AD7606C-16 [ADI]

8-Channel DAS with 16-Bit, 1 MSPS Bipolar Input, Simultaneous Sampling ADC;
AD7606C-16
型号: AD7606C-16
厂家: ADI    ADI
描述:

8-Channel DAS with 16-Bit, 1 MSPS Bipolar Input, Simultaneous Sampling ADC

文件: 总74页 (文件大小:1499K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-Channel DAS with 16-Bit, 1 MSPS Bipolar  
Input, Simultaneous Sampling ADC  
AD7606C-16  
Data Sheet  
FEATURES  
CALIBRATION AND DIAGNOSTICS  
16-bit ADC with 1 MSPS on all channels  
Per channel system phase, offset, and gain calibration  
Input buffer with 1 MΩ minimum analog input impedance (RIN)  
Single 5 V analog supply and 1.71 V to 5.25 V VDRIVE  
Per channel selectable analog input ranges  
Bipolar single-ended: 12.5 V, 10 V, 6.25 V, 5 V, 2.5 V  
Unipolar single-ended: 0 V to 12.5 V, 0 V to 10 V, 0 V to 5 V  
Bipolar differential: 20 V, 12.5 V, 10 V, 5 V  
Two bandwidth options: 25 kHz and 220 kHz, per channel  
Flexible digital filter, oversampling ratio up to 256  
−40°C to +125°C operating range  
21 V input clamp protection with 6 kV ESD  
Pin to pin compatible to the AD7606B and AD7606  
Performance  
92 dB typical SNR for 20 V bipolar differential range  
95 dB SNR, oversampling by 32  
Analog input open circuit detection feature  
Self diagnostics and monitoring features  
CRC error checking on read and write data and registers  
APPLICATIONS  
Power line monitoring  
Protective relays  
Multiphase motor control  
Instrumentation and control systems  
Data acquisition systems  
COMPANION PRODUCTS  
Voltage References: ADR4525, LT6657, LTC6655  
Digital Isolators: ADuM142E, ADuM6422A, ADuM5020,  
ADuM5028  
AD7606x Family Software Model  
Additional companion products on the AD7606C-16 product  
page  
−100 dB typical THD for all other ranges  
TUE = 0.05% of FSR maximum, external reference  
0.5 ppm/°C typical PFS and NFS error drift  
3 ppm/°C typical reference temperature coefficient  
FUNCTIONAL BLOCK DIAGRAM  
5V  
5V  
1.71V TO 5.25V  
1µF  
100nF  
100nF  
100nF  
1µF  
V
AV  
AV  
CC  
REGCAP  
REGCAP  
DRIVE  
CC  
ALDO  
LPF  
DLDO  
1MΩ  
1MΩ  
V1+  
V1–  
CLAMP  
CLAMP  
CONVST  
CLK OSC  
PGA  
PGA  
SAR  
SAR  
RESET  
RANGE  
CONTROL  
INPUTS  
OS0 TO OS2  
1MΩ  
1MΩ  
V8+  
V8–  
BUSY  
CLAMP  
CLAMP  
PROGRAMMABLE  
DIGITAL FILTER  
FRSTDATA  
LPF  
OPTIONAL  
RC FILTER  
SERIAL  
D
A TO D H  
OUT OUT  
ADC, PGA, AND  
CHANNEL  
SDI  
REFCAPA  
SCLK  
CS  
CONFIGURATION  
PARALLEL/  
10µF  
+
SERIAL  
INTERFACE  
OPTIONAL EXTERNAL  
REFERENCE  
PARALLEL  
DB0 TO DB15  
GAIN, OFFSET  
AND PHASE  
CALIBRATION  
REFCAPB  
AV  
CC  
RD  
INTERNAL  
REFERENCE  
REFIN/REFOUT  
+2.5V  
WR  
V
V
OUT  
IN  
+
100nF  
2.5V  
REF  
DIAGNOSTICS  
AND SENSOR  
DISCONNECT  
PAR/SER SEL  
ADR4525  
GND  
1µF  
0.1µF  
REFSELECT  
REFGND  
AD7606C-16  
AGND  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2021 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
AD7606C-16  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Padding Oversampling.............................................................. 36  
External Oversampling Clock .................................................. 36  
System Calibration Features ......................................................... 37  
System Phase Calibration.......................................................... 37  
System Gain Calibration ........................................................... 37  
System Offset Calibration ......................................................... 38  
Analog Input Open Circuit Detection .................................... 38  
Digital Interface.............................................................................. 40  
Parallel Interface......................................................................... 41  
Serial Interface............................................................................ 44  
Diagnostics...................................................................................... 49  
Reset Detection........................................................................... 49  
Digital Error................................................................................ 49  
Diagnostics Multiplexer ............................................................ 52  
Typical Connection Diagram ....................................................... 53  
Applications Information ............................................................. 55  
Layout Guidelines ...................................................................... 55  
Register Summary .......................................................................... 57  
Register Details ............................................................................... 58  
Outline Dimensions....................................................................... 74  
Ordering Guide .......................................................................... 74  
Calibration and Diagnostics ........................................................... 1  
Applications ...................................................................................... 1  
Companion Products....................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
General Description......................................................................... 3  
Specifications .................................................................................... 4  
Timing Specifications .................................................................. 7  
Absolute Maximum Ratings ......................................................... 11  
Thermal Resistance.................................................................... 11  
Electrostatic Discharge (ESD) Ratings.................................... 11  
ESD Caution................................................................................ 11  
Pin Configuration and Function Descriptions .......................... 12  
Typical Performance Characteristics........................................... 15  
Terminology.................................................................................... 26  
Theory of Operation ...................................................................... 28  
Analog Front-End ...................................................................... 28  
SAR ADC..................................................................................... 29  
Reference ..................................................................................... 31  
Operation Modes........................................................................ 31  
Digital Filter .................................................................................... 34  
REVISION HISTORY  
1/2021—Revision 0: Initial Version  
Rev. 0 | Page 2 of 74  
 
Data Sheet  
AD7606C-16  
GENERAL DESCRIPTION  
The AD7606C-16 is a 16-bit, simultaneous sampling, analog-  
to-digital data acquisition system (DAS) with eight channels.  
Each channel contains analog input clamp protection, a  
programmable gain amplifier (PGA), a low-pass filter (LPF),  
and a 16-bit successive approximation register (SAR) analog-  
to-digital converter (ADC). The AD7606C-16 also contains a  
flexible digital filter, a low drift, 2.5 V precision reference, a  
reference buffer to drive the ADC, and flexible parallel and  
serial interfaces.  
throughput rates, the AD7606C-16 flexible digital filter can be  
used to improve noise performance.  
In hardware mode, the AD7606C-16 is fully compatible with  
the AD7606 and AD7606B. In software mode, the following  
advanced features are available:  
Analog input range selectable per channel with added  
ranges available  
High bandwidth mode (220 kHz) selectable per channel  
Additional oversampling options with an oversampling ratio  
up to 256  
The AD7606C-16 operates from a single 5 V supply and  
accommodates the following input ranges when sampling at  
throughput rates of 1 MSPS for all channels:  
System gain, system offset, and system phase calibration,  
per channel  
Bipolar single-ended: 12.5 V, 10 V, 6.25 V, 5 V, and  
2.5 V  
Unipolar single-ended: 0 V to 12.5 V, 0 V to 10 V, and 0 V  
to 5 V  
Bipolar differential: 20 V, 12.5 V, 10 V, and 5 V  
Analog input open circuit detector  
Diagnostic multiplexer  
Monitoring functions (serial peripheral interface (SPI)  
invalid read and write, cyclic redundancy check (CRC),  
busy stuck monitor, and reset detection)  
The input clamp protection tolerates voltages up to 21 V. The  
single supply operation, on-chip filtering, and high input  
impedance eliminate the need for external driver op amps,  
which require bipolar supplies. For applications with lower  
Note that throughout this data sheet, multifunction pins, such  
RD  
name or by a single function of the pin, for example, the SCLK pin,  
when only that function is relevant.  
as the  
/SCLK pin, are referred to either by the entire pin  
Table 1. Bipolar Input, Simultaneous Sampling, Pin to Pin Compatible Family of Devices  
Input Type  
Resolution (Bits)  
RIN1 = 1 MΩ, 200 kSPS RIN = 5 MΩ, 800 kSPS  
RIN = 1 MΩ, 1 MSPS  
AD7606C-182  
Number of Channels  
Single-Ended  
18  
16  
AD7608  
8
8
6
4
8
8
8
AD7606  
AD7606-6  
AD7606-4  
AD7607  
AD7609  
AD7606B2  
AD7606C-162  
14  
18  
16  
True Differential  
AD7606C-182  
AD7606C-162  
1 RIN is input impedance.  
2 This state-of-the-art device is recommended for newer designs as an alternative to the AD7606, AD7608, and AD7609.  
Rev. 0 | Page 3 of 74  
 
 
AD7606C-16  
Data Sheet  
SPECIFICATIONS  
Voltage reference (VREF) = 2.5 V external and internal, analog supply voltage (AVCC) = 4.75 V to 5.25 V, logic supply voltage (VDRIVE) =  
1.71 V to 5.25 V, sample frequency (fSAMPLE) = 1 MSPS, TA = −40°C to +125°C, and all input voltage ranges, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Input frequency (fIN) = 1 kHz sine wave, unless  
otherwise noted  
Signal-to-Noise Ratio (SNR)  
Low Bandwidth Mode  
20 V bipolar differential range  
20 V bipolar differential range, oversampling by  
32, fIN = 50 Hz  
90  
92  
95  
dB  
dB  
12.5 V bipolar differential range  
10 V bipolar differential range  
5 V bipolar differential range  
89  
89  
88  
90  
90.5  
90  
90.5  
91.5  
90.5  
90  
88  
90  
89  
86  
88  
86.5  
86  
83.5  
86.5  
86  
83.5  
82.5  
81  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
12.5 V bipolar single-ended range  
10 V bipolar single-ended range  
6.25 V bipolar single-ended range  
5 V bipolar single-ended range  
2.5 V bipolar single-ended range  
0 V to 12.5 V unipolar single-ended range  
0 V to 10 V unipolar single-ended range  
0 V to 5 V unipolar single-ended range  
20 V bipolar differential range  
12.5 V bipolar differential range  
10 V bipolar differential range  
5 V bipolar differential range  
12.5 V bipolar single-ended range  
10 V bipolar single-ended range  
6.25 V bipolar single-ended range  
5 V bipolar single-ended range  
2.5 V bipolar single-ended range  
0 V to 12.5 V unipolar single-ended range  
0 V to 10 V unipolar single-ended range  
0 V to 5 V unipolar single-ended range  
Low bandwidth mode  
88.5  
89.5  
88.5  
88.5  
86  
88  
87.5  
84  
High Bandwidth Mode  
82  
81  
80  
Total Harmonic Distortion (THD)  
Unipolar ranges  
All other ranges  
−97  
−100 −95  
−105  
−110  
80  
dB  
dB  
dB  
dB  
μs  
Spurious-Free Dynamic Range (SFDR)  
Channel to Channel Isolation  
Full-Scale (FS) Step Settling Time  
fIN on unselected channels up to 200 kHz  
0.01% of FS, low bandwidth mode  
0.01% of FS, high bandwidth mode  
15  
μs  
ANALOG INPUT FILTER  
−3 dB Full Power Bandwidth  
Low bandwidth mode  
High bandwidth mode  
High bandwidth mode, 2.5 V bipolar, 0 V to 5 V  
unipolar  
25  
220  
150  
kHz  
kHz  
kHz  
−0.1 dB Full Power Bandwidth  
Low bandwidth mode  
High bandwidth mode  
High bandwidth mode, 2.5 V bipolar, 0 V to 5 V  
unipolar  
3.9  
25  
20  
kHz  
kHz  
kHz  
Rev. 0 | Page 4 of 74  
 
Data Sheet  
AD7606C-16  
Parameter  
Test Conditions/Comments  
Low bandwidth mode  
High bandwidth mode  
High bandwidth mode, 2.5 V bipolar, 0 V to 5 V  
unipolar  
Min  
Typ  
6.7  
1.1  
1.7  
Max  
Unit  
µs  
µs  
Phase Delay  
µs  
Phase Delay Matching  
Low bandwidth mode  
High bandwidth mode  
200  
30  
ns  
ns  
DC ACCURACY  
Resolution  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
No missing codes  
16  
Bits  
0.5  
0.5  
1
0.99  
2
LSB1  
LSB1  
LSB  
Bipolar input ranges  
Unipolar input ranges  
Total Unadjusted Error (TUE)2  
External reference, bipolar input ranges  
External reference, 2.5 V range  
Unipolar input ranges  
6
6
15  
30  
45  
70  
LSB  
LSB  
LSB  
Bipolar Ranges  
Positive Full-Scale (PFS) and  
5
30  
3
LSB  
Negative Full-Scale (NFS) Error3  
PFS and NFS Error Drift  
PFS and NFS Error Matching  
Bipolar Zero Code Error  
0.5  
4
ppm/°C  
LSB  
20  
2.5 V range  
All other input ranges  
2
2
40  
20  
LSB1  
LSB1  
Bipolar Zero Code Error Drift  
2.5 V range  
All other input ranges  
2
0.5  
5
5
2.5  
25  
ppm/°C  
ppm/°C  
LSB1  
Bipolar Zero Code Error Matching  
Unipolar Ranges  
FS Error  
FS Error Drift  
FS Error Matching  
15  
1
60  
7
40  
LSB  
ppm/°C  
LSB  
5
Zero Scale Error  
15  
2.5  
5
50  
7
40  
LSB  
ppm/°C  
LSB  
Zero Scale Error Drift  
Zero Scale Error Matching  
SYSTEM CALIBRATION  
PFS and NFS Calibration Range  
Offset Calibration Range  
Phase Calibration Range  
PFS and NFS Error  
Series resistor in front of the Vx+ and Vx− inputs  
1
1
1
64  
255  
255  
kΩ  
LSB  
μs  
LSB  
LSB  
µs  
After gain calibration  
After offset calibration  
After phase calibration  
15  
0.5  
1
Offset Error  
Phase Error  
ANALOG INPUT  
Input Voltage (VIN) Ranges  
VIN = Vx+ − Vx−  
20 V bipolar differential range  
12.5 V bipolar differential range  
10 V bipolar differential range  
5 V bipolar differential range  
12.5 V bipolar single-ended range  
10 V bipolar single-ended range  
6.25 V bipolar single-ended range  
5 V bipolar single-ended range  
2.5 V bipolar single-ended range  
−20  
−12.5  
−10  
−5  
−12.5  
−10  
−6.25  
−5  
+20  
+12.5  
+10  
+5  
+12.5  
+10  
+6.25  
+5  
V
V
V
V
V
V
V
V
V
−2.5  
+2.5  
Rev. 0 | Page 5 of 74  
AD7606C-16  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
0
0
Typ  
Max  
Unit  
0 V to 12.5 V unipolar single-ended range  
0 V to 10 V unipolar single-ended range  
0 V to 5 V unipolar single-ended range  
Vx− − AGND  
12.5  
10  
5
V
V
V
0
Absolute Voltage Negative Input  
12.5 V bipolar single-ended range  
10 V bipolar single-ended range  
6.25 V bipolar single-ended range  
5 V bipolar single-ended range  
2.5 V bipolar single-ended range  
0 V to 12.5 V unipolar single-ended range  
0 V to 10 V unipolar single-ended range  
0 V to 5 V unipolar single-ended range  
20 V bipolar differential range  
−1  
+1.6  
+1.9  
+2.5  
+2.7  
+3  
+1.2  
+1.7  
+4  
V
V
V
V
V
V
V
V
−0.6  
−0.4  
−0.1  
−0.05  
−6.5  
−4.9  
−2.3  
−10  
−7.8  
−6  
Common-Mode Input Range  
+10  
+7.8  
+7  
V
V
V
12.5 V bipolar differential range  
10 V bipolar differential range  
5 V bipolar differential range  
−3  
1
+5  
V
MΩ  
µA  
pF  
ppm/°C  
Input Impedance (RIN)4  
Analog Input Current  
1.2  
(VIN − 2)/RIN  
Input Capacitance (CIN)5  
5
1
Input Impedance Drift  
25  
REFERENCE INPUT AND OUTPUT  
Reference Input Voltage  
DC Leakage Current  
External reference  
2.495  
2.5  
2.505  
0.12  
V
µA  
Input Capacitance (CIN)  
Reference Output Voltage  
Reference Temperature Coefficient  
Reference Voltage to the ADC  
LOGIC INPUTS  
7.5  
2.5  
3
pF  
V
ppm/°C  
V
Internal reference, TA = 25°C  
2.4975  
4.39  
2.5025  
10  
4.41  
REFCAPA (Pin 44) and REFCAPB (Pin 45)  
Input High Voltage (VINH  
Input Low Voltage (VINL)  
Input Current (IIN)  
Input Capacitance (CIN)  
LOGIC OUTPUTS  
)
0.7 × VDRIVE  
V
V
µA  
pF  
0.2 × VDRIVE  
1
5
Output High Voltage (VOH)  
Output Low Voltage (VOL)  
Floating State Leakage Current  
Output Capacitance5  
Output Coding Bipolar Ranges  
Output Coding Unipolar Ranges  
CONVERSION RATE  
Conversion Time  
Source current (ISOURCE) = 100 µA  
Sink current (ISINK) = 100 µA  
VDRIVE − 0.2  
V
V
µA  
pF  
0.2  
20  
1
5
Twos complement  
Straight binary  
See Table 3  
Per channel  
550  
450  
ns  
ns  
kSPS  
Acquisition Time6  
Throughput Rate  
1000  
POWER REQUIREMENTS  
AVCC  
VDRIVE  
4.75  
1.71  
5
5.25  
5.25  
V
V
AVCC Current (IAVCC  
)
Normal Mode (Static)  
Normal Mode (Operational)  
9
11  
50  
10  
6
mA  
mA  
mA  
mA  
µA  
fSAMPLE = 1 MSPS  
fSAMPLE = 10 kSPS  
45  
8.5  
5
Standby  
Shutdown Mode  
0.5  
5
Rev. 0 | Page 6 of 74  
Data Sheet  
AD7606C-16  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
VDRIVE Current (IVDRIVE  
)
Normal Mode (Static)  
Normal Mode (Operational)  
2.8  
1.8  
21  
2.5  
0.5  
5
µA  
mA  
µA  
µA  
µA  
fSAMPLE = 1 MSPS  
fSAMPLE = 10 kSPS  
1.9  
24  
4
Standby  
Shutdown Mode  
1.5  
Power Dissipation  
Normal Mode (Static)  
Normal Mode (Operational)  
47  
245  
45  
26  
5
58  
272  
52  
32  
24  
mW  
mW  
mW  
mW  
µW  
fSAMPLE = 1 MSPS  
fSAMPLE = 10 kSPS  
Standby  
Shutdown Mode  
1 LSB means least significant bit. With a 2.5 V input range, 1 LSB = 76.293 µV. With a 5 V input range, 1 LSB = 152.58 µV. With a 10 V input range, 1 LSB = 305.175 µV.  
2 TUE (% FSR) = TUE (LSB)/216 × 100. For example, 32 LSBs = 0.05 % of FSR.  
3 These specifications include the full temperature range variation and contribution from the reference buffer.  
4 Input impedance variation is factory trimmed and accounted for in the System Gain Calibration section.  
5 Not production tested. Sample tested during initial release to ensure compliance.  
6 The ADC input is settled by the internal PGA. Therefore, the acquisition time is the time between the end of the conversion and the start of the next conversion with  
no impact on external components.  
TIMING SPECIFICATIONS  
Universal Timing Specifications  
AVCC = 4.75 V to 5.25 V, VDRIVE = 1.71 V to 5.25 V, VREF = 2.5 V external reference and internal reference, and TA = −40°C to +125°C, unless  
otherwise noted. Interface timing tested using a load capacitance of 20 pF, dependent on VDRIVE and load capacitance for the serial interface.  
Table 3.  
Parameter  
Min  
1
Typ Max Unit Description  
tCYCLE  
µs  
ns  
ns  
ns  
ns  
Minimum time between consecutive CONVST rising edges (excluding oversampling modes)1  
tLP_CNV  
10  
10  
CONVST low pulse width  
tHP_CNV  
CONVST high pulse width  
tD_CNV_BSY  
tS_BSY  
22  
CONVST high to BUSY high delay time  
0
Minimum time from BUSY falling edge to RD falling edge setup time (in parallel interface)  
or to MSB being available on the DOUTx line (in serial interface)  
tD_BSY  
25  
ns  
Minimum time between last RD falling edge (in parallel interface) or last LSB being  
clocked out (serial interface) and the following BUSY falling edge, read during conversion  
tACQ  
0.35  
0.5  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
Acquisition time  
tCONV  
0.65  
1.75  
3.8  
Conversion time, no oversampling  
Oversampling by 2  
1.7  
3.6  
Oversampling by 4  
7.6  
7.85  
16  
Oversampling by 8  
15.5  
31.0  
62.75  
126  
252  
Oversampling by 16  
Oversampling by 32  
Oversampling by 64  
Oversampling by 128  
Oversampling by 256  
32.5  
65.0  
130  
256  
tRESET  
Partial Reset 55  
2000 ns  
Partial RESET high pulse width  
Full Reset  
tDEVICE_SETUP  
Partial Reset  
Full Reset  
3200  
ns  
µs  
ns  
µs  
Full RESET high pulse width  
Time between RESET falling edge and first CONVST rising edge  
50  
274  
Rev. 0 | Page 7 of 74  
 
 
 
AD7606C-16  
Data Sheet  
Parameter  
tWAKE-UP  
Min  
Typ Max Unit Description  
Wake-up time after standby and shutdown mode (see Figure 86)  
Standby  
Shutdown  
tPOWER-UP  
1
10  
10  
µs  
ms  
ms  
Time between stable AVCC and VDRIVE and assert of RESET  
1 Applies to serial mode when all eight DOUTx lines are selected.  
Universal Timing Diagram  
AV  
CC  
DRIVE  
V
tPOWER-UP  
tRESET  
RESET  
tCYCLE  
tDEVICE_SETUP  
tHP_CNV  
tLP_CNV  
CONVST  
BUSY  
tCONV  
tACQ  
tD_CNV_BSY  
tS_BSY  
tD_BSY  
D
x
OUT  
DBx  
Figure 2. Universal Timing Diagram  
Parallel Mode Timing Specifications  
Table 4.  
Parameter  
Min  
Typ  
Max  
Unit  
Description  
tS_  
0
ns  
CS falling edge to RD falling edge setup time  
RD rising edge to CS rising edge hold time  
RD high pulse width  
_
CS RD  
tH_  
0
ns  
ns  
ns  
ns  
ns  
_
RD CS  
tHP_  
10  
10  
10  
RD  
RD  
tLP_  
RD low pulse width  
tHP_  
CS high pulse width  
CS  
tD_  
35  
Delay from CS until DBx three-state disabled  
Data access time after falling edge of RD  
_DB  
CS  
tD_  
_DB  
RD  
30  
25  
ns  
ns  
ns  
VDRIVE > 2.7 V  
VDRIVE < 2.7 V  
Data hold time after falling edge of RD  
tH_  
12  
30  
_DB  
RD  
tDHZ_  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS rising edge to DBx high impedance  
RD falling edge to next RD falling edge  
Delay from CS falling edge until FRSTDATA three-state disabled  
Delay from RD falling edge until FRSTDATA high  
Delay from RD falling edge until FRSTDATA low  
Delay from CS rising edge until FRSTDATA three-state enabled  
CS to WR setup time  
_DB  
CS  
tCYC_  
RD  
tD_  
tD_  
tD_  
20  
30  
30  
25  
_FD  
CS  
RD  
RD  
_FDH  
_FDL  
tDHZ_  
_FD  
CS  
tS_  
0
_
CS WR  
tHP_  
2
WR high pulse width  
WR  
WR  
tLP_  
tH_  
35  
0
WR low pulse width  
WR hold time  
_
WR CS  
tS_DB_  
5
Configuration data to WR setup time  
Configuration data to WR hold time  
WR  
tH_  
5
_DB  
WR  
tCYC_  
180  
Configuration data settle time, WR rising edge to next WR rising edge  
WR  
Rev. 0 | Page 8 of 74  
 
 
Data Sheet  
AD7606C-16  
Parallel Mode Timing Diagrams  
CS  
tS_CS_RD  
tHP_RD  
tH_RD_CS  
tLP_RD  
RD  
tD_RD_DB  
tCYC_RD  
tH_RD_DB  
tH_CS_DB  
tDHZ_CS_DB  
tD_CS_DB  
DB0 TO DB15  
tD_CS_FD  
x
tD_RD_FDL  
tD_RD_FDH  
tDHZ_CS_FD  
FRSTDATA  
CS  
RD  
Pulses  
Figure 3. Parallel Mode Read, Separate and  
tCYC_RD  
tHP_CS  
CS AND RD  
tLP_RD  
tH_CS_DB  
tDHZ_CS_DB  
tD_RD_DB  
DB0 TO DB15  
FRSTDATA  
ADC DATA  
ADC DATA  
ADC DATA  
ADC DATA  
ADC DATA  
ADC DATA  
ADC DATA ADC DATA  
tD_CS_FD  
tDHZ_CS_FD  
tD_RD_FDL  
CS  
RD  
Pulses  
Figure 4. Parallel Mode Read, Linked and  
CS  
tHP_WR  
tH_WR_CS  
tS_CS_WR  
tCYC_WR  
WR  
tLP_WR  
tS_DB_WR  
tH_WR_DB  
DB0 TO DB15  
Figure 5. Parallel Mode Write Operation  
Serial Mode Timing Specifications  
Table 5.  
Parameter Min  
Typ Max Unit Description  
fSCLK  
SCLK frequency, fSCLK = 1/tSCLK  
60  
40  
MHz VDRIVE > 2.7 V  
MHz VDRIVE < 2.7 V  
tSCLK  
1/fSCLK  
2
μs  
ns  
Minimum SCLK period  
CS to SCLK falling edge setup time  
tS_  
_SCK  
CS  
tH_SCK_  
2
ns  
SCLK to CS rising edge hold time  
CS  
tLP_SCK  
tHP_SCK  
tD_  
0.4 × tSCLK  
0.4 × tSCLK  
ns  
ns  
ns  
SCLK low pulse width  
SCLK high pulse width  
Delay from CS until DOUTx three-state disabled  
18  
_DO  
CS  
tD_SCK_DO  
Data out access time after SCLK rising edge  
VDRIVE > 2.7 V  
VDRIVE < 2.7 V  
17  
25  
ns  
ns  
tH_SCK_DO  
Data out hold time after SCLK rising edge  
VDRIVE > 2.7 V  
VDRIVE < 2.7 V  
Data in setup time before SCLK falling edge  
Data in hold time after SCLK falling edge  
7
10  
9
ns  
ns  
ns  
ns  
tS_SDI_SCK  
tH_SCK_SDI  
0
Rev. 0 | Page 9 of 74  
 
