AD5724AREZ-REEL7 [ADI]

Complete, Quad, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar Voltage Output DACs; 完整的四通道, 12位/ 14位/ 16位,串行输入,单极性/双极性电压输出DAC
AD5724AREZ-REEL7
型号: AD5724AREZ-REEL7
厂家: ADI    ADI
描述:

Complete, Quad, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar Voltage Output DACs
完整的四通道, 12位/ 14位/ 16位,串行输入,单极性/双极性电压输出DAC

转换器 数模转换器 光电二极管
文件: 总32页 (文件大小:1216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Complete, Quad, 12-/14-/16-Bit, Serial Input,  
Unipolar/Bipolar Voltage Output DACs  
AD5724/AD5734/AD5754  
GENERAL DESCRIPTION  
FEATURES  
Complete, quad, 12-/14-/16-bit digital-to-analog converter  
(DAC)  
The AD5724/AD5734/AD5754 are quad, 12-/14-/16-bit, serial  
input, voltage output digital-to-analog converters. They operate  
from single-supply voltages from +4.5 V up to +16.5 V or dual-  
supply voltages from 4.5 V up to 16.5 V. Nominal full-scale  
output range is software-selectable from +5 V, +10 V, +10.8 V,  
5 V, 10 V, or 10.8 V. Integrated output amplifiers, reference  
buffers, and proprietary power-up/power-down control circuitry  
are also provided.  
Operates from single/dual supplies  
Software programmable output range  
+5 V, +10 V, +10.8 V, 5 V, 10 V, 10.8 V  
INL error: 16 LSB maximum, DNL error: 1 LSB maximum  
Total unadjusted error (TUE): 0.1% FSR maximum  
Settling time: 10 μs typical  
Integrated reference buffers  
Output control during power-up/brownout  
Simultaneous updating via LDAC  
Asynchronous CLR to zero scale or midscale  
DSP-/microcontroller-compatible serial interface  
24-lead TSSOP  
Operating temperature range: −40°C to +85°C  
iCMOS process technology1  
The parts offer guaranteed monotonicity, integral nonlinearity  
(INL) of 16 LꢀB maximum, low noise, and 10 μs maximum  
settling time.  
The AD5724/AD5734/AD5754 use a serial interface that operates  
at clock rates up to 30 MHz and are compatible with DꢀP and  
microcontroller interface standards. Double buffering allows  
the simultaneous updating of all DACs. The input coding is  
user-selectable twos complement or offset binary for a bipolar  
APPLICATIONS  
2sComp  
output (depending on the state of Pin BIN/  
), and straight  
Industrial automation  
binary for a unipolar output. The asynchronous clear function  
clears all DAC registers to a user-selectable zero-scale or midscale  
output. The parts are available in a 24-lead TꢀꢀOP and offer  
guaranteed specifications over the −40°C to +85°C industrial  
temperature range.  
Closed-loop servo control, process control  
Automotive test and measurement  
Programmable logic controllers  
FUNCTIONAL BLOCK DIAGRAM  
SS  
AV  
AV  
DD  
REFIN  
DV  
CC  
AD5724/AD5734/AD5754  
REFERENCE BUFFERS  
n
n
INPUT  
DAC  
DAC A  
SDIN  
SCLK  
SYNC  
SDO  
V
A
REGISTER A  
REGISTER A  
OUT  
INPUT SHIFT  
REGISTER  
AND  
CONTROL  
LOGIC  
n
INPUT  
REGISTER B  
DAC  
REGISTER B  
DAC B  
V
V
V
B
C
D
OUT  
OUT  
OUT  
n
INPUT  
REGISTER C  
DAC  
REGISTER C  
DAC C  
CLR  
BIN/2sCOMP  
n
INPUT  
REGISTER D  
DAC  
REGISTER D  
DAC D  
AD5724: n = 12-BIT  
AD5734: n = 14-BIT  
AD5754: n = 16-BIT  
DAC_GND (2)  
SIG_GND (2)  
GND  
LDAC  
Figure 1.  
1 For analog systems designers within industrial/instrumentation equipment OEMs who need high performance ICs at higher-voltage levels, iCMOS® is a technology  
platform that enables the development of analog ICs capable of 30 V and operating at 15 V supplies while allowing dramatic reductions in power consumption and  
package size, as well as increased ac and dc performance.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
 
AD5724/AD5734/AD5754  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Transfer Function....................................................................... 20  
Input ꢀhift Register .................................................................... 24  
DAC Register .............................................................................. 24  
Output Range ꢀelect Register ................................................... 25  
Control Register ......................................................................... 25  
Power Control Register ............................................................. 26  
Features............................................................................................ 27  
Analog Output Control ............................................................. 27  
Power-Down Mode.................................................................... 27  
Overcurrent Protection ............................................................. 27  
Thermal ꢀhutdown .................................................................... 27  
Applications Information.............................................................. 28  
+5 V/ 5 V Operation ................................................................ 28  
Layout Guidelines....................................................................... 28  
Galvanically Isolated Interface ................................................. 28  
Voltage Reference ꢀelection...................................................... 28  
Microprocessor Interfacing....................................................... 29  
Outline Dimensions....................................................................... 30  
Ordering Guide .......................................................................... 30  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
ꢀpecifications..................................................................................... 3  
AC Performance Characteristics................................................ 5  
Timing Characteristics ................................................................ 5  
Timing Diagrams.......................................................................... 6  
Absolute Maximum Ratings............................................................ 8  
EꢀD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 10  
Terminology .................................................................................... 16  
Theory of Operation ...................................................................... 18  
Architecture................................................................................. 18  
ꢀerial Interface ............................................................................ 18  
LDAC  
Load DAC (  
)..................................................................... 20  
CLR  
Asynchronous Clear (  
)....................................................... 20  
Configuring the AD5724/AD5734/AD5754 .......................... 20  
REVISION HISTORY  
8/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 32  
 
AD5724/AD5734/AD5754  
SPECIFICATIONS  
AVDD = 4.5 V1 to 16.5 V; AVꢀꢀ = −4.5 V1 to −16.5 V, or 0 V; GND = 0 V; REFIN= 2.5 V; DVCC = 2.7 V to 5.5 V; RLOAD = 2 kΩ;  
C
LOAD = 200 pF; all specifications TMIN to TMAX  
.
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
ACCURACY  
Outputs unloaded  
Resolution  
AD5754  
AD5734  
AD5724  
16  
14  
12  
Bits  
Bits  
Bits  
Total Unadjusted Error (TUE)  
A Version  
B Version  
Relative Accuracy (INL)2  
−0.3  
−0.1  
+0.3  
+0.1  
% FSR  
% FSR  
AD5754  
AD5734  
AD5724  
Differential Nonlinearity (DNL)  
Bipolar Zero Error  
−16  
−4  
−1  
−1  
−6  
+16  
+4  
+1  
+1  
+6  
LSB  
LSB  
LSB  
LSB  
mV  
All models, all versions, guaranteed monotonic  
TA = 25°C, error at other temperatures obtained  
using bipolar zero error TC  
Bipolar Zero Error TC3  
Zero-Scale Error  
4
4
4
ppm FSR/°C  
mV  
−6  
−6  
6
TA = 25°C, error at other temperatures  
obtained using zero-scale error TC  
Zero-Scale Error TC3  
Offset Error  
ppm FSR/°C  
mV  
+6  
TA = 25°C, error at other temperatures  
obtained using offset error TC  
Offset Error TC3  
Gain Error  
ppm FSR/°C  
+0.025 % FSR  
−0.025  
−0.065  
0
10 V range, TA = 25°C, error at other  
temperatures obtained using gain error TC  
+10 V and +5 V ranges, TA = 25°C, error at other  
temperatures obtained using gain error TC  
5 V range, TA = 25°C, error at other  
Gain Error3  
Gain Error3  
0
% FSR  
% FSR  
+0.08  
temperatures obtained using gain error TC  
Gain Error TC3  
DC Crosstalk3  
8
ppm FSR/°C  
μV  
120  
REFERENCE INPUT3  
Reference Input Voltage  
DC Input Impedance  
Input Current  
2.5  
5
0.5  
V
1% for specified performance  
1
−2  
2
MΩ  
μA  
V
+2  
3
Reference Range  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
−10.8  
−12  
+10.8  
+12  
0.ꢀ  
V
V
V
AVDD/AVSS = 11.7 V min, REFIN = +2.5 V  
AVDD/AVSS = 12.ꢀ V min, REFIN = +3 V  
Headroom Required  
Output Voltage TC  
Short-Circuit Current  
Load  
Capacitive Load Stability  
DC Output Impedance  
0.5  
4
20  
ppm FSR/°C  
mA  
kΩ  
pF  
Ω
2
For specified performance  
4000  
0.5  
Rev. 0 | Page 3 of 32  
 
