback command. In  
standby mode, the internal pull-down resistor forces a Logic 0 on  
the bus. Due to the high value of the internal pull-down resistor,  
other devices can have control over the SDO line if a parallel  
connection is made.  
SYNC  
If  
is brought high after 24 falling clock edges, it is interpreted  
as a valid write, and the first 24 bits are loaded to the input shift  
register.  
To minimize power consumption, it is recommended that all  
serial interface pins be operated close to the supply rails.  
SCLK  
SDI  
DB15 DB14 DB13 DB12 DB11 DB10  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
X
X
X
X
X
X
X
X
SYNC  
Figure 49. Short Write on the AD5681R  
Rev. D | Page 21 of 28  
 
 
 
 
AD5683R/AD5682R/AD5681R/AD5683  
Data Sheet  
Daisy-Chain Connection  
By default, the SDO pin is disabled. To enable daisy-chain  
operation, the DCEN bit must be set in the write control  
register (see Table 10).  
Daisy chaining minimizes the number of pins required from the  
controlling IC. As shown in Figure 50, the SDO pin of one package  
must be tied to the SDI pin of the next package. The clock period  
may need to be increased, as shown in Table 4, because of the  
propagation delay of the line between subsequent devices.  
When the daisy-chain mode is enabled (DCEN = 1), the  
AD5683R/AD5682R/AD5681R/AD5683 accept as a valid  
frame any data-word larger than 24 bits, decoding the last  
24 bits received, as shown in Figure 51.  
AD5683R  
U1  
CONTROLLER  
MOSI  
SDI  
SCLK  
SCLK  
SYNC  
SDO  
SS  
MISO  
SDI  
AD5683R  
U2  
SCLK  
SYNC  
SDO  
Figure 50. Daisy-Chain Connection  
SCLK  
SYNC  
MOSI  
24  
48  
DB23  
DB0  
DB23  
DB0  
INPUT WORD FOR DAC 2  
INPUT WORD FOR DAC 1  
DB23  
DB0  
SDO_U1  
UNDEFINED  
INPUT WORD FOR DAC 2  
Figure 51. Daisy-Chain Timing Diagram  
Rev. D | Page 22 of 28  
 
 
Data Sheet  
AD5683R/AD5682R/AD5681R/AD5683  
INTERNAL REGISTERS  
COMMANDS  
Input Shift Register  
Write Input Register  
The shift register of the AD5683R/AD5682R/AD5681R/AD5683  
is 24 bits wide. Serial data is loaded MSB first (DB23) and the  
first four bits are the command bits, C3 to C0, followed by the  
data bits.  
The input register allows the preloading of a new value for the  
DAC register. The transfer from the input register to the DAC  
LDAC  
register can be triggered by hardware, by the  
software using Command 2.  
pin, or by  
The data bits comprise a 20-bit, 18-bit, or 16-bit input code,  
followed by a number of don’t care bits as shown in Table 9.  
If new data is loaded into the DAC register directly using  
Command 3, the DAC register automatically overwrites the  
input register.  
SYNC  
The command is decoded on the rising edge of  
.
Input Register  
Update DAC Register  
The input register acts as a buffer to preload new data. This  
register does not control the voltage in the VOUT pin. There are  
two different ways to transfer the contents of the input register  
to the DAC register: by software or by hardware.  
This command transfers the contents of the input register to the  
DAC register and, consequently, the VOUT pin is updated.  
LDAC  
This operation is equivalent to a software  
.
Write DAC Register  
DAC Register  
The DAC register controls the output voltage in the DAC. This  
command updates the DAC register on completion of the write  
operation. The input register is refreshed automatically with the  
DAC register value.  
The DAC register controls the voltage in the VOUT pin. This  
register can be updated by issuing a command or by  
transferring the contents of the input register to the DAC  
register.  
Table 9. Command Operation  
Command  
[DB23:DB20]  
Data Bits [DB19:DB0]1  
C3 C2 C1 C0 DB19 DB18 DB17 DB16 DB15 DB14 [DB13:DB8] DB7 DB6 DB5  
DB4  
[DB3:DB0] Operation  
0
0
0
0
0
0
0
0
1
0
1
0
X
X
X
X
X
X
X…X  
DB10 DB9…DB4  
X…X  
X
X
X
X
X…X  
Do nothing  
DB15 DB14 DB13 DB12 DB11  
DB32 DB22 DB12, 3 DB02, 3 X…X  
Write input register  
Update DAC register  
X
X
X
X
X
X
X
X
X
X
X…X  
LDAC  
(software  
)
0
0
1
1
DB15 DB14 DB13 DB12 DB11  
DB19 DB18 DB17 DB16 DB15  
DB10 DB9…DB4  
DB14 0…0  
DB32 DB22 DB12, 3 DB02, 3 X…X  
Write DAC and input  
register  
0
0
1
1
0
0
0
1
0
0
0
0
0…0  
X…X  
Write control register  
X
X
X
X
X
X
X…X  
X
X
X
X
Readback input  
register  
1 X means don’t care.  
2 This bit is a don’t care bit for the AD5681R only.  
3 This bit is a don’t care bit for the AD5682R only.  
Rev. D | Page 23 of 28  
 