 
AD7606C-16  
Data Sheet  
Parameter Min  
Typ Max Unit Description  
tDHZ_  
25  
ns  
ns  
ns  
CS rising edge to DOUTx high impedance  
_DO  
CS  
tWR  
tD_  
25  
Time between writing and reading the same register or between two writes, if fSCLK >50 MHz  
Delay from CS until DOUTx three-state disabled or delayed from CS until MSB valid  
16  
_FD  
CS  
tD_SCK_FDL  
tDHZ_FD  
18  
20  
ns  
ns  
16th SCLK falling edge to FRSTDATA low  
CS rising edge until FRSTDATA three-state enabled  
Serial Mode Timing Diagrams  
CS  
tHP_SCK  
tH_SCK_CS  
tS_CS_SCK  
tSCLK  
SCLK  
1
2
3
14  
15  
16  
t
LP_SCK  
tD_CS_DO  
tDHZ_CS_DO  
tD_SCK_DO  
tH_SCK_DO  
D
x
DB15  
DB14  
DB13  
DB2  
DB1  
DB0  
OUT  
tD_SCK_FDL  
tD_CS_FD  
tDHZ_FD  
FRSTDATA  
Figure 6. Serial Timing Diagram, ADC Mode (Channel 1)  
CS  
tSCLK  
tS_CS_SCK  
tHP_SCK  
tH_SCK_CS  
1
2
3
8
9
16  
SCLK  
tLP_SCK  
tH_SCK_SDI  
tS_SDI_SCK  
tWR  
ADD5  
ADD0  
DIN7  
D
DIN0  
D
SDI  
WEN  
R/W  
tD_CS_DO  
tD_SCK_DO  
D
x
7
0
OUT  
OUT  
OUT  
Figure 7. Serial Timing Interface, Register Map Read and Write Operations  
Rev. 0 | Page 10 of 74  
 
Data Sheet  
AD7606C-16  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit  
board (PCB) design and operating environment. Close  
attention to PCB thermal design is required.  
Table 6.  
Parameter  
Rating  
AVCC to AGND  
VDRIVE to AGND  
Analog Input Voltage to AGND1  
Digital Input Voltage to AGND  
Digital Output Voltage to AGND  
REFIN to AGND  
−0.3 V to +6.5 V  
−0.3 V to AVCC + 0.3 V  
21 V  
−0.3 V to VDRIVE + 0.3 V  
−0.3 V to VDRIVE + 0.3 V  
−0.3 V to AVCC + 0.3 V  
10 mA  
θJA is the natural convection junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure. θJC is  
the junction to case thermal resistance.  
Table 7. Thermal Resistance  
Package Type  
1
θJA  
θJC  
Unit  
Input Current to Any Pin Except Supplies1  
Temperature  
ST-64-2  
40  
7
°C/W  
Operating Range  
Storage Range  
Junction  
Pb/Sn, Soldering Reflow  
(10 sec to 30 sec)  
−40°C to +125°C  
−65°C to +150°C  
150°C  
1 Simulated data based on JEDEC 2s2p thermal test PCB in a JEDEC natural  
convention environment.  
ELECTROSTATIC DISCHARGE (ESD) RATINGS  
240 (+0)°C  
The following ESD information is provided for handling of  
ESD-sensitive devices in an ESD protected area only.  
Pb-Free, Soldering Reflow  
260 (+0)°C  
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.  
1 Transient currents of up to 100 mA do not cause silicon controlled  
rectifier (SCR) latch-up.  
Field induced charged device model (FICDM) per ANSI/ESDA/  
JEDEC JS-002.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
ESD Ratings for AD7606C-16  
Table 8. AD7606C-16, 64-Lead LQFP  
ESD Model  
Withstand Threshold (V)  
Class  
HBM  
3A  
Analog Inputs Only  
All Other Pins  
FICDM  
6000  
4000  
750  
C4  
ESD CAUTION  
Rev. 0 | Page 11 of 74  
 
 
 
 
AD7606C-16  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
AV  
48  
47  
46  
45  
44  
43  
42  
41  
40  
AV  
CC  
CC  
ANALOG INPUT  
PIN 1  
2
3
AGND  
AGND  
OS 0  
DECOUPLING CAP PIN  
POWER SUPPLY  
GROUND PIN  
REFGND  
REFCAPB  
REFCAPA  
REFGND  
REFIN/REFOUT  
AGND  
4
OS 1  
OS 2  
5
6
DATA OUTPUT  
PAR/SER SEL  
AD7606C-16  
7
STBY  
TOP VIEW  
DIGITAL OUTPUT  
DIGITAL INPUT  
(Not to Scale)  
8
RANGE  
9
AGND  
CONVST  
WR  
REFERENCE INPUT/OUTPUT  
10  
11  
12  
13  
39 REGCAP  
38 AV  
CC  
RESET  
RD/SCLK  
CS  
AV  
37  
36  
CC  
REGCAP  
BUSY 14  
35 AGND  
34  
FRSTDATA 15  
REF SELECT  
33 DB15  
DB0  
16  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Figure 8. Pin Configuration  
Table 9. Pin Function Description  
Pin No.  
Type1  
Mnemonic  
Description  
1, 37, 38, 48  
P
AVCC  
Analog Supply Voltage, 4.75 V to 5.25 V. This supply voltage is applied to the internal front-end  
amplifiers and to the ADC core. Decouple these supply pins to AGND.  
2, 26, 35, 40,  
41, 47  
P
AGND  
Analog Ground. The AGND pins are the ground reference points for all analog circuitry on the  
AD7606C-16. All analog input signals and external reference signals must be referred to the  
AGND pins. All six of the AGND pins must connect to the AGND plane of a system.  
3 to 5  
6
DI  
DI  
OS0 to OS2  
PAR/SER SEL  
Oversampling Mode Pins. OS0 to OS2 select the oversampling ratio or enable software mode  
(see Table 14 for oversampling bit decoding). See the Digital Filter section for more details about  
the oversampling mode of operation.  
Parallel/Serial Interface Selection Input. If the PAR/SER SEL pin is tied to a logic low, the parallel  
interface is selected. If the PAR/SER SEL pin is tied to a logic high, the serial interface is selected.  
See the Digital Interface section for more information on each interface available.  
7
DI  
STBY  
Standby Mode Input. In hardware mode, the STBY pin, in combination with the RANGE pin,  
places the AD7606C-16 into one of two power-down modes: standby mode or shutdown mode.  
In software mode, the STBY pin is ignored. Therefore, it is recommended to connect the STBY pin  
to logic high. See the Power-Down Modes section for more information on both hardware mode  
and software mode.  
8
9
DI  
DI  
RANGE  
Analog Input Range Selection Input. In hardware mode, the RANGE pin determines the input  
range of the analog input channels (see Table 10). If the STBY pin is at logic low, the RANGE pin  
determines the power-down mode (see Table 16). In software mode, the RANGE pin is ignored.  
However, the RANGE pin must be tied high or low.  
Conversion Start Input. When the CONVST pin transitions from low to high, the analog input is  
sampled on all eight SAR ADCs. In software mode, the CONVST pin can be configured as an  
external oversampling clock. Providing a low jitter external clock helps improve the SNR  
performance for large oversampling ratios. See the External Oversampling Clock section for  
further details.  
CONVST  
10  
DI  
WR  
Parallel Write Control Input. In hardware mode, the WR pin has no function. Therefore, the WR  
pin can be tied high, tied low, or shorted to CONVST. In software mode, the WR pin is the active  
low write pin for writing registers using the parallel interface. See the Parallel Interface section  
for more information.  
Rev. 0 | Page 12 of 74  
 
Data Sheet  
AD7606C-16  
Pin No.  
Type1  
Mnemonic  
Description  
11  
DI  
RESET  
Reset Input, Active High. Full and partial reset options are available. The type of reset is  
determined by the length of the reset pulse. It is recommended that the device receives a full  
reset pulse after power-up. See the Reset Functionality section for further details.  
12  
13  
DI  
RD/SCLK  
CS  
Parallel Data Read Control Input when the Parallel Interface is Selected (RD).  
Serial Clock Input when the Serial Interface is Selected (SCLK). See the Digital Interface section for  
more details.  
Chip Select. The CS pin is the active low chip select input for ADC data reads or register data  
reads and writes, in both the serial and parallel interfaces. See the Digital Interface section for more  
details.  
DI  
14  
15  
DO  
DO  
BUSY  
Busy Output. The BUSY pin transitions to a logic high along with the CONVST rising edge. The  
BUSY output remains high until the conversion process for all channels is complete.  
First Data Output. The FRSTDATA output signal indicates when the first channel, V1, is being  
read back on the parallel interface (see Figure 3) or the serial interface (see Figure 6). See the  
Digital Interface section for more details.  
FRSTDATA  
16 to 18  
19  
DO/DI  
DO/DI  
DB0 to DB2  
Parallel Output/Input Data Bits. When using the parallel interface, the DB0 to DB2 pins act as  
three-state parallel digital input and output pins (see the Parallel Interface section). When CS and  
RD are low, the DB0 to DB2 pins are used to output DB0 to DB2 of the conversion result. When  
using the serial interface, tie the DB0 to DB2 pins to AGND.  
Parallel Output/Input Data Bit 3/Serial Interface Data Output Pin. When using the parallel  
interface, the DB3/DOUTE pin acts as a three-state parallel digital input/output pin. When CS and  
RD are low, the DB3/DOUTE pin is used to output DB3 of the conversion result. When using the  
serial interface, the DB3/DOUTE pin functions as DOUTE. See Table 23 for more details on each data  
interface and operation mode.  
Parallel Output/Input Data Bit 4/Serial Interface Data Output Pin. When using the parallel  
interface, the DB4/DOUTF pin acts as a three-state parallel digital input/output pin. When CS and  
RD are low, the DB4/DOUTF pin is used to output DB4 of the conversion result. When using the  
serial interface, the DB4/DOUTF pin functions as DOUTF. See Table 23 for more details on each data  
interface and operation mode.  
Parallel Output/Input Data Bit 5/Serial Interface Data Output Pin. When using the parallel  
interface, the DB5/DOUTG pin acts as a three-state parallel digital input/output pin. When CS and  
RD are low, the DB5/DOUTG pin is used to output DB5 of the conversion result. When using the  
serial interface, the DB5/DOUTG pin functions as DOUTG. See Table 23 for more details on each data  
interface and operation mode.  
DB3/DOUT  
DB4/DOUT  
DB5/DOUT  
DB6/DOUT  
E
20  
21  
22  
DO/DI  
DO/DI  
DO/DI  
F
G
H
Parallel Output/Input Data Bit 6/Serial Interface Data Output Pin. When using the parallel  
interface, the DB6/DOUTH pin acts as a three-state parallel digital input/output pin. When CS and  
RD are low, the DB6/DOUTH pin is used to output DB6 of the conversion result. When using the  
serial interface, the DB6/DOUTH pin functions as DOUTH. See Table 23 for more details on each data  
interface and operation mode.  
23  
24  
P
VDRIVE  
Logic Power Supply Input. The voltage (1.71 V to 5.25 V) supplied at the VDRIVE pin determines the  
operating voltage of the interface. The VDRIVE pin is nominally at the same supply as the supply of  
the host interface, that is, the data signal processor (DSP) and field programmable gate array (FPGA).  
Parallel Output/Input Data Bit 7/Serial Interface Data Output Pin. When using the parallel  
interface, the DB7/DOUTA pin acts as a three-state parallel digital input/output pin. When CS and  
RD are low, the DB7/DOUTA pin is used to output DB7 of the conversion result. When using the  
serial interface, the DB7/DOUTA pin functions as DOUTA. See Table 23 for more details on each data  
interface and operation mode.  
Parallel Output/Input Data Bit 8/Serial Interface Data Output Pin. When using the parallel  
interface, the DB8/DOUTB pin acts as a three-state parallel digital input and output pin. When CS  
and RD are low, the DB8/DOUTB pin is used to output DB8 of the conversion result. When using  
the serial interface, the DB8/DOUTB pin functions as DOUTB. See Table 23 for more details on each  
data interface and operation mode.  
Parallel Output/Input Data Bit 9/Serial Interface Data Output Pin. When using the parallel  
interface, the DB9/DOUTC pin acts as a three-state parallel digital input and output pin. When CS  
and RD are low, the DB9/DOUTC pin is used to output DB9 of the conversion result. When using  
DO/DI  
DB7/DOUT  
A
B
C
25  
27  
DO/DI  
DO/DI  
DB8/DOUT  
DB9/DOUT  
the serial interface, the DB9/DOUTC pin functions as DOUTC if in software mode and using the 4 DOUT  
line option or 8 DOUTx line option. See Table 23 for more details on each data interface and  
operation mode.  
x
Rev. 0 | Page 13 of 74  
AD7606C-16  
Data Sheet  
Pin No.  
Type1  
Mnemonic  
Description  
28  
DO/DI  
DB10/DOUT  
D
Parallel Output/Input Data Bit 10/Serial Interface Data Output Pin. When using the parallel  
interface, the DB10/DOUTD pin acts as a three-state parallel digital input/output pin. When CS and  
RD are low, the DB10/DOUTD pin is used to output DB10 of the conversion result. When using  
serial interface, the DB10/DOUTD pin functions as DOUTD if in software mode and using the 4 DOUT  
line option or 8 DOUTx line option. See Table 23 for more details on each data interface and  
operation mode.  
x
29  
DO/DI  
DB11/SDI  
Parallel Output/Input Data Bit 11/Serial Data Input. When using parallel interface, the DB11/SDI pin  
acts as a three-state parallel digital input and output pin. When CS and RD are low, the  
DB11/SDI pin is used to output DB11 of the conversion result. When using the serial interface in  
software mode, the DB11/SDI pin functions as SDI. See Table 23 for more details on each data  
interface and operation mode.  
30, 31  
32  
DO/DI  
DO/DI  
DO/DI  
DB12, DB13  
DB14  
Parallel Output/Input Data Bits. When using the parallel interface, the DB12 and DB13 pins act as  
three-state parallel digital input and output pins (see the Parallel Interface section). When CS and  
RD are low, the DB12 and DB13 pins are used to output DB12 and DB13 of the conversion result.  
When using the serial interface, tie the DB12 and DB13 pins to AGND.  
Parallel Output/Input Data Bits. When using the parallel interface, the DB14 pin acts as a three-  
state parallel digital input and output pin (see the Parallel Interface section). When CS and RD are  
low, the DB14 pin is used to output DB14 of the conversion result. When using the serial  
interface, tie the DB14 pin to AGND.  
Parallel Output/Input Data Bits. When using the parallel interface, the DB15 pin acts as a three-  
state parallel digital input and output pin (see the Parallel Interface section). When CS and RD are  
low, the DB15 pin is used to output DB15 of the conversion result. When using the serial  
interface, tie the DB15 pin to AGND.  
33  
DB15  
34  
DI  
P
REF SELECT  
REGCAP  
Internal/External Reference Selection Logic Input. If the REF SELECT pin is set to logic high, the  
internal reference is selected and enabled. If the REF SELECT pin is set to logic low, the internal  
reference is disabled and an external reference voltage must be applied to the REFIN/REFOUT pin.  
Decoupling Capacitor Pin for Voltage Output from 1.9 V Internal Regulator, Analog Low  
Dropout (ALDO) and Digital Low Dropout (DLDO). The REGCAP output pins must be decoupled  
separately to AGND using a 1 μF capacitor. The voltage on the REGCAP pins is in the range of  
1.875 V to 1.93 V.  
36, 39  
42  
REF  
REFIN/REFOUT Reference Input/Reference Output. The internal 2.5 V reference is available on the REFOUT pin  
for external use while the REF SELECT pin is set to logic high. Alternatively, by setting the REF  
SELECT pin to logic low, the internal reference is disabled and an external reference of 2.5 V must be  
applied to this input (REFIN). A 100 nF capacitor must be applied from the REFIN pin to ground,  
close to the REFGND pins, for both internal and external reference options. See the Reference  
section for more details.  
43, 46  
44, 45  
REF  
REF  
REFGND  
REFCAPA,  
REFCAPB  
Reference Ground Pins. The REFGND pins must be connected to AGND.  
Reference Buffer Output Force and Sense Pins. The REFCAPA and REFCAPB pins must be  
connected together and decoupled to AGND using a low effective series resistance (ESR), 10 μF  
ceramic capacitor. The voltage on the REFCAPA and REFCAPB pins is typically 4.4 V.  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
V1+  
V1−  
V2+  
V2−  
V3+  
V3−  
V4+  
V4−  
V5+  
V5−  
V6+  
V6−  
V7+  
V7−  
V8+  
V8−  
Channel 1 Positive Analog Input Pin.  
Channel 1 Negative Analog Input Pin.  
Channel 2 Positive Analog Input Pin.  
Channel 2 Negative Analog Input Pin.  
Channel 3 Positive Analog Input Pin.  
Channel 3 Negative Analog Input Pin.  
Channel 4 Positive Analog Input Pin.  
Channel 4 Negative Analog Input Pin.  
Channel 5 Positive Analog Input Pin.  
Channel 5 Negative Analog Input Pin.  
Channel 6 Positive Analog Input Pin.  
Channel 6 Negative Analog Input Pin.  
Channel 7 Positive Analog Input Pin.  
Channel 7 Negative Analog Input Pin.  
Channel 8 Positive Analog Input Pin.  
Channel 8 Negative Analog Input Pin.  
1 P is power supply, DI is digital input, DO is digital output, REF is reference input/output, AI is analog input, and GND is ground.  
Rev. 0 | Page 14 of 74  
 
Data Sheet  
AD7606C-16  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
0
–20  
AV  
= 5V, V  
= 3.3V  
CC  
DRIVE  
AV  
= 5V, V  
= 3.3V  
CC  
DRIVE  
INTERNAL REFERENCE  
±20V DIFFERENTIAL RANGE  
fSAMPLE = 1MSPS, fIN = 1kHz  
131072 POINT FFT  
INTERNAL REFERENCE  
±20V DIFFERENTIAL RANGE  
fSAMPLE = 1MSPS, fIN = 1kHz  
131072 POINT FFT  
–20  
–40  
–40  
SNR = 91.7dB, THD = –102.5dB  
SNR = 89dB, THD = –99.5dB  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0.1  
1
10  
100  
500  
0.1  
1
10  
100  
500  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 9. Fast Fourier Transform (FFT), 20 V Differential Range,  
Low Bandwidth Mode  
Figure 12. FFT, 20 V Differential Range, High Bandwidth Mode  
0
0
AV  
= 5V, V  
= 3.3V  
CC  
DRIVE  
AV  
= 5V, V  
= 3.3V  
CC  
DRIVE  
INTERNAL REFERENCE  
±10V SINGLE-ENDED RANGE  
fSAMPLE = 1MSPS, fIN = 1kHz  
131072 POINT FFT  
INTERNAL REFERENCE  
±10V SINGLE-ENDED RANGE  
fSAMPLE = 1MSPS, fIN = 1kHz  
131072 POINT FFT  
–20  
–40  
–20  
–40  
SNR = 91.2dB, THD = –105dB  
SNR = 86.6dB, THD = –99.6dB  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0.1  
1
10  
100  
500  
0.1  
1
10  
100  
500  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 10. FFT, 10 V Single-Ended Range, Low Bandwidth Mode  
Figure 13. FFT, 10 V Single-Ended Range, High Bandwidth Mode  
0
0
AV  
= 5V, V  
= 3.3V  
CC  
DRIVE  
AV  
= 5V, V  
= 3.3V  
CC  
DRIVE  
INTERNAL REFERENCE  
INTERNAL REFERENCE  
–20  
–40  
–20  
–40  
0V TO 10V SINGLE-ENDED RANGE  
fSAMPLE = 1MSPS, fIN = 1kHz  
131072 POINT FFT  
0V TO 10V SINGLE-ENDED RANGE  
fSAMPLE = 1MSPS, fIN = 1kHz  
131072 POINT FFT  
SNR = 88.7dB, THD = –96.5dB  
SNR = 81.7dB, THD = –96.5dB  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0.1  
1
10  
100  
500  
0.1  
1
10  
100  
500  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 11. FFT, 0 V to 10 V Single-Ended Range, Low Bandwidth Mode  
Figure 14. FFT, 0 V to 10 V Single-Ended Range, High Bandwidth Mode  
Rev. 0 | Page 15 of 74  
 
AD7606C-16  
Data Sheet  
100  
98  
96  
94  
92  
90  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
88  
86  
84  
82  
80  
78  
76  
NO OS  
OS 2  
OS 4  
OS 32  
OS 64  
OS 128  
OS 256  
NO OS  
OS 2  
OS 4  
OS 32  
OS 64  
OS 128  
OS 256  
OS 8  
OS 8  
OS 16  
f
OS 16  
f
= 1MSPS/OSR  
SAMPLE  
= 1MSPS/OSR  
SAMPLE  
INTERNAL REFERENCE  
= 25°C, ±20V DIFFERENTIAL RANGE  
LOW BW MODE, INTERNAL OS CLOCK  
INTERNAL REFERENCE  
= 25°C, ±20V DIFFERENTIAL RANGE  
HIGH BW MODE, INTERNAL OS CLOCK  
T
A
T
A
0.01  
0.1  
1
10  
30  
0.01  
0.1  
1
10  
50  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
Figure 15. SNR vs. Input Frequency for Different Oversampling Ratio (OSR)  
Values, 20 V Differential Range, Low Bandwidth Mode, Internal  
Oversampling Clock (OS = Oversampling)  
Figure 18. SNR vs. Input Frequency for Different OSR Values, 20 V  
Differential Range, High Bandwidth Mode, Internal Oversampling Clock  
100  
98  
96  
94  
92  
100  
98  
96  
94  
92  
90  
88  
86  
NO OS  
OS 2  
OS 4  
OS 32  
OS 64  
OS 128  
OS 256  
90  
88  
86  
84  
82  
80  
78  
76  
OS 8  
f
OS 16  
f
= 1MSPS/OSR  
SAMPLE  
84  
82  
80  
78  
76  
= 1MSPS/OSR  
INTERNAL REFERENCE  
= 25°C, ±10V SINGLE-ENDED RANGE  
SAMPLE  
INTERNAL REFERENCE  
= 25°C  
±10V SINGLE-ENDED RANGE  
LOW BW MODE  
T
A
T
HIGH BW MODE, INTERNAL OS CLOCK  
A
NO OS  
OS 2  
OS 4  
OS 8  
OS 16  
OS 32  
OS 64  
OS 128  
OS 256  
INTERNAL OS CLOCK  
0.01  
0.1  
1
10  
30  
0.01  
0.1  
1
10  
50  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
Figure 16. SNR vs. Input Frequency for Different OSR Values, 10 V Single-  
Ended Range, Low Bandwidth Mode, Internal Oversampling Clock  
Figure 19. SNR vs. Input Frequency for Different OSR Values, 10 V Single-  
Ended Range, High Bandwidth Mode, Internal Oversampling Clock  
100  
98  
96  
94  
92  
90  
88  
100  
NO OS  
OS 2  
OS 4  
OS 8  
OS 16  
OS 32  
OS 64  
OS 128  
OS 256  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
NO OS  
OS 2  
OS 4  
OS 32  
OS 64  
OS 128  
OS 256  
86  
84  
82  
80  
78  
76  
OS 8  
f
OS 16
f
= 1MSPS/OSR  
= 1MSPS/OSR  
SAMPLE  
SAMPLE  
INTERNAL REFERENCE  
= 25°C, 0V TO 10V SINGLE-ENDED RANGE  
INTERNAL REFERENCE  
= 25°C, 0V TO 10V SINGLE-ENDED RANGE  
LOW BW MODE, INTERNAL OS CLOCK  
0.1  
INPUT FREQUENCY (Hz)  
T
T
A
A
HIGH BW MODE, INTERNAL OS CLOCK  
0.01  
1
10  
30  
0.01 0.1  
1
10  
50  
INPUT FREQUENCY (kHz)  
Figure 17. SNR vs. Input Frequency for Different OSR Values, 0 V to 10 V  
Single-Ended Range, Low Bandwidth Mode, Internal Oversampling Clock  
Figure 20. SNR vs. Input Frequency for Different OSR Values, 0 V to 10 V  
Single-Ended Range, High Bandwidth Mode, Internal Oversampling Clock  
Rev. 0 | Page 16 of 74  
 