AD5724/AD5734/AD5754  
Parameter  
DIGITAL INPUTS3  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DVCC = 2.7 V to 5.5 V, JEDEC compliant  
Input High Voltage, VIH  
Input Low Voltage, VIL  
Input Current  
2
V
V
μA  
pF  
0.8  
1
Per pin  
Per pin  
Pin Capacitance  
5
DIGITAL OUTPUTS (SDO)3  
Output Low Voltage, VOL  
Output High Voltage, VOH  
Output Low Voltage, VOL  
Output High Voltage, VOH  
High Impedance Leakage Current  
High Impedance Output Capacitance  
POWER REQUIREMENTS  
AVDD  
0.4  
0.4  
+1  
V
V
V
V
μA  
pF  
DVCC = 5 V 10%, sinking 200 μA  
DVCC = 5 V 10%, sourcing 200 μA  
DVCC = 2.7 V to 3.6 V, sinking 200 μA  
DVCC = 2.7 V to 3.6 V, sourcing 200 μA  
DVCC − 1  
DVCC − 0.5  
−1  
5
4.5  
−4.5  
2.7  
16.5  
−16.5  
5.5  
V
V
V
AVSS  
DVCC  
Power Supply Sensitivity3  
∆VOUT/∆ΑVDD  
−65  
dB  
AIDD  
2.5  
1.75  
2.2  
3
mA/channel  
mA/channel  
mA/channel  
μA  
Outputs unloaded  
AVSS = 0 V, outputs unloaded  
Outputs unloaded  
AISS  
DICC  
0.5  
VIH = DVCC, VIL = GND  
Power Dissipation  
310  
115  
mW  
mW  
16.5 V operation, outputs unloaded  
16.5V operation, AVSS = 0 V, outputs unloaded  
Power-Down Currents  
AIDD  
AISS  
DICC  
40  
40  
300  
μA  
μA  
nA  
1 For specified performance, maximum headroom requirement is 0.ꢀ V.  
2 INL is measured from Code 512, Code 128, and Code 32 for the AD5754, the AD5734, and the AD5724, respectively.  
3 Guaranteed by characterization; not production tested.  
Rev. 0 | Page 4 of 32  
AD5724/AD5734/AD5754  
AC PERFORMANCE CHARACTERISTICS  
AVDD = 4.5 V1 to 16.5 V; AVꢀꢀ = −4.5 V1 to −16.5 V, or 0 V; GND = 0 V; REFIN= 2.5 V; DVCC = 2.7 V to 5.5 V; RLOAD = 2 kΩ;  
LOAD = 200 pF; all specifications TMIN to TMAX  
C
.
Table 2.  
A, B Version  
Parameter2  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DYNAMIC PERFORMANCE  
Output Voltage Settling Time  
10  
7.5  
12  
8.5  
5
μs  
μs  
μs  
20 V step to 0.03% FSR  
10 V step to 0.03% FSR  
512 LSB step settling (16-bit resolution)  
Slew Rate  
3.5  
13  
35  
10  
10  
0.6  
V/μs  
nV-sec  
mV  
nV-sec  
nV-sec  
nV-sec  
Digital-to-Analog Glitch Energy  
Glitch Impulse Peak Amplitude  
Digital Crosstalk  
DAC-to-DAC Crosstalk  
Digital Feedthrough  
Output Noise  
0.1 Hz to 10 Hz Bandwidth)  
100 kHz Bandwidth  
Output Noise Spectral Density  
15  
80  
320  
μV p-p  
μV rms  
nV/√Hz  
0x8000 DAC code  
Measured at 10 kHz, 0x8000 DAC code  
1 For specified performance, maximum headroom requirement is 0.ꢀ V.  
2 Guaranteed by design and characterization. Not production tested.  
TIMING CHARACTERISTICS  
AVDD = 4.5 V to 16.5 V; AVꢀꢀ = −4.5 V to −16.5 V, or 0 V; GND = 0 V; REFIN = 2.5 V; DVCC = 2.7 V to 5.5 V; RLOAD = 2 kΩ; CLOAD = 200 pF;  
all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Parameter1, 2, 3  
Limit at tMIN, tMAX  
Unit  
Description  
t1  
t2  
t3  
t4  
33  
13  
13  
13  
13  
100  
5
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
μs typ  
ns min  
μs max  
ns min  
ns max  
ns min  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC falling edge to SCLK falling edge setup time  
SCLK falling edge to SYNC rising edge  
Minimum SYNC high time (write mode)  
Data setup time  
t5  
t6  
t7  
t8  
tꢀ  
0
Data hold time  
20  
20  
20  
10  
20  
2.5  
13  
40  
200  
LDAC falling edge to SYNC falling edge  
SYNC rising edge to LDAC falling edge  
LDAC pulse width low  
t10  
t11  
t12  
t13  
t14  
DAC output settling time  
CLR pulse width low  
CLR pulse activation time  
4
t15  
SYNC rising edge to SCLK rising edge  
SCLK rising edge to SDO valid (CL SDO5 = 15 pF)  
Minimum SYNC high time (readback/daisy-chain mode)  
4
t16  
t17  
1 Guaranteed by characterization; not production tested.  
2 All input signals are specified with tR = tF = 5 ns (10% to ꢀ0% of DVCC) and timed from a voltage level of 1.2 V.  
3 See Figure 2, Figure 3, and Figure 4.  
4 Daisy-chain and readback mode.  
5 CL SDO = capacitive load on SDO output.  
Rev. 0 | Page 5 of 32  
 
 
 
AD5724/AD5734/AD5754  
TIMING DIAGRAMS  
t1  
SCLK  
1
2
24  
t3  
t2  
t6  
t5  
t4  
SYNC  
SDIN  
t8  
t7  
DB23  
DB0  
t11  
t9  
t10  
LDAC  
t12  
V
V
x
OUT  
OUT  
t12  
x
t13  
CLR  
t14  
V
x
OUT  
Figure 2. Serial Interface Timing Diagram  
t1  
SCLK  
24  
48  
t3  
t2  
t5  
t17  
t15  
t4  
SYNC  
SDIN  
t8  
t7  
D32B  
D0B  
D32B  
D0B  
INPUT WORD FOR DAC N  
INPUT WORD FOR DAC N – 1  
INPUT WORD FOR DAC N  
t16  
DB23  
DB0  
SDO  
t10  
UNDEFINED  
t11  
LDAC  
Figure 3. Daisy-Chain Timing Diagram  
Rev. 0 | Page 6 of 32  
 
 
 
 
AD5724/AD5734/AD5754  
SCLK  
1
24  
24  
1
t17  
SYNC  
SDIN  
DB23  
DB0  
DB23  
DB0  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
NOP CONDITION  
DB23  
DB0  
DB23  
DB0  
SDO  
UNDEFINED  
SELECTED REGISTER DATA  
CLOCKED OUT  
Figure 4. Readback Timing Diagram  
Rev. 0 | Page 7 of 32  
 
 
AD5724/AD5734/AD5754  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Transient currents of up to 100 mA do not cause ꢀCR latch-up.  
Table 4.  
Parameter  
AVDD to GND  
AVSS to GND  
DVCC to GND  
Digital Inputs to GND  
ꢀtresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
−0.3 V to +17 V  
+0.3 V to −17 V  
−0.3 V to +7 V  
−0.3 V to DVCC + 0.3 V or 7 V  
(whichever is less)  
Digital Outputs to GND  
−0.3 V to DVCC + 0.3 V or 7 V  
(whichever is less)  
ESD CAUTION  
REFIN to GND  
VOUTA, VOUTB, VOUTC, VOUTD to GND  
DAC_GND to GND  
−0.3 V to +5 V  
AVSS to AVDD  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
SIG_GND to GND  
Operating Temperature Range, TA  
Industrial  
−40°C to +85°C  
−65°C to +150°C  
105°C  
Storage Temperature Range  
Junction Temperature, TJ max  
24-Lead TSSOP Package  
θJA Thermal Impedance  
θJC Thermal Impedance  
Power Dissipation  
42°C/W  
ꢀ°C/W  
(TJ max − TA)/ θJA  
JEDEC industry standard  
J-STD-020  
Lead Temperature  
Soldering  
ESD (Human Body Model)  
3.5 kV  
Rev. 0 | Page 8 of 32  
 
AD5724/AD5734/AD5754  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AV  
AV  
1
24  
23  
22  
21  
DD  
SS  
2
NC  
A
V
V
C
OUT  
AD5724/  
AD5734/  
AD5754  
3
D
V
V
OUT  
OUT  
4
B
SIG_GND  
OUT  
5
20 SIG_GND  
BIN/2sCOMP  
NC  
TOP VIEW  
(Not to Scale)  
6
19  
18  
17  
16  
15  
14  
13  
DAC_GND  
DAC_GND  
REFIN  
7
SYNC  
SCLK  
SDIN  
8
9
SDO  
10  
11  
12  
LDAC  
CLR  
GND  
DV  
CC  
NC  
NC  
NOTES  
1. NC = NO CONNECT.  
2. IT IS RECOMMENDED THAT THE EXPOSED PAD BE  
THERMALLY CONNECTED TO A COPPER PLANE  
FOR ENHANCED THERMAL PERFORMANCE.  
Figure 5. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
AVSS  
Negative Analog Supply. Voltage ranges from −4.5 V to −16.5 V. This pin can be connected to 0 V if output  
ranges are unipolar.  
2, 6, 12, 13 NC  
Do not connect to these pins.  
3
4
5
VOUT  
VOUT  
BIN/2sCOMP  
A
B
Analog Output Voltage of DAC A. The output amplifier is capable of directly driving a 2 kΩ, 4000 pF load.  
Analog Output Voltage of DAC B. The output amplifier is capable of directly driving a 2 kΩ, 4000 pF load.  
Determines the DAC coding for a bipolar output range. This pin should be hardwired to either DVCC or GND.  
When hardwired to DVCC, input coding is offset binary. When hardwired to GND, input coding is twos  
complement. (For unipolar output ranges, coding is always straight binary).  
7
8
SYNC  
SCLK  
Active Low Input. This is the frame synchronization signal for the serial interface. While SYNC is low, data is  
transferred on the falling edge of SCLK. Data is latched on the rising edge of SYNC.  
Serial Clock Input. Data is clocked into the shift register on the falling edge of SCLK. This operates at clock  
speeds up to 30 MHz.  
SDIN  
Serial Data Input. Data must be valid on the falling edge of SCLK.  
10  
LDAC  
Load DAC, Logic Input. This is used to update the DAC registers and consequently, the analog outputs. When  
this pin is tied permanently low, the addressed DAC register is updated on the rising edge of SYNC. If LDAC is  
held high during the write cycle, the DAC input register is updated, but the output update is held off until the  
falling edge of LDAC. In this mode, all analog outputs can be updated simultaneously on the falling edge of  
LDAC. The LDAC pin should not be left unconnected.  
11  
14  
15  
16  
CLR  
Active Low Input. Asserting this pin sets the DAC registers to zero-scale code or midscale code (user-selectable).  
Digital Supply. Voltage ranges from 2.7 V to 5.5 V.  
Ground Reference.  
Serial Data Output. Used to clock data from the serial register in daisy-chain or readback mode. Data is  
clocked out on the rising edge of SCLK and is valid on the falling edge of SCLK.  
DVCC  
GND  
SDO  
17  
REFIN  
DAC_GND  
SIG_GND  
External Reference Voltage Input. Reference input range is 2 V to 3 V. REFIN = 2.5 V for specified performance.  
Ground Reference for the Four Digital-to-Analog Converters.  
Ground Reference for the Four Output Amplifiers.  
Analog Output Voltage of DAC D. The output amplifier is capable of directly driving a 2 kΩ, 4000 pF load.  
Analog Output Voltage of DAC C. The output amplifier is capable of directly driving a 2 kΩ, 4000 pF load.  
Positive Analog Supply. Voltage ranges from 4.5 V to 16.5 V.  
Negative Analog Supply Connection. Voltage ranges from −4.5 V to −16.5 V. This paddle can be connected to  
0 V if output ranges are unipolar. The paddle can be left electrically unconnected provided that a supply  
connection is made at the AVSS pin. It is recommended that the paddle be thermally connected to a copper  
plane for enhanced thermal performance.  
18, 1ꢀ  
20, 21  
22  
23  
24  
VOUT  
VOUT  
D
C
AVDD  
AVSS  
Exposed  
Paddle  
Rev. 0 | Page ꢀ of 32  
 
