AD736-EVALZ [ADI]

Low Cost, Low Power, True RMS-to-DC Converter; 低成本,低功耗,真RMS至DC转换器
AD736-EVALZ
型号: AD736-EVALZ
厂家: ADI    ADI
描述:

Low Cost, Low Power, True RMS-to-DC Converter
低成本,低功耗,真RMS至DC转换器

转换器
文件: 总20页 (文件大小:480K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, Low Power,  
True RMS-to-DC Converter  
Data Sheet  
AD736  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
CC  
+VS  
8kΩ  
Converts an ac voltage waveform to a dc voltage and then  
converts to the true rms, average rectified, or absolute value  
200 mV rms full-scale input range (larger inputs with input  
attenuator)  
OUT  
FULL WAVE  
RECTIFIER  
RMS  
CORE  
VIN  
CF  
8kΩ  
(OPT)  
CF  
High input impedance: 1012  
Low input bias current: 25 pA maximum  
High accuracy: 0.3 mV 0.3% of reading  
CAV  
BIAS  
SECTION  
COM  
CAV  
–VS  
RMS conversion with signal crest factors up to 5  
Wide power supply range: +2.8 V, −3.2 V to 16.5 V  
Low power: 200 µA maximum supply current  
Buffered voltage output  
No external trims needed for specified accuracy  
Related device: the AD737features a power-down control  
with standby current of only 25 μA; the dc output voltage  
is negative and the output impedance is 8 kΩ  
Figure 1.  
The AD736 allows the choice of two signal input terminals: a  
high impedance FET input (1012 Ω) that directly interfaces with  
High-Z input attenuators and a low impedance input (8 kΩ) that  
allows the measurement of 300 mV input levels while operating  
from the minimum power supply voltage of +2.8 V, −3.2 V. The  
two inputs can be used either single ended or differentially.  
The AD736 has a 1% reading error bandwidth that exceeds  
10 kHz for the input amplitudes from 20 mV rms to 200 mV rms  
while consuming only 1 mW.  
GENERAL DESCRIPTION  
The AD736 is a low power, precision, monolithic true rms-to-  
dc converter. It is laser trimmed to provide a maximum error of  
0.3 mV 0.3% of reading with sine wave inputs. Furthermore,  
it maintains high accuracy while measuring a wide range of  
input waveforms, including variable duty-cycle pulses and triac  
(phase)-controlled sine waves. The low cost and small size of  
this converter make it suitable for upgrading the performance  
of non-rms precision rectifiers in many applications. Compared  
to these circuits, the AD736 offers higher accuracy at an equal  
or lower cost.  
The AD736 is available in four performance grades. The  
AD736J and AD736K grades are rated over the 0°C to +70°C  
and −20°C to +85°C commercial temperature ranges. The  
AD736A and AD736B grades are rated over the −40°C to +85°C  
industrial temperature range. The AD736 is available in three  
low cost, 8-lead packages: PDIP, SOIC, and CERDIP.  
PRODUCT HIGHLIGHTS  
1. The AD736 is capable of computing the average rectified  
value, absolute value, or true rms value of various input signals.  
The AD736 can compute the rms value of both ac and dc input  
voltages. It can also be operated as an ac-coupled device by  
adding one external capacitor. In this mode, the AD736 can  
resolve input signal levels of 100 μV rms or less, despite variations  
in temperature or supply voltage. High accuracy is also maintained  
for input waveforms with crest factors of 1 to 3. In addition,  
crest factors as high as 5 can be measured (introducing only 2.5%  
additional error) at the 200 mV full-scale input level.  
2. Only one external component, an averaging capacitor, is  
required for the AD736 to perform true rms measurement.  
3. The low power consumption of 1 mW makes the AD736  
suitable for many battery-powered applications.  
4. A high input impedance of 1012 Ω eliminates the need for an  
external buffer when interfacing with input attenuators.  
The AD736 has its own output buffer amplifier, thereby pro-  
viding a great deal of design flexibility. Requiring only 200 µA  
of power supply current, the AD736 is optimized for use in  
portable multimeters and other battery-powered applications.  
5. A low impedance input is available for those applications that  
require an input signal up to 300 mV rms operating from low  
power supply voltages.  
Rev. I  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©1988–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD736  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
RMS Measurement—Choosing the Optimum Value for CAV .... 11  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 10  
Types of AC Measurement........................................................ 10  
Calculating Settling Time Using Figure 16............................. 11  
Rapid Settling Times via the Average Responding  
Connection.................................................................................. 12  
DC Error, Output Ripple, and Averaging Error..................... 12  
AC Measurement Accuracy and Crest Factor............................ 12  
Applications..................................................................................... 13  
Connecting the Input................................................................. 13  
Selecting Practical Values for Input Coupling (CC),  
Averaging (CAV), and Filtering (CF) Capacitors...................... 14  
Additional Application Concepts............................................. 15  
Evaluation Board ............................................................................ 17  
Outline Dimensions ....................................................................... 19  
Ordering Guide .......................................................................... 20  
REVISION HISTORY  
12/12—Rev. H to Rev. I  
Changes to Features .........................................................................1  
Added Table 3 ...................................................................................6  
Changes to Figure 21 and Figure 22 ........................................... 14  
Changes to Figure 23, Figure 24, and Figure 25........................ 15  
Updated Outline Dimensions...................................................... 16  
Changes to Ordering Guide......................................................... 17  
Changes to Features and Figure 1.................................................. 1  
Change to Error vs. Crest Factor Parameter, Table 1.................. 3  
Changes to Operating Voltage Range Parameter, Table 1.......... 4  
Changes to Table 2........................................................................... 5  
Added Table 3; Renumbered Sequentially ................................... 5  
Changes to Figure 9......................................................................... 8  
Changes to Figure 16....................................................................... 9  
Changes to Figure 18..................................................................... 10  
Added Additional Application Concepts Section and  
Changes to Figure 25..................................................................... 15  
Changes to Figure 29..................................................................... 17  
Deleted Table 6............................................................................... 17  
Changes to Ordering Guide ......................................................... 20  
5/04—Rev. E to Rev. F  
Changes to Specifications................................................................2  
Replaced Figure 18 ........................................................................ 10  
Updated Outline Dimensions...................................................... 16  
Changes to Ordering Guide......................................................... 16  
4/03—Rev. D to Rev. E  
Changes to General Description .................................................1  
Changes to Specifications.............................................................3  
Changes to Absolute Maximum Ratings....................................4  
Changes to Ordering Guide.........................................................4  
2/07—Rev. G to Rev. H  
Updated Layout.......................................................................9 to 12  
Added Applications Section......................................................... 13  
Inserted Figure 21 to Figure 24; Renumbered Sequentially..... 13  
Deleted Figure 25........................................................................... 15  
Added Evaluation Board Section................................................. 16  
Inserted Figure 29 to Figure 34; Renumbered Sequentially..... 16  
Inserted Figure 35; Renumbered Sequentially........................... 17  
Added Table 6................................................................................. 17  
11/02—Rev. C to Rev. D  
Changes to Functional Block Diagram.......................................1  
Changes to Pin Configuration.....................................................3  
Figure 1 Replaced ..........................................................................6  
Changes to Figure 2.......................................................................6  
Changes to Application Circuits Figures 4 to 8.........................8  
Outline Dimensions Updated......................................................8  
2/06—Rev. F to Rev. G  
Updated Format.................................................................Universal  
Rev. I | Page 2 of 20  
 