 
Data Sheet  
AD7606C-16  
100  
98  
96  
94  
92  
90  
88  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
AV = 5V, V  
= 3.3V  
AV  
f
= 5V, V  
= 3.3V  
CC  
DRIVE  
CC  
DRIVE  
86  
84  
82  
80  
NO OS  
OS 2  
OS 4  
OS 8  
OS 16  
OS 32  
OS 64  
OS 128  
OS 256  
f
= 1MSPS/OSR  
NO OS  
OS 2  
OS 4  
OS 32  
OS 64  
OS 128  
OS 256  
= 1MSPS/OSR  
SAMPLE  
SAMPLE  
INTERNAL REFERENCE  
±20V DIFFERENTIAL RANGE  
LOW BW MODE. T = 25°C  
A
EXTERNAL OS CLOCK  
INTERNAL REFERENCE  
±20V DIFFERENTIAL RANGE  
HIGH BW MODE. T = 25°C  
A
EXTERNAL OS CLOCK  
OS 8  
OS 16  
0.01  
0.1  
1
10  
30  
0.01  
0.1  
1
10  
50  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
Figure 21. SNR vs. Input Frequency for Different OSR Values, 20 V  
Differential Range, Low Bandwidth Mode, External Oversampling Clock  
Figure 24. SNR vs. Input Frequency for Different OSR Values, 20 V  
Differential Range, High Bandwidth Mode, External Oversampling Clock  
100  
98  
96  
94  
92  
90  
88  
100  
98  
96  
94  
92  
90  
88  
86  
AV = 5V, V  
= 3.3V  
CC  
SAMPLE  
DRIVE  
f
= 1MSPS/OSR  
INTERNAL REFERENCE  
= 25°C  
NO OS  
OS 2  
OS 4  
OS 8  
OS 16  
OS 32  
OS 64  
OS 128  
OS 256  
86  
84  
82  
80  
f
= 1MSPS/OSR  
NO OS  
OS 2  
OS 4  
OS 32  
OS 64  
OS 128  
OS 256  
SAMPLE  
T
A
84  
82  
80  
INTERNAL REFERENCE  
±10V SINGLE-ENDED RANGE  
HIGH BW MODE. T = 25°C  
A
EXTERNAL OS CLOCK  
±10V SINGLE-ENDED RANGE  
LOW BW MODE  
EXTERNAL OS CLOCK  
OS 8  
OS 16  
0.01  
0.1  
1
10  
30  
0.01  
0.1  
1
10  
50  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
Figure 22. SNR vs. Input Frequency for Different OSR Values, 10 V Single-  
Ended Range, Low Bandwidth Mode, External Oversampling Clock  
Figure 25. SNR vs. Input Frequency for Different OSR Values, 10 V Single-  
Ended Range, High Bandwidth Mode, External Oversampling Clock  
100  
100  
NO OS  
OS 2  
OS 4  
OS 8  
OS 16  
OS 32  
OS 64  
OS 128  
OS 256  
NO OS  
OS 2  
OS 4  
OS 8  
OS 16  
OS 32  
OS 64  
OS 128  
OS 256  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
f
= 1MSPS/OSR  
SAMPLE  
f
= 1MSPS/OSR  
SAMPLE  
INTERNAL REFERENCE  
= 25°C, 0V TO 10V SINGLE-ENDED RANGE  
LOW BW MODE, EXTERNAL OS CLOCK  
0.01 0.1  
INPUT FREQUENCY (kHz)  
INTERNAL REFERENCE  
= 25°C, 0V TO 10V SINGLE-ENDED RANGE  
HIGH BW MODE, EXTERNAL OS CLOCK  
T
A
T
A
1
10  
30  
0.01  
0.1  
1
10  
50  
INPUT FREQUENCY (kHz)  
Figure 23. SNR vs. Input Frequency for Different OSR Values, 0 V to 10 V  
Single-Ended Range, Low Bandwidth Mode, External Oversampling Clock  
Figure 26. SNR vs. Input Frequency for Different OSR Values, 0 V to 10 V  
Single-Ended Range, High Bandwidth Mode, External Oversampling Clock  
Rev. 0 | Page 17 of 74  
AD7606C-16  
Data Sheet  
–70  
–70  
–75  
±20V DIFFERENTIAL RANGE  
LOW BW MODE  
±20V DIFFERENTIAL RANGE  
HIGH BW MODE  
–75  
–80  
–80  
1kHz INPUT FREQUENCY  
10kHz INPUT FREQUENCY  
50kHz INPUT FREQUENCY  
100kHz INPUT FREQUENCY  
1kHz INPUT FREQUENCY  
10kHz INPUT FREQUENCY  
–85  
–85  
–90  
–90  
–95  
–95  
–100  
–105  
–110  
–115  
–120  
–100  
–105  
–110  
–115  
–120  
–25  
–20  
–15  
–10  
–5  
0
–25  
–20  
–15  
–10  
–5  
0
INPUT LEVEL (dBFS)  
INPUT LEVEL (dBFS)  
Figure 27. THD vs. Input Level, 20 V Differential Range, Low Bandwidth Mode  
Figure 30. THD vs. Input Level, 20 V Differential Range, High Bandwidth Mode  
–70  
–70  
±10V SINGLE-ENDED RANGE  
±10V SINGLE-ENDED RANGE  
LOW BW MODE  
HIGH BW MODE  
–75  
–80  
–75  
–80  
1kHz INPUT FREQUENCY  
1kHz INPUT FREQUENCY  
10kHz INPUT FREQUENCY  
10kHz INPUT FREQUENCY  
50kHz INPUT FREQUENCY  
100kHz INPUT FREQUENCY  
–85  
–85  
–90  
–90  
–95  
–95  
–100  
–105  
–110  
–115  
–120  
–100  
–105  
–110  
–115  
–120  
–25  
–20  
–15  
–10  
–5  
0
–25  
–20  
–15  
–10  
–5  
0
INPUT LEVEL (dBFS)  
INPUT LEVEL (dBFS)  
Figure 28. THD vs. Input Level, 10 V Single-Ended Range, Low Bandwidth Mode  
Figure 31. THD vs. Input Level, 10 V Single-Ended Range, High Bandwidth Mode  
–70  
–70  
0V TO 10V SINGLE-ENDED RANGE  
0V TO 10V SINGLE-ENDED RANGE  
LOW BW MODE  
HIGH BW MODE  
–75  
–80  
–75  
–80  
1kHz INPUT FREQUENCY  
1kHz INPUT FREQUENCY  
10kHz INPUT FREQUENCY  
10kHz INPUT FREQUENCY  
50kHz INPUT FREQUENCY  
100kHz INPUT FREQUENCY  
–85  
–85  
–90  
–90  
–95  
–95  
–100  
–105  
–110  
–115  
–120  
–100  
–105  
–110  
–115  
–120  
–25  
–20  
–15  
–10  
–5  
0
–25  
–20  
–15  
–10  
–5  
0
INPUT LEVEL (dBFS)  
INPUT LEVEL (dBFS)  
Figure 29. THD vs. Input Level, 0 V to 10 V Single-Ended Range,  
Low Bandwidth Mode  
Figure 32. THD vs. Input Level, 0 V to 10 V Single-Ended Range,  
High Bandwidth Mode  
Rev. 0 | Page 18 of 74  
Data Sheet  
AD7606C-16  
–75  
–75  
–80  
±20V DIFFERENTIAL RANGE  
HIGH BW MODE  
±20V DIFFERENTIAL RANGE  
0Ω  
LOW BW MODE  
fSAMPLE = 1MSPS  
50Ω  
1kΩ  
10kΩ  
50kΩ  
fSAMPLE = 1MSPS  
–80  
–85  
R
MATCHED ON Vx+ AND Vx–  
R
MATCHED ON Vx+ AND Vx–  
SOURCE  
SOURCE  
–85  
–90  
–90  
–95  
–95  
–100  
–105  
–110  
–100  
–105  
–110  
0Ω  
50Ω  
1kΩ  
10kΩ  
50kΩ  
0.01  
0.1  
1
10  
40  
0.01  
0.1  
1
10  
40  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
Figure 33. THD vs. Input Frequency for Various Source Impedances (RSOURCE),  
20 V Differential Range, Low Bandwidth Mode  
Figure 36. THD vs. Input Frequency for Various Source Impedances,  
20 V Differential Range, High Bandwidth Mode  
–75  
–75  
±10V SINGLE-ENDED RANGE  
±10V SINGLE-ENDED RANGE  
LOW BW MODE  
HIGH BW MODE  
fSAMPLE = 1MSPS  
SOURCE  
fSAMPLE = 1MSPS  
SOURCE  
–80  
–80  
–85  
R
MATCHED ON Vx+ AND Vx–  
R
MATCHED ON Vx+ AND Vx–  
–85  
–90  
–90  
–95  
–95  
–100  
–105  
–110  
–100  
–105  
–110  
0Ω  
0Ω  
50Ω  
1kΩ  
10kΩ  
50kΩ  
50Ω  
1kΩ  
10kΩ  
50kΩ  
0.01  
0.1  
1
10  
40  
0.01  
0.1  
1
10  
40  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
Figure 34. THD vs. Input Frequency for Various Source Impedances,  
10 V Single-Ended Range, Low Bandwidth Mode  
Figure 37. THD vs. Input Frequency for Various Source Impedances,  
10 V Single-Ended Range, High Bandwidth Mode  
–75  
–75  
0V TO 10V SINGLE-ENDED RANGE  
HIGH BW MODE  
0V TO 10V SINGLE-ENDED RANGE  
LOW BW MODE  
fSAMPLE = 1MSPS  
SOURCE  
fSAMPLE = 1MSPS  
SOURCE  
–80  
–85  
–80  
R
MATCHED ON Vx+ AND Vx–  
R
MATCHED ON Vx+ AND Vx–  
–85  
–90  
0Ω  
50Ω  
1kΩ  
10kΩ  
50kΩ  
–90  
–95  
–95  
–100  
–105  
–110  
–100  
–105  
–110  
0Ω  
50Ω  
1kΩ  
10kΩ  
50kΩ  
0.01  
0.1  
1
10  
40  
0.01  
0.1  
1
10  
40  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
Figure 35. THD vs. Input Frequency for Various Source Impedances,  
0 V to 10 V Single-Ended Range, Low Bandwidth Mode  
Figure 38. THD vs. Input Frequency for Various Source Impedances,  
0 V to 10 V Single-Ended Range, High Bandwidth Mode  
Rev. 0 | Page 19 of 74  
AD7606C-16  
Data Sheet  
1.0  
1.0  
0.9  
0.9 ±10V SINGLE-ENDED RANGE  
±10V SINGLE-ENDED RANGE  
HIGH BW MODE  
0.8  
0.7  
0.6  
0.5  
0.4  
0.8  
0.7  
0.6  
0.5  
LOW BW MODE  
AV = 5V, V  
= 3.3V  
DRIVE  
AV  
= 5V, V  
= 3.3V  
CC  
CC  
DRIVE  
INTERNAL REFERENCE  
= 1 MSPS, T = 25°C  
INTERNAL REFERENCE  
= 1MSPS, T = 25°C  
f
f
SAMPLE  
A
SAMPLE  
A
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0.0  
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–1.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–1.0  
0
16384  
32768  
CODE  
49151  
65535  
65535  
125  
0
16384  
32768  
CODE  
49151  
65535  
Figure 39. Typical DNL, Low Bandwidth Mode  
Figure 42. Typical DNL, High Bandwidth Mode  
2.0  
1.5  
2.0  
1.5  
±10V SINGLE-ENDED RANGE  
LOW BW MODE  
AV  
= 5V, V  
= 3.3V  
CC  
DRIVE  
INTERNAL REFERENCE  
1.0  
1.0  
f
= 1MSPS, T = 25°C  
A
SAMPLE  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
±10V SINGLE-ENDED RANGE  
HIGH BW MODE  
AV = 5V, V  
= 3.3V  
CC  
DRIVE  
INTERNAL REFERENCE  
f
= 1MSPS, T = 25°C  
A
SAMPLE  
0
16384  
32768  
CODE  
49151  
0
16384  
32768  
CODE  
49151  
65535  
Figure 40. Typical INL, Low Bandwidth Mode  
Figure 43. Typical INL, High Bandwidth Mode  
94  
92  
90  
88  
86  
84  
82  
80  
94  
92  
90  
88  
86  
84  
82  
80  
AV = 5V, V  
= 3.3V  
CC  
SAMPLE  
DRIVE  
f
= 1MSPS  
HIGH BW MODE  
AV  
= 5V, V  
= 3.3V  
CC  
DRIVE  
±20V DIFFERENTIAL RANGE  
±10V SINGLE-ENDED RANGE  
0V TO 10V SINGLE-ENDED RANGE  
f
= 1MSPS  
LOW BW MODE  
SAMPLE  
±20V DIFFERENTIAL RANGE  
±10V SINGLE-ENDED RANGE  
0V TO 10V SINGLE-ENDED RANGE  
–40  
–20  
0
20  
45  
65  
85  
105  
–40  
–20  
0
20  
45  
65  
85  
105  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 41. SNR vs. Temperature, Low Bandwidth Mode  
Figure 44. SNR vs. Temperature, High Bandwidth Mode  
Rev. 0 | Page 20 of 74  
Data Sheet  
AD7606C-16  
20  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
f
= 1MSPS  
SAMPLE  
PFS  
NFS  
LOW BW MODE  
±20V DIFFERENTIAL RANGE  
16  
12  
8
NFS  
4
0
–4  
–8  
–12  
–16  
–20  
PFS  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
0
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
PFS AND NFS DRIFT (ppm/°C)  
TEMPERATURE (°C)  
Figure 48. PFS and NFS Drift Histogram, 10 V Single-Ended Range  
Figure 45. PFS and NFS Error vs. Temperature, 20 V Differential Range  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
20  
f
= 1MSPS  
SAMPLE  
LOW BW MODE  
±10V SINGLE-ENDED RANGE  
16  
12  
8
NFS  
PFS  
4
0
–4  
–8  
–12  
–16  
–20  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
0
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
BZC DRIFT (ppm/°C)  
TEMPERATURE (°C)  
Figure 49. Bipolar Zero Code (BZC) Drift Histogram, 10 V Single-Ended Range  
Figure 46. PFS and NFS Error vs. Temperature, 10 V Single-Ended Range  
50  
20  
FS  
f
= 1MSPS  
SAMPLE  
45  
40  
35  
30  
25  
20  
15  
10  
5
LOW BW MODE  
0V TO 10V SINGLE-ENDED RANGE  
ZS  
16  
12  
8
4
0
–4  
–8  
–12  
–16  
–20  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
0
–1  
0
1
2
3
4
5
6
7
–40  
–20  
0
20  
40  
60  
80  
100  
120  
FS AND ZS DRIFT (ppm/°C)  
TEMPERATURE (°C)  
Figure 50. FS and Zero-Scale (ZS) Drift Histogram, 0 V to 10 V Single-Ended Range  
Figure 47. FS Error vs. Temperature, 0 V to 10 V Single-Ended Range  
Rev. 0 | Page 21 of 74  
AD7606C-16  
Data Sheet  
10  
3500  
3000  
2500  
2000  
1500  
100  
f
= 1MSPS  
SAMPLE  
Vx+ AND Vx– SHORTED TO AGND  
= 25°C  
4096 SAMPLES  
AVERAGE = 2.019  
PEAK-TO-PEAK = 3 LSBs  
LOW BW MODE  
±20V DIFFERENTIAL RANGE  
T
8
6
A
4
2
0
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
–2  
–4  
–6  
–8  
–10  
500  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
0
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
ADC CODE  
TEMPERATURE (°C)  
Figure 54. Histogram of Codes, 20 V Differential Range  
Figure 51. Bipolar Zero Code Error vs. Temperature, 20 V Differential Range  
3000  
10  
Vx+ AND Vx– SHORTED TO AGND  
f
= 1MSPS  
SAMPLE  
T
= 25°C  
A
LOW BW MODE  
±10V SINGLE-ENDED RANGE  
4096 SAMPLES  
8
6
AVERAGE = –1.4463  
PEAK-TO-PEAK = 4 LSBs  
2500  
2000  
1500  
100  
500  
0
4
2
0
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
–2  
–4  
–6  
–8  
–10  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
ADC CODE  
TEMPERATURE (°C)  
Figure 55. Histogram of Codes, 10 V Single-Ended Range  
Figure 52. Bipolar Zero Code Error vs. Temperature, 10 V Single-Ended Range  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
10  
V
= 1mV  
= 25°C  
IN  
A
f
= 1MSPS  
SAMPLE  
T
LOW BW MODE  
0V TO 10V SINGLE-ENDED RANGE  
4096 SAMPLES  
PEAK-TO-PEAK = 7 LSBs  
8
6
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
4
2
0
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
–2  
–4  
–6  
–8  
–10  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
ADC CODE  
TEMPERATURE (°C)  
Figure 56. Histogram of Codes, 0 V to 10 V Single-Ended Range  
Figure 53. ZS Error vs. Temperature, 0 V to 10 V Single-Ended Range  
Rev. 0 | Page 22 of 74  
Data Sheet  
AD7606C-16  
50  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
AV  
= 5V, V  
= 3.3V  
CC  
DRIVE  
NORMAL MODE  
AUTOSTANDBY MODE  
INTERNAL REFERENCE  
LOW BW MODE  
45  
40  
35  
30  
25  
20  
15  
10  
5
AV  
= 5V, V  
= 3.3V  
CC  
DRIVE  
T
T
T
= –40°C  
= +25°C  
= +125°C  
INTERNAL REFERENCE  
LOW BW MODE  
A
A
A
T
= 25°C  
A
0
0
0
200  
400  
600  
800  
1000  
0
100 200 300 400 500 600 700 800 900 1000  
THROUGHPUT RATE (kSPS)  
THROUGHPUT RATE (kSPS)  
Figure 57. AVCC Supply Current vs. Throughput Rate for Various Temperatures  
Figure 60. AVCC Supply Current vs. Throughput Rate, Normal Mode and  
Autostandby Mode  
20  
2.505  
AV = 5V, V  
fSAMPLE = 1MSPS  
= 3.3V  
AV  
= 5V, V  
= 3.3V  
CC  
DRIVE  
±20V  
±12.5V  
±10V  
±5V  
CC  
DRIVE  
fSAMPLE = 1MSPS  
2.504  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.496  
2.495  
15  
10  
T
= 25°C  
A
5
Vx–  
0
–5  
Vx+  
–10  
–15  
–20  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
INPUT VOLTAGE, [Vx+] – [Vx–] (V)  
TEMPERATURE (°C)  
Figure 58. Analog Input Current vs. Input Voltage for Various Differential Ranges  
Figure 61. Reference Drift  
10  
9
20  
AV  
= 5V, V  
= 3.3V  
AV  
= 5V, V  
= 3.3V  
±12.5V  
±10V  
±6.25V  
±5V  
CC  
DRIVE  
0V TO 12.5V  
0V TO 10V  
0V TO 5V  
CC  
DRIVE  
fSAMPLE = 1MSPS  
fSAMPLE = 1MSPS  
T
A
Vx– TIED TO AGND  
15  
10  
T
= 25°C  
= 25°C  
A
8
Vx– TIED TO AGND  
7
±2.5V  
6
5
5
Vx–  
Vx+  
3
0
2
–5  
Vx+  
1
0
–10  
–15  
–20  
–1  
–2  
–3  
Vx–  
–12.5 –10.0 –7.5 –5.0 –2.5  
0
2.5  
5.0  
7.5 10.0 12.5  
0
2
4
6
8
10  
12  
INPUT VOLTAGE, [Vx+] – [Vx–] (V)  
INPUT VOLTAGE, [Vx+] – [Vx–] (V)  
Figure 59. Analog Input Current vs. Input Voltage for Various Bipolar Single-  
Ended Ranges  
Figure 62. Analog Input Current vs. Input Voltage for Various Unipolar  
Single-Ended Ranges  
Rev. 0 | Page 23 of 74  
 
AD7606C-16  
Data Sheet  
1250  
1000  
750  
32768  
26214  
19660  
13107  
6553  
±20V DIFFERENTIAL RANGE  
1kHz SQUARE WAVE  
±20V DIFFERENTIAL RANGE  
1kHz SQUARE WAVE  
500  
250  
0
0
LOW BW RISING  
HIGH BW RISING  
LOW BW FALLING  
HIGH BW FALLING  
–6553  
–13107  
–19660  
–26214  
–32768  
–250  
–500  
–750  
–1000  
–1250  
LOW BW RISING  
HIGH BW RISING  
LOW BW FALLING  
HIGH BW FALLING  
0
10  
20  
30  
40  
50  
60  
70  
70  
70  
0
10  
20  
30  
40  
50  
60  
70  
TIME (µs)  
TIME (µs)  
Figure 63. Step Response, 20 V Differential Range  
Figure 66. Step Response, 20 V Differential Range, Fine Settling  
32768  
26214  
19660  
13107  
6553  
1250  
1000  
±10V SINGLE-ENDED RANGE  
1kHz SQUARE WAVE  
±10V SINGLE-ENDED RANGE  
1kHz SQUARE WAVE  
750  
500  
250  
0
0
–6553  
–13107  
–19660  
–26214  
–32768  
–250  
LOW BW RISING  
–500  
HIGH BW RISING  
LOW BW FALLING  
HIGH BW FALLING  
LOW BW RISING  
HIGH BW RISING  
LOW BW FALLING  
HIGH BW FALLING  
–750  
–1000  
–1250  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
70  
TIME (µs)  
TIME (µs)  
Figure 64 Step Response, 10 V Single-Ended Range  
Figure 67. Step Response, 10 V Single-Ended Range, Fine Settling  
1250  
65536  
58982  
52428  
45875  
39321  
32768  
26214  
19660  
13107  
6553  
1000  
0V TO 10V SINGLE-ENDED RANGE  
1kHz SQUARE WAVE  
0V TO 10V SINGLE-ENDED RANGE  
1kHz SQUARE WAVE  
750  
500  
250  
0
–250  
–500  
LOW BW RISING  
HIGH BW RISING  
LOW BW FALLING  
HIGH BW FALLING  
LOW BW RISING  
HIGH BW RISING  
LOW BW FALLING  
HIGH BW FALLING  
–750  
–1000  
–1250  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
TIME (µs)  
TIME (µs)  
Figure 68. Step Response, 0 V to 10 V Single-Ended Range, Fine Settling  
Figure 65. Step Response, 0 V to 10 V Single-Ended Range  
Rev. 0 | Page 24 of 74  
 
 
Data Sheet  
AD7606C-16  
–70  
–70  
–80  
INTERNAL REFERENCE  
LOW BW MODE  
INTERFERER IN ALL UNSELECTED CHANNELS  
INTERNAL REFERENCE  
HIGH BW MODE  
INTERFERER IN ALL UNSELECTED CHANNELS  
–80  
–90  
±20V DIFFERENTIAL RANGE  
±10V SINGLE-ENDED RANGE  
0V TO 10V SINGLE-ENDED RANGE  
±20V DIFFERENTIAL RANGE  
±10V SINGLE-ENDED RANGE  
0V TO 10V SINGLE-ENDED RANGE  
–90  
–100  
–110  
–120  
–130  
–140  
–100  
–110  
–120  
–130  
–140  
0.01  
0.1  
1
10  
100  
300  
0.01  
0.1  
1
10  
100  
300  
NOISE FREQUENCY (kHz)  
NOISE FREQUENCY (kHz)  
Figure 69. Channel to Channel Isolation vs. Noise Frequency,  
Low Bandwidth Mode  
Figure 72. Channel to Channel Isolation vs. Noise Frequency,  
High Bandwidth Mode  
–50  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
±20V DIFFERENTIAL RANGE  
±10V SINGLE-ENDED RANGE  
0V TO 10V SINGLE-ENDED RANGE  
±20V DIFFERENTIAL RANGE  
±10V SINGLE-ENDED RANGE  
0V TO 10V SINGLE-ENDED RANGE  
RECOMMENDED DECOUPLING USED  
fSAMPLE = 1MSPS  
HIGH BW MODE  
RECOMMENDED DECOUPLING USED  
fSAMPLE = 1MSPS  
LOW BW MODE  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 70. AC Power Supply Rejection Ratio (PSRR) vs. Frequency,  
Low Bandwidth Mode  
Figure 73. AC PSRR vs. Frequency, High Bandwidth Mode  
1.176  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
1.175  
1.174  
1.173  
1.172  
1.171  
1.170  
1.169  
1.168  
1.167  
1.166  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
Figure 71. Input Impedance vs. Temperature  
Rev. 0 | Page 25 of 74  
AD7606C-16  
Data Sheet  
TERMINOLOGY  
Integral Nonlinearity (INL)  
Total Unadjusted Error (TUE)  
INL is the maximum deviation from a straight line passing  
through the endpoints of the ADC transfer function. The  
endpoints of the transfer function are zero scale at ½ LSB below  
the first code transition and full scale at ½ LSB above the last code  
transition.  
TUE is the maximum deviation of the output code from the  
ideal. TUE includes INL errors, bipolar zero code and positive  
and negative full-scale errors, and reference errors.  
Signal-to-Noise-and-Distortion (SINAD) Ratio  
SINAD ratio is the measured ratio of signal-to-noise-and-  
distortion at the output of the ADC. The signal is the rms  
amplitude of the fundamental. Noise is the sum of all  
nonfundamental signals up to half of the sampling frequency  
(fS/2, excluding dc).  
Differential Nonlinearity (DNL)  
DNL is the difference between the measured and the ideal  
1 LSB change between any two adjacent codes in the ADC.  
Bipolar Zero Code Error  
Bipolar zero code error is the deviation of the midscale transition  
(all 1s to all 0s) from the ideal, which is 0 V − ½ LSB.  
The ratio depends on the number of quantization levels in  
the digitization process: the more levels, the smaller the  
quantization noise.  
Bipolar Zero Code Error Matching  
Bipolar zero code error matching is the absolute difference in  
bipolar zero code error between any two input channels.  
The theoretical SINAD for an ideal N-bit converter with a sine  
wave input is given by  
Open Circuit Code Error  
SINAD = (6.02N + 1.76) dB  
Open circuit code error is the ADC output code when there is  
an open circuit on the analog input and a pull-down resistor  
(RPD) connected between the analog input pair of pins. See  
Figure 95 for more details.  
Thus, for a 16-bit converter, the SINAD is 98 dB.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the harmonics to the  
fundamental. For the AD7606C-16, it is defined as  
Positive Full-Scale (PFS) Error  
THD (dB) =  
In bipolar ranges, PFS error is the deviation of the actual last code  
transition from the ideal last code transition (for example, 10 V −  
1½ LSB (9.99954), 5 V − 1½ LSB (4.99977), or 2.5 V − 1½ LSB  
(2.49988)) after the bipolar zero code error is adjusted out. The  
PFS error includes the contribution from the reference buffer.  
V 2 + V 2 + V42 + V 2 + V 2 + V 2 + V 2 + V 2  
2
3
5
6
7
8
9
20log  
where:  
V
1
V2 to V9 are the rms amplitudes of the second through ninth  
harmonics.  
V1 is the rms amplitude of the fundamental.  
Positive Full-Scale (PFS) Error Matching  
PFS error matching is the absolute difference in positive full-scale  
error between any two input channels.  
Peak Harmonic or Spurious Noise  
Negative Full-Scale (NFS) Error  
Peak harmonic or spurious noise is the ratio of the rms value of  
the next largest component in the ADC output spectrum (up to  
fS/2, excluding dc) to the rms value of the fundamental. Normally,  
the value of this specification is determined by the largest  
harmonic in the spectrum, but for ADCs where the harmonics are  
buried in the noise floor, the value is determined by a noise  
peak.  
In bipolar ranges, NFS error is the deviation of the first code  
transition from the ideal first code transition (for example, −10 V +  
½ LSB (−9.99984), −5 V + ½ LSB (−4.99992), or −2.5 V + ½ LSB  
(−2.49996)) after the bipolar zero code error is adjusted out.  
The NFS error includes the contribution from the reference  
buffer.  
Negative Full-Scale (NFS) Error Matching  
NFS error matching is the absolute difference in negative full-scale  
error between any two input channels.  
Power Supply Rejection Ratio (PSRR)  
Variations in power supply affect the full-scale transition but  
not the linearity of the converter. The power supply rejection (PSR)  
is the maximum change in full-scale transition point due to a  
change in power supply voltage from the nominal value. The  
PSRR is defined as the ratio of the 100 mV p-p sine wave  
applied to the AVCC supplies of the ADC frequency, fS, to the  
power of the ADC output at that frequency, fS.  
Full-Scale (FS) Error  
In unipolar ranges, FS error is the deviation of the actual last code  
transition from the ideal last code transition (for example, 10 V −  
1½ LSB (9.99816), or 5 V − 1½ LSB (4.999816)) after the zero  
scale error is adjusted out. The FS error includes the  
contribution from the reference buffer  
PSRR (dB) = 20 log (0.1/PfS)  
Zero Scale (ZS) Error  
where:  
In unipolar ranges, ZS error is the deviation of the first code  
transition from the ideal first code transition, which is  
0 V − ½ LSB.  
PfS is equal to the power at frequency, fS, coupled onto the AVCC  
supply.  
Rev. 0 | Page 26 of 74  
 