AD5724/AD5734/AD5754  
TYPICAL PERFORMANCE CHARACTERISTICS  
6
0.6  
0.4  
AV /AV = +12V/0V, RANGE = +10V  
DD SS  
AV /AV = ±12V, RANGE = ±10V  
DD SS  
AV /AV = ±6.5V, RANGE = ±5V  
DD SS  
4
2
AV /AV = +6.5V/0V, RANGE = +5V  
DD  
SS  
0.2  
0
0
–2  
–4  
–6  
–8  
–0.2  
–0.4  
–0.6  
–0.8  
AV /AV = +12V/0V, RANGE = +10V  
DD SS  
AV /AV = ±12V, RANGE = ±10V  
DD SS  
AV /AV = ±6.5V, RANGE = ±5V  
DD SS  
AV /AV = +6.5V/0V, RANGE = +5V  
DD  
SS  
0
10,000  
20,000  
30,000  
40,000  
50,000  
60,000  
0
10,000  
20,000  
30,000  
CODE  
40000  
50,000  
60,000  
CODE  
Figure 6. AD5754 Integral Nonlinearity Error vs. Code  
Figure 9. AD5754 Differential Nonlinearity Error vs. Code  
0.15  
1.5  
1.0  
AV /AV = +12V/0V, RANGE = +10V  
DD SS  
AV /AV = ±12V, RANGE = ±10V  
DD SS  
AV /AV = ±6.5V, RANGE = ±5V  
DD SS  
AV /AV = +6.5V/0V, RANGE = +5V  
DD SS  
0.10  
0.05  
0
0.5  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.5  
–1.0  
–1.5  
–2.0  
AV /AV = +12V/0V, RANGE = +10V  
DD SS  
AV /AV = ±12V, RANGE = ±10V  
DD SS  
AV /AV = ±6.5V, RANGE = ±5V  
DD SS  
AV /AV = +6.5V/0V, RANGE = +5V  
DD SS  
0
2000 4000 6000 8000 10000 12000 14000 16000  
CODE  
0
2000 4000 6000 8000 10,000 12,000 14,000 16,000  
CODE  
Figure 7. AD5734 Integral Nonlinearity Error vs. Code  
Figure 10. AD5734 Differential Nonlinearity Error vs. Code  
0.3  
0.2  
0.04  
AV /AV = +12V/0V, RANGE = +10V  
AV /AV = +12V/0V, RANGE = +10V  
DD SS  
DD  
SS  
AV /AV = ±12V, RANGE = ±10V  
AV /AV = ±12V, RANGE = ±10V  
DD SS  
DD  
SS  
AV /AV = ±6.5V, RANGE = ±5V  
0.03  
0.02  
AV /AV = ±6.5V, RANGE = ±5V  
DD  
SS  
DD SS  
AV /AV = +6.5V/0V, RANGE = +5V  
DD SS  
AV /AV = +6.5V/0V, RANGE = +5V  
DD  
SS  
0.1  
0.01  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
Figure 8. AD5724 Integral Nonlinearity Error vs. Code  
Figure 11. AD5724 Differential Nonlinearity Error vs. Code  
Rev. 0 | Page 10 of 32  
 
 
AD5724/AD5734/AD5754  
8
6
10  
8
6
4
4
MAX INL ±10V  
MAX INL ±5V  
MIN INL ±10V  
MIN INL ±5V  
MAX INL +10V  
MIN INL +10V  
MAX INL +5V  
MIN INL +5V  
2
2
BIPOLAR 5V MIN  
UNIPOLAR 5V MIN  
BIPOLAR 5V MAX  
UNIPOLAR 5V MAX  
0
0
–2  
–4  
–6  
–8  
–10  
–2  
–4  
–6  
–8  
5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 12. AD5754 Integral Nonlinearity Error vs. Temperature  
Figure 15. AD5754 Integral Nonlinearity Error vs. Supply Voltage  
0.1  
0
1.0  
BIPOLAR 10V MIN  
UNIPOLAR 10V MIN  
0.8  
BIPOLAR 10V MAX  
UNIPOLAR 10V MAX  
0.6  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
MAX DNL ±10V  
MAX DNL ±5V  
MIN DNL ±10V  
MIN DNL ±5V  
MAX DNL +10V  
MIN DNL +10V  
MAX DNL +5V  
MIN DNL +5V  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–40  
–20  
0
20  
40  
60  
80  
11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 13. AD5754 Differential Nonlinearity Error vs. Temperature  
Figure 16. AD5754 Differential Nonlinearity Error vs. Supply Voltage  
10  
8
1.0  
BIPOLAR 5V MIN  
UNIPOLAR 5V MIN  
0.8  
BIPOLAR 5V MAX  
UNIPOLAR 5V MAX  
6
0.6  
4
0.4  
0.2  
2
BIPOLAR 10V MIN  
UNIPOLAR 10V MIN  
0
0
BIPOLAR 10V MAX  
UNIPOLAR 10V MAX  
–2  
–0.2  
–0.4  
–0.6  
–0.8  
–4  
–6  
–8  
–10  
–1.0  
11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5  
5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5  
SUPPLY (V)  
SUPPLY VOLTAGE (V)  
Figure 14. AD5754 Integral Nonlinearity Error vs. Supply Voltage  
Figure 17. AD5754 Differential Nonlinearity Error vs. Supply Voltage  
Rev. 0 | Page 11 of 32  
AD5724/AD5734/AD5754  
0.02  
0.01  
0
10  
9
BIPOLAR 10V MIN  
UNIPOLAR 10V MIN  
BIPOLAR 10V MAX  
UNIPOLAR 10V MAX  
8
7
–0.01  
–0.02  
–0.03  
–0.04  
6
5
4
4.5  
11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5  
6.5  
8.5  
10.5  
AV (V)  
12.5  
14.5  
16.5  
SUPPLY VOLTAGE (V)  
DD  
Figure 18. AD5754 Total Unadjusted Error vs. Supply Voltage  
Figure 21. Supply Current vs. Supply Voltage (Single Supply)  
0.04  
0.03  
0.02  
4
+10V  
3
2
0.01  
0
BIPOLAR 5V MIN  
UNIPOLAR 5V MIN  
BIPOLAR 5V MAX  
UNIPOLAR 5V MAX  
1
±10V  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
0
–1  
–2  
±5V  
–3  
–40  
5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5  
–20  
0
20  
40  
60  
80  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 19. AD5754 Total Unadjusted Error vs. Supply Voltage  
Figure 22. Zero-Scale Error vs. Temperature  
0.8  
8
6
0.6  
0.4  
I
(mA)  
DD  
4
2
±5V RANGE  
0.2  
0
0
±10V RANGE  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–2  
–4  
–6  
–8  
I
(mA)  
SS  
4.5  
6.5  
8.5  
10.5  
12.5  
14.5  
16.5  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
AV /AV (V)  
DD SS  
Figure 23. Bipolar Zero Error vs. Temperature  
Figure 20. Supply Current vs. Supply Voltage (Dual Supply)  
Rev. 0 | Page 12 of 32  
 
 
AD5724/AD5734/AD5754  
0.06  
0.04  
0.02  
0
15  
10  
5
±5V  
0
±10V  
+10V  
–0.02  
–0.04  
–0.06  
–5  
–10  
–15  
–3  
–1  
1
3
5
7
9
11  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TIME (µs)  
Figure 24. Gain Error vs. Temperature  
Figure 27. Full-Scale Settling Time, 10 V Range  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
7
5
3
1
–1  
–3  
–5  
–7  
DV  
= 5V  
CC  
DV  
2
= 3V  
CC  
–100  
0
1
3
4
5
6
–3  
–1  
1
3
5
7
9
11  
V
(V)  
TIME (µs)  
LOGIC  
Figure 25. Digital Current vs. Logic Input Voltage  
Figure 28. Full-Scale Settling Time, 5 V Range  
0.010  
0.005  
0
12  
10  
8
±5V RANGE, CODE = 0xFFFF  
±10V RANGE, CODE = 0xFFFF  
+10V RANGE, CODE = 0xFFFF  
+5V RANGE, CODE = 0xFFFF  
±5V RANGE, CODE = 0x0000  
±10V RANGE, CODE = 0x0000  
–0.005  
–0.010  
–0.015  
–0.020  
6
4
2
0
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
–3  
–1  
1
3
5
7
9
11  
OUTPUT CURRENT (mA)  
TIME (µs)  
Figure 29. Full-Scale Settling Time, +10 V Range  
Figure 26. Output Source and Sink Capability  
Rev. 0 | Page 13 of 32  
 
 
AD5724/AD5734/AD5754  
6
5
4
3
2
1
0
1
RANGE = ±5V  
RANGE = +5V  
RANGE = +10V  
RANGE = ±10V  
–3  
–1  
1
3
5
7
9
11  
CH1 5µV  
M5s  
LINE  
73.8V  
TIME (µs)  
Figure 30. Full-Scale Settling Time, +5 V Range  
Figure 33. Peak-to-Peak Noise, 100 kHz Bandwidth  
0.10  
0.020  
AV /AV = ±16.5V  
±
DD  
DD  
SS  
±10V RANGE, 0x7FFF TO 0x8000  
±10V RANGE, 0x8000 TO 0x7FFF  
AV  
= +16.5V, AVSS = 0V  
±
±5V RANGE, 0x7FFF TO 0x8000  
0.08  
0.06  
0.04  
0.02  
0
0.015  
0.010  
0.005  
0
±5V RANGE, 0x8000 TO 0x7FFF  
+10V RANGE, 0x7FFF TO 0x8000  
+10V RANGE, 0x8000 TO 0x7FFF  
+5V RANGE, 0x7FFF TO 0x8000  
+5V RANGE, 0x8000 TO 0x7FFF  
–0.005  
–0.010  
–0.015  
–0.02  
–0.04  
–0.06  
–50  
–30  
–10  
10  
30  
TIME (µs)  
50  
70  
90  
–1  
0
1
2
3
4
5
TIME (µs)  
Figure 34. Output Glitch on Power-Up  
Figure 31. Digital-to-Analog Glitch Energy  
15  
10  
AV /AV = +12V/0V, RANGE = +10V  
DD SS  
AV /AV = ±12V, RANGE = ±10V  
DD SS  
AV /AV = ±6.5V, RANGE = ±5V  
DD SS  
AV /AV = +6.5V/0V, RANGE = +5V  
DD  
SS  
5
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
1
RANGE = ±5V  
RANGE = +5V  
RANGE = +10V  
RANGE = ±10V  
0
1000  
2000  
3000  
CODE  
4000  
5000  
6000  
CH1 5µV  
M 5s  
LINE  
73.8V  
Figure 32. Peak-to-Peak Noise, 0.1 Hz to 10 Hz Bandwidth  
Figure 35. AD5754 Total Unadjusted Error vs. Code  
Rev. 0 | Page 14 of 32  
 