 
 
AD5683R/AD5682R/AD5681R/AD5683  
Data Sheet  
Write Control Register  
In power-down mode, the output buffer is internally disabled  
and the VOUT pin output impedance can be selected to a well-  
known value, as shown in Table 14.  
The write control register sets the power-down and gain  
functions. It also enables/disables the internal reference and  
perform a software reset. See Table 10 for the write control  
register functionality.  
Table 14. Operation Modes  
Operating Mode  
PD1  
PD0  
Table 10. Write Control Register Bits  
Normal Mode  
0
0
DB19  
DB18  
DB17  
DB16  
DB15  
DB14  
Power-Down Modes  
1 kΩ Output Impedance  
100 kΩ Output Impedance  
Three-State Output Impedance  
Reset  
PD1  
PD0  
REF  
Gain  
DCEN  
0
1
1
1
0
1
DCEN Bit  
The daisy-chain enable bit (DCEN, Bit DB14) enables the SDO pin,  
allowing the device to operate in daisy-chain mode. This bit is  
automatically disabled when a readback command is executed.  
Enabling this bit disables the write short command feature in the  
AD5681R.  
In power-down mode, the device disables the output buffer but  
does not disable the internal reference. To achieve maximum  
power savings, it is recommend to disable the REF bit, if  
possible.  
Disabling both the internal reference and the output buffer  
results in the supply current falling to 2 μA at 5 V.  
Table 11. Daisy-Chain Enable Bit (DCEN)  
DB0  
Mode  
The output stage is shown in Figure 52.  
0
1
Standalone mode (default)  
DCEN mode  
DAC  
AMPLIFIER  
V
OUT  
Gain Bit  
The gain bit selects the gain of the output amplifier. Table 12  
shows how the output voltage range corresponds to the state of  
the gain bit.  
POWER-DOWN  
CIRCUITRY  
RESISTOR  
NETWORK  
Table 12. Gain Bit  
Gain  
Output Voltage Range  
0 V to VREF (default)  
0 V to 2 × VREF  
Figure 52. Output Stage During Power-Down  
0
1
The output amplifier is shut down when the power-down mode  
is activated. However, unless the internal reference is powered  
down (using Bit DB16 in the write control register), the bias  
generator, reference, and resistor string remain on. When in  
power-down mode, the weak SDO resistor is also disconnected.  
The supply current falls to 2 μA at 5 V. The contents of the DAC  
register are unaffected when in power-down mode, and the DAC  
register can continue to be updated. The time that is required to  
exit power-down is typically 4 ꢀs for VDD = 5 V, or 600 ꢀs if the  
reference is disabled.  
REF Bit  
The on-chip reference is on at power-up by default. This reference  
can be turned on or off by setting a software-programmable bit,  
DB16, in the write control register. Table 13 shows how the state  
of the bit corresponds to the mode of operation.  
To reduce the power consumption, it is recommended to  
disable the internal reference if the device is placed in power-  
down mode.  
Reset Bit  
The write control register of the AD5683R/AD5682R/AD5681R  
contains a software reset function that resets the input and DAC  
registers to zero scale and resets the write control register to the  
default value. A software reset is initiated by setting the reset bit  
(Bit DB19) in the write control register to 1. When the software  
reset is complete, the reset bit is cleared to 0 automatically.  
Table 13. Reference Bit (REF)  
REF  
Reference Function  
Reference enabled (default)  
Reference disabled  
0
1
PD0 and PD1 Bits  
The AD5683R/AD5682R/AD5681R contain two separate mode of  
operation that are accessed by writing to the write control register.  
In normal mode, the output buffer is directly connected to the  
V
OUT pin.  
Rev. D | Page 24 of 28  
 
 
 
 
 