Data Sheet  
AD7606C-16  
Channel to Channel Isolation  
Box Method  
The box method is represented by the following equation:  
Channel to channel isolation is a measure of the level of  
crosstalk between all input channels. It is measured by applying  
a full-scale sine wave signal, up to 200 kHz, to all unselected  
input channels and then determining the degree to which the  
signal attenuates in the selected channel with a 1 kHz sine wave  
signal applied (see Figure 58).  
TCVOUT  
=
max{VOUT (T ,T2 ,T3 )}min{VOUT (T ,T2 ,T3)}  
1
1
×106  
V
OUT (T2 ) × (T3 T )  
1
Phase Delay  
where:  
TCVOUT is expressed in ppm/°C.  
VOUT(TX) is the output voltage at temperature TX.  
T1 = −40°C.  
T2 = +25°C.  
T3 = +125°C.  
Phase delay is a measure of the absolute time delay between  
when an input is sampled by the converter and when the result  
associated with that sample is available to be read back from the  
ADC, including delay induced by the analog front end of the  
device.  
Phase Delay Drift  
Phase delay drift is the change in phase delay per unit temperature  
across the entire operating temperature of the device.  
This box method ensures that TCVOUT accurately portrays the  
maximum difference between any of the three temperatures at  
which the output voltage of the device is measured.  
Phase Delay Matching  
Phase delay matching is the maximum phase delay seen between  
any simultaneously sampled pair.  
Rev. 0 | Page 27 of 74  
AD7606C-16  
Data Sheet  
THEORY OF OPERATION  
Figure 75 shows the input clamp current vs. the source voltage  
characteristic of the clamp circuit. For input voltages of up to  
21 V, no current flows in the clamp circuit. For input voltages  
that are above 21 V, the AD7606C-16 clamp circuitry turns on.  
15  
ANALOG FRONT-END  
The AD7606C-16 is a 16-bit, simultaneous sampling, analog-  
to-digital DAS with eight channels. Each channel contains  
analog input clamp protection, a PGA, an LPF, and a 16-bit  
SAR ADC.  
T
T
T
= –40°C  
= +25°C  
= +125°C  
A
A
A
Analog Input Ranges  
10  
5
The AD7606C-16 can handle true bipolar differential, bipolar  
single-ended, and unipolar single-ended input voltages. In  
software mode, it is possible to configure an individual analog  
input range per channel, from Address 0x03 through  
Address 0x06. The logic level on the RANGE pin is ignored in  
software mode.  
0
–5  
–10  
–15  
In hardware mode, the logic level on the RANGE pin determines  
either 10 V or 5 V single-ended as the analog input range of  
all analog input channels, as shown in Table 10.  
–30  
–20  
–10  
0
10  
20  
30  
A logic change on the RANGE pin has an immediate effect on  
the analog input range. However, there is typically a settling  
time of approximately 80 µs in addition to the normal acquisition  
time requirement. Changing the RANGE pin during a conversion  
is not recommended for fast throughput rate applications.  
SOURCE VOLTAGE (V)  
Figure 75. Input Protection Clamp Profile  
It is recommended to place a series resistor on the analog input  
channels to limit the current to 10 mA for input voltages  
greater than 21 V. In an application where there is a series  
resistance (R) on an analog input channel, Vx+, it is recommended  
to match the resistance (R) with the resistance on Vx− to  
eliminate any offset introduced into the system, as shown in  
Figure 76. However, in software mode, there is a per channel  
system offset calibration that removes the offset of the full  
system (see the System Offset Calibration section).  
Table 10. Analog Input Range Selection  
Range (V)  
Hardware Mode1  
Software Mode2  
10 Single-Ended RANGE pin high  
Address 0x03 through  
Address 0x06  
5 Single-Ended  
RANGE pin low  
Address 0x03 through  
Address 0x06  
Any Other Range Not applicable  
Address 0x03 through  
Address 0x06  
During normal operation, it is not recommended to leave the  
AD7606C-16 in a condition where the analog input is greater  
than the input range for extended periods of time because this  
can degrade the bipolar zero code error performance. In shutdown  
or standby mode, there is no such concern.  
1 The same analog input range, 10 V or 5 V, applies to all eight channels.  
2 The analog input range is selected on a per channel basis using the memory  
map.  
Analog Input Impedance  
AD7606C-16  
The analog input impedance of the AD7606C-16 is 1 MΩ  
minimum. This is a fixed input impedance that does not vary  
with the AD7606C-16 sampling frequency. This high analog  
input impedance eliminates the need for a driver amplifier in  
front of the AD7606C-16, allowing direct connection to the  
source or sensor. Therefore, bipolar supplies can be removed  
from the signal chain.  
1MΩ  
R
R
Vx+  
Vx–  
CLAMP  
C
1MΩ  
CLAMP  
Figure 76. Input Resistance Matching on the Analog Input of the AD7606C-16 for  
Single-Ended Ranges (Vx− Tied to Ground)  
Analog Input Clamp Protection  
Figure 74 shows the analog input circuitry of the AD7606C-16.  
Each analog input of the AD7606C-16 contains clamp protection  
circuitry. Despite single, 5 V supply operation, the analog input  
clamp protection allows an input overvoltage of up to 21 V.  
1MΩ  
Vx+  
Vx–  
CLAMP  
CLAMP  
16-BIT  
SAR ADC  
1MΩ  
LPF  
Figure 74. Analog Input Circuitry for Each Channel  
Rev. 0 | Page 28 of 74  
 
 
 
 
 
 
Data Sheet  
AD7606C-16  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
PGA  
A PGA is provided at each input channel. The gain is configured  
depending on the analog input range selected (see Table 10) to  
scale the analog input signal, either bipolar differential or  
bipolar or unipolar single-ended, to the ADC fully differential  
input range.  
±12.5V SINGLE-ENDED  
±10V SINGLE-ENDED  
±6.25V SINGLE-ENDED  
±5V SINGLE-ENDED  
±2.5V SINGLE-ENDED  
0V TO 12.5V SINGLE-ENDED  
0V TO 10V SINGLE-ENDED  
0V TO 5V SINGLE-ENDED  
±20V DIFFERENTIAL  
Input impedance on each input of the PGA is accurately  
trimmed to keep overall gain error. This trimmed value is then  
used when the gain calibration is enabled to compensate for the  
gain error introduced by an external series resistor. See the  
System Gain Calibration section for more information on the  
PGA feature.  
±12.5V DIFFERENTIAL  
±10V DIFFERENTIAL  
±5V DIFFERENTIAL  
fSAMPLE = 1MSPS  
A
HIGH BW MODE  
T
= 25°C  
0.1  
1
10  
FREQUENCY (kHz)  
100 300  
Analog Input Antialiasing Filter  
Figure 79. Analog Antialiasing Filter Frequency Response, High Bandwidth Mode  
An analog antialiasing filter is provided on the AD7606C-16.  
Figure 77 and Figure 78 show the frequency response and phase  
response, respectively, of the analog antialiasing filter. The  
−3 dB frequency is typically 25 kHz.  
3.0  
±2.5V SINGLE-ENDED  
±5V SINGLE-ENDED  
±6.25V SINGLE-ENDED  
±10V SINGLE-ENDED  
±12.5V SINGLE-ENDED  
0V TO 5V SINGLE-ENDED  
0V TO 10V SINGLE-ENDED  
0V TO 12.5V SINGLE-ENDED  
±5V DIFFERENTIAL  
±10V DIFFERENTIAL  
±12.5V DIFFERENTIAL  
±20V DIFFERENTIAL  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
fSAMPLE = 1MSPS  
A
T
= 25°C  
LOW BW MODE  
–1  
–2  
–3  
–4  
±20V DIFFERENTIAL  
±12.5V DIFFERENTIAL  
±10V DIFFERENTIAL  
±5V DIFFERENTIAL  
±12.5V SINGLE-ENDED  
±10V SINGLE-ENDED  
±6.25V SINGLE-ENDED  
±5V SINGLE-ENDED  
±2.5V SINGLE-ENDED  
0V TO 12.5V SINGLE-ENDED  
0V TO 10V SINGLE-ENDED  
0V TO 5V SINGLE-ENDED  
AV  
= 5V, V  
= 3.3V  
CC  
DRIVE  
f
= 1MSPS  
SAMPLE  
T
= 25°C  
A
0.1  
1
10  
FREQUENCY (kHz)  
100  
300  
Figure 80. Analog Antialiasing Filter Phase Response, High Bandwidth Mode  
0.1  
1
10  
FREQUENCY (kHz)  
100  
300  
SAR ADC  
The AD7606C-16 allows the ADC to accurately acquire an  
input signal of full-scale amplitude to 16-bit resolution. All  
eight SAR ADCs sample their respective inputs simultaneously  
on the rising edge of the CONVST signal.  
Figure 77. Analog Antialiasing Filter Frequency Response, Low Bandwidth Mode  
10  
AV  
= 5V, V  
= 3.3V  
CC  
DRIVE  
fSAMPLE = 1MSPS  
A
9
8
6
5
4
3
1
0
T
= 25°C  
The BUSY signal indicates when conversions are in progress.  
Therefore, when the rising edge of the CONVST signal is applied,  
the BUSY pin goes logic high and transitions low at the end of  
the entire conversion process. The end of the conversion process  
across all eight channels is indicated by the falling edge of the  
BUSY signal. When the BUSY signal edge falls, the acquisition  
time for the next set of conversions begins. The rising edge of the  
CONVST signal has no effect while the BUSY signal is high.  
±2.5V SINGLE-ENDED  
±5V SINGLE-ENDED  
±6.25V SINGLE-ENDED  
±10V SINGLE-ENDED  
±12.5V SINGLE-ENDED  
0V TO 5V SINGLE-ENDED  
0V TO 10V SINGLE-ENDED  
0V TO 12.5V SINGLE-ENDED  
±5V DIFFERENTIAL  
±10V DIFFERENTIAL  
±12.5V DIFFERENTIAL  
±20V DIFFERENTIAL  
New data can be read from the output register via the parallel or  
serial interface after the BUSY output goes low. Alternatively, data  
from the previous conversion can be read while the BUSY pin is  
high, as explained in the Reading During Conversion section.  
0.1  
1
10  
FREQUENCY (kHz)  
100  
300  
Figure 78. Analog Antialiasing Filter Phase Response, Low Bandwidth Mode  
The AD7606C-16 contains an on-chip oscillator that performs  
the conversions. The conversion time for all ADC channels is  
In addition, the AD7606C-16 allows the ADC to enable the high  
bandwidth mode, on a per channel basis, that moves the −3 dB  
frequency up to 220 kHz, as shown in Figure 79 and Figure 80.  
This mode is dedicated for fast analog input settling applications,  
as shown in Figure 63 to Figure 68.  
t
CONV (see Table 3). In software mode, there is an option to  
apply an external clock through the CONVST pin. Providing a  
low jitter external clock improves SNR performance for large  
Rev. 0 | Page 29 of 74  
 
 
 
 
 
AD7606C-16  
Data Sheet  
(Vx+ – Vx–)  
PFS (V)  
oversampling ratios. See the Digital Filter section and Figure 15  
to Figure 18 for further information.  
CODE =  
× 32,768  
011...111  
011...110  
Connect all unused analog input channels to AGND. The  
results for any unused channels are still included in the data  
read because all channels are always converted.  
000...001  
000...000  
111...111  
PFS – (NFS)  
LSB =  
N
2
ADC Transfer Function  
100...010  
100...001  
100...000  
The output coding of the AD7606C-16 is twos complement for  
the bipolar analog input ranges, either single-ended or differential.  
In unipolar ranges, the output coding is straight binary.  
NFS + 1/2LSB 0V – 1/2LSB PFS – 3/2LSB  
ANALOG INPUT  
The designed code transitions occur midway between  
successive integer LSB values, that is, 1/2 LSB and 3/2 LSB. The  
LSB size is FSR/262,144 for the AD7606C-16. Figure 81 shows  
the ideal transfer characteristics for the AD7606C-16. The LSB  
size is dependent on the analog input range selected, as shown  
in Table 11 and Table 12.  
Figure 81. AD7606C-16 Ideal Transfer Characteristics, Bipolar Analog Input  
Ranges (Twos Complement Output Coding)  
(Vx+ – Vx–)  
CODE =  
× 65,536  
FS (V)  
111...111  
111...110  
100...001  
100...000  
011...111  
FS – ZS  
N
2
LSB =  
000...010  
000...001  
000...000  
ZS + 1/2LSB FS/2 – 1/2LSB  
FS – 3/2LSB  
ANALOG INPUT  
Figure 82. AD7606C-16 Ideal Transfer Characteristics, Unipolar Analog Input  
Ranges (Straight Binary Output Coding)  
Table 11. Bipolar Input Voltage Ranges  
Range  
PFS (V)  
Midscale (V)  
NFS (V)  
LSB (μV)  
Differential, Bipolar  
20 V  
12.5 V  
10 V  
5 V  
+20  
+12.5  
+10  
+5  
0
0
0
0
−20  
−12.5  
−10  
−5  
610.32  
381.44  
305.2  
152.4  
Single-Ended, Bipolar  
12.5 V  
10 V  
6.25 V  
5 V  
+12.5  
+10  
+6.25  
+5  
0
0
0
0
0
−12.5  
−10  
−6.25  
−5  
381.44  
305.2  
190.8  
152.4  
76  
2.5 V  
+2.5  
−2.5  
Table 12. Unipolar Input Voltage Ranges  
Range  
FS (V)  
Midscale (V)  
ZS (V)  
LSB (μV)  
Single-Ended, Unipolar  
0 V to 12.5 V  
0 V to 10 V  
12.5  
10  
5
6.25  
5
2.5  
0
0
0
190.4  
152.4  
76  
0 V to 5 V  
Rev. 0 | Page 30 of 74  
 
 
 
Data Sheet  
AD7606C-16  
AD7606C-16  
REF SELECT  
AD7606C-16  
REF SELECT  
AD7606C-16  
REF SELECT  
REFERENCE  
The AD7606C-16 contains an on-chip, 2.5 V, band gap reference.  
The REFIN/REFOUT pin allows either of the following:  
REFIN/REFOUT  
REFIN/REFOUT  
REFIN/REFOUT  
Access to the internal 2.5 V reference if the  
REF SELECT pin is tied to logic high  
Application of an external reference of 2.5 V if the REF  
SELECT pin is tied to logic low  
100nF  
100nF  
100nF  
REF  
1µF  
Figure 84. Single External Reference Driving Multiple AD7606C-16  
REFIN/REFOUT Pins  
Table 13. Reference Configuration  
REF SELECT Pin Reference Selected  
Internal Reference Mode  
Logic High  
Logic Low  
Internal reference enabled  
Internal reference disabled, an external 2.5 V  
reference voltage must be applied to the  
REFIN/REFOUT pin  
One AD7606C-16 device, configured to operate in the internal  
reference mode, can drive the remaining AD7606C-16 devices,  
which are configured to operate in external reference mode (see  
Figure 85). Decouple the REFIN/REFOUT pin of the  
AD7606C-16, configured in internal reference mode, using a 10 µF  
ceramic decoupling capacitor. The other AD7606C-16 devices,  
configured in external reference mode, must use at least a 100 nF  
decoupling capacitor on their REFIN/REFOUT pins.  
The AD7606C-16 contains a reference buffer configured to gain  
the reference voltage up to approximately 4.4 V, as shown in  
Figure 83. The 4.4 V buffered reference is the reference used by the  
SAR ADC, as shown in Figure 83. After a reset, the AD7606C-16  
operates in the reference mode selected by the REF SELECT pin.  
The REFCAPA and REFCAPB pins must be shorted together  
externally, and a ceramic capacitor of 10 μF must be applied to  
the REFGND pin to ensure that the reference buffer is in closed-  
loop operation. A 0.1 µF ceramic capacitor is required on the  
REFIN/REFOUT pin.  
V
DRIVE  
AD7606C-16  
REF SELECT  
AD7606C-16  
REF SELECT  
AD7606C-16  
REF SELECT  
REFIN/REFOUT  
REFIN/REFOUT  
REFIN/REFOUT  
When the AD7606C-16 is configured in external reference mode,  
the REFIN/REFOUT pin is a high input impedance pin.  
REFIN/REFOUT  
+
10µF  
100nF  
100nF  
Figure 85. Internal Reference Driving Multiple AD7606C-16 REFIN/REFOUT  
Pins  
SAR  
REFCAPA  
BUF  
OPERATION MODES  
10µF  
REFCAPB  
The AD7606C-16 can be operated in hardware or software mode  
by controlling the OSx pins, as described in Table 14.  
2.5V  
REF  
In hardware mode, the AD7606C-16 is configured depending on  
the logic level on the RANGE, OSx, or  
16 is backwards compatible to the AD7606, AD7606B, AD7608,  
and AD7609.  
pins. The AD7606C-  
STBY  
Figure 83. Reference Circuitry  
Using Multiple AD7606C-16 Devices  
In software mode, when all three OSx pins are connected to logic  
high level, the AD7606C-16 is configured by the corresponding  
registers accessed via the serial or parallel interface. Additional  
features are available, as described in Table 15. The reference  
and the data interface is selected through the REFSELECT and  
For applications using multiple AD7606C-16 devices, the  
configurations in the External Reference Mode section and the  
Internal Reference Mode section are recommended, depending  
on the application requirements.  
External Reference Mode  
/SER SEL pins in both hardware and software modes.  
PAR  
One external reference can drive the REFIN/REFOUT pins of  
all AD7606C-16 devices (see Figure 84). In this configuration,  
decouple each REFIN/REFOUT pin of the AD7606C-16 with at  
least a 100 nF decoupling capacitor.  
Table 14. Oversample Pin Decoding  
OS2  
0
OS1  
0
OS0  
0
Oversampling Ratio  
No oversampling  
0
0
1
2
0
1
0
4
0
1
1
8
1
0
0
16  
1
0
1
32  
1
1
0
64  
1
1
1
Enters software mode  
Rev. 0 | Page 31 of 74  
 
 
 
 
 
 
 
 
AD7606C-16  
Data Sheet  
Table 15. Functionality Matrix  
Parameter  
Analog Input Range1  
Hardware Mode  
10 V or 5 V2  
Software Mode  
Single-ended, bipolar: 12.5 V, 10 V, 6.25 V, 5 V, and 2.5 V3  
Single-ended, unipolar: 0 V to 12.5 V, 0 V to 10 V, 0 V to 5 V3  
Differential, bipolar: 20 V, 12.5 V, 10 V, and 5 V3  
Available3  
System Gain, Phase, and Offset Calibration Not accessible  
OSR  
From no oversampling to  
From no oversampling to OSR = 256  
OSR = 64  
Not accessible  
2
Not accessible  
Standby and shutdown  
Analog Input Open Circuit Detection  
Serial Data Output Lines  
Diagnostics  
Available3  
Selectable: 1, 2, 4, or 8  
Available  
Power-Down Modes  
Standby, shutdown, and autostandby  
1 See Table 10 for the analog input range selection.  
2 Same input range configured in all input channels.  
3 On a per channel basis.  
Power-Down Modes  
Reset Functionality  
In hardware mode, two power-down modes are available on the  
The AD7606C-16 has two reset modes: full or partial. The reset  
mode selected is dependent on the length of the reset high pulse. A  
partial reset requires the RESET pin to be held high between  
55 ns and 2 μs. After 50 ns from the release of the RESET pin  
(tDEVICE_SETUP, partial reset), the device is fully functional and a  
conversion can be initiated. A full reset requires the RESET pin to  
STBY  
AD7606C-16: standby mode and shutdown mode. The  
controls whether the AD7606C-16 is in normal mode or in one of  
STBY  
pin  
the two power-down modes, as shown in Table 16. If the  
pin  
is low, the power-down mode is selected by the state of the  
RANGE pin.  
be held high for a minimum of 3.2 µs. After 274 μs (tDEVICE_SETUP  
full reset) from the release of the RESET pin, the device is  
completely reconfigured and a conversion can be initiated.  
,
Table 16. Power-Down Mode Selection, Hardware Mode  
STBY Pin  
Power Mode  
Normal  
Standby  
RANGE Pin  
X1  
1
0
1
0
0
A partial reset reinitializes the following modules:  
Digital filter  
SPI and parallel, resetting to ADC mode  
SAR ADCs  
CRC logic  
Shutdown  
1 X = don’t care.  
In software mode, the power-down mode is selected through  
the OPERATION_MODE bits on the CONFIG register  
(Address 0x02, Bits[1:0]), within the memory map. There is an  
extra power-down mode available in software mode called  
autostandby mode.  
After the partial reset, the RESET_DETECT bit on the status  
register asserts (Address 0x01, Bit 7). The current conversion  
result is discarded after the completion of a partial reset. The  
partial reset does not affect the register values programmed in  
software mode or the latches that store the user configuration  
in both hardware and software modes.  
Table 17. Power-Down Mode Selection, Software Mode,  
Through CONFIG Register (Address 0x02)  
Operation Mode Address 0x02, Bit 1 Address 0x02, Bit 0  
A full reset returns the device to its default power-on state, the  
RESET_DETECT bit on the status register asserts (Address 0x01,  
Bit 7), and the current conversion result is discarded. The  
following features, in addition to those listed above, are  
configured when the AD7606C-16 is released from full reset:  
Normal  
Standby  
Autostandby  
Shutdown  
0
0
1
1
0
1
0
1
When the AD7606C-16 is placed in shutdown mode, all circuitry  
is powered down and the current consumption reduces to  
4.5 µA maximum. The power-up time is approximately 10 ms.  
When the AD7606C-16 is powered up from shutdown mode, a  
full reset must be applied to the AD7606C-16 after the required  
power-up time elapses.  
Hardware mode or software mode  
Interface type, serial or parallel  
Rev. 0 | Page 32 of 74  
 
 
 
 
 
Data Sheet  
AD7606C-16  
CONVST  
BUSY  
When the AD7606C-16 is placed in standby mode, all of the PGAs  
and all of the SAR ADCs enter a low power mode, such that the  
overall current consumption reduces to 6.5 mA maximum. No  
reset is required after exiting standby mode.  
STANDBY  
NORMAL  
tWAKE_UP  
STANDBY  
POWER MODE  
When the AD7606C-16 is placed in autostandby mode, which is  
available only in software mode, the device automatically enters  
standby mode on the BUSY signal falling edge. The AD7606C-16  
exits standby mode automatically on the CONVST signal rising  
edge. Therefore, the CONVST signal low pulse time is longer  
than tWAKE_UP (standby mode) = 1 μs (see Figure 86).  
Figure 86. Autostandby Mode Operation  
Rev. 0 | Page 33 of 74  
 
AD7606C-16  
Data Sheet  
DIGITAL FILTER  
The AD7606C-16 contains an optional digital averaging filter  
that can be enabled in slower throughput rate applications that  
require higher SNR or dynamic range.  
For example, if oversampling by eight is configured, eight  
samples are taken, averaged, and the result is provided on the  
output. A CONVST signal rising edge triggers the first sample,  
and the remaining seven samples are taken with an internally  
generated sampling signal (OS_CLOCK). Consequently,  
turning on the averaging of multiple samples leads to an  
improvement in SNR performance at the expense of reducing the  
maximum throughput rate. When the oversampling function is  
turned on, the BUSY signal high time (tCONV) extends, as shown in  
Table 3.  
In hardware mode, the oversampling ratio of the digital filter is  
controlled using the oversampling pins, OSx, as shown in Table 14.  
The OSx pins are latched on either the falling edge of the BUSY  
signal or upon a full reset.  
In software mode, if all OSx pins are tied to logic high, the  
oversampling ratio is selected through the oversampling register  
(Address 0x08). Two additional oversampling ratios  
(oversampling by 128 and oversampling by 256) are available in  
software mode.  
Table 18 and Table 19 show the trade off in SNR vs. bandwidth  
and throughput for the 10 V single-ended range, 20 V  
differential range, and 0 V to 10 V single-ended range.  
In oversampling mode, the ADC takes the first sample for each  
channel on the rising edge of the CONVST signal. After  
converting the first sample, the subsequent samples are taken  
by the internally generated sampling signal, as shown in Figure 87.  
Alternatively, this sampling signal can be applied externally as  
described in the External Oversampling Clock section.  
Figure 87 shows that the conversion time (tCONV) extends when  
oversampling is turned on. The throughput rate (1/tCYCLE) must  
be reduced to accommodate the longer conversion time and to  
allow the read operation to occur. To achieve the fastest  
throughput rate possible when oversampling is turned on, the  
read can be performed during the BUSY signal high time, as  
explained in the Reading During Conversion section.  
tCYCLE  
CONVST  
OS CLOCK  
BUSY  
tCONV  
CS  
RD  
DATA:  
DB0TO DB15  
Figure 87. AD7606C-16 Oversampling by 8 Example, Read After Conversion, Parallel Interface, OS_CLOCK Is the Internally Generated Sampling Signal  
Table 18. Oversampling Performance, Low Bandwidth Mode  
10 V Single-Ended  
Range  
20 V Differential  
Range  
0 V to 10 V Single-  
Ended Range  
−3 dB  
Bandwidth  
SNR (dB) (kHz)  
−3 dB  
Bandwidth SNR  
SNR (dB) (kHz)  
−3 dB  
Maximum  
Oversampling  
Ratio  
Input  
Frequency (Hz)  
Bandwidth Throughput  
(kHz)  
(dB)  
(kSPS)  
1000  
500  
250  
125  
62.5  
31.25  
15.6  
7.8  
No oversampling 1000  
2
4
8
16  
32  
64  
128  
256  
91.5  
92.5  
94.5  
95  
96  
96.5  
97  
25  
24.6  
24  
22.3  
17.8  
11.6  
6.5  
92  
93  
95  
96  
96.5  
97  
97.5  
97.6  
97.8  
25  
89  
90  
91  
91.7  
92.5  
93  
94.5  
95  
25  
24.6  
24  
22.3  
17.8  
11.6  
6.4  
1000  
1000  
1000  
1000  
160  
160  
50  
24.4  
23.7  
22.2  
17.6  
11.5  
6.4  
97.5  
97.7  
3.3  
1.7  
3.4  
1.7  
3.3  
1.7  
50  
95.5  
3.9  
Rev. 0 | Page 34 of 74  
 
 
 