AD5724/AD5734/AD5754  
4
2
1.0  
0.5  
AV /AV = +12V/0V, RANGE = +10V  
DD SS  
AV /AV = +12V/0V, RANGE = +10V  
DD SS  
AV /AV = ±12V, RANGE = ±10V  
DD SS  
AV /AV = ±12V, RANGE = ±10V  
DD SS  
AV /AV = ±6.5V, RANGE = ±5V  
DD SS  
AV /AV = +6.5V/0V, RANGE = +5V  
DD SS  
AV /AV = ±6.5V, RANGE = ±5V  
DD SS  
AV /AV = +6.5V/0V, RANGE = +5V  
DD  
SS  
0
0
–2  
–4  
–6  
–8  
–10  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
0
2000 4000 6000 8000 10,000 12,000 14,000 16,000  
CODE  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
Figure 36. AD5734 Total Unadjusted Error vs. Code  
Figure 37. AD5724 Total Unadjusted Error vs. Code  
Rev. 0 | Page 15 of 32  
AD5724/AD5734/AD5754  
TERMINOLOGY  
Slew Rate  
Relative Accuracy or Integral Nonlinearity (INL)  
The slew rate of a device is a limitation in the rate of change of  
the output voltage. The output slewing speed of a voltage output  
DAC is usually limited by the slew rate of the amplifier used at  
its output. ꢀlew rate is measured from 10% to 90% of the output  
signal and is given in V/μs.  
For the DAC, relative accuracy, or integral nonlinearity, is a  
measure of the maximum deviation in LꢀBs from a straight line  
passing through the endpoints of the DAC transfer function. A  
typical INL vs. code plot can be seen in Figure 6.  
Differential Nonlinearity (DNL)  
Gain Error  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LꢀB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LꢀB maximum  
ensures monotonicity. This DAC is guaranteed monotonic by  
design. A typical DNL vs. code plot can be seen in Figure 9.  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from  
the ideal and is expressed in % FꢀR. A plot of gain error vs.  
temperature can be seen in Figure 24.  
Gain TC  
Monotonicity  
Gain TC is a measure of the change in gain error with changes  
in temperature. Gain TC is expressed in ppm FꢀR/°C.  
A DAC is monotonic if the output either increases or remains  
constant for increasing digital input code. The AD5724/  
AD5734/AD5754 are monotonic over their full operating  
temperature range.  
Total Unadjusted Error (TUE)  
Total unadjusted error is a measure of the output error taking  
all the various errors into account, namely INL error, offset  
error, gain error, and output drift over supplies, temperature,  
and time. TUE is expressed in % FꢀR.  
Bipolar Zero Error  
Bipolar zero error is the deviation of the analog output from the  
ideal half-scale output of 0 V when the DAC register is loaded  
with 0x8000 (straight binary coding) or 0x0000 (twos complement  
coding). A plot of bipolar zero error vs. temperature can be seen  
in Figure 23.  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state, but the output voltage remains constant. It is normally  
specified as the area of the glitch in nV-sec and is measured  
when the digital input code is changed by 1 LꢀB at the major  
carry transition (0x7FFF to 0x8000). ꢀee Figure 31.  
Bipolar Zero TC  
Bipolar zero TC is a measure of the change in the bipolar zero  
error with a change in temperature. It is expressed in ppm FꢀR/°C.  
Zero-Scale Error or Negative Full-Scale Error  
Glitch Impulse Peak Amplitude  
Zero-scale error is the error in the DAC output voltage when  
0x0000 (straight binary coding) or 0x8000 (twos complement  
coding) is loaded to the DAC register. Ideally, the output voltage  
should be negative full-scale− 1 LꢀB. A plot of zero-scale error  
vs. temperature can be seen in Figure 22.  
Glitch impulse peak amplitude is the peak amplitude of the  
impulse injected into the analog output when the input code in  
the DAC register changes state. It is specified as the amplitude  
of the glitch in mV and is measured when the digital input code  
is changed by 1 LꢀB at the major carry transition (0x7FFF to  
0x8000). ꢀee Figure 31.  
Zero-Scale TC  
Zero-scale TC is a measure of the change in zero-scale error with a  
change in temperature. Zero-scale TC is expressed in ppm FꢀR/°C.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC, but is measured when the DAC output is not updated.  
It is specified in nV-sec and measured with a full-scale code  
change on the data bus.  
Output Voltage Settling Time  
Output voltage settling time is the amount of time required for  
the output to settle to a specified level for a full-scale input change.  
A plot for full-scale settling time can be seen in Figure 27.  
Power Supply Sensitivity  
Power supply sensitivity indicates how the output of the DAC is  
affected by changes in the power supply voltage. It is measured  
by superimposing a 50 Hz/60 Hz, 200 mV p-p sine wave on the  
supply voltages and measuring the proportion of the sine wave  
that transfers to the outputs.  
Rev. 0 | Page 16 of 32  
 
AD5724/AD5734/AD5754  
DC Crosstalk  
DAC-to-DAC Crosstalk  
This is the dc change in the output level of one DAC in response  
to a change in the output of another DAC. It is measured with a  
full-scale output change on one DAC while monitoring another  
DAC. It is expressed in LꢀBs.  
DAC-to-DAC crosstalk is the glitch impulse transferred to the  
output of one DAC due to a digital code change and a subsequent  
output change of another DAC. This includes both digital and  
analog crosstalk. It is measured by loading one of the DACs  
with a full-scale code change (all 0s to all 1s and vice versa) with  
Digital Crosstalk  
LDAC  
low and monitoring the output of another DAC. The  
energy of the glitch is expressed in nV-sec.  
Digital crosstalk is a measure of the impulse injected into the  
analog output of one DAC from the digital inputs of another  
DAC, but is measured when the DAC output is not updated.  
It is specified in nV-sec and measured with a full-scale code  
change on the data bus.  
Rev. 0 | Page 17 of 32  
AD5724/AD5734/AD5754  
THEORY OF OPERATION  
REFIN  
R
The AD5724/AD5734/AD5754 are quad, 12-/14-/16-bit, serial  
input, unipolar/bipolar, voltage output DACs. They operate  
from unipolar supply voltages of +4.5 V to +16.5 V or bipolar  
supply voltages of 4.5 V to 16.5 V. In addition, the parts have  
software-selectable output ranges of +5 V, +10 V, +10.8 V, 5 V,  
10 V, and 10.8 V. Data is written to the AD5724/AD5734/  
AD5754 in a 24-bit word format via a 3-wire serial interface.  
The devices also offer an ꢀDO pin to facilitate daisy-chaining  
or readback.  
R
R
TO OUTPUT  
AMPLIFIER  
The AD5724/AD5734/AD5754 incorporate a power-on reset  
circuit to ensure that the DAC registers power up loaded with  
0x0000. When powered on, the outputs are clamped to 0 V via  
a low impedance path.  
R
R
ARCHITECTURE  
The DAC architecture consists of a string DAC followed by an  
output amplifier. Figure 38 shows a block diagram of the DAC  
architecture. The reference input is buffered before being  
applied to the DAC.  
Figure 39. Resistor String Structure  
REFIN  
Output Amplifiers  
The output amplifiers are capable of generating both unipolar  
and bipolar output voltages. They are capable of driving a load  
of 2 kΩ in parallel with 4000 pF to GND. The source and sink  
capabilities of the output amplifiers can be seen in Figure 26.  
The slew rate is 3.5 V/μs with a full-scale settling time of 10 μs.  
REF (+)  
RESISTOR  
STRING  
DAC REGISTER  
V
x
OUT  
CONFIGURABLE  
OUTPUT  
REF (–)  
AMPLIFIER  
GND  
OUTPUT  
RANGE CONTROL  
Reference Buffers  
The AD5724/AD5734/AD5754 require an external reference  
source. The reference input has an input range of 2 V to 3 V,  
with 2.5 V for specified performance. This input voltage is then  
buffered before it is applied to the DAC cores.  
Figure 38. DAC Architecture Block Diagram  
The resistor string structure is shown in Figure 39. It is a string  
of resistors, each of value R. The code loaded to the DAC  
register determines the node on the string where the voltage is  
to be tapped off and fed into the output amplifier. The voltage is  
tapped off by closing one of the switches connecting the string  
to the amplifier. Because it is a string of resistors, it is  
guaranteed monotonic.  
SERIAL INTERFACE  
The AD5724/AD5734/AD5754 are controlled over a versatile  
3-wire serial interface that operates at clock rates up to 30 MHz.  
It is compatible with ꢀPI, QꢀPI™, MICROWIRE™, and DꢀP  
standards.  
Input Shift Register  
The input shift register is 24 bits wide. Data is loaded into the  
device MꢀB first as a 24-bit word under the control of a serial  
clock input, ꢀCLK. The input register consists of a read/write  
bit, three register select bits, three DAC address bits, and 16 data  
bits. The timing diagram for this operation is shown in Figure 2.  
Rev. 0 | Page 18 of 32  
 
 
 