 
Data Sheet  
AD5683R/AD5682R/AD5681R/AD5683  
Readback Input Register  
HARDWARE LDAC  
The AD5683R allows readback of the contents of the input  
register through the SDO pin by using Command 5 (see Table 9),  
as shown in Figure 53.  
The DACs of the AD5683R/AD5682R/AD5681R/AD5683 have  
a double buffered interface consisting of an input register and a  
LDAC  
DAC register. The  
to the DAC register and, consequently, the output is updated.  
LDAC  
transfers data from the input register  
The SDO pin is automatically enabled for the duration of the  
read operation, after which it is disabled again, as shown in  
Table 15. If the DCEN bit was enabled before the read operation,  
the bit is reset after a readback operation. If the AD5683R was  
operating in daisy-chain mode, the user must enable the DCEN  
bit again.  
Hold  
high while data is clocked into the input shift  
LDAC  
register. The DAC output is updated by taking  
low after  
is taken high. The output DAC is updated on the falling  
SYNC  
LDAC  
edge of  
.
LDAC  
If  
ignored.  
is pulsed while the data is being clocked, the pulse is  
Table 15. Write and Readback sequence  
SDI  
SDO  
Action  
HARDWARE RESET  
0x180000 0x000000  
0x500000 0x000000  
Write 0x8000 to the input register  
Prepare data read from the input register  
RESET  
is an active low signal that sets the input and DAC  
registers to zero scale and the control registers to their default  
RESET  
0x000000 0xX8000X1 Clock out the data  
values. It is necessary to keep  
low for 75 ns to complete  
signal returns high, the output  
remains at the zero scale until a new value is programmed.  
RESET  
1 X mean don’t care.  
RESET  
the operation. When the  
While the  
any new command.  
RESET  
pin is low, the AD5683R/AD5681R ignore  
If  
is held low at power-up, the internal reference is not  
RESET  
initialized correctly until the  
pin is released.  
SCLK  
24  
24  
1
1
SYNC  
DB23  
DB0  
DB23  
DB0  
DB0  
SDI  
READBACK COMMAND  
NOP CONDITION  
DB23  
SDO  
DATA  
Figure 53. Readback Operation  
Rev. D | Page 25 of 28  
 
 
 
 
AD5683R/AD5682R/AD5681R/AD5683  
Data Sheet  
THERMAL HYSTERESIS  
LAYOUT GUIDELINES  
Thermal hysteresis is the voltage difference induced on the  
reference voltage by sweeping the temperature from ambient  
to cold, to hot, and then back to ambient.  
In any circuit where accuracy is important, careful consideration of  
the power supply and ground return layout helps to ensure the  
rated performance. The printed circuit board (PCB) on which the  
ADCs are mounted must be designed such that the AD5683R/  
AD5682R/AD5681R/AD5683 lie on the analog plane.  
The thermal hysteresis data is shown in Figure 54. It is measured by  
sweeping the temperature from ambient to −40°C, then to +105°C,  
and finally returning to ambient. The VREF delta is next measured  
between the two ambient measurements; the result is shown in a  
solid line in Figure 54. The same temperature sweep and measure-  
ments were immediately repeated; the results are shown in a  
patterned line in Figure 54.  
Ensure that the AD5683R/AD5682R/AD5681R/AD5683 have  
ample supply bypassing of 10 µF, in parallel with a 0.1 µF capacitor  
on each supply that is located as near to the package as possible  
(ideally, right up against the device). The 10 µF capacitors are  
of the tantalum bead type. The 0.1 µF capacitor must have  
low effective series resistance (ESR) and low effective series  
inductance (ESI), such as the common ceramic types, which  
provide a low impedance path to ground at high frequencies to  
handle transient currents due to internal logic switching.  
6
FIRST TEMPERATURE SWEEP  
SUBSEQUENT…  
5
4
3
2
1
0
In systems where there are many devices on one board, it is  
often useful to provide some heat sinking capability to allow  
the power to dissipate easily.  
The LFCSP packages of the AD5683R/AD5682R/AD5681R/  
AD5683 have an exposed pad beneath the device. Connect this  
pad to the GND supply of the device. For optimum performance,  
use special consideration when designing the motherboard and  
mounting the package. For enhanced thermal, electrical, and  
board level performance, solder the exposed pad on the bottom  
of the package to the corresponding thermal land pad on the  
PCB. Design thermal vias into the PCB land pad area to further  
improve heat dissipation.  
–100  
–80  
–60  
–40  
–20  
0
20  
40  
60  
DISTORTION (ppm)  
Figure 54. Thermal Hysteresis  
POWER-UP SEQUENCE  
The GND plane on the device can be increased (as shown in  
Figure 55) to provide a natural heat sinking effect.  
Because there are diodes to limit the voltage compliance at the  
digital pins and analog pins, it is important to power GND first  
before applying any voltage to VDD, VOUT, and VLOGIC. Otherwise,  
the diode is forward-biased such that VDD is powered uninten-  
tionally. The ideal power-up sequence is GND, VDD, VLOGIC  
REF, followed by the digital inputs.  
AD5683R/  
AD5682R/  
AD5681R/  
AD5683  
,
V
RECOMMENDED REGULATOR  
GND  
PLANE  
The AD5683R/AD5682R/AD5681R/AD5683 use a 5 V (VDD  
supply as well as a digital logic supply (VLOGIC).  
)
BOARD  
The analog and digital supplies required for the AD5683R/  
AD5682R/AD5681R/AD5683 can be generated using Analog  
Devices, Inc., low dropout (LDO) regulators such as the ADP7118  
and the ADP162, respectively, for analog and digital supplies.  
Figure 55. Pad Connection to Board  
Rev. D | Page 26 of 28  
 