Data Sheet  
AD7606C-16  
Table 19. Oversampling Performance, High Bandwidth Mode  
10 V Single-Ended  
Range  
20 V Differential  
Range  
0 V to 10 V Single-  
Ended Range  
−3 dB  
Bandwidth  
SNR (dB) (kHz)  
−3 dB  
Bandwidth  
SNR (dB) (kHz)  
−3 dB  
Maximum  
Oversampling  
Ratio  
Input  
Frequency (Hz)  
Bandwidth Throughput  
SNR (dB) (kHz)  
(kSPS)  
1000  
500  
250  
125  
62.5  
31.25  
15.6  
7.8  
No oversampling 1000  
2
4
8
16  
32  
64  
128  
256  
86  
89  
91  
92.5  
95  
96  
97  
97.5  
97.7  
220  
154  
97.5  
53  
27.5  
13.8  
7
88  
91  
93  
94.5  
96  
220  
154  
97.5  
53  
27.5  
13.7  
7
81  
84  
220  
155  
97.5  
53.5  
27.5  
13.8  
7
1000  
1000  
1000  
1000  
160  
160  
50  
86.5  
88.5  
90.5  
92  
93.5  
94.5  
95  
97  
97.5  
97.7  
97.8  
3.5  
1.7  
3.5  
1.7  
3.5  
1.7  
50  
3.9  
Rev. 0 | Page 35 of 74  
 
AD7606C-16  
Data Sheet  
That is, the sampling signal is provided externally through the  
CONVST pin, and after every OSR number of clocks, an output  
is averaged and provided, as shown in Figure 90. This feature is  
available using either the parallel interface or serial interface.  
PADDING OVERSAMPLING  
As shown in Figure 87, an internally generated clock triggers  
the samples to be averaged, and then the ADC remains idle  
until the following CONVST signal rising edge. In software  
mode, through the oversampling register (Address 0x08), the  
internal clock (OS_CLOCK) frequency can be changed such that  
idle time is minimized and sampling instants are equally spaced,  
as shown in Figure 88. As a result, the actual oversampling clock  
frequency depends on the OS_PAD bits configuration, as per  
the following equation:  
Simultaneous Sampling of Several AD7606C-16 Devices  
In general, synchronizing several SAR ADCs is achieved by  
using a common CONVST signal. However, when oversampling is  
enabled, an internal clock is used to trigger the subsequent  
samples by default. Any deviation between these internal clocks  
may impede device to device synchronization. This deviation  
can be minimized by using external oversampling, as the  
CONVST signal of all the samples is managed externally.  
1
OS_CLOCK(kHz) =  
OS_PAD  
1000 ×(1+  
)
16  
A partial reset (tRESET < 2 µs) interrupts the oversampling  
process and empties the data register. Therefore, if by any  
reason the different AD7606C-16 devices are not synchronized,  
issuing a partial reset resynchronizes the devices, as shown in  
Figure 89.  
tCYCLE  
CONVST  
OS_CLOCK  
BUSY  
tCONV  
RESET  
Figure 88. Oversampling by 8 Example, Oversampling Padding Enabled  
EXTERNAL OVERSAMPLING CLOCK  
AD7606C-16  
BUSY1  
AD7606C-16  
BUSY2  
AD7606C-16  
BUSY3  
In software mode, there is an option to apply an external clock  
through the CONVST pin when oversampling mode is enabled.  
Providing a low jitter external clock helps improve SNR  
performance for large oversampling ratios. By applying an  
external clock, the input is sampled at regular time intervals,  
which is optimum for antialiasing performance.  
CONVST  
CONVST  
RESET  
BUSY1  
BUSY2  
BUSY3  
To enable the external oversampling clock, Bit 5 in the CONFIG  
register (Address 0x02, Bit 5) must be set. Then, the throughput  
rate is  
Figure 89. Synchronizing Several AD7606C-16 Devices When External  
Oversampling Clock Is Enabled  
1
Throughput =  
t
CYCLE × OSR  
t
CNVST  
CONVST  
BUSY  
CS  
RD  
DB0 TO DB15  
Figure 90. External Oversampling Clock Applied on the CONVST Pin (OSR = 4), Parallel Interface  
Rev. 0 | Page 36 of 74  
 
 
 
 
 
Data Sheet  
AD7606C-16  
SYSTEM CALIBRATION FEATURES  
The following system calibration features are available in  
software mode by writing to corresponding registers in the  
memory map:  
Note that system gain calibration is only available on bipolar  
analog input ranges, both single-ended and differential. System  
gain calibration is not available in unipolar single-ended ranges.  
AD7606C-16  
Phase calibration  
Gain calibration  
Offset calibration  
Analog input open circuit detection  
ANALOG  
INPUT  
SIGNAL  
R
1MΩ  
1MΩ  
FILTER  
Vx+  
Vx–  
C
R
FILTER  
SYSTEM PHASE CALIBRATION  
Figure 92. System Gain Error  
When using an external filter, as shown in Figure 92, any  
mismatch on the discrete components or in the sensor used can  
cause phase mismatch between channels. This phase mismatch  
can be compensated for in software mode, on a per channel basis,  
by delaying the sampling instant on individual channels.  
For example, if a 27 kΩ resistor is placed in series to the analog  
input of Channel 5, the resistor generates about −2% positive  
full-scale error on the system (at 10 V range), as seen in Figure 93.  
In software mode, this error is eliminated by writing 27 decimal  
to the CH5_GAIN register (Address 0x0D), which keeps the  
error within 0.05% of FSR, no matter the RFILTER value of the  
series resistor, as shown in Figure 94.  
The sampling instant on any particular channel can be delayed  
with regards to the CONVST signal rising edge, with a  
resolution of 1 μs, and up to 255 μs, by writing to the  
corresponding CHx_PHASE register (Address 0x19 through  
Address 0x20).  
0.025  
0
–0.025  
–250  
For example, if the CH4_PHASE register (Address 0x1C) is  
written with 10 decimal, Channel 4 is effectively sampled 10 μs  
after the CONVST signal rising edge, as shown in Figure 91.  
–0.125  
–500  
–0.250  
–750  
INPUT V1  
INPUT V4  
–1000  
–1250  
CONVST  
–0.500  
ON-CHIP CALIBRATION ENABLE  
INTERNAL  
CONVST CH1  
ON-CHIP CALIBRATION DISABLED  
–1500  
n
0
10  
20  
30  
40  
50  
60  
INTERNAL  
CONVST CH4  
R
(kΩ)  
tCONV = n+1  
FILTER  
BUSY  
Figure 93. System Gain Calibration, With and Without Calibration,  
10 V Single-Ended Range  
V1 CODE  
V4 CODE  
25  
20  
15  
0.03  
0.02  
0.01  
0
Figure 91. System Phase Calibration Functionality  
10  
Note that delaying any channel extends the BUSY signal high  
time, and tCONV extends until tCONV = n + 1 μs, with n as the  
CHx_PHASE register content of the most delayed channel. In  
the previously explained example, if only the CH4_PHASE  
register is programmed, tCONV is 11 μs. Therefore, this scenario  
must be considered when running at higher throughput rates.  
5
0
–5  
–0.01  
–0.02  
–0.03  
–10  
–15  
–20  
–25  
SYSTEM GAIN CALIBRATION  
Using an external RFILTER, which is a resistor placed in a series to  
the analog input front-end, see Figure 92, generates a system  
gain error. This gain error can be compensated for in software  
mode, on a per channel basis, by writing the series resistor  
value used on the corresponding register, Address 0x09  
through Address 0x10. These registers can compensate up to  
65 kΩ series resistors with a resolution of 1024 Ω.  
0
10  
20  
30  
40  
50  
60  
R
(kΩ)  
FILTER  
Figure 94. System Error with Gain Calibration Enabled  
Rev. 0 | Page 37 of 74  
 
 
 
 
 
 
 
AD7606C-16  
Data Sheet  
AD7606C-16  
SYSTEM OFFSET CALIBRATION  
R
FILTER  
1MΩ  
Vx+  
A potential offset on the sensor, or any offset caused by a mismatch  
between the RFILTER pair placed on a particular channel (as  
described in the Analog Front-End section), can be compensated  
in software mode on a per channel basis. The CHx_OFFSET  
registers (Address 0x11 through Address 0x18) allow the ability  
to add or subtract up to 512 LSBs to the ADC code automatically  
with a resolution of 4 LSB, as shown in Table 20.  
C
SAR  
ADC  
FILTER  
Vx–  
R
R
S
PD  
R
FILTER  
1MΩ  
Figure 95. Analog Front End with RPD  
Note that analog input open circuit detection is only available  
on bipolar analog input ranges, both single-ended and  
differential. Analog input open circuit detection is not available  
in unipolar single-ended ranges.  
For example, if the signal connected to Channel 3 has a 9 mV  
offset, and the analog input range is set to 10 V range (where  
LSB size = 76.3 μV) to compensate for this offset, program  
−30 LSB to the corresponding register (that is, 9 mV/76.3 μV/4).  
Writing 128 decimal – 30 decimal = 0x80 − 0x1E = 0x62 into  
the CH3_OFFSET register (Address 0x13) removes such offset.  
Manual Mode  
Manual mode is enabled by writing 0x01 to the OPEN_DETECT_  
QUEUE register (Address 0x2C). In manual mode, each PGA  
common-mode voltage is controlled by the corresponding  
CHx_OPEN_DETECT_EN bit on the OPEN_DETECT_ENABLE  
register (Address 0x23). Setting this bit high shifts up the PGA  
common-mode voltage. If there is an open circuit on the analog  
input, the ADC output changes proportionally to the RPD, as  
shown in Figure 96. If there is not an open circuit, any change on  
the PGA common-mode voltage has no effect on the ADC output.  
Table 20. CHx_OFFSET Register Bit Decoding  
CHx_OFFSET Register Code  
Offset Calibration (LSB)  
0x00  
0x45  
0x80 (Default)  
0x83  
0xFF  
−512  
−236  
0
+12  
+508  
400  
±2.5V SINGLE-ENDED  
ANALOG INPUT OPEN CIRCUIT DETECTION  
±5V SINGLE-ENDED  
±6.25V SINGLE-ENDED  
±10V SINGLE-ENDED  
±12.5V SINGLE-ENDED  
±5V DIFFERENTIAL  
±10V DIFFERENTIAL  
±12.5V DIFFERENTIAL  
±20V DIFFERENTIAL  
350  
The AD7606C-16 has an analog input open circuit detection  
feature available in software mode. To use this feature, an RPD  
must be placed as shown in Figure 95. If the analog input is  
disconnected, for example, if a switch opens in Figure 95, the  
source impedance changes from the burden resistor (RS) to RPD,  
as long as RS < RPD. It is recommended to use RPD = 20 kΩ so  
that the AD7606C-16 can detect changes in the source  
impedance by internally switching the PGA common-mode  
voltage. Analog input open circuit detection operates in manual  
mode or in automatic mode.  
300  
250  
200  
150  
100  
50  
0
0
10  
20  
30  
40  
50  
(kΩ)  
60  
70  
80  
90  
100  
R
PD  
Figure 96. Open Circuit Code Error increment, Dependent of RPD  
Rev. 0 | Page 38 of 74  
 
 
 
 
 
Data Sheet  
AD7606C-16  
If no oversampling is used, the recommended minimum number  
of conversions to be programmed for the AD7606C-16 to  
automatically detect an open circuit on the analog input is  
Automatic Mode  
Automatic mode is enabled by writing any value greater than  
0x01 to the OPEN_DETECT_QUEUE register (Address 0x2C),  
as shown in Table 21. If the AD7606C-16 detects that the ADC  
reported a number (specified in the OPEN_DETECT_QUEUE  
register) of consecutive unchanged conversions, the analog input  
open circuit detection algorithm is performed internally and  
automatically. The analog input open circuit detection algorithm  
automatically changes the PGA common-mode voltage, checks  
the ADC output, and returns to the initial common-mode voltage,  
as shown in Figure 97. If the ADC code changes in any channel  
with the PGA common-mode change, this implies there is  
no input signal connected to that analog input, and the  
corresponding flag asserts within the OPEN_DETECTED  
register (Address 0x24). Each channel can be individually  
enabled or disabled through the OPEN_DETECT_ENABLE  
register (Address 0x23).  
OPEN _DETECT_QUEUE =  
10 × fSAMPLE  
R
+ 2 × RFILTER × (C  
+10 pF)  
FILTER  
(
)
PD  
However, when oversampling mode is enabled, the  
recommended minimum number of conversions to use is  
OPEN _DETECT_QUEUE =  
1 + f  
× 2 R + 2 × RFILTER × (C  
+10 pF) × OSR  
FILTER  
(
)
(
)
SAMPLE  
PD  
START  
CONVERSION  
NO  
0 < ADC CODE < 1400 LSB  
i = 0  
YES  
N = NUMBER OF  
NO  
CONSECUTIVE REPEATED  
i = N?  
(WITHIN 10 LSB)  
i = i + 1  
ADC OUTPUT CODE  
YES, SET  
COMMON-MODE HIGH  
NO  
ΔADC CODE > 20 LSB  
i = 0  
YES, SET  
COMMON-MODE LOW  
NO  
ADC CODE BACK  
TO ORIGINAL?  
i = 0  
YES  
ERROR FLAG  
Figure 97. Automatic Analog Input Open Circuit Detect Flowchart  
Table 21. Analog Input Open-Circuit Detect Mode Selection and Register Functionality  
OPEN_DETECT_QUEUE  
(Address 0x2C)  
0x00 (Default)  
0x01  
Open Detect Mode  
Disabled.  
Manual.  
OPEN_DETECT_ENABLE (Address 0x23)  
Not applicable.  
Sets common-mode voltage high or low on a  
per channel basis.  
Enables or disables automatic analog input  
open circuit detection on a per channel basis.  
0x021 to 0xFF  
Automatic. OPEN_DETECT_QUEUE is the number of  
consecutive conversions before asserting any CHx_OPENED flag.  
1 It is recommended to write to OPEN_DETECT_QUEUE a value greater than 5.  
Rev. 0 | Page 39 of 74  
 
 
AD7606C-16  
Data Sheet  
DIGITAL INTERFACE  
The AD7606C-16 provides two interface options: a parallel  
interface and a high speed serial interface. The required  
See the Reading Conversion Results (Parallel ADC Mode) section  
and the Reading Conversion Results (Serial ADC Mode) section  
for more details on how the ADC mode operates.  
PAR  
interface mode is selected via the  
/SER SEL pin.  
Software Mode  
Table 22. Interface Mode Selection  
In software mode, which is active only when all three OSx pins are  
tied high, both ADC mode and register mode are available. ADC  
data can be read from the AD7606C-16, and registers can also  
be read from and written to the AD7606C-16 via the parallel  
PAR/SER SEL Setting  
Interface Mode  
0
1
Parallel interface  
Serial interface  
Operation of the interface modes is discussed in the Hardware  
Mode section and the Software Mode section.  
CS RD  
WR  
data bus with standard  
,
, and  
signals or via the serial  
CS  
interface with standard , SCLK, SDI, and DOUTA lines.  
Hardware Mode  
See the Parallel Register Mode (Writing Register Data) section  
and the Parallel Register Mode (Reading Register Data) section  
for more details on how register mode operates.  
In hardware mode, only ADC mode is available. ADC data can  
be read from the AD7606C-16 via the parallel data bus with  
CS  
RD  
standard  
and  
signals or via the serial interface with  
Pin functions differ depending on the interface selected  
(parallel or serial) and the operation mode (hardware or  
software), as shown in Table 23.  
CS  
standard , SCLK, and two DOUTx signals.  
Table 23. Data Interface Pin Function per Mode of Operation  
Parallel Interface  
Serial Interface  
Software Mode  
Software Mode  
Hardware Mode ADC Mode Register Mode  
Pin Mnemonic Pin No.  
Hardware Mode  
ADC Mode  
Register Mode  
N/A  
DB0 to DB2  
16 to 18  
19  
20  
21  
22  
24  
25  
27  
DB0 to DB2  
DB3  
Register data  
Register data  
Register data  
Register data  
Register data  
N/A1  
N/A  
N/A  
N/A  
N/A  
DB3/DOUT  
DB4/DOUT  
DB5/DOUT  
DB6/DOUT  
DB7/DOUT  
DB8/DOUT  
DB9/DOUT  
E
F
DOUTE2  
DOUTF2  
DOUTG2  
DOUTH2  
Unused  
Unused  
Unused  
Unused  
DB4  
DB5  
DB6  
G
H
A
B
C
DB7  
DB8  
DB9  
DB10  
DB11  
DB12  
DB13  
DB14  
DB15  
Register data (MSB) DOUT  
A
B
DOUT  
A
DOUTA  
ADD0  
ADD1  
ADD2  
ADD3  
ADD4  
ADD5  
ADD6  
DOUT  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
DOUTB3  
DOUTC4  
DOUTD4  
Unused  
Unused  
Unused  
Unused  
SDI  
N/A  
N/A  
DB10/DOUT  
DB11/SDI  
DB12  
D
28  
29  
30  
DB13  
31  
DB14  
32  
N/A  
DB15  
33  
W
R/  
N/A  
1 N/A means not applicable. Tie all N/A pins to AGND.  
2 Only used if 8 DOUTx mode is selected on the CONFIG register, otherwise leave unconnected.  
3 Only used if 2 DOUTx, 4 DOUTx, or 8 DOUTx mode is selected on the CONFIG register, otherwise leave unconnected.  
4 Only used if 4 DOUTx or 8 DOUTx mode is selected on the CONFIG register, otherwise leave unconnected.  
Rev. 0 | Page 40 of 74  
 
 
 
 
 
 
Data Sheet  
AD7606C-16  
channel onto the parallel bus, DB15 to DB0, in ascending order,  
from V1 to V8, as shown in Figure 99.  
PARALLEL INTERFACE  
To read ADC data, or to read and write the register content  
CS  
RD  
signal  
PAR  
The  
signal can be permanently tied low, and the  
over the parallel interface, tie the  
/SER SEL pin low.  
can access the conversion results, as shown in Figure 3. A read  
operation of new data can take place after the BUSY signal goes  
low (see Figure 2). Alternatively, a read operation of data from  
the previous conversion process can take place while the  
BUSY pin is high.  
CS  
CS  
CS  
The rising edge of the  
the falling edge of the  
high impedance state.  
input signal three-states the bus, and  
input signal takes the bus out of the  
is the control signal that enables the  
data lines and it is the function that allows multiple AD7606C-16  
devices to share the same parallel data bus.  
When there is only one AD7606C-16 in a system and it does  
not share the parallel bus, data can be read using one control  
AD7606C-16  
INTERRUPT  
BUSY 14  
CS  
RD  
signal from the digital host. The  
together, as shown in Figure 4. In this case, the falling edge of  
CS RD  
signals brings the data bus out of three-state and  
and  
signals can be tied  
13  
12  
CS  
the  
and  
RD/SCLK  
DIGITAL  
HOST  
clocks out the data.  
WR 10  
The FRSTDATA output signal indicates when the first channel,  
24 TO 33  
16 TO 22  
DB15 TO DB0  
CS  
V1, is being read back, as shown in Figure 4. When the  
input is high, the FRSTDATA output pin is in three-state. The  
Figure 98. AD7606C-16 Interface Diagram—One AD7606C-16 Using the  
CS RD  
CS  
falling edge of  
takes the FRSTDATA pin out of three-state.  
RD  
Parallel Bus with and  
Shorted Together  
The falling edge of the  
signal corresponding to the result of  
Reading Conversion Results (Parallel ADC Mode)  
RD  
V1 sets the FRSTDATA pin high, indicating that the result  
from V1 is available on the output data bus. The FRSTDATA  
The falling edge of the  
conversion results register. Applying a sequence of  
RD  
pin reads data from the output  
RD  
pin returns to a logic low following the next falling edge of  
.
RD  
pulses  
pin clocks the conversion results out from each  
to the  
CONVST  
BUSY  
CS  
RD  
DB0 TO  
DB15  
DB0 TO  
DB7  
V1, BITS[15:8]  
V1, BITS[7:0]  
STATUS_CH1  
V2, BITS[15:8]  
V2, BITS[7:0]  
STATUS_CH2  
V7, BITS[15:8]  
V7, BITS[7:0]  
STATUS_CH7  
V8, BITS[15:8]  
V8, BITS[7:0]  
STATUS_CH8  
Figure 99. Parallel Interface, ADC Mode with Status Header Enabled  
Rev. 0 | Page 41 of 74  
 
 
 
AD7606C-16  
Data Sheet  
Reading During Conversion  
Parallel ADC Mode with Status Enabled  
Data read operations from the AD7606C-16, as shown in  
Figure 100, can occur in the following three scenarios:  
In software mode, the 8-bit status header is enabled (see Table 25)  
by setting Bit 6 in the CONFIG register (Address 0x02, Bit 6),  
and each channel then takes the following two frames of data:  
After a conversion while the BUSY line is low  
During a conversion while the BUSY line is high  
Starting while the BUSY line is low and ending while the  
following conversion is in progress, see Figure 2  
The first frame clocks the ADC data out normally through  
DB15 to DB0.  
The second frame clocks out the status header of the channel  
on DB15 to DB8, DB15 being the MSB and DB8 being the  
LSB of the status header, while DB7 to DB0 pins clock out  
zeros.  
Reading during conversions has little effect on the performance  
of the converter, and it allows a faster throughput rate to be  
achieved. Data can be read from the AD7606C-16 at any time  
other than on the falling edge of the BUSY signal because this is  
when the output data registers are updated with the new  
conversion data. Any data read while the BUSY signal is high  
must be completed before the falling edge of the BUSY signal.  
This sequence is shown in Figure 99. Table 25 explains the  
status header content and describes each bit.  
Table 24. CH.ID Bits Decoding in Status Header  
CH.ID2  
CH.ID1  
CH.ID0  
Channel Number  
Channel 1 (V1)  
Channel 2 (V2)  
Channel 3 (V3)  
Channel 4 (V4)  
Channel 5 (V5)  
Channel 6 (V6)  
Channel 7 (V7)  
Channel 8 (V8)  
Parallel ADC Mode with CRC Enabled  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
In software mode, the parallel interface supports reading the  
ADC data with the CRC appended, when enabled through the  
INT_CRC_ERR_EN bit (Address 0x21, Bit 2). The CRC is  
16 bits, and it is clocked out after reading all eight channel  
conversions, as shown in Figure 101. The CRC calculation  
includes all data on the DBx pins: data, status (when appended),  
and zeros. See the Diagnostics section for more details on CRC.  
Table 25. Status Header, Parallel Interface  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Content  
RESET_DETECT DIGITAL_ERROR OPEN_DETECTED  
RESERVED  
CH. ID 2 CH. ID 1 CH. ID 0  
Channel ID (see Table 24)  
Meaning1 Reset detected  
Error flag on  
Address 0x22  
The analog input of  
this channel is open  
1 See the Diagnostics section for more information.  
CONVST  
tACQ_C  
tACQ_B  
BUSY  
tCONV_A  
tCONV_B  
D
x
DBx  
OUT  
ADC_DATA  
ADC_DATA  
B
A
Figure 100. ADC Data Read Can Happen After Conversion and/or During the Following Conversion  
CONVST  
BUSY  
CS  
RD  
DB0 TO  
DB15  
CRC  
V1  
V2  
V3  
V4  
V5  
V6  
V7  
V8  
Figure 101. Parallel Interface, ADC Mode with CRC Enabled  
Rev. 0 | Page 42 of 74  
 
 
 
 
 
Data Sheet  
AD7606C-16  
Parallel Register Mode (Reading Register Data)  
WR  
To revert to ADC mode, keep all DBx pins low during one  
cycle, as shown in the Parallel Register Mode (Writing Register  
Data) section. No ADC data can be read while the device is in  
register mode.  
In software mode, all of the registers in Table 31 can be read over  
the parallel interface. Bits[DB15:DB0] leave a high impedance  
CS  
RD  
state when both the  
signal and  
signal are logic low for  
CS WR  
reading register content, or when both the  
signal and  
Parallel Register Mode (Writing Register Data)  
signal are logic low for writing register address and/or register  
content.  
In software mode, all of the R/W registers in Table 31 can be  
written to over the parallel interface. To write a sequence of  
registers, exit ADC mode (default mode) by reading any register  
on the memory map. A register write command is performed by  
A register read is performed through two frames: first, a read  
command is sent to the AD7606C-16 and second, the  
AD7606C-16 clocks out the register content. The format for a  
register read command is shown in Figure 102. On the first  
frame, perform the following:  
CS  
a single frame, via the parallel bus (Bits[DB15:DB0]),  
signal,  
signal. The format for a write command, as shown in  
Figure 102, is structured as follows:  
WR  
and  
Bit DB15 must be set to 1 to select a read command. The  
read command puts the AD7606C-16 into register mode.  
Bits[DB14:DB8] must contain the register address.  
The subsequent eight bits, Bits[DB7:DB0], are ignored.  
Bit DB15 must be set to 0 to select a write command.  
Bits[DB14:DB8] contain the register address.  
The subsequent eight bits, Bits[DB7:DB0], contain the data  
to be written to the selected register.  
The register address is latched on the AD7606C-16 on the  
WR  
WR  
Data is latched onto the device on the rising edge of the  
pin.  
rising edge of the  
signal. The register content can then be  
To revert back to ADC mode, keep all DBx pins low during one  
WR  
RD  
read from the latched register by bringing the  
the following frame, as follows:  
line low on  
cycle. No ADC data can be read while the device is in  
register mode.  
Bit DB15 is pulled to 0 by the AD7606C-16.  
Bits[DB14: DB8] provide the register address being read.  
The subsequent eight bits, Bits[DB7: DB0], provide the  
register content.  
CS  
RD  
WR  
DB15  
R/W = 1  
R/W = 0  
R/W = 0  
R/W = 0  
DB14 TO  
DB8  
REG. ADDRESS  
REG. ADDRESS  
REG. ADDRESS  
ADDRESS = 0x00  
DB7 TO  
DB0  
DON’T CARE  
REGISTER DATA  
REGISTER DATA  
DON’T CARE  
MODE  
ADC MODE  
REGISTER MODE  
ADC MODE  
Figure 102. Parallel Interface Register Read Operation Followed by a Write Operation  
Rev. 0 | Page 43 of 74  
 
 
 