Data Sheet  
AD736  
SPECIFICATIONS  
At 25°C 5 V supplies, ac-coupled with 1 kHz sine wave input applied, unless otherwise noted. Specifications in bold are tested on all  
production units at final electrical test. Results from those tests are used to calculate outgoing quality levels.  
Table 1.  
AD736J/AD736A  
AD736K/AD736B  
Min Typ Max  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
2
TRANSFER FUNCTION  
CONVERSION ACCURACY  
Total Error, Internal Trim1  
All Grades  
VOUT = √Avg (VIN )  
1 kHz sine wave  
Using CC  
0 mV rms to 200 mV rms  
200 mV to 1 V rms  
0.3/0.3  
−1.2  
0.5/0.5  
2.0  
0.2/0.2 0.3/0.3 ±mV/±± of reading  
−1.2  
2.0  
± of reading  
TMIN to TMAX  
A and B Grades  
J and K Grades  
@ 200 mV rms  
@ 200 mV rms  
0.7/0.7  
0.007  
0.5/0.5 ±mV/±± of reading  
0.007  
±± of reading/°C  
vs. Supply Voltage  
@ 200 mV rms Input  
VS = ±5 V to ±16.5 V  
VS = ±5 V to ±3 V  
0
0
+0.06  
−0.18  
1.3  
0.25  
0.1/0.5  
+0.1  
−0.3  
2.5  
0
0
+0.06  
−0.18  
1.3  
0.25  
0.1/0.3  
+0.1  
−0.3  
2.5  
±/V  
±/V  
DC Reversal Error, DC-Coupled @ 600 mV dc  
± of reading  
± of reading  
±mV/±± of reading  
Nonlinearity2, 0 mV to 200 mV  
Total Error, External Trim  
ERROR VS. CREST FACTOR3  
Crest Factor = 1 to 3  
@ 100 mV rms  
0 mV rms to 200 mV rms  
0
0.35  
0
0.35  
CAV, CF = 100 µF  
CAV, CF = 100 µF  
0.7  
2.5  
0.7  
2.5  
± additional error  
± additional error  
Crest Factor = 3 to 5  
INPUT CHARACTERISTICS  
High Impedance Input  
Signal Range (Pin 2)  
Continuous RMS Level  
VS = +2.8 V, −3.2 V  
VS = ±5 V to ±16.5 V  
VS = +2.8 V, −3.2 V  
VS = ±5 V  
200  
1
200  
1
mV rms  
V rms  
V
V
Peak Transient Input  
0.9  
4.0  
0.9  
4.0  
±2.7  
±2.7  
VS = ±16.5 V  
V
Input Resistance  
Input Bias Current  
1012  
1
1012  
1
pA  
VS = ±3 V to ±16.5 V  
25  
25  
Low Impedance Input  
Signal Range (Pin 1)  
Continuous RMS Level  
VS = +2.8 V, –3.2 V  
VS = ±5 V to ±16.5 V  
VS = +2.8 V, −3.2 V  
VS = ±5 V  
300  
1
300  
1
mV rms  
V rms  
V
V
V
Peak Transient Input  
±1.7  
±3.8  
±11  
8
±1.7  
±3.8  
±11  
8
VS = ±16.5 V  
Input Resistance  
Maximum Continuous  
Nondestructive Input  
6.4  
9.6  
±12  
6.4  
9.6  
±12  
kΩ  
V p-p  
All supply voltages  
Input Offset Voltage4  
J and K Grades  
A and B Grades  
vs. Temperature  
vs. Supply  
3
3
30  
150  
3
3
30  
150  
mV  
mV  
µV/°C  
µV/V  
µV/V  
8
50  
80  
8
50  
80  
VS = ±5 V to ±16.5 V  
VS = ±5 V to ±3 V  
Rev. I | Page 3 of 20  
 