AD5724/AD5734/AD5754  
Standalone Operation  
Daisy-Chain Operation  
The serial interface works with both a continuous and noncon-  
tinuous serial clock. A continuous ꢀCLK source can be used  
For systems that contain several devices, the ꢀDO pin can be  
used to daisy-chain several devices together. Daisy-chain mode  
can be useful in system diagnostics and in reducing the number  
ꢀYNC  
only if  
In gated clock mode, a burst clock containing the exact number  
ꢀYNC  
is held low for the correct number of clock cycles.  
ꢀYNC  
of serial interface lines. The first falling edge of  
write cycle. ꢀCLK is continuously applied to the input shift  
ꢀYNC  
starts the  
of clock cycles must be used, and  
must be taken high  
register when  
is low. If more than 24 clock pulses are  
after the final clock to latch the data. The first falling edge of  
ꢀYNC  
applied, the data ripples out of the shift register and appears on  
the ꢀDO line. This data is clocked out on the rising edge of  
ꢀCLK and is valid on the falling edge. By connecting the ꢀDO  
of the first device to the ꢀDIN input of the next device in the  
chain, a multidevice interface is constructed. Each device in the  
system requires 24 clock pulses. Therefore, the total number of  
clock cycles must equal 24 × N, where N is the total number of  
AD5724/AD5734/AD5754 devices in the chain. When the serial  
starts the write cycle. Exactly 24 falling clock edges must  
ꢀYNC  
be applied to ꢀCLK before  
ꢀYNC  
is brought high again. If  
th  
is brought high before the 24 falling ꢀCLK edge, the  
data written is invalid. If more than 24 falling ꢀCLK edges are  
ꢀYNC  
applied before  
invalid. The input register addressed is updated on the rising  
ꢀYNC ꢀYNC  
is brought high, the input data is also  
edge of  
. For another serial transfer to take place,  
must be brought low again. After the end of the serial data  
transfer, data is automatically transferred from the input shift  
register to the addressed register.  
ꢀYNC  
transfer to all devices is complete,  
is taken high. This  
latches the input data in each device in the daisy chain and  
prevents any further data from being clocked into the input shift  
register. The serial clock can be a continuous or a gated clock.  
When the data has been transferred into the chosen register of  
the addressed DAC, all DAC registers and outputs can be  
updated by taking  
ꢀYNC  
A continuous ꢀCLK source can only be used if  
is held  
LDAC  
ꢀYNC  
low while  
is high.  
low for the correct number of clock cycles. In gated clock mode,  
a burst clock containing the exact number of clock cycles must  
AD5724/  
AD5734/  
AD5754*  
*
68HC11  
ꢀYNC  
be used, and  
latch the data.  
Readback Operation  
must be taken high after the final clock to  
SDIN  
MOSI  
SCK  
PC7  
PC6  
SCLK  
SYNC  
LDAC  
W
Readback mode is invoked by setting the R/ bit = 1 in the  
serial input shift register write. (If the ꢀDO output is disabled  
via the ꢀDO disable bit in the control register, it is automatically  
enabled for the duration of the read operation, after which it is  
SDO  
MISO  
SDIN  
W
disabled again). With R/ = 1, Bit A2 to Bit A0 in association  
AD5724/  
AD5734/  
AD5754*  
with Bit REG2 to Bit REG0, select the register to be read. The  
remaining data bits in the write sequence are don’t care bits.  
During the next ꢀPI write, the data appearing on the ꢀDO  
output contains the data from the previously addressed register.  
For a read of a single register, the NOP command can be used  
in clocking out the data from the selected register on ꢀDO. The  
readback diagram in Figure 4 shows the readback sequence. For  
example, to read back the DAC register of Channel A, the  
following sequence should be implemented:  
SCLK  
SYNC  
LDAC  
SDO  
SDIN  
AD5724/  
AD5734/  
AD5754*  
1. Write 0x800000 to the AD5724/AD5734/AD5754 input  
register. This configures the part for read mode with the  
DAC register of Channel A selected. Note that all the data  
bits, DB15 to DB0, are don’t care bits.  
SCLK  
SYNC  
LDAC  
SDO  
2. Follow this with a second write, a NOP condition, 0x180000.  
During this write, the data from the register is clocked out  
on the ꢀDO line.  
*
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 40. Daisy Chaining the AD5724/AD5734/AD5754  
Rev. 0 | Page 1ꢀ of 32  
AD5724/AD5734/AD5754  
LOAD DAC (LDAC)  
CONFIGURING THE AD5724/AD5734/AD5754  
When the power supplies are applied to the AD5724/AD5734/  
AD5754, the power-on reset circuit ensures that all registers  
default to 0. This places all channels in power-down mode. The  
first communication to the AD5724/AD5734/AD5754 should be  
to set the required output range on all channels (the default range  
is the 5 V unipolar range) by writing to the output range select  
register. The user should then write to the power control register to  
power on the required channels. To program an output value on  
a channel, that channel must first be powered up; any writes to a  
channel while it is in power-down mode are ignored. The AD5724/  
AD5734/AD5754 operate with a wide power supply range. It is  
important that the power supply applied to the parts provides  
adequate headroom to support the chosen output ranges.  
After data has been transferred into the input register of the  
DACs, there are two ways to update the DAC registers and DAC  
ꢀYNC  
LDAC  
outputs. Depending on the status of both  
and  
, one  
of two update modes is selected: individual DAC updating or  
simultaneous updating of all DACs.  
OUTPUT  
AMPLIFIER  
12-/14-/16-BIT  
DAC  
REFIN  
LDAC  
V
OUT  
DAC  
REGISTER  
INPUT  
REGISTER  
TRANSFER FUNCTION  
Table 7 to Table 15 show the relationships of the ideal input code  
to output voltage for the AD5754, AD5734, and AD5724, respec-  
tively, for all output voltage ranges. For unipolar output ranges,  
the data coding is straight binary. For bipolar output ranges, the  
SCLK  
SYNC  
SDIN  
INTERFACE  
LOGIC  
SDO  
Figure 41. Simplified Diagram of Input Loading Circuitry for One DAC  
2sCOMP  
data coding is user-selectable via the BIN/  
be either offset binary or twos complement.  
pin and can  
Individual DAC Updating  
LDAC  
In this mode,  
the input shift register. The addressed DAC output is updated  
ꢀYNC  
is held low while data is being clocked into  
For a unipolar output range, the output voltage expression is  
given by  
on the rising edge of  
Simultaneous Updating of All DACs  
LDAC  
.
D
2
VOUT =VREFIN ×Gain  
N
In this mode,  
into the input shift register. All DAC outputs are asynchronously  
LDAC ꢀYNC  
has been taken high.  
is held high while data is being clocked  
For a bipolar output range, the output voltage expression is given by  
updated by taking  
low after  
Gain ×VREFIN  
D
2
VOUT =VREFIN ×Gain  
N
LDAC  
The update now occurs on the falling edge of  
.
2
ASYNCHRONOUS CLEAR (CLR)  
where:  
D is the decimal equivalent of the code loaded to the DAC.  
N is the bit resolution of the DAC.  
VREFIN is the reference voltage applied at the REFIN pin.  
Gain is an internal gain whose value depends on the output  
range selected by the user, as shown in Table 6.  
CLR  
is an active low clear that allows the outputs to be cleared  
to either zero-scale code or midscale code. The clear code value is  
user-selectable via the CLR select bit of the control register (see  
CLR  
the Control Register section). It is necessary to maintain  
for a minimum amount of time to complete the operation (see  
CLR  
low  
Figure 2). When the  
signal is returned high, the output  
Table 6. Internal Gain Values  
remains at the cleared value until a new value is programmed.  
Output Range (V)  
Gain Value  
CLR  
The outputs cannot be updated with a new value while the  
pin is low. A clear operation can also be performed via the clear  
command in the control register.  
+5  
2
+10  
+10.8  
5
4
4.32  
4
10  
8
10.8  
8.64  
Rev. 0 | Page 20 of 32  
 
 
AD5724/AD5734/AD5754  
Ideal Output Voltage to Input Code Relationship—AD5754  
Table 7. Bipolar Output, Offset Binary Coding  
Digital Input  
Analog Output  
10 V Output Range  
+4 × REFIN × (32,767/32,768)  
+4 × REFIN × (32,766/32,768)  
MSB  
1111  
1111  
LSB  
1111  
1110  
5 V Output Range  
+2 × REFIN × (32,767/32,768)  
+2 × REFIN × (32,766/32,768)  
10.8 V Output Range  
+4.32 × REFIN × (32,767/32,768)  
+4.32 × REFIN × (32,766/32,768)  
1111  
1111  
1111  
1111  
1000  
1000  
0111  
0000  
0000  
1111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 × REFIN × (1/32,768)  
0 V  
−2 × REFIN × (1/32,768)  
+4 × REFIN × (1/32,768)  
0 V  
−4 × REFIN × (1/32,768)  
+4.32 × REFIN × (1/32,768)  
0 V  
−4.32 × REFIN × (32,766/32,768)  
0000  
0000  
0000  
0000  
0000  
0000  
0001  
0000  
−2 × REFIN × (32,766/32,768)  
−2 × REFIN × (32,767/32,768  
−4 × REFIN × (32,766/32,768)  
−4 × REFIN × (32,767/32,768)  
−4.32 × REFIN × (32,766/32,768)  
−4.32 × REFIN × (32,767/32,768)  
Table 8. Bipolar Output, Twos Complement Coding  
Digital Input  
Analog Output  
10 V Output Range  
+4 × REFIN × (32,767/32,768)  
+4 × REFIN × (32,766/32,768)  
MSB  
0111  
0111  
LSB  
1111  
1110  
5 V Output Range  
+2 × REFIN × (32,767/32,768)  
+2 × REFIN × (32,766/32,768)  
10.8 V Output Range  
+4.32 × REFIN × (32,767/32,768)  
+4.32 × REFIN × (32,766/32,768)  
1111  
1111  
1111  
1111  
0000  
0000  
1111  
0000  
0000  
1111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 × REFIN × (1/32,768)  
0 V  
−2 × REFIN × (1/32,768)  
+4 × REFIN × (1/32,768)  
0 V  
−4 × REFIN × (1/32,768)  
+4.32 × REFIN × (1/32,768)  
0 V  
−4.32 × REFIN × (1/32,768)  
1000  
1000  
0000  
0000  
0000  
0000  
0001  
0000  
−2 × REFIN × (32,766/32,768)  
−2 × REFIN × (32,767/32,768)  
−4 × REFIN × (32,766/32,768)  
−4 × REFIN × (32,767/32,768)  
−4.32 × REFIN × (32,766/32,768)  
−4.32 × REFIN × (32,767/32,768)  
Table 9. Unipolar Output, Straight Binary Coding  
Digital Input  
Analog Output  
+10 V Output Range  
+4 × REFIN × (65,535/65,536)  
+4 × REFIN × (65,534/65,536)  
MSB  
1111  
1111  
LSB  
1111  
1110  
+5 V Output Range  
+2 × REFIN × (65,535/65,536)  
+2 × REFIN × (65,534/65,536)  
+10.8 V Output Range  
+4.32 × REFIN × (65,535/65,536)  
+4.32 × REFIN × (65,534/65,536)  
1111  
1111  
1111  
1111  
1000  
1000  
0111  
0000  
0000  
1111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 × REFIN × (32,76ꢀ/65,536)  
+2 × REFIN × (32,768/65,536)  
+2 × REFIN × (32,767/65,536)  
+4 × REFIN × (32,76ꢀ/65,536)  
+4 × REFIN × (32,768/65,536)  
+4 × REFIN × (32,767/65,536)  
+4.32 × REFIN × (32,76ꢀ/65,536)  
+4.32 × REFIN × (32,768/65,536)  
+4.32 × REFIN × (32,767/65,536)  
0000  
0000  
0000  
0000  
0000  
0000  
0001  
0000  
+2 × REFIN × (1/65,536)  
0 V  
+4 × REFIN × (1/65,536)  
0 V  
+4.32 × REFIN × (1/65,536)  
0 V  
Rev. 0 | Page 21 of 32  
 