AD7606C-16  
Data Sheet  
CS  
SERIAL INTERFACE  
To read ADC data or to read and write the register content over  
SCLK  
PAR  
the serial interface, tie the  
/SER SEL pin high.  
D
A
B
V1  
V3  
V2  
V4  
OUT  
AD7606C-16  
D
OUT  
INTERRUPT  
BUSY 14  
D
D
C
D
V5  
V7  
V6  
V8  
OUT  
13  
12  
CS  
OUT  
RD/SCLK  
Figure 105. Serial Interface ADC Reading, Four DOUTx Lines  
DB11/SDI 29  
24  
CS  
DIGITAL  
HOST  
DB7/D  
A
B
C
D
OUT  
25  
27  
28  
19  
DB8/  
DB9/  
D
OUT  
SCLK  
D
OUT  
OUT  
D
D
A
B
V1  
V2  
OUT  
DB10/D  
DB3/D  
OUT  
E
OUT  
20  
21  
DB4/D  
F
OUT  
D
D
C
D
E
V5  
V3  
V4  
OUT  
OUT  
DB5/D  
OUT  
G
H
DB6/D  
OUT  
22  
D
OUT  
Figure 103. AD7606C-16 Interface Diagram—One AD7606C-16 Using the  
Serial Interface with Eight DOUTx Lines  
D
D
F
V5  
V6  
V7  
OUT  
G
H
Reading Conversion Results (Serial ADC Mode)  
OUT  
The AD7606C-16 has eight serial data output pins, DOUTA to  
D
OUT  
D
OUTH. In software mode, data can be read back from the  
Figure 106. Serial Interface ADC Reading, Eight DOUTx Lines  
AD7606C-16 using either one (see Figure 107), two (see  
Figure 104), four (see Figure 105), or eight (see Figure 106)  
Table 26. DOUTx Format Selection Using the CONFIG  
Register (Address 0x02)  
DOUTx lines depending on the configuration set through the  
CONFIG register.  
DOUTx Format  
Address 0x02, Bit 4  
Address 0x02, Bit 3  
CONVST  
1 DOUT  
2 DOUT  
4 DOUT  
8 DOUT  
x
x
x
x
0
0
1
1
0
1
0
1
CS  
SCLK  
In hardware mode, only the 2 DOUTx lines option is available.  
However, all channels can be read from DOUTA by providing  
eight 16-bit SPI frames between two CONVST pulses.  
D
D
D
D
A
B
C
D
V1  
V5  
V2  
V6  
V3  
V7  
V4  
V8  
OUT  
OUT  
OUT  
OUT  
Figure 104. Serial Interface ADC Reading, Two DOUTx Lines  
CS  
FRSTDATA  
SCLK  
D
D
D
D
A
B
C
D
V1  
V2  
V3  
V4  
V5  
V6  
V7  
V8  
OUT  
OUT  
OUT  
OUT  
Figure 107. Serial Interface ADC Reading, One DOUTx Line  
Rev. 0 | Page 44 of 74  
 
 
 
 
 
 
Data Sheet  
AD7606C-16  
CS  
1
9
16  
SCLK  
MSB  
LSB  
D
x
OUT  
Figure 108. Serial Interface Data Read Back (One Channel)  
CS  
1
2
3
4
5
6
7
8
9
16  
24  
SCLK  
D
x
STATUS HEADER  
ADC DATA  
OUT  
Figure 109. Serial Interface, ADC Mode, Status On  
th  
CS  
following the 16 SCLK falling edge. If the  
pin is tied  
CS  
The falling edge takes the data output lines, DOUTx, out of  
three-state and clocks out the MSB of the conversion result, as  
shown in Figure 108.  
permanently low (3-wire mode), the falling edge of the BUSY  
line sets the FRSTDATA pin high when the result from V1 is  
available on DOUTA.  
CS  
CS  
In 3-wire mode ( tied low), instead of clocking out the MSB,  
the falling edge of the BUSY signal clocks out the MSB. The rising  
edge of the SCLK signal clocks all the subsequent data bits on the  
serial data outputs, DOUTx, as shown in Figure 6. The  
can be held low for the entire serial read operation, or it can be  
pulsed to frame each channel read of 16 SCLK cycles (see  
Figure 104). However, if  
conversion result transmission, the channel that was interrupted  
retransmits on the next frame, completely starting from the MSB.  
If the SDI is tied low or high, nothing is clocked to the  
AD7606C-16. Therefore, the device remains reading  
conversion results. When using the AD7606C-16 in 3-wire  
mode, keep the SDI at high level. While in ADC mode, single  
write operations can be performed, as shown in Figure 109. For  
writing a sequence of registers, switch to register mode, as  
described in the Serial Register Mode (Writing Register Data)  
section.  
CS  
input  
CS  
is pulsed during a channel  
Reading During Conversion  
Data can also be clocked out using only the DOUTA pin, as  
shown in Figure 107. For the AD7606C-16 to access all eight  
conversion results on one DOUTx line, a total of 128 SCLK cycles  
is required. In hardware mode, these 128 SCLK cycles must be  
Data read operations from the AD7606C-16, as shown in  
Figure 100, can occur in the following three scenarios:  
After a conversion while the BUSY line is low  
During a conversion while the BUSY line is high  
Starting while the BUSY line is low and ending while the  
following conversion is in progress, see Figure 2  
CS  
framed on groups of 16 SCLK cycles by the  
signal. The  
disadvantage of using just one DOUTx line is that the throughput  
rate is reduced if reading occurs after conversion. Leave the  
unused DOUTx lines disconnected in serial mode.  
Reading during conversions has little effect on the performance  
of the converter, and it allows a faster throughput rate to be  
achieved. Data can be read from the AD7606C-16 at any time  
other than on the falling edge of the BUSY signal because this is  
when the output data registers are updated with the new  
conversion data. Any data read while the BUSY signal is high  
must be completed before the falling edge of the BUSY signal.  
Figure 105 shows a read of eight simultaneous conversion  
results using four DOUTx lines on the AD7606C-16, available in  
software mode. In this case, a 32 SCLK transfer accesses data  
CS  
from the AD7606C-16, and  
is either held low to frame the  
entire 32 SCLK cycles or is pulsed between two 16-bit frames.  
This mode is only available in software mode, and it is  
configured through the CONFIG register (Address 0x02).  
Serial ADC Mode with CRC Enabled  
Figure 6 shows the timing diagram for reading one channel of  
data, framed by the  
mode. The SCLK input signal provides the clock source for the  
serial read operation. The  
from the AD7606C-16.  
In software mode, the CRC can be enabled by writing to the  
register map. In this case, the CRC is appended on each DOUTx  
line after the last channel is clocked out, as shown in Figure 115.  
See the Interface CRC section for more information on how the  
CRC is calculated.  
CS  
signal, from the AD7606C-16 in serial  
CS  
signal goes low to access the data  
The FRSTDATA output signal indicates when the first channel,  
Serial ADC Mode with Status Enabled  
CS  
V1, is being read back. When the input is high, the FRSTDATA  
In software mode, the 8-bit status header (see Table 27) can be  
turned on when using the serial interface so that it is appended  
after each 16-bit data conversion, extending the frame size to  
24 bits per channel, as shown in Figure 109.  
output pin is in three-state. In serial mode, the falling edge of the  
CS  
signal takes the FRSTDATA pin out of three-state and sets  
the FRSTDATA pin high if the BUSY line is already deasserted,  
indicating that the result from V1 is available on the DOUTA  
output data line. The FRSTDATA output returns to a logic low  
Rev. 0 | Page 45 of 74  
 
 
AD7606C-16  
Data Sheet  
If the AD7606C-16 is in ADC mode, the DOUTx lines keep  
Serial Register Mode (Reading Register Data)  
clocking ADC data on Bits[9:16], and then the AD7606C-16  
switches to register mode.  
All the registers in Table 31 can be read over the serial interface.  
The format for a read command is shown in Figure 110. It  
consists of two 16-bit frames. On the first frame, perform the  
following:  
If the AD7606C-16 is in register mode, the DOUTx lines read  
back the content from the previous addressed register, no  
matter if the previous frame was a read or a write command. To  
exit register mode, keep the SDI line low for 16 SCLK cycles, as  
shown in Figure 111.  
The first bit clocked in SDI must be set to 0 to enable  
writing the address.  
The second bit clocked in SDI must be set to 1 to select a  
read command.  
Bits[3:8] clocked in SDI contain the register address to be  
clocked out on DOUTA on the following frame.  
The subsequent eight bits, Bits[9:16], clocked in SDI are  
ignored.  
CS  
SCLK  
SDI  
1
8
16  
WEN R/W  
READ OR WRITE COMMAND  
D
A
OUT  
ADC DATA (8LSB) OR PREVIOUS  
REGISTER READ/WRITTEN  
ADC DATA (8LSB) OR XX  
REGISTER [ADD5:ADD0] CONTENT  
Figure 110. Serial Interface Read Command, First Frame Provides the Address, Second Frame Provides the Register Content  
CS  
SCLK  
READ COMMAND  
R/W COMMAND  
R/W COMMAND  
WRITE COMMAND  
SDI  
D
x
ADC DATA  
ADC DATA  
ADC DATA  
ADC MODE  
OUT  
MODE  
ADC MODE  
REGISTER MODE  
Figure 111. AD7606C-16 Register Mode  
Table 27. Status Header, Serial Interface  
Bit 7 (MSB) Bit 6  
RESET_DETECT DIGITAL_ERROR OPEN_DETECTED  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Content  
RESERVED  
CH.ID 2 CH.ID 1 CH. ID 0  
Channel ID (see Table 24)  
Meaning1 Reset detected  
Error flag on  
Address 0x22  
The analog input  
of this channel is  
open  
1 See the Diagnostics section for more information.  
Rev. 0 | Page 46 of 74  
 
 
 
Data Sheet  
AD7606C-16  
When writing continuously to the device, the data that appears  
on DOUTA is from the register address that was written to on the  
previous frame, as shown in Figure 112. The DOUTB, DOUTC, and  
Serial Register Mode (Writing Register Data)  
In software mode, all the read and write registers in Table 31  
can be written to over the serial interface. To write a sequence  
of registers, exit ADC mode (default mode) by reading any  
register on the memory map. A register write command is  
performed by a single 16-bit SPI access. The format for a write  
command, as shown in Figure 112, is structured as follows:  
D
OUTD pins are kept low during the transmission.  
While in register mode, no ADC data is clocked out because the  
OUTx lines are used to clock out register content. After writing  
D
all required registers, keeping the SDI line low for 16 SCLK cycles  
returns the AD7606C-16 to ADC mode, where the ADC data is  
again clocked out on the DOUTx lines, as shown in Figure 111.  
The first bit clocked in SDI must be set to 0 to enable a  
write command.  
In software mode, when the CRC is turned on, eight additional  
bits are clocked in and out on each frame. Therefore, 24-bit  
frames are required.  
W
The second bit clocked in SDI, the R/ bit, must be  
cleared to 0.  
Bit ADD5 to Bit ADD0 clocked in SDI contain the register  
address to be written.  
The subsequent eight bits (Bits[DIN7:DIN0]) clocked in  
SDI contain the data to be written to the selected register.  
Data is clocked in from SDI on the falling edge of SCLK,  
while data is clocked out on DOUTA on the rising edge of  
SCLK.  
CS  
1
2
3
4
15  
16  
17  
24  
SCLK  
A TO D  
D
D
OUT  
DB15 DB14 DB13 DB12  
WEN R/W ADD5 ADD4  
DB1 DB0 CRC7  
DIN1 DIN0 CRC7  
CRC0  
OUT  
SDI  
CRC0  
Figure 112. AD7606C-16 Serial Interface, Single Write Command, SDI Clocks in the Address Bit ADD5 to Bit ADD0 and the Register Content Bit DIN7 to Bit DIN0 During  
the Same Frame, DOUTA Provides Register Content Requested on the Previous Frame  
Rev. 0 | Page 47 of 74  
 
 
AD7606C-16  
Data Sheet  
With the CRC enabled, the SPI frames extend to 24 bits in length,  
as shown in Figure 113.  
Serial Register Mode with CRC  
Registers can be written to and read from the AD7606C-16  
with CRC enabled, in software mode, by asserting the  
INT_CRC_ERR_EN bit (Address 0x21, Bit 2).  
When writing a register, the controller must clock the data  
(register address plus register content) in the AD7606C-16  
followed by an 8-bit CRC word, calculated from the previous  
16 bits using the above polynomial. The AD7606C-16 reads the  
register address and the register content, calculates the  
corresponding 8-bit CRC word, and asserts the INT_CRC_ERR bit  
(Address 0x22, Bit 2) if the calculated CRC word does not match  
the CRC word received between the 17th and 24th bit through the  
SDI, as shown in Figure 114.  
When reading a register, the AD7606C-16 provides eight  
additional bits on the DOUTA pin with the CRC resultant of the  
data shifted out previously on the same frame. The controller  
can then check whether the data received is correct by applying  
the following polynomial:  
x8 + x2 + x + 1  
CS  
1
8
9
16  
24  
SCLK  
SDI  
ADD5 ADD4 ADD3 ADD2 ADD1 ADD0  
WEN  
R/W  
MSB  
LSB  
8-BIT CRC  
D
A
OUT  
Figure 113. Reading Registers Through the SPI with CRC Enabled  
CS  
1
8
9
16  
24  
SCLK  
SDI  
ADD5 ADD4 ADD3 ADD2 ADD1 ADD0  
WEN  
MSB  
LSB  
8-BIT CRC  
R/W  
Figure 114. Writing Registers Through the SPI with CRC Enabled  
Rev. 0 | Page 48 of 74  
 
 
Data Sheet  
AD7606C-16  
DIAGNOSTICS  
Diagnostic features are available in software mode to verify the  
correct operation of the AD7606C-16. The list of diagnostic  
monitors includes reset detection, overvoltage detection,  
undervoltage detection, analog input open circuit detection,  
and digital error detection.  
If the calculated and stored CRC values do not match, the error  
checking and correction (ECC) block can detect up to 3 bit errors  
(hamming distance of 4). Otherwise, the ROM_CRC_ERR  
(Address 0x22, Bit 0) asserts. When ROM_CRC_ERR asserts  
after power-up, it is recommended to issue a full reset to reload  
all factory settings.  
If an error is detected, a flag asserts on the status header, if  
enabled, as described in the Digital Interface section. This flag  
points to the registers on which the error is located, as explained  
in the following sections.  
This ROM CRC monitoring feature is enabled by default but  
can be disabled by clearing the ROM_CRC_ERR_EN bit  
(Address 0x21, Bit 0).  
In addition, a diagnostic multiplexer can dedicate any channel  
to verify a series of internal nodes, as explained in the  
Diagnostics Multiplexer section.  
Memory Map CRC  
The memory map CRC is disabled by default. After the  
AD7606C-16 is configured in software mode through writing  
the required registers, the memory map CRC can be enabled  
through the MM_CRC_ERR_EN bit (Address 0x21, Bit 1).  
When enabled, the CRC calculation is performed on the entire  
memory map and stored. Every 4 μs, the CRC on the memory  
map is recalculated and compared to the stored CRC value.  
RESET DETECTION  
The RESET_DETECT bit on the status register (Address 0x01,  
Bit 7) asserts if either a partial reset or full reset pulse is applied  
to the AD7606C-16. On power-up, a full reset is required. This  
reset asserts the RESET_DETECT bit, indicating that the  
power-on reset (POR) initialized properly on the device.  
The AD7606C-16 uses the following 16-bit CRC polynomial to  
calculate the CRC checksum value on the memory map:  
The POR monitors the REGCAP voltage and issues a full reset  
if the voltage drops under a certain threshold.  
x16 + x14 + x13 + x12 + x10 + x8 +x6 + x4 + x3 + x + 1  
(0xBAAD)  
The RESET_DETECT bit can be used to detect an unexpected  
device reset or a large glitch on the RESET pin, or a voltage  
drop on the supplies.  
If the calculated and the stored CRC values do not match, the  
ECC block can detect up to 3 bit errors (hamming distance of 4).  
Otherwise, the memory map is corrupted and the MM_CRC_ERR  
bit (Address 0x22, Bit 1) asserts. Every time the memory map is  
written, the CRC is recalculated and the new value stored.  
The RESET_DETECT bit is only cleared by reading the status  
register.  
DIGITAL ERROR  
If the MM_CRC_ERR bit asserts, it is recommended to write  
the memory map to recalculate the CRC. If the MM_CRC_ERR  
bit persists, it is recommended to issue a full reset to restore the  
default contents of the memory map.  
Both the status register and status header contain a  
DIGITAL_ERROR bit. This bit asserts when any of the  
following monitors trigger:  
Memory map CRC, read only memory (ROM) CRC, and  
digital interface CRC.  
SPI invalid read or write.  
Interface CRC Checksum  
The AD7606C-16 has a CRC checksum mode to improve  
interface robustness by detecting errors in data transmission.  
The CRC feature is available in both ADC modes (serial and  
parallel) and register mode (serial only).  
BUSY stuck high.  
To find out which monitor triggered the DIGITAL_ERROR bit,  
the DIGITAL_DIAG_ERR register (Address 0x22) has a bit  
dedicated for each of them, as explained in the ROM CRC,  
Memory Map CRC, Interface CRC Checksum, Interface Check,  
SPI Invalid Read and Write, and BUSY Stuck High sections.  
The AD7606C-16 uses the following 16-bit CRC polynomial to  
calculate the CRC checksum value:  
x16 + x14 + x13 + x12 + x10 + x8 +x6 + x4 + x3 + x + 1  
(0xBAAD)  
ROM CRC  
To replicate the polynomial division in the controller, the data  
shifts left by 16 bits to create a number ending in 16 Logic 0s.  
The polynomial is aligned so that the MSB is adjacent to the  
leftmost Logic 1 of the data. An exclusive OR (XOR) function is  
applied to the data to produce a new, shorter number. The  
polynomial is again aligned so that the MSB is adjacent to the  
leftmost Logic 1 of the new result, and the procedure repeats.  
This process repeats until the original data is reduced to a value  
less than the polynomial, which results in the 16-bit checksum.  
The ROM stores the factory trimming settings for the  
AD7606C-16. After power-up, the ROM content is loaded to  
registers during device initialization. After the load, a CRC is  
calculated on the loaded data and verified if the result matches  
the CRC stored in the ROM.  
The AD7606C-16 uses the following 16-bit CRC polynomial to  
calculate the CRC checksum value on the memory map:  
x16 + x14 + x13 + x12 + x10 + x8 +x6 + x4 + x3 + x + 1  
(0xBAAD)  
Rev. 0 | Page 49 of 74  
 
 
 
 
 
 
AD7606C-16  
Data Sheet  
An example of the CRC calculation for the 16-bit data is shown  
in Table 28. The CRC corresponding to the data 0x064E, using  
the previously described polynomial, is 0x2137.  
use after reading all the channels. An example using four DOUT  
lines is shown in Figure 115.  
x
If using two DOUTx lines (DOUTA and DOUTB), each 16-bit CRC  
word is calculated using data from four channels (72 bits), as  
shown in Figure 116. If using only one DOUTx line, all eight  
channels are clocked out through DOUTA, followed by the 16-bit  
The serial interface supports the CRC when enabled via the  
INT_CRC_ERR_EN bit (Address 0x21, Bit 2). The CRC is a  
16-bit word that is appended to the end of each DOUTx line in  
CRC word calculated using data from the eight channels (144 bits).  
Table 28. Example CRC Calculation for 16-Bit Data1, 2  
Data  
0
0
0
0
0
1
1
1
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
1
1
1
0
0
0
0
0
1
1
1
0
0
0
1
1
0
1
1
0
1
1
0
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
1
1
0
1
1
0
0
0
0
0
0
0
1
1
0
1
1
0
1
1
1
X
0
0
0
1
1
0
1
1
0
0
0
X
0
1
1
0
1
1
0
1
1
1
0
X
0
1
1
1
0
0
0
0
0
1
1
X
0
0
0
1
1
1
0
1
1
1
0
X
0
1
1
0
1
1
0
0
0
0
0
X
0
1
1
1
0
0
0
1
1
1
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
Process Data  
Polynomial  
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
1
1
1
0
1
1
0
0
0
0
0
0
1
1
1
0
0
1
1
0
1
0
0
0
1
1
0
1
1
1
0
0
1
1
0
1
0
1
1
0
1
1
CRC  
1 This table represents the division of the data. Blank cells are for formatting purposes.  
2 X = don’t care.  
CONVST  
CS  
SCLK  
D
D
D
D
A
B
C
D
V1  
V3  
V5  
V7  
V2  
V4  
V6  
V8  
CRC(V1,V2)  
CRC(V3,V4)  
CRC(V5,V6)  
CRC(V7,V8)  
OUT  
OUT  
OUT  
OUT  
Figure 115. Serial Interface ADC Reading with CRC On, Four DOUTx Lines  
CONVST  
CS  
SCLK  
D
D
D
D
A
B
C
D
V1  
V5  
V2  
V6  
V3  
V7  
V4  
V8  
CRC(V1,V4)  
CRC(V5,V8)  
OUT  
OUT  
OUT  
OUT  
Figure 116. Serial Interface ADC Reading with CRC On, Two DOUTx Lines  
Rev. 0 | Page 50 of 74  
 
 
 
Data Sheet  
AD7606C-16  
When the AD7606C-16 is in register mode and registers are being  
read or written, the CRC polynomial used is x8 + x2 + x + 1 (0x83).  
When reading a register, and CRC is enabled, each SPI frame is  
26 bits long and the CRC 8-bit word is clocked out from the  
17th to 24th SCLK cycle. Similarly, when writing a register, a CRC  
word can be appended on the SDI line, as shown in Figure 117.  
The AD7606C-16 checks and triggers an error, INT_CRC_ERR  
(Address 0x22, Bit 2), if the CRC word given and the CRC word  
internally calculated do not match.  
SPI Invalid Read and Write  
When attempting to read back an invalid register address, the  
SPI_READ_ERR bit (Address 0x22, Bit 4) is set. The invalid  
readback address detection can be enabled by setting the  
SPI_READ_ERR_EN bit (Address 0x21, Bit 4). If an SPI read  
error is triggered, it is cleared by overwriting that bit or disabling  
the checker.  
When attempting to write to an invalid register address or a  
read only register, the SPI_WRITE_ERR bit (Address 0x22, Bit 3)  
is set. The invalid write address detection can be enabled by  
setting the SPI_WRITE _ERR_EN bit (Address 0x21, Bit 3). If  
an SPI write error is triggered, it is cleared by overwriting that  
bit or disabling the checker.  
The parallel interface also supports CRC in ADC mode only,  
and it is clocked out through DB15 to DB0 after Channel 8, as  
shown in Figure 101. The 16-bit CRC word is calculated using  
data from the eight channels (128 bits).  
Interface Check  
BUSY Stuck High  
The integrity of the digital interface can be checked by setting  
the INTERFACE_CHECK_EN bit (Address 0x21, Bit 7).  
Selecting the interface check forces the conversion result  
registers to a known value, as shown in Table 29.  
BUSY stuck high monitoring is enabled by setting the  
BUSY_STUCK_HIGH_ERR_EN bit (Address 0x21, Bit 5).  
After this bit is enabled, the conversion time (tCONV in Table 3)  
is monitored internally with an independent clock. If tCONV exceeds  
4 μs, the AD7606C-16 automatically issues a partial reset and  
asserts the BUSY_STUCK_HIGH_ERR bit (Address 0x22, Bit 5).  
To clear this error flag, the BUSY_STUCK_HIGH_ERR bit must  
be overwritten with a 1.  
Verifying that the controller receives the data in Table 29  
ensures that the interface between the AD7606C-16 and the  
controller operates properly. If the interface CRC is enabled  
because the data transmitted is known, this mode verifies that  
the controller performs the CRC calculation properly.  
When oversampling mode is enabled, the individual conversion  
time for each internal conversion is monitored.  
Table 29. Interface Check Conversion Results  
Channel Number  
Conversion Result Forced (Hex)  
V1  
V2  
V3  
V4  
V5  
V6  
V7  
V8  
0x2ACCA  
0x15CC5  
0x2A33A  
0x15335  
0x0CAAC  
0x0C55C  
0x33AA3  
0x33553  
CS  
1
2
3
4
15  
16  
17  
24  
SCLK  
A TO D  
D
D
OUT  
DB15 DB14 DB13 DB12  
WEN R/W ADD5 ADD4  
DB1 DB0 CRC7  
DIN1 DIN0 CRC7  
CRC0  
OUT  
SDI  
CRC0  
Figure 117. Register Write with CRC On  
Rev. 0 | Page 51 of 74  
 
 
 
 
 
AD7606C-16  
Data Sheet  
Temperature Sensor  
DIAGNOSTICS MULTIPLEXER  
The temperature sensor can be selected through the diagnostic  
multiplexer and converted with the ADC, as shown in Figure 118.  
The temperature sensor voltage is measured and is proportional to  
the die temperature as per the following equation with an  
accuracy of 2°C:  
All eight input channels contain a diagnostics multiplexer in  
front of the PGA that monitors the internal nodes described in  
Table 30 to ensure the correct operation of the AD7606C-16. For  
accurate measurements, it is recommended to use Channel 8,  
where the offset and gain for diagnostic channels have been  
trimmed in production.  
ADCOUT V 2.76272 V  
(
)
( )  
Temperature °C =  
+ 25 °C  
(
)
(
)
Table 30 shows the bit decoding for the diagnostic mux register on  
Channel 1 as an example. When an internal node is selected,  
the input voltage at the input pins is deselected from the PGA,  
as shown in Figure 118.  
0.077312 V / °C  
(
)
Reference Voltage  
The reference voltage can be selected through the diagnostic  
multiplexer and converted with the ADC, as shown in Figure 119.  
The internal or external reference is selected as an input to the  
diagnostic multiplexer based on the REF SELECT pin. Ideally,  
the ADC output follows the voltage reference level ratiometrically.  
Therefore, if the ADC output goes beyond the expected 2.5 V,  
either the reference buffer or the PGA is malfunctioning.  
Each diagnostic multiplexer configuration is accessed in software  
mode through the corresponding register (Address 0x28 to  
Address 0x2B). To use the multiplexer on one channel, the  
10 V range must be selected on that channel.  
Table 30. Channel 1 Diagnostic Mux Register Bit Decoding  
Address 0x18  
AD7606C-16  
Bit 2  
Bit 1  
Bit 0  
Signal on Channel 1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
V1  
Temperature sensor  
VREF  
INT REF  
4.4V  
ALDO  
DLDO  
VDRIVE  
AGND  
AVCC  
EXT REF  
2.5V  
MUX  
R
R
FB  
1MΩ  
1MΩ  
Vx+  
Vx–  
ADC  
FB  
TEMPERATURE  
SENSOR  
AD7606C-16  
V
REF  
Figure 119. Reference Voltage Signal Path Through the Diagnostic Multiplexer  
ALDO  
DLDO  
MUX  
Internal LDOs  
V
DRIVE  
AGND  
AV  
CC  
1MΩ  
The analog and digital LDO (REGCAP pins) can be selected  
through the diagnostic multiplexer and converted with the  
ADC, as shown in Figure 118. The ADC output is four times  
the voltage on the REGCAP pins. This measurement verifies  
that each LDO is at the correct operating voltage so that the  
internal circuitry is biased correctly.  
R
FB  
Vx+  
Vx–  
1MΩ  
R
FB  
Supply Voltages  
AVCC, VDRIVE, and AGND can be selected through the diagnostic  
multiplexer and converted with the ADC, as shown in Figure 118.  
This setup ensures the voltage and grounds are correctly applied to  
the device to ensure correct operation.  
Figure 118. Diagnostic Multiplexer (Channel 1 Shown as an Example)  
(RFB = Feedback Resistor)  
Rev. 0 | Page 52 of 74  
 