AD736  
Data Sheet  
AD736J/AD736A  
AD736K/AD736B  
Parameter  
Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Output Offset Voltage  
J and K Grades  
±0.1  
0.5  
0.5  
20  
±0.1  
0.3  
0.3  
20  
mV  
mV  
µV/°C  
µV/V  
µV/V  
A and B Grades  
vs. Temperature  
vs. Supply  
1
50  
50  
1
50  
50  
VS = ±5 V to ±16.5 V  
VS = ±5 V to ±3 V  
130  
130  
Output Voltage Swing  
2 kΩ Load  
VS = +2.8 V, −3.2 V  
VS = ±5 V  
0 to  
1.6  
0 to  
3.6  
0 to 4  
0 to 4 12  
1.7  
3.8  
5
0 to  
1.6  
0 to  
3.6  
0 to 4  
0 to 4 12  
1.7  
3.8  
5
V
V
VS = ±16.5 V  
VS = ±16.5 V  
V
V
No Load  
Output Current  
2
2
mA  
mA  
Short-Circuit Current  
Output Resistance  
FREQUENCY RESPONSE  
3
0.2  
3
0.2  
@ dc  
High Impedance Input (Pin 2)  
for 1± Additional Error  
Sine wave input  
VIN = 1 mV rms  
VIN = 10 mV rms  
VIN = 100 mV rms  
VIN = 200 mV rms  
±3 dB Bandwidth  
VIN = 1 mV rms  
VIN = 10 mV rms  
VIN = 100 mV rms  
VIN = 200 mV rms  
1
6
37  
33  
1
6
37  
33  
kHz  
kHz  
kHz  
kHz  
Sine wave input  
5
55  
170  
190  
5
55  
170  
190  
kHz  
kHz  
kHz  
kHz  
Low Impedance Input (Pin 1) Sine wave input  
for 1± Additional Error  
VIN = 1 mV rms  
1
6
90  
90  
1
6
90  
90  
kHz  
kHz  
kHz  
kHz  
VIN = 10 mV rms  
VIN = 100 mV rms  
VIN = 200 mV rms  
±3 dB Bandwidth  
VIN = 1 mV rms  
VIN = 10 mV rms  
VIN = 100 mV rms  
VIN = 200 mV rms  
POWER SUPPLY  
Sine wave input  
5
55  
350  
460  
5
55  
350  
460  
kHz  
kHz  
kHz  
kHz  
Operating Voltage Range  
+2.8,  
−3.2  
±5  
±16.5  
+2.8,  
−3.2  
± 5  
±16.5  
V
Quiescent Current  
200 mV rms, No Load  
TEMPERATURE RANGE  
Operating, Rated Performance  
Commercial  
Zero signal  
Sine wave input  
160  
230  
200  
270  
160  
230  
200  
270  
µA  
µA  
0°C to 70°C  
−40°C to +85°C  
AD736JN, AD736JR  
AD736AQ, AD736AR  
AD736KN, AD736KR  
AD736BQ, AD736BR  
Industrial  
1 Accuracy is specified with the AD736 connected as shown in Figure 18 with Capacitor CC.  
2 Nonlinearity is defined as the maximum deviation (in percent error) from a straight line connecting the readings at 0 mV rms and 200 mV rms. Output offset voltage is adjusted to zero.  
3 Error vs. crest factor is specified as additional error for a 200 mV rms signal. Crest factor = VPEAK/V rms.  
4 DC offset does not limit ac resolution.  
Rev. I | Page 4 of 20  
Data Sheet  
AD736  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
±16.5 V  
200 mW  
Supply Voltage  
Internal Power Dissipation  
Input Voltage  
Pin 2 through Pin 8  
Pin 1  
Output Short-Circuit Duration  
Differential Input Voltage  
Storage Temperature Range (Q)  
Storage Temperature Range (N, R)  
Lead Temperature (Soldering, 60 sec)  
ESD Rating  
Table 3. Thermal Resistance  
Package Type  
θJA  
Unit  
°C/W  
°C/W  
°C/W  
±VS  
±12 V  
8-Lead PDIP  
8-Lead CERDIP  
8-Lead SOIC  
165  
110  
155  
Indefinite  
+VS and –VS  
–65°C to +150°C  
–65°C to +125°C  
300°C  
ESD CAUTION  
500 V  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. I | Page 5 of 20  
 
 
 
AD736  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
C
1
2
3
4
8
7
6
5
COM  
+V  
C
AD736  
V
IN  
S
TOP VIEW  
C
OUTPUT  
(Not to Scale)  
F
–V  
C
AV  
S
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
CC  
Coupling Capacitor. If dc coupling is desired at Pin 2, connect a coupling capacitor to this pin. If the coupling at  
Pin 2 is ac, connect this pin to ground. Note that this pin is also an input, with an input impedance of 8 kΩ.  
Such an input is useful for applications with high input voltages and low supply voltages.  
2
3
4
5
6
7
8
VIN  
CF  
−VS  
CAV  
OUTPUT  
+VS  
COM  
High Input Impedance Pin.  
Connect an Auxiliary Low-Pass Filter Capacitor from the Output.  
Negative Supply Voltage if Dual Supplies Are Used, or Ground if Connected to a Single-Supply Source.  
Connect the Averaging Capacitor Here.  
DC Output Voltage.  
Positive Supply Voltage.  
Common.  
Rev. I | Page 6 of 20  
 