AD5724/AD5734/AD5754  
Ideal Output Voltage to Input Code Relationship—AD5734  
Table 10. Bipolar Output, Offset Binary Coding  
Digital Input  
Analog Output  
10 V Output Range  
+4 × REFIN × (81ꢀ1/81ꢀ2)  
+4 × REFIN × (81ꢀ0/81ꢀ2)  
MSB  
11  
11  
LSB  
1111  
1110  
5 V Output Range  
+2 × REFIN × (81ꢀ1/81ꢀ2)  
+2 × REFIN × (81ꢀ0/81ꢀ2)  
10.8 V Output Range  
+4.32 × REFIN × (81ꢀ1/81ꢀ2)  
+4.32 × REFIN × (81ꢀ0/81ꢀ2)  
1111  
1111  
1111  
1111  
10  
10  
01  
0000  
0000  
1111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 × REFIN × (1/81ꢀ2)  
0 V  
−2 × REFIN × (1/81ꢀ2)  
+4 × REFIN × (1/81ꢀ2)  
0 V  
−4 × REFIN × (1/81ꢀ2)  
+4.32 × REFIN × (1/81ꢀ2)  
0 V  
−4.32 × REFIN × (1/81ꢀ2)  
00  
00  
0000  
0000  
0000  
0000  
0001  
0000  
−2 × REFIN × (81ꢀ0/81ꢀ2)  
−2 × REFIN × (81ꢀ1/81ꢀ1)  
−4 × REFIN × (81ꢀ0/81ꢀ2)  
−4 × REFIN × (81ꢀ1/81ꢀ2)  
−4.32 × REFIN × (81ꢀ0/81ꢀ2)  
−4.32 × REFIN × (81ꢀ1/81ꢀ2)  
Table 11. Bipolar Output, Twos Complement Coding  
Digital Input  
Analog Output  
10 V Output Range  
+4 × REFIN × (81ꢀ1/81ꢀ2)  
+4 × REFIN × (81ꢀ0/81ꢀ2)  
MSB  
01  
01  
LSB  
1111  
1110  
5 V Output Range  
+2 × REFIN × (81ꢀ1/81ꢀ2)  
+2 × REFIN × (81ꢀ0/81ꢀ2)  
10.8 V Output Range  
+4.32 × REFIN × (81ꢀ1/81ꢀ2)  
+4.32 × REFIN × (81ꢀ0/81ꢀ2)  
1111  
1111  
1111  
1111  
00  
00  
11  
0000  
0000  
1111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 × REFIN × (1/81ꢀ2)  
0 V  
−2 × REFIN × (1/81ꢀ2)  
+4 × REFIN × (1/81ꢀ2)  
0 V  
−4 × REFIN × (1/81ꢀ2)  
+4.32 × REFIN × (1/81ꢀ2)  
0 V  
−4.32 × REFIN × (1/81ꢀ2)  
10  
10  
0000  
0000  
0000  
0000  
0001  
0000  
−2 × REFIN × (81ꢀ0/81ꢀ2)  
−2 × REFIN × (81ꢀ1/81ꢀ2)  
−4 × REFIN × (81ꢀ0/81ꢀ2)  
−4 × REFIN × (81ꢀ1/81ꢀ2)  
−4.32 × REFIN × (81ꢀ0/81ꢀ2)  
−4.32 × REFIN × (81ꢀ1/81ꢀ2)  
Table 12. Unipolar Output, Straight Binary Coding  
Digital Input  
Analog Output  
MSB  
11  
11  
LSB  
1111  
1110  
+5 V Output Range  
+10 V Output Range  
+10.8 V Output Range  
+4.32 × REFIN × (16,383/16,384)  
+4.32 × REFIN × (16,382/16,384)  
1111  
1111  
1111  
1111  
+2 × REFIN × (16,383/16,384) +4 × REFIN × (16,383/16,384)  
+2 × REFIN × (16,382/16,384) +4 × REFIN × (16,382/16,384)  
10  
10  
01  
0000  
0000  
1111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 × REFIN × (81ꢀ3/16,384)  
+2 × REFIN × (81ꢀ2/16,384)  
+2 × REFIN × (81ꢀ1/16,384)  
+4 × REFIN × (81ꢀ3/16,384)  
+4 × REFIN × (81ꢀ2/16,384)  
+4 × REFIN × (81ꢀ1/16,384)  
+4.32 × REFIN × (81ꢀ3/16,384)  
+4.32 × REFIN × (81ꢀ2/16,384)  
+4.32 × REFIN × (81ꢀ1/16,384)  
00  
00  
0000  
0000  
0000  
0000  
0001  
0000  
+2 × REFIN × (1/16,384)  
0 V  
+4 × REFIN × (1/16,384)  
0 V  
+4.32 × REFIN × (1/16,384)  
0 V  
Rev. 0 | Page 22 of 32  
AD5724/AD5734/AD5754  
Ideal Output Voltage to Input Code Relationship—AD5724  
Table 13. Bipolar Output, Offset Binary Coding  
Digital Input  
Analog Output  
10 V Output Range  
MSB  
1111  
1111  
LSB  
1111  
1110  
5 V Output Range  
+2 × REFIN × (2047/2048)  
+2 × REFIN × (2046/2048)  
10.8 V Output Range  
+4.32 × REFIN × (2047/2048)  
+4.32 × REFIN × (2046/2048)  
1111  
1111  
+4 × REFIN × (2047/2048)  
+4 × REFIN × (2046/2048)  
1000  
1000  
0111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 × REFIN × (1/2048)  
0 V  
−2 × REFIN × (1/2048)  
+4 × REFIN × (1/2048)  
0 V  
−4 × REFIN × (1/2048)  
+4.32 × REFIN × (1/2048)  
0 V  
−4.32 × REFIN × (1/2048)  
0000  
0000  
0000  
0000  
0001  
0000  
−2 × REFIN × (2046/2048)  
−2 × REFIN × (2047/2047)  
−4 × REFIN × (2046/2048)  
−4 × REFIN × (2047/2048)  
−4.32 × REFIN × (2046/2048)  
−4.32 × REFIN × (2047/2048)  
Table 14. Bipolar Output, Twos Complement Coding  
Digital Input  
Analog Output  
10 V Output Range  
+4 × REFIN × (2047/2048)  
+4 × REFIN × (2046/2048)  
MSB  
0111  
0111  
LSB  
1111  
1110  
5 V Output Range  
+2 × REFIN × (2047/2048)  
+2 × REFIN × (2046/2048)  
10.8 V Output Range  
+4.32 × REFIN × (2047/2048)  
+4.32 × REFIN × (2046/2048)  
1111  
1111  
0000  
0000  
1111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 × REFIN × (1/2048)  
0 V  
−2 × REFIN × (1/2048)  
+4 × REFIN × (1/2048)  
0 V  
−4 × REFIN × (1/2048)  
+4.32 × REFIN × (1/2048)  
0 V  
−4.32 × REFIN × (1/2048)  
1000  
1000  
0000  
0000  
0001  
0000  
−2 × REFIN × (2046/2048)  
−2 × REFIN × (2047/2048)  
−4 × REFIN × (2046/2048)  
−4 × REFIN × (2047/2048)  
−4.32 × REFIN × (2046/2048)  
−4.32 × REFIN × (2047/2048)  
Table 15. Unipolar Output, Straight Binary Coding  
Digital Input  
Analog Output  
+10 V Output Range  
+4 × REFIN × (40ꢀ5/40ꢀ6)  
+4 × REFIN × (40ꢀ4/40ꢀ6)  
MSB  
1111  
1111  
LSB  
1111  
1110  
+5 V Output Range  
+2 × REFIN × (40ꢀ5/40ꢀ6)  
+2 × REFIN × (40ꢀ4/40ꢀ6)  
+10.8 V Output Range  
+4.32 × REFIN × (40ꢀ5/40ꢀ6)  
+4.32 × REFIN × (40ꢀ4/40ꢀ6)  
1111  
1111  
1000  
1000  
0111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 × REFIN × (204ꢀ/40ꢀ6)  
+2 × REFIN × (2048/40ꢀ6)  
+2 × REFIN × (2047/40ꢀ6)  
+4 × REFIN × (204ꢀ/40ꢀ6)  
+4 × REFIN × (2048/40ꢀ6)  
+4 × REFIN × (2047/40ꢀ6)  
+4.32 × REFIN × (204ꢀ/40ꢀ6)  
+4.32 × REFIN × (2048/40ꢀ6)  
+4.32 × REFIN × (2047/40ꢀ6)  
0000  
0000  
0000  
0000  
0001  
0000  
+2 × REFIN × (1/40ꢀ6)  
0 V  
+4 × REFIN × (1/40ꢀ6)  
0 V  
+4.32 × REFIN × (1/40ꢀ6)  
0 V  
Rev. 0 | Page 23 of 32  
 