 
 
 
Data Sheet  
AD7606C-16  
TYPICAL CONNECTION DIAGRAM  
There are four AVCC supply pins on the AD7606C-16 and it is  
recommended that each of the four pins are decoupled using a  
100 nF capacitor at each supply pin and a 10 µF capacitor at the  
supply source. The AD7606C-16 can operate with the internal  
reference or an externally applied reference. When using a  
single AD7606C-16 device on the PCB, decouple the  
PAR  
/SER SEL pin is tied  
uses the parallel interface because the  
to AGND. The analog input range for all eight channels is 10 V,  
provided the RANGE pin is tied to a high level and the  
oversampling ratio is controlled through the OSx pins by the  
controller.  
In Figure 121, the AD7606C-16 is configured in software mode  
because the OSx pins are at logic level high. The oversampling  
ratio, as well as each channel range, are configured by accessing  
REFIN/REFOUT pin with a 100 nF capacitor. Refer to the  
Reference section when using an application with multiple  
AD7606C-16 devices. The REFCAPA and REFCAPB pins are  
shorted together and decoupled with a 10 µF ceramic capacitor.  
PAR  
the memory map. In this example, the  
/SER SEL pin is at  
logic level high. Therefore, the serial interface is used for both  
reading the ADC data and reading and writing the memory  
map. The REF SELECT pin is tied to AGND. Therefore, the  
internal reference is disabled and an external reference is  
connected externally to the REFIN/REFOUT pin and decoupled  
through a 100 nF capacitor.  
The VDRIVE supply is connected to the same supply as the  
processor. The VDRIVE voltage controls the voltage value of the  
output logic signals. For more information on layout, decoupling,  
and grounding, see the Layout Guidelines section.  
After supplies are applied to the AD7606C-16, apply a full reset  
to the AD7606C-16 to ensure that it is configured for the correct  
mode of operation.  
Figure 120 and Figure 121 are examples of typical connection  
diagrams. Other combinations of the reference, data interface,  
and operation mode are also possible, depending on the logic  
levels applied to each configuration pin.  
In Figure 120, the AD7606C-16 is configured in hardware mode  
and is operating with the internal reference because the REF  
SELECT pin is set to logic high. In this example, the device also  
ANALOG SUPPLY  
DIGITAL SUPPLY  
VOLTAGE 1.71V TO 5.25V  
1
VOLTAGE 5V  
+
100nF  
100nF  
1µF  
100nF  
2
REFIN/REFOUT  
REGCAP  
AV  
V
CC  
DRIVE  
REFCAPA  
PARALLEL  
INTERFACE  
DB0 TO DB15  
+
REFCAPB  
REFGND  
10µF  
CONVST  
CS  
V1+  
V1–  
V2+  
V2–  
V3+  
V3–  
V4+  
V4–  
V5+  
V5–  
V6+  
V6–  
V7+  
V7–  
V8+  
V8–  
RD  
BUSY  
RESET  
OS2  
AD7606C-16  
OS1  
OVERSAMPLING  
EIGHT ANALOG  
INPUTS V1 TO V8  
OS0  
REF SELECT  
PAR/SER SEL  
RANGE  
STBY  
V
DRIVE  
V
DRIVE  
AGND  
1
2
DECOUPLING SHOWN ON THE AV PIN APPLIES TO EACH AV PIN (PIN 1, PIN 37, PIN 38, PIN 48).  
CC  
CC  
DECOUPLING CAPACITOR CAN BE SHARED BETWEEN AV  
PIN 37 AND PIN 38.  
CC  
DECOUPLING SHOWN ON THE REGCAP PIN APPLIES TO EACH REGCAP PIN (PIN 36, PIN 39).  
Figure 120. Typical Connection Diagram, Hardware Mode  
Rev. 0 | Page 53 of 74  
 
 
AD7606C-16  
Data Sheet  
ANALOG SUPPLY  
DIGITAL SUPPLY  
VOLTAGE 1.71V to 5.25V  
1
VOLTAGE 5V  
REF  
+
100nF  
1µF  
100nF  
100nF  
2
REFIN/REFOUT  
REFCAPA  
REGCAP  
AV  
V
DRIVE  
CC  
DB0 TO DB15  
+
REFCAPB  
REFGND  
10µF  
CONVST  
CS  
V1+  
V1–  
V2+  
V2–  
V3+  
V3–  
V4+  
V4–  
V5+  
V5–  
V6+  
V6–  
V7+  
V7–  
V8+  
V8–  
SDI  
D
x
OUT  
SCLK  
RESET  
AD7606C-16  
OS2  
OS1  
OVERSAMPLING =  
111b  
EIGHT ANALOG  
INPUTS V1 TO V8  
OS0  
REF SELECT  
PAR/SER SEL  
RANGE  
V
DRIVE  
STBY  
AGND  
1
DECOUPLING SHOWN ON THE AV PIN APPLIES TO EACH AV PIN (PIN 1, PIN 37, PIN 38, PIN 48).  
CC  
CC  
DECOUPLING CAPACITOR CAN BE SHARED BETWEEN AV  
DECOUPLING SHOWN ON THE REGCAP PIN APPLIES TO EACH REGCAP PIN (PIN 36, PIN 39).  
PIN 37 AND PIN 38.  
CC  
2
Figure 121. Typical Connection Diagram, Software Mode  
Rev. 0 | Page 54 of 74  
 
Data Sheet  
AD7606C-16  
APPLICATIONS INFORMATION  
Figure 122 shows the recommended decoupling on the top  
LAYOUT GUIDELINES  
layer of the AD7606C-16 PCB. Figure 123 shows bottom layer  
decoupling, which is used for the four AVCC pins and the VDRIVE pin  
decoupling. Where the ceramic 100 nF capacitors for the AVCC  
pins are placed close to their respective device pins, a single  
100 nF capacitor can be shared between Pin 37 and Pin 38.  
The following layout guidelines are recommended to be followed  
when designing the PCB that houses the AD7606C-16:  
If the AD7606C-16 is in a system where multiple devices  
require analog-to-digital ground connections, use a solid  
ground plane (without splitting between analog and digital  
grounds).  
Make stable connections to the ground plane. Avoid  
sharing one connection for multiple ground pins. Use  
individual vias or multiple vias to the ground plane for  
each ground pin.  
Avoid running digital lines under the devices because doing  
so couples noise on the die. Allow the analog ground plane  
to run under the AD7606C-16 to avoid noise coupling.  
Shield fast switching signals like CONVST or clocks with  
digital ground to avoid radiating noise to other sections of  
the board and ensure that they do not run near analog  
signal paths.  
Avoid crossover of digital and analog signals.  
Ensure traces on layers in close proximity on the board  
run at right angles to each other to reduce the effect of  
feedthrough through the board.  
Figure 122. Top Layer Decoupling REFIN/REFOUT,  
REFCAPA, REFCAPB, and REGCAP Pins  
Ensure power supply lines to the AVCC and VDRIVE pins on  
the AD7606C-16 use as large a trace as possible to provide  
low impedance paths and reduce the effect of glitches on  
the power supply lines. Where possible, use supply planes  
and make stable connections between the AD7606C-16  
supply pins and the power tracks on the board. Use a  
single via or multiple vias for each supply pin.  
Place the decoupling capacitors close to (ideally, directly  
against) the supply pins and their corresponding ground  
pins. Place the decoupling capacitors for the  
REFIN/REFOUT pin and the REFCAPA pin and  
REFCAPB pin as close as possible to their respective  
AD7606C-16 pins. Where possible, place the pins on the  
same side of the board as the AD7606C-16 device.  
Figure 123. Bottom Layer Decoupling  
To ensure stable device to device performance matching in a  
system that contains multiple AD7606C-16 devices, a symmetrical  
layout between the AD7606C-16 devices is important.  
Rev. 0 | Page 55 of 74  
 
 
 
 
AD7606C-16  
Data Sheet  
Figure 124 shows a layout with two AD7606C-16 devices. The  
AVCC supply plane runs to the right of both devices, and the  
AVCC  
VDRIVE supply track runs to the left of the two devices. The  
reference chip is positioned between the two devices, and the  
reference voltage track runs north to Pin 42 of U1 and south  
to Pin 42 of U2. A solid ground plane is used.  
U2  
These symmetrical layout principles can also be applied to a  
system that contains more than two AD7606C-16 devices. The  
AD7606C-16 devices can be placed in a north to south direction,  
with the reference voltage located midway between the devices  
and the reference track running in the north to south direction,  
similar to Figure 124.  
U1  
Figure 124. Layout for Multiple AD7606C-16 Devices—Top Layer and  
Supply Plane Layer  
Rev. 0 | Page 56 of 74  
 
Data Sheet  
AD7606C-16  
REGISTER SUMMARY  
Table 31. AD7606C-16 Register Summary  
Addr  
0x01  
0x02  
0x03  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
RESERVED  
RESERVED  
CH1_RANGE  
Bit 1  
Bit 0  
Reset  
0x00  
0x08  
0x33  
R/W  
R
STATUS  
CONFIG  
RESET_DETECT  
RESERVED  
DIGITAL_ERROR  
STATUS_HEADER  
OPEN_DETECTED  
EXT_OS_CLOCK  
DOUT_FORMAT  
OPERATION_MODE  
R/W  
R/W  
RANGE_CH1_  
CH2  
CH2_RANGE  
0x04  
0x05  
0x06  
RANGE_CH3_  
CH4  
CH4_RANGE  
CH6_RANGE  
CH8_RANGE  
CH3_RANGE  
CH5_RANGE  
CH7_RANGE  
0x33  
0x33  
0x33  
R/W  
R/W  
R/W  
RANGE_CH5_  
CH6  
RANGE_CH7_  
CH8  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
BANDWIDTH  
OVERSAMPLING  
CH1_GAIN  
CH8_BW  
CH7_BW  
OS_PAD  
CH6_BW  
CH5_BW  
CH4_BW  
CH1_GAIN  
CH3_BW  
CH2_BW  
CH1_BW  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
OS_RATIO  
RESERVED  
CH2_GAIN  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CH2_GAIN  
CH3_GAIN  
CH4_GAIN  
CH5_GAIN  
CH6_GAIN  
CH7_GAIN  
CH8_GAIN  
CH3_GAIN  
CH4_GAIN  
CH5_GAIN  
CH6_GAIN  
CH7_GAIN  
CH8_GAIN  
CH1_OFFSET  
CH2_OFFSET  
CH3_OFFSET  
CH4_OFFSET  
CH5_OFFSET  
CH6_OFFSET  
CH7_OFFSET  
CH8_OFFSET  
CH1_PHASE  
CH2_PHASE  
CH3_PHASE  
CH4_PHASE  
CH5_PHASE  
CH6_PHASE  
CH7_PHASE  
CH8_PHASE  
CH1_OFFSET  
CH2_OFFSET  
CH3_OFFSET  
CH4_OFFSET  
CH5_OFFSET  
CH6_OFFSET  
CH7_OFFSET  
CH8_OFFSET  
CH1_PHASE  
CH2_PHASE  
CH3_PHASE  
CH4_PHASE  
CH5_PHASE  
CH6_PHASE  
CH7_PHASE  
CH8_PHASE  
DIGITAL_  
DIAG_  
ENABLE  
INTERFACE_  
CHECK_EN  
CLK_FS_OS_  
COUNTER_EN  
BUSY_STUCK_  
HIGH_ERR_EN  
SPI_READ  
_ERR_EN  
SPI_  
WRITE_  
ERR_EN  
INT_CRC_  
ERR_EN  
MM_CRC_  
ERR_EN  
ROM_  
CRC_  
ERR_EN  
0x22  
0x23  
DIGITAL_  
DIAG_ERR  
RESERVED  
BUSY_STUCK_  
HIGH_ERR  
SPI_  
READ_  
ERR  
SPI_  
WRITE_  
ERR  
INT_CRC_  
ERR  
MM_CRC_  
ERR  
ROM_  
CRC_  
ERR  
0x00  
0x00  
R/W  
R/W  
OPEN_  
DETECT_  
ENABLE  
CH8_OPEN_  
DETECT_EN  
CH7_OPEN_  
DETECT_EN  
CH6_OPEN_  
DETECT_EN  
CH5_  
CH4_  
CH3_OPEN_  
DETECT_EN  
CH2_OPEN_  
DETECT_EN  
CH1_  
OPEN_  
DETECT_  
EN  
OPEN_  
DETECT_  
EN  
OPEN_  
DETECT_  
EN  
0x24  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
OPEN_  
DETECTED  
CH8_OPEN  
CH7_OPEN  
CH6_OPEN  
CH5_  
OPEN  
CH4_  
OPEN  
CH3_OPEN  
CH2_OPEN  
CH1_  
OPEN  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x31  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
DIAGNOSTIC_  
MUX_CH1_2  
RESERVED  
CH2_DIAG_MUX_CTRL  
CH4_DIAG_MUX_CTRL  
CH6_DIAG_MUX_CTRL  
CH8_DIAG_MUX_CTRL  
CH1_DIAG_MUX_CTRL  
CH3_DIAG_MUX_CTRL  
CH5_DIAG_MUX_CTRL  
CH7_DIAG_MUX_CTRL  
DIAGNOSTIC_  
MUX_CH3_4  
RESERVED  
RESERVED  
RESERVED  
DIAGNOSTIC_  
MUX_CH5_6  
DIAGNOSTIC_  
MUX_CH7_8  
OPEN_DETECT_  
QUEUE  
OPEN_DETECT_QUEUE  
CLK_FS_COUNTER  
CLK_OS_COUNTER  
FS_CLK_  
COUNTER  
OS_CLK_  
COUNTER  
R
ID  
DEVICE_ID  
SILICON_REVISION  
R
Rev. 0 | Page 57 of 74  
 
 
AD7606C-16  
Data Sheet  
REGISTER DETAILS  
Address: 0x01, Reset: 0x00, Name: STATUS  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] RESET_DETECT (R)  
[4:0] RESERVED  
Reset Detected. Either a full, partial, or power-on  
[5] OPEN_DETECTED (R)  
reset has been detected on the internal LDO.  
Open Circuit Detected. Check the OPEN_DETECTED  
register (Address 0x24) to determine which  
channel is affected.  
[6] DIGITAL_ERROR (R)  
Digital Error Present. Read the DIGITAL_DIAG_ERR  
register (Address 0x22) to determine the  
type of digital error.  
Table 32. Bit Descriptions for STATUS  
Bits Bit Name Description  
Reset Access  
7
6
5
RESET_DETECT  
Reset Detected. Either a full, partial, or power-on reset has been detected on the internal  
LDO.  
Digital Error Present. Read the DIGITAL_DIAG_ERR register (Address 0x22) to determine the  
type of digital error.  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
DIGITAL_ERROR  
OPEN_DETECTED Open Circuit Detected. Check the OPEN_DETECTED register (Address 0x24) to determine  
which channel is affected.  
[4:0] RESERVED  
Reserved.  
Address: 0x02, Reset: 0x08, Name: CONFIG  
7
6
5
4
3
2
1
0
0
0
0
0
1
0
0
0
[7] RESERVED  
[1:0] OPERATION_MODE (R/W)  
Operation Mode  
00: normal mode.  
01: standby mode.  
10: autostandby mode.  
11: shutdown mode.  
[6] STATUS_HEADER (R/W)  
Enables STATUS Header to be Appended  
to ADC Data in Both Serial and Parallel Interface  
Modes  
[5] EXT_OS_CLOCK (R/W)  
[2] RESERVED  
External Oversampling Clock. In oversampling  
mode, enables external oversampling clock.  
Oversampling conversions are triggered  
through a clock signal applied to CONVST  
pin and not managed by the internal oversampling  
clock  
[4:3] DOUT_FORMAT (R/W)  
Number of DOUTX Lines Used in Serial Mode  
when Reading Conversions  
00: 1 DOUTx.  
01: 2 DOUTx.  
10: 4 DOUTx.  
11: 8 DOUTx.  
Table 33. Bit Descriptions for CONFIG  
Bits Bit Name  
Description  
Reset Access  
7
6
RESERVED  
STATUS_HEADER  
Reserved.  
0x0  
0x0  
R
R/W  
Enables STATUS Header to be Appended to ADC Data in Both Serial and Parallel Interface  
Modes.  
5
EXT_OS_CLOCK  
External Oversampling Clock. In oversampling mode, enables external oversampling  
clock. Oversampling conversions are triggered through a clock signal applied to CONVST  
pin and not managed by the internal oversampling clock.  
0x0  
0x1  
R/W  
R/W  
[4:3] DOUT_FORMAT  
Number of DOUTx Lines Used in Serial Mode when Reading Conversions.  
00: 1 DOUTx.  
01: 2 DOUTx.  
10: 4 DOUTx.  
11: 8 DOUTx.  
Reserved.  
2
RESERVED  
0x0  
0x0  
R
R/W  
[1:0] OPERATION_MODE Operation Mode.  
00: normal mode.  
01: standby mode.  
10: autostandby mode.  
11: shutdown mode.  
Rev. 0 | Page 58 of 74  
 