Data Sheet  
AD736  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.7  
10V  
1V  
SINE WAVE INPUT, V =±5V,  
V
= 200mV rms  
S
IN  
1kHz SINE WAVE  
C
= 22µF, C = 4.7µF, C = 22µF  
AV  
F
C
0.5  
0.3  
0.1  
C
C
= 100µF  
AV  
= 22µF  
F
100mV  
10mV  
1% ERROR  
0
–0.1  
–3dB  
1mV  
–0.3  
–0.5  
10% ERROR  
100µV  
0
0
0
2
4
6
8
10  
12  
14  
16  
16  
16  
0.1  
1
10  
100  
1000  
SUPPLY VOLTAGE (±V)  
–3dB FREQUENCY (kHz)  
Figure 3. Additional Error vs. Supply Voltage  
Figure 6. Frequency Response Driving Pin 1  
16  
10V  
1V  
DC-COUPLED  
SINE WAVE INPUT, V =±5V,  
S
C
= 22µF, C = 4.7µF, C = 22µF  
AV  
F
C
14  
12  
10  
8
100mV  
10mV  
PIN 1  
1% ERROR  
PIN 2  
6
10% ERROR  
4
1mV  
–3dB  
2
0
100µV  
2
4
6
8
10  
12  
14  
0.1  
1
10  
–3dB FREQUENCY (kHz)  
100  
1000  
SUPPLY VOLTAGE (±V)  
Figure 4. Maximum Input Level vs. Supply Voltage  
Figure 7. Frequency Response Driving Pin 2  
16  
14  
12  
10  
8
6
1kHz SINE WAVE INPUT  
3ms BURST OF 1kHz =  
3 CYCLES  
200mV rms SIGNAL  
C
= 10µF  
5
4
3
AV  
V
C
C
= ±5V  
S
= 22µF  
= 100µF  
C
F
C
= 33µF  
AV  
6
4
2
1
0
C
= 100µF  
AV  
2
0
C
= 250µF  
AV  
2
4
6
8
10  
12  
14  
1
2
3
4
5
SUPPLY VOLTAGE (±V)  
CREST FACTOR (V  
/V rms)  
PEAK  
Figure 5. Peak Buffer Output vs. Supply Voltage  
Figure 8. Additional Error vs. Crest Factor with Various Values of CAV  
Rev. I | Page 7 of 20  
 
 
AD736  
Data Sheet  
0.8  
1.0  
0.5  
V
= 200mV rms  
IN  
1kHz SINE WAVE  
0.6  
0.4  
0.2  
C
C
= 100µF  
AV  
= 22µF  
= ±5V  
F
S
V
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
0
–0.2  
–0.4  
–0.6  
–0.8  
V
C
C
= SINE WAVE @ 1kHz  
IN  
= 22µF, C = 47µF,  
AV  
= 4.7µF, V = ±5V  
C
F
S
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
10mV  
100mV  
1V  
2V  
TEMPERATURE (°C)  
INPUT LEVEL (rms)  
Figure 9. Additional Error vs. Temperature  
Figure 12. Error vs. RMS Input Voltage (Pin 2),  
Output Buffer Offset Is Adjusted to Zero  
600  
500  
100  
10  
1
V
= 200mV rms  
= 47µF  
= 47µF  
IN  
V
= 200mV rms  
IN  
C
C
V
C
F
1kHz SINE WAVE  
C
C
= 100µF  
AV  
= ±5V  
S
= 22µF  
= ±5V  
F
S
V
400  
300  
–0.5%  
200  
100  
–1%  
0
0.2  
0.4  
0.6  
0.8  
1.0  
10  
100  
FREQUENCY (Hz)  
1k  
rms INPUT LEVEL (V)  
Figure 10. DC Supply Current vs. rms Input Level  
Figure 13. CAV vs. Frequency for Specified Averaging Error  
10mV  
1mV  
1V  
V
= 1kHz  
IN  
SINE WAVE INPUT  
AC-COUPLED  
–0.5%  
V
= ±5V  
S
–1%  
100mV  
10mV  
1mV  
100µV  
10µV  
V
SINE WAVE  
IN  
AC-COUPLED  
C
C
= 10µF, C = 47µF,  
AV  
= 47µF, V = ±5V  
C
F
S
100  
1k  
10k  
100k  
1
10  
100  
1k  
–3dB FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 11. RMS Input Level (Pin 2) vs. −3 dB Frequency  
Figure 14. RMS Input Level vs. Frequency for Specified Averaging Error  
Rev. I | Page 8 of 20  
Data Sheet  
AD736  
4.0  
3.5  
3.0  
2.5  
10nA  
1nA  
100pA  
10pA  
1pA  
2.0  
1.5  
1.0  
100fA  
0
2
4
6
8
10  
12  
14  
16  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
SUPPLY VOLTAGE (±V)  
TEMPERATURE (°C)  
Figure 15. Pin 2 Input Bias Current vs. Supply Voltage  
Figure 17. Pin 2 Input Bias Current vs. Temperature  
1V  
100mV  
10mV  
1mV  
VS = 5V  
CC = 22µF  
CF = 0µF  
CAV = 100µF  
CAV = 10µF  
CAV = 33µF  
100µV  
1ms  
10ms  
100ms  
1s  
10s  
100s  
SETTLING TIME  
Figure 16. RMS Input Level for Various Values of CAV vs. Settling Time  
Rev. I | Page 9 of 20  
 
AD736  
Data Sheet  
THEORY OF OPERATION  
AC COUPLED  
C
10µF  
C =  
+
DC  
COUPLED  
FULL-WAVE  
RECTIFIER  
AD736  
C
COM  
8
C
1
8kΩ  
0.1µF  
OUTPUT  
AMPLIFIER  
VIN  
2
+VS  
7
INPUT  
AMPLIFIER  
IB<10pA  
8k  
CF  
3
OUTPUT  
6
BIAS  
SECTION  
RMS  
TRANSLINEAR  
CORE  
VS  
CAV  
5
4
0.1µF  
CAV  
33  
TO COM PIN  
µ
F
+
CF  
10  
(OPTIONAL LPF)  
µ
F
+
Figure 18. AD736 True RMS Circuit  
As shown by Figure 18, the AD736 has five functional  
subsections: the input amplifier, full-wave rectifier (FWR), rms  
core, output amplifier, and bias section. The FET input amplifier  
allows both a high impedance, buffered input (Pin 2) and a  
low impedance, wide dynamic range input (Pin 1). The high  
impedance input, with its low input bias current, is well suited  
for use with high impedance input attenuators.  
TYPES OF AC MEASUREMENT  
The AD736 is capable of measuring ac signals by operating as  
either an average responding converter or a true rms-to-dc  
converter. As its name implies, an average responding converter  
computes the average absolute value of an ac (or ac and dc)  
voltage or current by full-wave rectifying and low-pass filtering  
the input signal; this approximates the average. The resulting  
output, a dc average level, is scaled by adding (or reducing)  
gain; this scale factor converts the dc average reading to an rms  
equivalent value for the waveform being measured. For example,  
the average absolute value of a sine wave voltage is 0.636 times  
The output of the input amplifier drives a full-wave precision  
rectifier that, in turn, drives the rms core. The essential rms  
operations of squaring, averaging, and square rooting are  
performed in the core using an external averaging capacitor,  
C
AV. Without CAV, the rectified input signal travels through the  
V
PEAK; the corresponding rms value is 0.707 × VPEAK. Therefore, for  
core unprocessed, as is done with the average responding  
connection (see Figure 19).  
sine wave voltages, the required scale factor is 1.11 (0.707/0.636).  
In contrast to measuring the average value, true rms measurement  
is a universal language among waveforms, allowing the magnitudes  
of all types of voltage (or current) waveforms to be compared to  
one another and to dc. RMS is a direct measure of the power or  
heating value of an ac voltage compared to that of a dc voltage;  
an ac signal of 1 V rms produces the same amount of heat in a  
resistor as a 1 V dc signal.  
A final subsection, an output amplifier, buffers the output from  
the core and allows optional low-pass filtering to be performed  
via the external capacitor, CF, which is connected across the  
feedback path of the amplifier. In the average responding  
connection, this is where all of the averaging is carried out.  
In the rms circuit, this additional filtering stage helps reduce any  
output ripple that was not removed by the averaging capacitor, CAV.  
Rev. I | Page 10 of 20  
 