AD5724/AD5734/AD5754  
INPUT SHIFT REGISTER  
W
The input shift register is 24 bits wide and consists of a read/write bit (R/ ), a reserved bit (zero) that must always be set to 0, three  
register select bits (REG0, REG1, REG2), three DAC address bits (A2, A1, A0), and 16 data bits (data). The register data is clocked in MꢀB  
first on the ꢀDIN pin. Table 16 shows the register format and Table 17 describes the function of each bit in the register. All registers are  
read/write registers.  
Table 16. Input Register Format  
MSB  
DB23  
R/W  
LSB  
DB15 to DB0  
Data  
DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
Zero  
REG2  
REG1  
REG0  
A2  
A1  
A0  
Table 17. Input Register Bit Functions  
Bit Mnemonic  
Description  
R/W  
Indicates a read from or a write to the addressed register.  
REG2, REG1, REG0  
Used in association with the address bits to determine if a write operation is to the DAC register, the output range  
select register, the power control register, or the control register.  
REG2  
REG1  
REG0  
Function  
0
0
0
0
0
0
1
1
0
1
0
1
DAC register  
Output range select register  
Power control register  
Control register  
A2, A1, A0  
These DAC address bits are used to decode the DAC channels.  
A2  
A1  
0
A0  
0
Channel Address  
DAC A  
0
0
0
1
DAC B  
0
1
0
DAC C  
0
1
1
DAC D  
1
0
0
All four DACs  
DB15 to DB0  
Data bits.  
DAC REGISTER  
The DAC register is addressed by setting the three REG bits to 000. The DAC address bits select the DAC channel where the data transfer  
is to take place (see Table 17). The data bits are in positions DB15 to DB0 for the AD5754 (see Table 18), DB15 to DB2 for the AD5734  
(see Table 19), and DB15 to DB4 for the AD5724 (see Table 20).  
Table 18. Programming the AD5754 DAC Register  
MSB  
R/W  
0
LSB  
Zero  
REG2  
REG1  
REG0  
A2  
A1  
A0  
DB15 to DB0  
0
0
0
0
DAC address  
16-bit DAC data  
Table 19. Programming the AD5734 DAC Register  
MSB  
LSB  
R/W  
Zero  
REG2  
REG1  
REG0  
A2  
A1  
A0  
DB15 to DB2  
DB1  
DB0  
0
0
0
0
0
DAC address  
14-bit DAC data  
X
X
Table 20. Programming the AD5724 DAC Register  
MSB  
LSB  
DB0  
X
R/W  
Zero  
REG2  
REG1  
REG0  
A2  
A1  
A0  
DB15 to DB4  
DB3  
DB2 DB1  
0
0
0
0
0
DAC address  
12-bit DAC data  
X
X
X
Rev. 0 | Page 24 of 32  
 
 
 
 
 
 
AD5724/AD5734/AD5754  
OUTPUT RANGE SELECT REGISTER  
The output range select register is addressed by setting the three REG bits to 001. The DAC address bits select the DAC channel and the  
range bits (R2, R1, R0) select the required output range (see Table 21 and Table 22).  
Table 21. Programming the Required Output Range  
MSB  
R/W  
0
LSB  
DB0  
R0  
Zero  
REG2  
REG1  
REG0  
A2  
A1  
A0  
DB15 to DB3 DB2  
Don’t care R2  
DB1  
0
0
0
1
DAC address  
R1  
Table 22. Output Range Options  
R2  
R1  
R0  
0
Output Range (V)  
0
0
+5  
0
0
0
0
1
1
1
0
1
+10  
+10.8  
5
1
0
0
10  
1
0
1
10.8  
CONTROL REGISTER  
The control register is addressed by setting the three REG bits to 011. The value written to the address and data bits determines the  
control function selected. The control register options are shown in Table 23 and Table 24.  
Table 23. Programming the Control Register  
MSB  
LSB  
R/W  
Zero  
REG2 REG1 REG0 A2 A1 A0 DB15 to DB4 DB3  
DB2  
DB1  
DB0  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
0
0
0
0
1
0
1
NOP, data = don’t care  
Clamp enable  
Don’t care  
TSD enable  
CLR select  
SDO disable  
Clear, data = don’t care  
Load, data = don’t care  
Table 24. Explanation of Control Register Options  
Option  
Description  
NOP  
No operation instruction used in readback operations.  
Clear  
Load  
SDO Disable  
CLR Select  
Clamp Enable  
Addressing this function sets the DAC registers to the clear code and updates the outputs.  
Addressing this function updates the DAC registers and, consequently, the DAC outputs.  
Set by the user to disable the SDO output. Cleared by the user to enable the SDO output (default).  
See Table 25 for a description of the CLR select operation.  
Set by the user to enable the current-limit clamp. The channel does not power down upon detection of an  
overcurrent; the current is clamped at 20 mA (default).  
Cleared by the user to disable the current-limit clamp. The channel powers down upon detection of an overcurrent.  
TSD Enable  
Set by the user to enable the thermal shutdown feature. Cleared by the user to disable the thermal shutdown  
feature (default).  
Table 25. CLR Select Options  
Output CLR Value  
Bipolar Output Range  
CLR Select Setting  
Unipolar Output Range  
0
1
0 V  
Midscale  
0 V  
Negative full scale  
Rev. 0 | Page 25 of 32  
 
 
 
 
 
 
 
AD5724/AD5734/AD5754  
POWER CONTROL REGISTER  
The power control register is addressed by setting the three REG bits to 010. This register allows the user to control and determine the  
power and thermal status of the AD5724/AD5734/AD5754. The power control register options are shown in Table 26 and Table 27.  
Table 26. Programming the Power Control Register  
MSB  
LSB  
DB15 to  
W
R/  
Zero REG2 REG1 REG0 A2 A1 A0 DB11  
DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
1
0
0
0
0
X
OCD  
OCC  
OCB  
OCA  
0
TSD  
0
PUD  
PUC  
PUB  
PUA  
Table 27. Power Control Register Functions  
Option Description  
PUA  
PUB  
PUC  
PUD  
TSD  
DAC A power-up. When set, this bit places DAC A in normal operating mode. When cleared, this bit places DAC A in power-down  
mode (default). If the clamp enable bit of the control register is cleared, DAC A powers down automatically upon detection of an  
overcurrent and PUA is cleared to reflect this.  
DAC B power-up. When set, this bit places DAC B in normal operating mode. When cleared, this bit places DAC B in power-down  
mode (default). If the clamp enable bit of the control register is cleared, DAC B powers down automatically upon detection of an  
overcurrent and PUB is cleared to reflect this.  
DAC C power-up. When set, this bit places DAC C in normal operating mode. When cleared, this bit places DAC C in power-down  
mode (default). If the clamp enable bit of the control register is cleared, DAC C powers down automatically upon detection of an  
overcurrent and PUC is cleared to reflect this.  
DAC D power-up. When set, this bit places DAC D in normal operating mode. When cleared, this bit places DAC D in power-down  
mode (default). If the clamp enable bit of the control register is cleared, DAC D powers down automatically upon detection of an  
overcurrent and PUD is cleared to reflect this.  
Thermal shutdown alert. Read-only bit. In the event of an overtemperature situation, the four DACs are powered down and this  
bit is set.  
OCA  
OCB  
OCC  
OCD  
DAC A overcurrent alert. Read-only bit. In the event of an overcurrent situation on DAC A, this bit is set.  
DAC B overcurrent alert. Read-only bit. In the event of an overcurrent situation on DAC B, this bit is set.  
DAC C overcurrent alert. Read-only bit. In the event of an overcurrent situation on DAC C, this bit is set.  
DAC D overcurrent alert. Read-only bit. In the event of an overcurrent situation on DAC D, this bit is set.  
Rev. 0 | Page 26 of 32  
 
 
 
AD5724/AD5734/AD5754  
FEATURES  
ANALOG OUTPUT CONTROL  
OVERCURRENT PROTECTION  
Each DAC channel of the AD5724/AD5734/AD5754 incorporates  
individual overcurrent protection. The user has two options for  
the configuration of the overcurrent protection: constant current  
clamp or automatic channel power-down. The configuration of  
the overcurrent protection is selected via the clamp enable bit in  
the control register.  
In many industrial process control applications, it is vital that the  
output voltage be controlled during power-up. When the supply  
voltages change during power-up, the VOUT pins are clamped to 0 V  
via a low impedance path (approximately 4 kΩ). To prevent the  
output amplifiers from being shorted to 0 V during this time,  
Transmission Gate G1 is also opened (see Figure 42). These  
conditions are maintained until the power supplies have  
stabilized and a valid word is written to a DAC register. At this  
time, G2 opens and G1 closes.  
Constant Current Clamp (Clamp Enable = 1)  
If a short circuit occurs in this configuration, the current is  
clamped at 20 mA. This event is signaled to the user by the  
setting of the appropriate overcurrent (OCX) bit in the power  
control register. Upon removal of the short-circuit fault, the  
OCX bit is cleared.  
VOLTAGE  
MONITOR  
AND  
CONTROL  
G1  
Automatic Channel Power-Down (Clamp Enable = 0)  
V
A
OUT  
G2  
If a short circuit occurs in this configuration, the shorted  
channel powers down and its output is clamped to ground via a  
resistance of approximately 4 kΩ. At this time, the output of the  
amplifier is disconnected from the output pin. The short-circuit  
event is signaled to the user via the overcurrent (OCX) bits, and  
the power-up (PUX) bits indicate which DACs have powered  
down. After the fault is rectified, the channels can be powered  
up again by setting the PUX bits.  
Figure 42. Analog Output Control Circuitry  
POWER-DOWN MODE  
Each DAC channel of the AD5724/AD5734/AD5754 can be  
individually powered down. By default, all channels are in  
power-down mode. The power status is controlled by the power  
control register (see Table 26 and Table 27 for details). When a  
channel is in power-down mode, its output pin is clamped to  
ground through a resistance of approximately 4 kΩ and the  
output of the amplifier is disconnected from the output pin.  
THERMAL SHUTDOWN  
The AD5724/AD5734/AD5754 incorporate a thermal shutdown  
feature that automatically shuts down the device if the core  
temperature exceeds approximately 150°C. The thermal shutdown  
feature is disabled by default and can be enabled via the TꢀD  
enable bit of the control register. In the event of a thermal  
shutdown, the TꢀD bit of the power control register is set.  
Rev. 0 | Page 27 of 32  
 