 
 
 
 
 
Data Sheet  
AD5683R/AD5682R/AD5681R/AD5683  
OUTLINE DIMENSIONS  
1.70  
1.60  
1.50  
2.10  
2.00 SQ  
1.90  
0.50 BSC  
8
5
0.15 REF  
PIN 1 INDEX  
EXPOSED  
PAD  
1.10  
1.00  
0.90  
AREA  
0.425  
0.350  
0.275  
4
1
PIN 1  
INDICATOR  
(R 0.15)  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.60  
0.55  
0.50  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 56. 8-Lead Lead Frame Chip Scale Package [LFCSP_UD]  
2.00 mm × 2.00 mm Body, Ultrathin, Dual Lead  
(CP-8-10)  
Dimensions shown in millimeters  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 57. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
Rev. D | Page 27 of 28  
 
AD5683R/AD5682R/AD5681R/AD5683  
Data Sheet  
ORDERING GUIDE  
Resolution  
Package  
Description  
Package  
Option  
Model1  
(Bits)  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
Pinout Temperature Range  
Performance  
A Grade  
A Grade  
A Grade  
A Grade  
A Grade  
B Grade  
B Grade  
B Grade  
B Grade  
B Grade  
B Grade  
B Grade  
Branding  
94  
AD5683RACPZ-RL7  
AD5683RACPZ-1RL7  
AD5683RACPZ-2RL7  
AD5683RARMZ  
AD5683RARMZ-RL7  
AD5683RBRMZ  
AD5683RBRMZ-RL7  
AD5683RBRMZ-3  
AD5683RBRMZ-3-RL7  
AD5683RBCPZ-RL7  
AD5683RBCPZ-1RL7  
AD5683BCPZ-RL7  
LDAC  
VLOGIC  
RESET  
VLOGIC  
VLOGIC  
VLOGIC  
VLOGIC  
SDO  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
8-Lead LFCSP_UD CP-8-10  
8-Lead LFCSP_UD CP-8-10  
8-Lead LFCSP_UD CP-8-10  
95  
96  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
8-Lead LFCSP_UD CP-8-10  
8-Lead LFCSP_UD CP-8-10  
8-Lead LFCSP_UD CP-8-10  
8-Lead LFCSP_UD CP-8-10  
8-Lead LFCSP_UD CP-8-10  
8-Lead LFCSP_UD CP-8-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
DHY  
DHY  
DHZ  
DHZ  
DJ0  
DJ0  
97  
SDO  
LDAC  
VLOGIC  
LDAC  
DX  
9A  
AD5682RBCPZ-RL7  
14  
LDAC  
−40°C to +105°C  
B Grade  
9B  
AD5681RBCPZ-RL7  
AD5681RBCPZ-1RL7  
AD5681RBRMZ  
AD5681RBRMZ-RL7  
EVAL-AD5683RSDZ  
12  
12  
12  
12  
LDAC  
VLOGIC  
VLOGIC  
VLOGIC  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
B Grade  
B Grade  
B Grade  
B Grade  
98  
99  
DHX  
DHX  
10-Lead MSOP  
10-Lead MSOP  
Evaluation Board  
RM-10  
RM-10  
1 Z = RoHS Compliant Part.  
©2013–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11955-0-12/16(D)  
Rev. D | Page 28 of 28  
 

相关型号:

AD5683RBRMZ-RL7

Tiny 16-/14-/12-Bit SPI nanoDAC
ADI

AD5684

Full-featured evaluation board
ADI

AD5684ARUZ

暂无描述
ADI

AD5684ARUZ-RL7

Quad, 12-Bit nanoDAC+ with SPI Interface
ADI

AD5684BCPZ-RL7

Quad, 12-Bit nanoDAC+ with SPI Interface
ADI

AD5684BRUZ

Quad, 12-Bit nanoDAC+ with SPI Interface
ADI

AD5684BRUZ-RL7

Quad, 12-Bit nanoDAC+ with SPI Interface
ADI

AD5684R

Quad 16-/14-/12-Bit nanoDAC
ADI

AD5684RARUZ

Quad, 16-/14-/12-Bit nanoDAC
ADI

AD5684RARUZ-RL7

Quad, 16-/14-/12-Bit nanoDAC
ADI

AD5684RBCPZ-RL7

Quad, 16-/14-/12-Bit nanoDAC
ADI

AD5684RBRUZ

Quad, 16-/14-/12-Bit nanoDAC
ADI