 
 
Data Sheet  
AD736  
Mathematically, the rms value of a voltage is defined (using a  
simplified equation) as  
The settling time corresponding to the new or final input level  
of 1 mV is approximately 8 seconds. Therefore, the net time for  
the circuit to settle to its new value is 8 seconds minus 80 ms,  
which is 7.92 seconds. Note that because of the smooth decay  
characteristic inherent with a capacitor/diode combination, this  
is the total settling time to the final value (that is, not the settling  
time to 1%, 0.1%, and so on, of the final value). In addition, this  
graph provides the worst-case settling time because the AD736  
settles very quickly with increasing input levels.  
V rms = Avg  
(
V 2  
)
This involves squaring the signal, taking the average, and  
then obtaining the square root. True rms converters are smart  
rectifiers; they provide an accurate rms reading regardless of the  
type of waveform being measured. However, average responding  
converters can exhibit very high errors when their input signals  
deviate from their precalibrated waveform; the magnitude of  
the error depends on the type of waveform being measured. For  
example, if an average responding converter is calibrated to  
measure the rms value of sine wave voltages and then is used to  
measure either symmetrical square waves or dc voltages, the  
converter has a computational error 11% (of reading) higher  
than the true rms value (see Table 5).  
RMS MEASUREMENT—CHOOSING THE OPTIMUM  
VALUE FOR CAV  
Because the external averaging capacitor, CAV, holds the  
rectified input signal during rms computation, its value directly  
affects the accuracy of the rms measurement, especially at low  
frequencies. Furthermore, because the averaging capacitor  
appears across a diode in the rms core, the averaging time  
constant increases exponentially as the input signal is reduced.  
This means that as the input level decreases, errors due to  
nonideal averaging decrease, and the time required for the  
circuit to settle to the new rms level increases. Therefore, lower  
input levels allow the circuit to perform better (due to increased  
averaging) but increase the waiting time between measurements.  
Obviously, when selecting CAV, a trade-off between computational  
accuracy and settling time is required.  
CALCULATING SETTLING TIME USING FIGURE 16  
Figure 16 can be used to closely approximate the time required  
for the AD736 to settle when its input level is reduced in amplitude.  
The net time required for the rms converter to settle is the  
difference between two times extracted from the graph (the  
initial time minus the final settling time). As an example, consider  
the following conditions: a 33 µF averaging capacitor, a 100 mV  
initial rms input level, and a final (reduced) 1 mV input level.  
From Figure 16, the initial settling time (where the 100 mV line  
intersects the 33 µF line) is approximately 80 ms.  
Table 5. Error Introduced by an Average Responding Circuit when Measuring Common Waveforms  
Average Responding Circuit  
Crest Factor True RMS Calibrated to Read RMS Value of  
(VPEAK/V rms) Value (V) Sine Waves (V)  
% of Reading Error Using  
Average Responding Circuit  
Waveform Type 1 V Peak Amplitude  
Undistorted Sine Wave  
Symmetrical Square Wave  
Undistorted Triangle Wave  
Gaussian Noise (98± of Peaks <1 V)  
Rectangular  
1.414  
1.00  
1.73  
3
2
10  
0.707  
1.00  
0.577  
0.333  
0.5  
0.707  
1.11  
0.555  
0.295  
0.278  
0.011  
0
+11.0  
−3.8  
−11.4  
−44  
−89  
Pulse Train  
0.1  
SCR Waveforms  
50± Duty Cycle  
25± Duty Cycle  
2
4.7  
0.495  
0.212  
0.354  
0.150  
−28  
−30  
Rev. I | Page 11 of 20  
 
 
 