 
AD5724/AD5734/AD5754  
APPLICATIONS INFORMATION  
+5 V/ 5 V OPERATION  
GALVANICALLY ISOLATED INTERFACE  
In many process control applications, it is necessary to provide  
an isolation barrier between the controller and the unit being  
controlled to protect and isolate the controlling circuitry from  
any hazardous common-mode voltages that may occur. The  
iCoupler® family of products from Analog Devices, Inc., provides  
voltage isolation in excess of 2.5 kV. The serial loading structure  
of the AD5724/AD5734/AD5754 makes them ideal for isolated  
interfaces because the number of interface lines is kept to a  
minimum. Figure 43 shows a 4-channel isolated interface to the  
AD5724/AD5734/AD5754 using an ADuM1400. For further  
information, visit http://www.analog.com/icouplers.  
When operating from a single +5 V supply or a dual 5 V supply,  
an output range of +5 V or 5 V is not achievable because  
sufficient headroom for the output amplifier is not available.  
In this situation, a reduced reference voltage can be used. For  
example, a 2 V reference voltage produces an output range of  
+4 V or 4 V, and the 1 V of headroom is more than enough for  
full operation. A standard value voltage reference of 2.048 V can  
be used to produce output ranges of +4.096 V and 4.096 V.  
LAYOUT GUIDELINES  
In any circuit where accuracy is important, careful consideration  
of the power supply and ground return layout helps to ensure  
the rated performance. The printed circuit board on which the  
AD5724/AD5734/AD5754 are mounted should be designed so  
that the analog and digital sections are separated and confined  
to certain areas of the board. If the AD5724/AD5734/AD5754  
are in a system where multiple devices require an AGND-to-  
DGND connection, the connection should be made at one  
point only. The star ground point should be established as close  
as possible to the device.  
MICROCONTROLLER  
ADuM1400*  
V
V
V
V
V
V
V
V
OA  
OB  
OC  
OD  
IA  
IB  
IC  
ID  
SERIAL CLOCK OUT  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
TO SCLK  
TO SDIN  
TO SYNC  
TO LDAC  
SERIAL DATA OUT  
SYNC OUT  
ENCODE  
ENCODE  
ENCODE  
CONTROL OUT  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 43. Isolated Interface  
The AD5724/AD5734/AD5754 should have ample supply bypass-  
ing of a 10 μF capacitor in parallel with a 0.1 μF capacitor on  
each supply located as close to the package as possible, ideally  
right up against the device. The 10 μF capacitor is the tantalum  
bead type. The 0.1 μF capacitor should have low effective series  
resistance (EꢀR) and low effective series inductance (EꢀI), such  
as the common ceramic types, which provide a low impedance  
path to ground at high frequencies to handle transient currents  
due to internal logic switching.  
VOLTAGE REFERENCE SELECTION  
To achieve optimum performance from the AD5724/AD5734/  
AD5754 over their full operating temperature range, a precision  
voltage reference must be used. Thought should be given to the  
selection of a precision voltage reference. The voltage applied to  
the reference inputs are used to provide a buffered positive and  
negative reference for the DAC cores. Therefore, any error in  
the voltage reference is reflected in the outputs of the device.  
There are four possible sources of error to consider when  
choosing a voltage reference for high accuracy applications:  
initial accuracy, temperature coefficient of the output voltage,  
long-term drift, and output voltage noise.  
The power supply lines of the AD5724/AD5734/AD5754 should  
use as large a trace as possible to provide low impedance paths  
and reduce the effects of glitches on the power supply line. Fast  
switching signals, such as a data clock, should be shielded with  
digital ground to avoid radiating noise to other parts of the  
board, and they should never be run near the reference inputs.  
A ground line routed between the ꢀDIN and ꢀCLK lines helps  
reduce crosstalk between them (this is not required on a multilayer  
board that has a separate ground plane, but separating the lines  
does help). It is essential to minimize noise on the REFIN line  
because any unwanted signals will couple through to the DAC  
outputs.  
Initial accuracy error on the output voltage of an external  
reference can lead to a full-scale error in the DAC.  
Therefore, to minimize these errors, a reference with low  
initial accuracy error specification is preferred. Choosing a  
reference with an output trim adjustment, such as the  
ADR421, allows a system designer to trim out system  
errors by setting the reference voltage to a voltage other  
than the nominal. The trim adjustment can also be used to  
trim out temperature-induced errors.  
Avoid crossover of digital and analog signals. Traces on opposite  
sides of the board should run at right angles to each other. This  
reduces the effects of feedthrough on the board. A microstrip  
technique is by far the best method, but it is not always possible  
with a double-sided board. In this technique, the component  
side of the board is dedicated to a ground plane, and signal  
traces are placed on the solder side.  
The temperature coefficient of a reference output voltage  
affects INL, DNL, and TUE. A reference with a tight  
temperature coefficient specification should be chosen to  
reduce the dependence of the DAC output voltage on  
ambient conditions.  
Long-term drift is a measure of how much the reference  
output voltage drifts over time. A reference with a tight  
long-term drift specification ensures that the overall  
solution remains relatively stable over its entire lifetime.  
Rev. 0 | Page 28 of 32  
 
 
AD5724/AD5734/AD5754  
AD5724/AD5734/AD5754 to Blackfin® DSP Interface  
Reference output voltage noise needs to be considered in  
high accuracy applications that have relatively low noise  
budgets. It is important to choose a reference with as low  
an output noise voltage as practical for the required system  
resolution. Precision voltage references such as the ADR431  
(XFET® design) produce low output noise in the 0.1 Hz to  
10 Hz range. However, as the circuit bandwidth increases,  
filtering the output of the reference may be required to  
minimize the output noise.  
Figure 44 shows how the AD5724/AD5734/AD5754 can be inter-  
faced to the Analog Devices Blackfin DꢀP. The Blackfin has an  
integrated ꢀPI port that can be connected directly to the ꢀPI pins  
of the AD5724/AD5734/AD5754 and the programmable I/O pins  
that can be used to set the state of a digital input such as the  
LDAC  
pin.  
SPISELx  
SYNC  
SCK  
SCLK  
SDIN  
MOSI  
MICROPROCESSOR INTERFACING  
Microprocessor interfacing to the AD5724/AD5734/AD5754 is  
via a serial bus that uses standard protocol compatible with  
microcontrollers and DꢀP processors. The communications  
channel is a 3-wire (minimum) interface consisting of a clock  
signal, a data signal, and a synchronization signal. The AD5724/  
AD5734/AD5754 require a 24-bit data-word with data valid on  
the falling edge of ꢀCLK.  
AD5724/  
AD5734/  
AD5754  
ADSP-BF531  
PF10  
LDAC  
Figure 44. AD5724/AD5734/AD5754 to Blackfin Interface  
For all interfaces, the DAC output update can be initiated  
automatically when all the data is clocked in, or it can be  
LDAC  
performed under the control of  
. The contents of the  
registers can be read using the readback function.  
Table 28. Some Precision References Recommended for Use with the AD5724/AD5734/AD5754  
Part No. Initial Accuracy (mV max) Long-Term Drift (ppm typ) Temp Drift (ppm/°C max) 0.1 Hz to 10 Hz Noise (μV p-p typ)  
ADR431  
ADR421  
ADR03  
ADR2ꢀ1  
AD780  
1
1
2.5  
2
1
40  
50  
50  
50  
20  
3
3
3
8
3
3.5  
1.75  
6
8
4
Rev. 0 | Page 2ꢀ of 32  
 
 
AD5724/AD5734/AD5754  
OUTLINE DIMENSIONS  
5.02  
5.00  
4.95  
7.90  
7.80  
7.70  
24  
13  
12  
4.50  
4.40  
4.30  
3.25  
3.20  
3.15  
EXPOSED  
PAD  
(Pins Up)  
6.40 BSC  
1
BOTTOM VIEW  
TOP VIEW  
1.05  
1.00  
0.80  
1.20 MAX  
PLANE  
8°  
0°  
0.20  
0.09  
0.15  
0.05  
0.30  
0.19  
0.65  
BSC  
0.75  
0.60  
0.45  
SEATING  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-153-ADT  
Figure 45. 24-Lead Thin Shrink Small Outline Package, Exposed Pad [TSSOP_EP]  
(RE-24)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD5724AREZ1  
AD5724AREZ-REEL71  
AD5734AREZ1  
AD5734AREZ-REEL71  
AD5754AREZ1  
AD5754AREZ-REEL71  
AD5754BREZ1  
AD5754BREZ-REEL71  
Resolution (Bits)  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
TUE  
INL  
1 LSB  
1 LSB  
4 LSB  
4 LSB  
Package Description  
24-Lead TSSOP_EP  
24-Lead TSSOP_EP  
24-Lead TSSOP_EP  
24-Lead TSSOP_EP  
Package Option  
RE-24  
RE-24  
12  
12  
14  
14  
16  
16  
16  
16  
0.3% FSR  
0.3% FSR  
0.3% FSR  
0.3% FSR  
0.3% FSR  
0.3% FSR  
0.1% FSR  
0.1% FSR  
RE-24  
RE-24  
16 LSB 24-Lead TSSOP_EP  
16 LSB 24-Lead TSSOP_EP  
16 LSB 24-Lead TSSOP_EP  
16 LSB 24-Lead TSSOP_EP  
RE-24  
RE-24  
RE-24  
RE-24  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 30 of 32  
 
 
AD5724/AD5734/AD5754  
NOTES  
Rev. 0 | Page 31 of 32  
AD5724/AD5734/AD5754  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06468-0-8/08(0)  
Rev. 0 | Page 32 of 32  
 

相关型号:

AD5724BREZ

IC SERIAL INPUT LOADING, 8 us SETTLING TIME, 12-BIT DAC, PDSO24, LEAD FREE, MO-153ADT, TSSOP-24, Digital to Analog Converter
ADI

AD5724BREZ-REEL7

IC SERIAL INPUT LOADING, 8 us SETTLING TIME, 12-BIT DAC, PDSO24, LEAD FREE, MO-153ADT, TSSOP-24, Digital to Analog Converter
ADI

AD5724R

Quad 12-Bit Serial Input Unipolar/Bipolar Voltage Output DAC
ADI

AD5724RBREL

Complete, Quad, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar Voltage Output DACs
ADI

AD5724RBREZ

Complete, Quad, 12-Bit, Serial Input, Unipolar/Bipolar Voltage Output DAC with Internal Reference
ADI

AD5724RBREZ-REEL7

Complete, Quad, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar Voltage Output DACs
ADI

AD5725

Quad 12-Bit Serial Input Unipolar/Bipolar Voltage Output DAC
ADI

AD5725ARSZ-REEL

Quad, 12-Bit, Parallel Input, Unipolar/Bipolar, Voltage Output DAC
ADI

AD5725BRSZ-1500RL7

Quad, 12-Bit, Parallel Input, Unipolar/Bipolar, Voltage Output DAC
ADI

AD5725BRSZ-1REEL

PARALLEL, WORD INPUT LOADING, 10us SETTLING TIME, 12-BIT DAC, PDSO28, ROHS COMPLIANT, MO-150AH, SSOP-28
ADI

AD5725BRSZ-500RL7

Quad, 12-Bit, Parallel Input, Unipolar/Bipolar, Voltage Output DAC
ADI

AD5725BRSZ-REEL

Quad, 12-Bit, Parallel Input, Unipolar/Bipolar, Voltage Output DAC
ADI