AD736  
Data Sheet  
In most cases, the combined magnitudes of both the dc and  
RAPID SETTLING TIMES VIA THE AVERAGE  
RESPONDING CONNECTION  
ac error components need to be considered when selecting  
appropriate values for Capacitor CAV and Capacitor CF. This  
combined error, representing the maximum uncertainty of the  
measurement, is termed the averaging error and is equal to the  
peak value of the output ripple plus the dc error.  
Because the average responding connection shown in Figure 19  
does not use the CAV averaging capacitor, its settling time does  
not vary with the input signal level. It is determined solely by  
the RC time constant of CF and the internal 8 kΩ resistor in the  
output amplifier’s feedback path.  
E
O
IDEAL  
C
C
E
O
10µF  
+
DC ERROR = E – E (IDEAL)  
O
O
(OPTIONAL)  
8kΩ  
C
1
2
8
C
COM  
+V  
AVERAGE E = E  
AD736  
O
O
DOUBLE-FREQUENCY  
RIPPLE  
FULL  
WAVE  
RECTIFIER  
V
+V  
S
IN  
8kΩ  
7
TIME  
V
S
IN  
INPUT  
AMPLIFIER  
Figure 20. Output Waveform for Sine Wave Input Voltage  
C
OUTPUT  
F
As the input frequency increases, both error components  
decrease rapidly; if the input frequency doubles, the dc error  
and ripple reduce to one quarter and one half of their original  
values, respectively, and rapidly become insignificant.  
3
6
V
OUT  
BIAS  
SECTION  
OUTPUT  
AMPLIFIER  
–V  
S
rms  
CORE  
–V  
S
C
AV  
4
5
AC MEASUREMENT ACCURACY AND CREST FACTOR  
+
The crest factor of the input waveform is often overlooked when  
determining the accuracy of an ac measurement. Crest factor is  
defined as the ratio of the peak signal amplitude to the rms  
amplitude (crest factor = VPEAK/V rms). Many common waveforms,  
such as sine and triangle waves, have relatively low crest factors  
(≤2). Other waveforms, such as low duty-cycle pulse trains and  
SCR waveforms, have high crest factors. These types of waveforms  
require a long averaging time constant (to average out the long  
periods between pulses). Figure 8 shows the additional error vs.  
C
33µF  
F
+V  
S
POSITIVE SUPPLY  
COMMON  
0.1µF  
0.1µF  
–V  
NEGATIVE SUPPLY  
S
Figure 19. AD736 Average Responding Circuit  
DC ERROR, OUTPUT RIPPLE, AND AVERAGING  
ERROR  
the crest factor of the AD736 for various values of CAV  
.
Figure 20 shows the typical output waveform of the AD736  
with a sine wave input applied. As with all real-world devices,  
the ideal output of VOUT = VIN is never achieved exactly. Instead,  
the output contains both a dc and an ac error component.  
As shown in Figure 20, the dc error is the difference between  
the average of the output signal (when all the ripple in the  
output is removed by external filtering) and the ideal dc output.  
The dc error component is therefore set solely by the value of  
the averaging capacitor used. No amount of post filtering (that  
is, using a very large CF) allows the output voltage to equal its  
ideal value. The ac error component, an output ripple, can be  
easily removed by using a large enough post filtering capacitor, CF.  
Rev. I | Page 12 of 20  
 
 
 
 
 
Data Sheet  
AD736  
APPLICATIONS  
CONNECTING THE INPUT  
1
2
3
4
8
7
6
5
C
V
COM  
C
AD736  
The inputs of the AD736 resemble an op amp, with noninverting  
and inverting inputs. The input stages are JFETs accessible at  
Pin 1 and Pin 2. Designated as the high impedance input, Pin 2  
is connected directly to a JFET gate. Pin 1 is the low impedance  
input because of the scaling resistor connected to the gate of the  
second JFET. This gate-resistor junction is not externally accessible  
and is servo-ed to the voltage level of the gate of the first JFET,  
as in a classic feedback circuit. This action results in the typical  
8 kΩ input impedance referred to ground or reference level.  
+V  
IN  
S
+V  
S
C
OUTPUT  
F
VOUT  
DC  
–V  
C
AV  
S
C
AV  
–V  
S
Figure 23. Low-Z AC-Coupled Input Connection  
This input structure provides four input configurations as  
shown in Figure 21, Figure 22, Figure 23, and Figure 24.  
Figure 21 and Figure 22 show the high impedance configurations,  
and Figure 23 and Figure 24 show the low impedance connections  
used to extend the input voltage range.  
1
2
3
4
8
7
6
5
C
V
COM  
C
AD736  
+V  
IN  
S
+V  
S
C
OUTPUT  
F
VOUT  
DC  
–V  
C
AV  
S
C
AV  
1
2
3
4
8
7
6
5
C
V
COM  
C
AD736  
+V  
+V  
–V  
S
IN  
S
S
1MΩ  
Figure 24. Low-Z DC-Coupled Input Connection  
C
OUTPUT  
VOUT  
DC  
F
–V  
C
AV  
S
C
AV  
–V  
S
Figure 21. High-Z AC-Coupled Input Connection (Default)  
1
2
3
4
8
7
6
5
C
V
COM  
C
AD736  
+V  
IN  
S
+V  
S
C
OUTPUT  
F
VOUT  
DC  
–V  
C
AV  
S
C
AV  
–V  
S
Figure 22. High-Z DC-Coupled Input Connection  
Rev. I | Page 13 of 20  
 
 
 
 
 
 
AD736  
Data Sheet  
Note that at FL, the amplitude error is approximately −30%  
SELECTING PRACTICAL VALUES FOR INPUT  
COUPLING (CC), AVERAGING (CAV), AND FILTERING  
(CF) CAPACITORS  
(3 dB) of the reading. To reduce this error to 0.5% of the  
reading, choose a value of CC that sets FL at one-tenth of the  
lowest frequency to be measured.  
Table 6 provides practical values of CAV and CF for several  
common applications.  
In addition, if the input voltage has more than 100 mV of dc  
offset, then the ac-coupling network shown in Figure 27 should  
be used in addition to CC.  
The input coupling capacitor, CC, in conjunction with the  
8 kΩ internal input scaling resistor, determine the −3 dB  
low frequency roll-off. This frequency, FL, is equal to  
1
FL =  
2π (8000)(Value of CC in Farads)  
Table 6. Capacitor Selection Chart  
Low Frequency  
Cutoff (−3 dB)  
Max Crest  
Factor  
CAV  
(µF)  
CF  
Application  
RMS Input Level  
(µF) Settling Time1 to 1%  
General-Purpose RMS Computation  
0 V to 1 V  
20 Hz  
200 Hz  
20 Hz  
200 Hz  
20 Hz  
200 Hz  
20 Hz  
200 Hz  
50 Hz  
60 Hz  
50 Hz  
60 Hz  
5
5
5
5
150  
15  
33  
10  
1
10  
1
360 ms  
36 ms  
360 ms  
36 ms  
1.2 sec  
120 ms  
1.2 sec  
120 ms  
1.2 sec  
1.0 sec  
1.2 sec  
1.0 sec  
0 mV to 200 mV  
0 V to 1 V  
3.3  
General Purpose  
Average  
Responding  
None 33  
None 3.3  
None 33  
None 3.3  
100  
82  
0 mV to 200 mV  
0 mV to 200 mV  
0 mV to 100 mV  
SCR Waveform Measurement  
5
5
5
5
33  
27  
33  
27  
50  
47  
Audio Applications  
Speech  
Music  
0 mV to 200 mV  
0 mV to 100 mV  
300 Hz  
20 Hz  
3
10  
1.5  
100  
0.5  
68  
18 ms  
2.4 sec  
1 Settling time is specified over the stated rms input level with the input signal increasing from zero. Settling times are greater for decreasing amplitude input signals.  
Rev. I | Page 14 of 20  
 
 
Data Sheet  
AD736  
47 kΩ, 1 W resistor and diode pair are a practical input  
protection scheme for ac line connection measurements.  
ADDITIONAL APPLICATION CONCEPTS  
Figure 25 through Figure 28 show four application concepts.  
Figure 25 shows the high input impedance FET input connected to  
a multitap attenuator network used in various types of instruments  
requiring wide ranges of voltages. For a direct network connection,  
the gate-charge bleeding resistor is not required. The impedance of  
the FET input is high enough (1012 Ω) so that the loading error  
is negligible. Manufacturers and distributors of the matched  
precision resistor networks shown in these figures can easily be  
found on the Web. The voltages shown in the diagrams are the  
input levels corresponding to 200 mV at each tap. Finally, the  
Figure 26 shows both inputs connected differentially. Figure 27  
shows additional components used for offset correction of the  
output amplifier, and Figure 28 shows connections for single-  
supply operation such as is the case for handheld devices.  
Further information can be found in the AN-268 Application  
Note—RMS-to-DC Converters Ease Measurement Tasks—and  
the RMS to DC Converter Application Guide, both of which  
can be found on the Analog Devices, Inc., website.  
OPTIONAL  
AC COUPLING  
CAPACITOR  
VIN FOR FULL  
SCALE OUTPUT  
C
C
10µF  
+
V
IN  
0.01µF  
1kV  
(OPTIONAL)  
8kΩ  
+V  
S
C
1
2
8
C
COM  
200mV  
BAV199  
AD736  
9MΩ  
900kΩ  
90kΩ  
FULL  
WAVE  
V
+V  
S
IN  
2V  
8kΩ  
RECTIFIER  
7
6
+V  
S
INPUT  
47kΩ  
1W  
1µF  
20V  
200V  
AMPLIFIER  
C
F
OUTPUT  
3
BIAS  
–V  
S
SECTION  
OUTPUT  
AMPLIFIER  
10kΩ  
–V  
C
5
S
AV  
rms  
CORE  
–V  
4
S
+
C
33µF  
AV  
1µF  
+
C
F
10µF (OPTIONAL)  
Figure 25. AD736 with a High Impedance Input Attenuator  
C
10µF  
AD711  
C
3
2
C
C
–IN  
8kΩ  
6
+
1
2
8
COM  
AD736  
FULL  
WAVE  
RECTIFIER  
V
+V  
S
IN  
8kΩ  
+IN  
7
+V  
S
1µF  
INPUT  
AMPLIFIER  
12  
INPUT IMPEDANCE: 10 Ω||10pF  
C
OUTPUT  
F
3
6
OUTPUT  
BIAS  
SECTION  
OUTPUT  
AMPLIFIER  
–V  
C
5
S
AV  
rms  
CORE  
–V  
4
S
+
C
33µF  
AV  
1µF  
+
C
F
10µF (OPTIONAL)  
Figure 26. Differential Input Connection  
Rev. I | Page 15 of 20  
 
 
 
AD736  
Data Sheet  
C
C
10µF  
+
(OPTIONAL)  
8kΩ  
C
1
2
8
C
COM  
AD736  
FULL  
WAVE  
RECTIFIER  
V
+V  
S
IN  
DC-COUPLED  
IN  
8kΩ  
V
7
+V  
S
1µF  
INPUT  
AMPLIFIER  
0.1µF  
C
OUTPUT  
F
3
6
OUTPUT  
BIAS  
SECTION  
AC-COUPLED  
1MΩ  
OUTPUT  
AMPLIFIER  
–V  
C
5
S
AV  
rms  
CORE  
+V  
4
S
39MΩ  
OUTPUT  
1MΩ  
+
V
OS  
C
33µF  
AV  
1µF  
ADJUST  
+
C
F
–V  
S
10µF (OPTIONAL)  
Figure 27. External Output VOS Adjustment  
C
C
10µF  
+
C
C
COM  
8kΩ  
1
8
AD736  
V
S
2
FULL  
WAVE  
RECTIFIER  
+V  
V
S
IN  
0.1µF  
8kΩ  
V
2
7
IN  
INPUT  
AMPLIFIER  
1MΩ  
100kΩ  
C
OUTPUT  
V
S
F
4.7µF  
4.7µF  
2
3
6
BIAS  
SECTION  
9V  
OUTPUT  
AMPLIFIER  
–V  
C
5
S
AV  
rms  
CORE  
4
+
100kΩ  
33µF  
+
C
F
10µF (OPTIONAL)  
Figure 28. Battery-Powered Option  
Rev. I | Page 16 of 20  
 
 
Data Sheet  
AD736  
EVALUATION BOARD  
An evaluation board, AD736-EVALZ, is available for  
experimentation or becoming familiar with rms-to-dc converters.  
Figure 29 is a photograph of the board, and Figure 30 is the top  
silkscreen showing the component locations. Figure 31, Figure 32,  
Figure 33, and Figure 34 show the layers of copper, and Figure 35  
shows the schematic of the board configured as shipped. The board  
is designed for multipurpose applications and can be used for the  
AD737 as well.  
Figure 31. Evaluation Board—Component-Side Copper  
Figure 29. AD736 Evaluation Board  
Figure 32. Evaluation Board—Secondary-Side Copper  
Figure 30. Evaluation Board—Component-Side Silkscreen  
As shipped, the board is configured for dual supplies and high  
impedance input. Optional jumper locations enable low impedance  
and dc input connections. Using the low impedance input (Pin 1)  
often enables higher input signals than otherwise possible. A dc  
connection enables an ac plus dc measurement, but care must  
be taken so that the opposite polarity input is not dc-coupled  
to ground.  
Figure 35 shows the board schematic with all movable jumpers.  
The jumper positions in black are default connections; the dotted-  
outline jumpers are optional connections. The board is tested prior  
to shipment and only requires a power supply connection and a  
precision meter to perform measurements.  
Figure 33. Evaluation Board—Internal Power Plane  
Figure 34. Evaluation Board—Internal Ground Plane  
Rev. I | Page 17 of 20  
 
 
 
 
 
 
 
AD736  
Data Sheet  
–V +V  
S
S
S
GND1 GND2 GND3 GND4  
+
C1  
10µF  
25V  
C2  
10µF  
25V  
+
–V +V  
S
W3  
AC COUP  
W1  
DC  
LO-Z  
W4  
R3  
0Ω  
COUP  
LO-Z IN  
+
C
C
VIN  
P2  
HI-Z SEL  
CIN  
0.1µF  
J1  
R4  
0Ω  
HI-Z  
1
8
7
6
5
IN  
C
V
COM  
C
C6  
0.1µF  
AD736  
2
3
4
+V  
+V  
S
S
VOUT  
IN  
GND  
W2  
J2  
C
OUT  
F
CF1  
R1  
C4  
CAV  
1MΩ  
0.1µF  
–V  
C
AV  
S
SEL  
J3  
CAV  
33µF  
16V+  
NORM  
PD  
FILT  
+V  
S
–V  
S
CF2  
Figure 35. Evaluation Board Schematic  
Rev. I | Page 18 of 20  
 
Data Sheet  
AD736  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 36. 8-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body (N-8)  
Dimensions shown in inches and (millimeters)  
0.005 (0.13)  
MIN  
0.055 (1.40)  
MAX  
5.00 (0.1968)  
4.80 (0.1890)  
8
5
0.310 (7.87)  
0.220 (5.59)  
1
4
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.100 (2.54) BSC  
0.405 (10.29) MAX  
0.320 (8.13)  
0.290 (7.37)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.060 (1.52)  
0.200 (5.08)  
MAX  
0.25 (0.0098)  
0.10 (0.0040)  
0.015 (0.38)  
8°  
0°  
0.150 (3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.023 (0.58)  
0.014 (0.36)  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 37. 8-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-8)  
Figure 38. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in inches and (millimeters)  
Dimensions shown in millimeters and (inches)  
Rev. I | Page 19 of 20  
 
AD736  
Data Sheet  
ORDERING GUIDE  
Model1  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
Package Description  
8-Lead CERDIP  
8-Lead CERDIP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead PDIP  
Package Option  
AD736AQ  
AD736BQ  
Q-8  
Q-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
N-8  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
AD736AR-REEL  
AD736AR-REEL7  
AD736ARZ  
AD736ARZ-R7  
AD736ARZ-RL  
AD736BR-REEL  
AD736BR-REEL7  
AD736BRZ  
AD736BRZ-R7  
AD736BRZ-RL  
AD736JN  
AD736JNZ  
AD736KNZ  
8-Lead PDIP  
8-Lead PDIP  
AD736JR  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
Evaluation Board  
AD736JR-REEL  
AD736JR-REEL7  
AD736JRZ  
AD736JRZ-RL  
AD736JRZ-R7  
AD736KRZ  
AD736KRZ-RL  
AD736KRZ-R7  
AD736-EVALZ  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
1 Z = RoHS Compliant Part.  
©1988–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00834-0-12/12(I)  
Rev. I | Page 20 of 20  
 
 

相关型号:

AD7366

True Bipolar Input, Dual 1us, 12-Bit, 2-Channel SAR ADC
ADI

AD7366-5

True Bipolar Input, Dual 1 レs, 12-/14-Bit, 2-Channel SAR ADCs
ADI

AD7366-5ARUZ

True Bipolar Input, Dual 1us, 12-Bit, 2-Channel SAR ADC
ADI

AD7366-5ARUZ-REEL7

True Bipolar Input, Dual 1us, 12-Bit, 2-Channel SAR ADC
ADI

AD7366-5BRUZ

True Bipolar Input, Dual 1us, 12-Bit, 2-Channel SAR ADC
ADI

AD7366-5BRUZ-REEL7

True Bipolar Input, Dual 1us, 12-Bit, 2-Channel SAR ADC
ADI

AD7366-5_15

True Bipolar Input, 12-/14-Bit, 2-Channel, Simultaneous Sampling SAR ADCs
ADI

AD7366ARUZ

True Bipolar Input, Dual 1us, 12-Bit, 2-Channel SAR ADC
ADI

AD7366ARUZ-REEL7

True Bipolar Input, Dual 1us, 12-Bit, 2-Channel SAR ADC
ADI

AD7366BRUZ

True Bipolar Input, Dual 1us, 12-Bit, 2-Channel SAR ADC
ADI

AD7366BRUZ-5

True Bipolar Input, 12-Bit, 2-Channel, Simultaneous Sampling SAR ADC
ADI

AD7366BRUZ-500RL7

True Bipolar Input, Dual 1 レs, 12-/14-Bit, 2-Channel SAR ADCs
ADI