Data Sheet  
AD7606C-16  
Address: 0x03, Reset: 0x33, Name: RANGE_CH1_CH2  
7
6
5
4
3
2
1
0
0
0
1
1
0
0
1
1
[7:4] CH2_RANGE (R/W)  
Range Options for Channel 2  
0000: ±2.5 V single-ended range.  
0001: ± 5V single-ended range.  
0010: ±6.25 V single-ended range.  
...  
[3:0] CH1_RANGE (R/W)  
Range Options for Channel 1  
0000: ±2.5V single-ended range.  
0001: ±5 V single-ended range.  
0010: ±6.25 V single-ended range.  
...  
1001: ±10 V differential range.  
1010: ±12.5 V differential range.  
1011: ±20 V differential range.  
1001: ±10 V differential range.  
1010: ±12.5 V differential range.  
1011: ±20 V differential range.  
Table 34. Bit Descriptions for RANGE_CH1_CH2  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:4]  
CH2_RANGE  
Range Options for Channel 2.  
0x3  
R/W  
0000: 2.5 V single-ended range.  
0001: 5 V single-ended range.  
0010: 6.25 V single-ended range.  
0011: 10 V single-ended range.  
0100: 12.5 V single-ended range.  
0101: 0 V to 5 V single-ended range.  
0110: 0 V to 10 V single-ended range.  
0111: 0 V to 12.5 V single-ended range.  
1000: 5 V differential range.  
1001: 10 V differential range.  
1010: 12.5 V differential range.  
1011: 20 V differential range.  
Range Options for Channel 1.  
[3:0]  
CH1_RANGE  
0x3  
R/W  
0000: 2.5 V single-ended range.  
0001: 5 V single-ended range.  
0010: 6.25 V single-ended range.  
0011: 10 V single-ended range.  
0100: 12.5 V single-ended range.  
0101: 0 V to 5 V single-ended range.  
0110: 0 V to 10 V single-ended range.  
0111: 0 V to 12.5 V single-ended range.  
1000: 5 V differential range.  
1001: 10 V differential range.  
1010: 12.5 V differential range.  
1011: 20 V differential range.  
Address: 0x04, Reset: 0x33, Name: RANGE_CH3_CH4  
7
6
5
4
3
2
1
0
0
0
1
1
0
0
1
1
[7:4] CH4_RANGE (R/W)  
Range Options for Channel 4  
0000: ±2.5 V single-ended range.  
0001: ±5 V single-ended range.  
0010: ±6.25 V single-ended range.  
...  
[3:0] CH3_RANGE (R/W)  
Range Options for Channel 3  
0000: ±2.5 V single-ended range.  
0001: ±5 V single-ended range.  
0010: ±6.25 V single-ended range.  
...  
1001: ±10 V differential range.  
1010: ±12.5 V differential range.  
1011: ±20 V differential range.  
1001: ±10 V differential range.  
1010: ±12.5 V differential range.  
1011: ±20 V differential range.  
Table 35. Bit Descriptions for RANGE_CH3_CH4  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:4]  
CH4_RANGE  
Range Options for Channel 4.  
0x3  
R/W  
0000: 2.5 V single-ended range.  
0001: 5 V single-ended range.  
0010: 6.25 V single-ended range.  
Rev. 0 | Page 59 of 74  
AD7606C-16  
Data Sheet  
Bits  
Bit Name  
Description  
Reset  
Access  
0011: 10 V single-ended range.  
0100: 12.5 V single-ended range.  
0101: 0 V to 5 V single-ended range.  
0110: 0 V to 10 V single-ended range.  
0111: 0 V to 12.5 V single-ended range.  
1000: 5 V differential range.  
1001: 10 V differential range.  
1010: 12.5 V differential range.  
1011: 20 V differential range.  
Range Options for Channel 3.  
0000: 2.5 V single-ended range.  
0001: 5 V single-ended range.  
0010: 6.25 V single-ended range.  
0011: 10 V single-ended range.  
0100: 12.5 V single-ended range.  
0101: 0 V to 5 V single-ended range.  
0110: 0 V to 10 V single-ended range.  
0111: 0 V to 12.5 V single-ended range.  
1000: 5 V differential range.  
[3:0]  
CH3_RANGE  
0x3  
R/W  
1001: 10 V differential range.  
1010: 12.5 V differential range.  
1011: 20 V differential range.  
Address: 0x05, Reset: 0x33, Name: RANGE_CH5_CH6  
7
6
5
4
3
2
1
0
0
0
1
1
0
0
1
1
[7:4] CH6_RANGE (R/W)  
Range Options for Channel 6  
0000: ±2.5 V single-ended range.  
0001: ±5 V single-ended range.  
0010: ±6.25 V single-ended range.  
...  
[3:0] CH5_RANGE (R/W)  
Range Options for Channel 5  
0000: ±2.5 V single-ended range.  
0001: ±5 V single-ended range.  
0010: ±6.25 V single-ended range.  
...  
1001: ±10 V differential range.  
1010: ±12.5 V differential range.  
1011: ±20 V differential range.  
1001: ±10 V differential range.  
1010: ±12.5 V differential range.  
1011: ±20 V differential range.  
Table 36. Bit Descriptions for RANGE_CH5_CH6  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:4]  
CH6_RANGE  
Range Options for Channel 6.  
0x3  
R/W  
0000: 2.5 V single-ended range.  
0001: 5 V single-ended range.  
0010: 6.25 V single-ended range.  
0011: 10 V single-ended range.  
0100: 12.5 V single-ended range.  
0101: 0 V to 5 V single-ended range.  
0110: 0 V to 10 V single-ended range.  
0111: 0 V to 12.5 V single-ended range.  
1000: 5 V differential range.  
1001: 10 V differential range.  
1010: 12.5 V differential range.  
1011: 20 V differential range.  
Range Options for Channel 5.  
0000: 2.5 V single-ended range.  
0001: 5 V single-ended range.  
0010: 6.25 V single-ended range.  
0011: 10 V single-ended range.  
[3:0]  
CH5_RANGE  
0x3  
R/W  
Rev. 0 | Page 60 of 74  
Data Sheet  
AD7606C-16  
Bits  
Bit Name  
Description  
Reset  
Access  
0100: 12.5 V single-ended range.  
0101: 0 V to 5 V single-ended range.  
0110: 0 V to 10 V single-ended range.  
0111: 0 V to 12.5 V single-ended range.  
1000: 5 V differential range.  
1001: 10 V differential range.  
1010: 12.5 V differential range.  
1011: 20 V differential range.  
Address: 0x06, Reset: 0x33, Name: RANGE_CH7_CH8  
7
6
5
4
3
2
1
0
0
0
1
1
0
0
1
1
[7:4] CH8_RANGE (R/W)  
Range Options for Channel 8  
0000: ±2.5 V single-ended range.  
0001: ±5 V single-ended range.  
0010: ±6.25 V single-ended range.  
...  
[3:0] CH7_RANGE (R/W)  
Range Options for Channel 7  
0000: ±2.5 V single-ended range.  
0001: ±5 V single-ended range.  
0010: ±6.25 V single-ended range.  
...  
1001: ±10 V differential range.  
1010: ±12.5 V differential range.  
1011: ±20 V differential range.  
1001: ±10 V differential range.  
1010: ±12.5 V differential range.  
1011: ±20 V differential range.  
Table 37. Bit Descriptions for RANGE_CH7_CH8  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:4]  
CH8_RANGE  
Range Options for Channel 8.  
0x3  
R/W  
0000: 2.5 V single-ended range.  
0001: 5 V single-ended range.  
0010: 6.25 V single-ended range.  
0011: 10 V single-ended range.  
0100: 12.5 V single-ended range.  
0101: 0 V to 5 V single-ended range.  
0110: 0 V to 10 V single-ended range.  
0111: 0 V to 12.5 V single-ended range.  
1000: 5 V differential range.  
1001: 10 V differential range.  
1010: 12.5 V differential range.  
1011: 20 V differential range.  
Range Options for Channel 7.  
[3:0]  
CH7_RANGE  
0x3  
R/W  
0000: 2.5 V single-ended range.  
0001: 5 V single-ended range.  
0010: 6.25 V single-ended range.  
0011: 10 V single-ended range.  
0100: 12.5 V single-ended range.  
0101: 0 V to 5 V single-ended range.  
0110: 0 V to 10 V single-ended range.  
0111: 0 V to 12.5 V single-ended range.  
1000: 5 V differential range.  
1001: 10 V differential range.  
1010: 12.5 V differential range.  
1011: 20 V differential range.  
Rev. 0 | Page 61 of 74  
AD7606C-16  
Data Sheet  
Address: 0x07, Reset: 0x00, Name: BANDWIDTH  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] CH8_BW (R/W)  
Enables high bandwidth mode on Channel 8  
[0] CH1_BW (R/W)  
Enables high bandwidth mode on Channel 1  
[6] CH7_BW (R/W)  
Enables high bandwidth mode on Channel 7  
[1] CH2_BW (R/W)  
Enables high bandwidth mode on Channel 2  
[5] CH6_BW (R/W)  
Enables high bandwidth mode on Channel 6  
[2] CH3_BW (R/W)  
Enables high bandwidth mode on Channel 3  
[4] CH5_BW (R/W)  
Enables high bandwidth mode on Channel 5  
[3] CH4_BW (R/W)  
Enables high bandwidth mode on Channel 4  
Table 38. Bit Descriptions for BANDWIDTH  
Bits Bit Name Description  
Reset Access  
7
6
5
4
3
2
1
0
CH8_BW  
CH7_BW  
CH6_BW  
CH5_BW  
CH4_BW  
CH3_BW  
CH2_BW  
CH1_BW  
Enables high bandwidth mode on Channel 8.  
Enables high bandwidth mode on Channel 7.  
Enables high bandwidth mode on Channel 6.  
Enables high bandwidth mode on Channel 5.  
Enables high bandwidth mode on Channel 4.  
Enables high bandwidth mode on Channel 3.  
Enables high bandwidth mode on Channel 2.  
Enables high bandwidth mode on Channel 1.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address: 0x08, Reset: 0x00, Name: OVERSAMPLING  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:4] OS_PAD (R/W)  
[3:0] OS_RATIO (R/W)  
Oversampling Ratio  
0: oversampling off.  
1: oversampling by 2.  
10: oversampling by 4.  
...  
Oversampling Padding. Extends the internal  
oversampling period allowing evenly spaced  
sampling between CONVST rising edges.  
110: oversampling by 64.  
111: oversampling by 128.  
1000: oversampling by 256.  
Table 39. Bit Descriptions for OVERSAMPLING  
Bits Bit Name  
Description  
Reset Access  
[7:4] OS_PAD  
Oversampling Padding. Extends the internal oversampling period allowing evenly spaced sampling 0x0  
between CONVST rising edges.  
R/W  
[3:0] OS_RATIO Oversampling Ratio.  
0000: oversampling off.  
0x0  
R/W  
0001: oversampling by 2.  
0010: oversampling by 4.  
0011: oversampling by 8.  
0100: oversampling by 16.  
0101: oversampling by 32.  
0110: oversampling by 64.  
0111: oversampling by 128.  
1000: oversampling by 256.  
Rev. 0 | Page 62 of 74  
Data Sheet  
AD7606C-16  
Address: 0x09, Reset: 0x00, Name: CH1_GAIN  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[5:0] CH1_GAIN (R/W)  
Gain Register to Remove Gain Error Caused  
by External RFILTER. Resolution: 1024 Ω.  
Range: 0 Ω to 65,536 Ω  
Table 40. Bit Descriptions for CH1_GAIN  
Bits Bit Name  
Description  
Reset Access  
[7:6] RESERVED Reserved.  
[5:0] CH1_GAIN Gain Register to Remove Gain Error Caused by External RFILTER. Resolution: 1024 Ω. Range: 0 Ω to  
65,536 Ω.  
0x0  
0x0  
R
R/W  
Address: 0x0A, Reset: 0x00, Name: CH2_GAIN  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[5:0] CH2_GAIN (R/W)  
Gain Register to Remove Gain Error Caused  
by External RFILTER. Resolution: 1024 Ω.  
Range: 0 Ω to 65,536 Ω  
Table 41. Bit Descriptions for CH2_GAIN  
Bits Bit Name Description  
[7:6] RESERVED Reserved.  
[5:0] CH2_GAIN Gain Register to Remove Gain Error Caused by External RFILTER. Resolution: 1024 Ω. Range: 0 Ω to  
65,536 Ω.  
Reset Access  
0x0  
0x0  
R
R/W  
Address: 0x0B, Reset: 0x00, Name: CH3_GAIN  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[5:0] CH3_GAIN (R/W)  
Gain Register to Remove Gain Error Caused  
by External RFILTER. Resolution: 1024 Ω.  
Range: 0 Ω to 65,536 Ω  
Table 42. Bit Descriptions for CH3_GAIN  
Bits Bit Name Description  
[7:6] RESERVED Reserved.  
[5:0] CH3_GAIN Gain Register to Remove Gain Error Caused by External RFILTER. Resolution: 1024 Ω. Range: 0 Ω to  
65,536 Ω.  
Reset Access  
0x0  
0x0  
R
R/W  
Address: 0x0C, Reset: 0x00, Name: CH4_GAIN  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[5:0] CH4_GAIN (R/W)  
Gain Register to Remove Gain Error Caused  
by External RFILTER. Resolution: 1024 Ω.  
Range: 0 Ω to 65,536 Ω  
Table 43. Bit Descriptions for CH4_GAIN  
Bits Bit Name Description  
[7:6] RESERVED Reserved.  
[5:0] CH4_GAIN Gain Register to Remove Gain Error Caused by External RFILTER. Resolution: 1024 Ω. Range: 0 Ω to  
65,536 Ω.  
Reset Access  
0x0  
0x0  
R
R/W  
Rev. 0 | Page 63 of 74  
AD7606C-16  
Data Sheet  
Address: 0x0D, Reset: 0x00, Name: CH5_GAIN  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[5:0] CH5_GAIN (R/W)  
Gain Register to Remove Gain Error Caused  
by External RFILTER. Resolution: 1024 Ω.  
Range: 0 Ω to 65,536 Ω  
Table 44. Bit Descriptions for CH5_GAIN  
Bits Bit Name  
Description  
Reset Access  
[7:6] RESERVED Reserved.  
[5:0] CH5_GAIN Gain Register to Remove Gain Error Caused by External RFILTER. Resolution: 1024 Ω. Range: 0 Ω to  
65,536 Ω.  
0x0  
0x0  
R
R/W  
Address: 0x0E, Reset: 0x00, Name: CH6_GAIN  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[5:0] CH6_GAIN (R/W)  
Gain Register to Remove Gain Error Caused  
by External RFILTER. Resolution: 1024 Ω.  
Range: 0 Ω to 65,536 Ω  
Table 45. Bit Descriptions for CH6_GAIN  
Bits Bit Name Description  
[7:6] RESERVED Reserved.  
[5:0] CH6_GAIN Gain Register to Remove Gain Error Caused by External RFILTER. Resolution: 1024 Ω. Range: 0 Ω to  
65,536 Ω.  
Reset Access  
0x0  
0x0  
R
R/W  
Address: 0x0F, Reset: 0x00, Name: CH7_GAIN  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[5:0] CH7_GAIN (R/W)  
Gain Register to Remove Gain Error Caused  
by External RFILTER. Resolution: 1024 Ω.  
Range: 0 Ω to 65,536 Ω  
Table 46. Bit Descriptions for CH7_GAIN  
Bits Bit Name Description  
[7:6] RESERVED Reserved.  
[5:0] CH7_GAIN Gain Register to Remove Gain Error Caused by External RFILTER. Resolution: 1024 Ω. Range: 0 Ω to  
65,536 Ω.  
Reset Access  
0x0  
0x0  
R
R/W  
Address: 0x10, Reset: 0x00, Name: CH8_GAIN  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[5:0] CH8_GAIN (R/W)  
Gain Register to Remove Gain Error Caused  
by External RFILTER. Resolution: 1024 Ω.  
Range: 0 Ω to 65,536 Ω  
Table 47. Bit Descriptions for CH8_GAIN  
Bits Bit Name Description  
[7:6] RESERVED Reserved.  
[5:0] CH8_GAIN Gain Register to Remove Gain Error Caused by External RFILTER. Resolution: 1024 Ω. Range: 0 Ω to  
65,536 Ω.  
Reset Access  
0x0  
0x0  
R
R/W  
Rev. 0 | Page 64 of 74  
Data Sheet  
AD7606C-16  
Address: 0x11, Reset: 0x80, Name: CH1_OFFSET  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
[7:0] CH1_OFFSET (R/W)  
Offset Register to Remove External System  
Offset Errors. Range from –512 LSB to +511  
LSB.  
Table 48. Bit Descriptions for CH1_OFFSET  
Bits Bit Name Description  
Reset Access  
[7:0] CH1_OFFSET Offset Register to Remove External System Offset Errors. Range from −512 LSB to +511 LSB.  
0x80  
R/W  
Address: 0x12, Reset: 0x80, Name: CH2_OFFSET  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
[7:0] CH2_OFFSET (R/W)  
Offset Register to Remove External System  
Offset Errors. Range from –512 LSB to +511  
LSB.  
Table 49. Bit Descriptions for CH2_OFFSET  
Bits Bit Name Description  
[7:0] CH2_OFFSET Offset Register to Remove External System Offset Errors. Range from −128 LSB to +127 LSB.  
Reset Access  
0x80 R/W  
Address: 0x13, Reset: 0x80, Name: CH3_OFFSET  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
[7:0] CH3_OFFSET (R/W)  
Offset Register to Remove External System  
Offset Errors. Range from –512 LSB to +511  
LSB.  
Table 50. Bit Descriptions for CH3_OFFSET  
Bits Bit Name Description  
[7:0] CH3_OFFSET Offset Register to Remove External System Offset Errors. Range from −128 LSB to +127 LSB.  
Reset Access  
0x80 R/W  
Address: 0x14, Reset: 0x80, Name: CH4_OFFSET  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
[7:0] CH4_OFFSET (R/W)  
Offset Register to Remove External System  
Offset Errors. Range from –512 LSB to +511  
LSB.  
Table 51. Bit Descriptions for CH4_OFFSET  
Bits Bit Name Description  
[7:0] CH4_OFFSET Offset Register to Remove External System Offset Errors. Range from −128 LSB to +127 LSB.  
Reset Access  
0x80 R/W  
Address: 0x15, Reset: 0x80, Name: CH5_OFFSET  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
[7:0] CH5_OFFSET (R/W)  
Offset Register to Remove External System  
Offset Errors. Range from –512 LSB to +511  
LSB.  
Table 52. Bit Descriptions for CH5_OFFSET  
Bits Bit Name Description  
[7:0] CH5_OFFSET Offset Register to Remove External System Offset Errors. Range from −128 LSB to +127 LSB.  
Reset Access  
0x80 R/W  
Rev. 0 | Page 65 of 74  
AD7606C-16  
Data Sheet  
Address: 0x16, Reset: 0x80, Name: CH6_OFFSET  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
[7:0] CH6_OFFSET (R/W)  
Offset Register to Remove External System  
Offset Errors. Range from –512 LSB to +511  
LSB.  
Table 53. Bit Descriptions for CH6_OFFSET  
Bits Bit Name Description  
Reset Access  
[7:0] CH6_OFFSET Offset Register to Remove External System Offset Errors. Range from −128 LSB to +127 LSB.  
0x80  
R/W  
Address: 0x17, Reset: 0x80, Name: CH7_OFFSET  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
[7:0] CH7_OFFSET (R/W)  
Offset Register to Remove External System  
Offset Errors. Range from –512 LSB to +511  
LSB.  
Table 54. Bit Descriptions for CH7_OFFSET  
Bits Bit Name Description  
[7:0] CH7_OFFSET Offset Register to Remove External System Offset Errors. Range from −128 LSB to +127 LSB.  
Reset Access  
0x80 R/W  
Address: 0x18, Reset: 0x80, Name: CH8_OFFSET  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
[7:0] CH8_OFFSET (R/W)  
Offset Register to Remove External System  
Offset Errors. Range from –512 LSB to +511  
LSB.  
Table 55. Bit Descriptions for CH8_OFFSET  
Bits Bit Name Description  
[7:0] CH8_OFFSET Offset Register to Remove External System Offset Errors. Range from −128 LSB to +127 LSB.  
Reset Access  
0x80 R/W  
Address: 0x19, Reset: 0x00, Name: CH1_PHASE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH1_PHASE (R/W)  
Phase Register to Remove External System  
Phase Errors Between Channels. Phase  
delay from 0 µs to 255 µs in steps of 1 µs.  
Table 56. Bit Descriptions for CH1_PHASE  
Bits Bit Name Description  
Reset Access  
[7:0] CH1_PHASE Phase Register to Remove External System Phase Errors Between Channels. Phase delay from 0 µs 0x0  
to 255 µs in steps of 1 µs.  
R/W  
Address: 0x1A, Reset: 0x00, Name: CH2_PHASE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH2_PHASE (R/W)  
Phase Register to Remove External System  
Phase Errors Between Channels. Phase  
delay from 0 µs to 255 µs in steps of 1 µs.  
Table 57. Bit Descriptions for CH2_PHASE  
Bits Bit Name Description  
Reset Access  
[7:0] CH2_PHASE Phase Register to Remove External System Phase Errors Between Channels. Phase delay from 0 µs 0x0  
to 255 µs in steps of 1 µs.  
R/W  
Rev. 0 | Page 66 of 74  
Data Sheet  
AD7606C-16  
Address: 0x1B, Reset: 0x00, Name: CH3_PHASE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH3_PHASE (R/W)  
Phase Register to Remove External System  
Phase Errors Between Channels. Phase  
delay from 0 µs to 255 µs in steps of 1 µs.  
Table 58. Bit Descriptions for CH3_PHASE  
Bits Bit Name  
Description  
Reset Access  
[7:0] CH3_PHASE Phase Register to Remove External System Phase Errors Between Channels. Phase delay from 0 µs 0x0  
to 255 µs in steps of 1 µs.  
R/W  
Address: 0x1C, Reset: 0x00, Name: CH4_PHASE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH4_PHASE (R/W)  
Phase Register to Remove External System  
Phase Errors Between Channels. Phase  
delay from 0 µs to 255 µs in steps of 1 µs.  
Table 59. Bit Descriptions for CH4_PHASE  
Bits Bit Name Description  
Reset Access  
[7:0] CH4_PHASE Phase Register to Remove External System Phase Errors Between Channels. Phase delay from 0 µs 0x0  
to 255 µs in steps of 1 µs.  
R/W  
Address: 0x1D, Reset: 0x00, Name: CH5_PHASE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH5_PHASE (R/W)  
Phase Register to Remove External System  
Phase Errors Between Channels. Phase  
delay from 0 µs to 255 µs in steps of 1 µs.  
Table 60. Bit Descriptions for CH5_PHASE  
Bits Bit Name Description  
Reset Access  
[7:0] CH5_PHASE Phase Register to Remove External System Phase Errors Between Channels. Phase delay from 0 µs 0x0  
to 255 µs in steps of 1 µs.  
R/W  
Address: 0x1E, Reset: 0x00, Name: CH6_PHASE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH6_PHASE (R/W)  
Phase Register to Remove External System  
Phase Errors Between Channels. Phase  
delay from 0 µs to 255 µs in steps of 1 µs.  
Table 61. Bit Descriptions for CH6_PHASE  
Bits Bit Name Description  
Reset Access  
[7:0] CH6_PHASE Phase Register to Remove External System Phase Errors Between Channels. Phase delay from 0 µs 0x0  
to 255 µs in steps of 1 µs.  
R/W  
Rev. 0 | Page 67 of 74  
AD7606C-16  
Data Sheet  
Address: 0x1F, Reset: 0x00, Name: CH7_PHASE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH7_PHASE (R/W)  
Phase Register to Remove External System  
Phase Errors Between Channels. Phase  
delay from 0 µs to 255 µs in steps of 1 µs.  
Table 62. Bit Descriptions for CH7_PHASE  
Bits Bit Name  
Description  
Reset Access  
[7:0] CH7_PHASE Phase Register to Remove External System Phase Errors Between Channels. Phase delay from 0 µs 0x0  
to 255 µs in steps of 1 µs.  
R/W  
Address: 0x20, Reset: 0x00, Name: CH8_PHASE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH8_PHASE (R/W)  
Phase Register to Remove External System  
Phase Errors Between Channels.. Phase  
delay from 0 µs to 255 µs in steps of 1 µs.  
Table 63. Bit Descriptions for CH8_PHASE  
Bits Bit Name Description  
Reset Access  
[7:0] CH8_PHASE Phase Register to Remove External System Phase Errors Between Channels. Phase delay from 0 µs 0x0  
to 255 µs in steps of 1 µs.  
R/W  
Address: 0x21, Reset: 0x01, Name: DIGITAL_DIAG_ENABLE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[7] INTERFACE_CHECK_EN (R/W)  
Enables interface check. Provides a fixed  
data on each channel when reading ADC  
data.  
[0] ROM_CRC_ERR_EN (R/W)  
Enables ROM CRC check.  
[1] MM_CRC_ERR_EN (R/W)  
Enables memory map CRC check.  
[6] CLK_FS_OS_COUNTER_EN (R/W)  
Enables FS_CLOCK and OS_CLOCK counter.  
[2] INT_CRC_ERR_EN (R/W)  
Enables interface CRC check.  
[5] BUSY_STUCK_HIGH_ERR_EN (R/W)  
Enables busy line stuck high which is a monitor  
of the conversion time to ensure ADC operation.  
[3] SPI_WRITE_ERR_EN (R/W)  
Enables checking if attempting to write to  
an invalid address.  
[4] SPI_READ_ERR_EN (R/W)  
Enables checking if attempting to read from  
an invalid address.  
Table 64. Bit Descriptions for DIGITAL_DIAG_ENABLE  
Bits Bit Name  
Description  
Reset Access  
7
INTERFACE_CHECK_EN  
Enables interface check. Provides a fixed data on each channel when reading  
ADC data.  
0x0  
R/W  
6
5
CLK_FS_OS_COUNTER_EN  
Enables FS_CLOCK and OS_CLOCK counter.  
0x0  
0x0  
R/W  
R/W  
BUSY_STUCK_HIGH_ERR_EN Enables busy line stuck high which is a monitor of the conversion time to ensure  
ADC operation.  
4
3
2
1
0
SPI_READ_ERR_EN  
SPI_WRITE_ERR_EN  
INT_CRC_ERR_EN  
MM_CRC_ERR_EN  
ROM_CRC_ERR_EN  
Enables checking if attempting to read from an invalid address.  
Enables checking if attempting to write to an invalid address.  
Enables interface CRC check.  
Enables memory map CRC check.  
Enables ROM CRC check.  
0x0  
0x0  
0x0  
0x0  
0x1  
R/W  
R/W  
R/W  
R/W  
R/W  
Rev. 0 | Page 68 of 74  
Data Sheet  
AD7606C-16  
Address: 0x22, Reset: 0x00, Name: DIGITAL_DIAG_ERR  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[0] ROM_CRC_ERR (R/W1C)  
ROM CRC Error.  
[5] BUSY_STUCK_HIGH_ERR (R/W1C)  
Busy Stuck High Error. Busy pin has been  
at a high logic level for longer than 4 µs.  
[1] MM_CRC_ERR (R/W1C)  
Memory Map CRC Error.  
[4] SPI_READ_ERR (R/W1C)  
SPI Invalid Read Address.  
[2] INT_CRC_ERR (R/W1C)  
Interface CRC Error.  
[3] SPI_WRITE_ERR (R/W1C)  
SPI Invalid Write Address.  
Table 65. Bit Descriptions for DIGITAL_DIAG_ERR  
Bits Bit Name  
Description  
Reset Access  
[7:6] RESERVED  
Reserved.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
5
4
3
2
1
0
BUSY_STUCK_HIGH_ERR Busy Stuck High Error. Busy pin has been at high logic level for longer than 4 μs.  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
SPI_READ_ERR  
SPI_WRITE_ERR  
INT_CRC_ERR  
MM_CRC_ERR  
ROM_CRC_ERR  
SPI Invalid Read Address.  
SPI Invalid Write Address.  
Interface CRC Error.  
Memory Map CRC Error.  
ROM CRC Error.  
Address: 0x23, Reset: 0x00, Name: OPEN_DETECT_ENABLE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] CH8_OPEN_DETECT_EN (R/W)  
In automatic mode, enables analog input  
open circuit detection for Channel 8. In manual  
mode, sets the PGA common mode to high.  
[0] CH1_OPEN_DETECT_EN (R/W)  
In automatic mode, enables analog input  
open circuit detection for Channel 1. In manual  
mode, sets the PGA common mode to high.  
[6] CH7_OPEN_DETECT_EN (R/W)  
[1] CH2_OPEN_DETECT_EN (R/W)  
In automatic mode, enables analog input  
open circuit detection for Channel 7. In manual  
mode, sets the PGA common mode to high.  
In automatic mode, enables analog input  
open circuit detection for Channel 2. In manual  
mode, sets the PGA common mode to high.  
[5] CH6_OPEN_DETECT_EN (R/W)  
[2] CH3_OPEN_DETECT_EN (R/W)  
In automatic mode, enables analog input  
open circuit detection for Channel 6. In manual  
mode, sets the PGA common mode to high.  
In automatic mode, enables analog input  
open circuit detection for Channel 3. In manual  
mode, sets the PGA common mode to high.  
[4] CH5_OPEN_DETECT_EN (R/W)  
[3] CH4_OPEN_DETECT_EN (R/W)  
In automatic mode, enables analog input  
open circuit detection for Channel 5. In manual  
mode, sets the PGA common mode to high.  
In automatic mode, enables analog input  
open circuit detection for Channel 4. In manual  
mode, sets the PGA common mode to high.  
Table 66. Bit Descriptions for OPEN_DETECT_ENABLE  
Bits Bit Name  
Description  
Reset Access  
7
6
5
4
3
2
1
0
CH8_OPEN_DETECT_EN In automatic mode, enables analog input open circuit detection for Channel 8. In  
manual mode, sets the PGA common mode to high.  
CH7_OPEN_DETECT_EN In automatic mode, enables analog input open circuit detection for Channel 7. In  
manual mode, sets the PGA common mode to high.  
CH6_OPEN_DETECT_EN In automatic mode, enables analog input open circuit detection for Channel 6. In  
manual mode, sets the PGA common mode to high.  
CH5_OPEN_DETECT_EN In automatic mode, enables analog input open circuit detection for Channel 5. In  
manual mode, sets the PGA common mode to high.  
CH4_OPEN_DETECT_EN In automatic mode, enables analog input open circuit detection for Channel 4. In  
manual mode, sets the PGA common mode to high.  
CH3_OPEN_DETECT_EN In automatic mode, enables analog input open circuit detection for Channel 3. In  
manual mode, sets the PGA common mode to high.  
CH2_OPEN_DETECT_EN In automatic mode, enables analog input open circuit detection for Channel 2. In  
manual mode, sets the PGA common mode to high.  
CH1_OPEN_DETECT_EN In automatic mode, enables analog input open circuit detection for Channel 1. In  
manual mode, sets the PGA common mode to high.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Rev. 0 | Page 69 of 74  
AD7606C-16  
Data Sheet  
Address: 0x24, Reset: 0x00, Name: OPEN_DETECTED  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] CH8_OPEN (R/W1C)  
Analog Input 8 Open Circuit Detected  
[0] CH1_OPEN (R/W1C)  
Analog Input 1 Open Circuit Detected  
[6] CH7_OPEN (R/W1C)  
Analog Input 7 Open Circuit Detected  
[1] CH2_OPEN (R/W1C)  
Analog Input 2 Open Circuit Detected  
[5] CH6_OPEN (R/W1C)  
Analog Input 6 Open Circuit Detected  
[2] CH3_OPEN (R/W1C)  
Analog Input 3 Open Circuit Detected  
[4] CH5_OPEN (R/W1C)  
Analog Input 5 Open Circuit Detected  
[3] CH4_OPEN (R/W1C)  
Analog Input 4 Open Circuit Detected  
Table 67. Bit Descriptions for OPEN_DETECTED  
Bits  
7
6
5
Bit Name  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
CH8_OPEN  
CH7_OPEN  
CH6_OPEN  
CH5_OPEN  
CH4_OPEN  
CH3_OPEN  
CH2_OPEN  
CH1_OPEN  
Analog Input 8 Open Circuit Detected.  
Analog Input 7 Open Circuit Detected.  
Analog Input 6 Open Circuit Detected.  
Analog Input 5 Open Circuit Detected.  
Analog Input 4 Open Circuit Detected.  
Analog Input 3 Open Circuit Detected.  
Analog Input 2 Open Circuit Detected.  
Analog Input 1 Open Circuit Detected.  
4
3
2
1
0
Address: 0x28, Reset: 0x00, Name: DIAGNOSTIC_MUX_CH1_2  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[5:3] CH2_DIAG_MUX_CTRL (R/W)  
Channel 2 Diagnostic Mux Control. Select  
±10 V range.  
000: Analog Input pin.  
001: Temperature sensor.  
010: 2.5 V reference.  
011: ALDO 1.8 V.  
[2:0] CH1_DIAG_MUX_CTRL (R/W)  
Channel 1 Diagnostic Mux Control. Select  
±10 V range.  
000: Analog Input pin.  
001: Temperature sensor.  
010: 2.5 V reference.  
011: ALDO 1.8 V.  
100: DLDO 1.8 V.  
101: VDRIVE  
110: AGND.  
111: AVCC  
.
100: DLDO 1.8 V.  
101: VDRIVE  
110: AGND.  
111: AVCC  
.
.
.
Table 68. Bit Descriptions for DIAGNOSTIC_MUX_CH1_2  
Bits Bit Name  
Description  
Reset Access  
[7:6] RESERVED  
Reserved.  
0x0  
0x0  
R
R/W  
[5:3] CH2_DIAG_MUX_CTRL Channel 2 Diagnostic Mux Control. Select 10 V range.  
000: Analog input pin.  
001: Temperature sensor.  
010: 2.5 V reference.  
011: ALDO 1.8 V.  
100: DLDO 1.8 V.  
101: VDRIVE  
.
110: AGND.  
111: AVCC.  
[2:0] CH1_DIAG_MUX_CTRL Channel 1 Diagnostic Mux Control. Select 10 V range.  
0x0  
R/W  
000: Analog input pin.  
001: Temperature sensor.  
010: 2.5 V reference.  
011: ALDO 1.8 V.  
100: DLDO 1.8 V.  
101: VDRIVE  
.
110: AGND.  
111: AVCC.  
Rev. 0 | Page 70 of 74  
Data Sheet  
AD7606C-16  
Address: 0x29, Reset: 0x00, Name: DIAGNOSTIC_MUX_CH3_4  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[5:3] CH4_DIAG_MUX_CTRL (R/W)  
Channel 4 Diagnostic Mux Control. Select  
±10 V range.  
000: Analog Input pin.  
001: Temperature sensor.  
010: 2.5 V Reference.  
011: ALDO 1.8 V.  
[2:0] CH3_DIAG_MUX_CTRL (R/W)  
Channel 3 Diagnostic Mux Control. Select  
±10 V range.  
000: Analog Input pin.  
001: Temperature sensor.  
010: 2.5 V Reference.  
011: ALDO 1.8 V.  
100: DLDO 1.8 V.  
101: VDRIVE  
110: AGND.  
111: AVCC  
.
100: DLDO 1.8 V.  
101: VDRIVE  
110: AGND.  
111: AVCC  
.
.
.
Table 69. Bit Descriptions for DIAGNOSTIC_MUX_CH3_4  
Bits  
[7:6]  
[5:3]  
Bit Name  
RESERVED  
CH4_DIAG_MUX_CTRL  
Description  
Reserved.  
Reset  
0x0  
0x0  
Access  
R
R/W  
Channel 4 Diagnostic Mux Control. Select 10 V range.  
000: Analog input pin.  
001: Temperature sensor.  
010: 2.5 V reference.  
011: ALDO 1.8 V.  
100: DLDO 1.8 V.  
101: VDRIVE  
.
110: AGND.  
111: AVCC.  
[2:0]  
CH3_DIAG_MUX_CTRL  
Channel 3 Diagnostic Mux Control. Select 10 V range.  
000: Analog input pin.  
001: Temperature sensor.  
010: 2.5 V reference.  
011: ALDO 1.8 V.  
0x0  
R/W  
100: DLDO 1.8 V.  
101: VDRIVE  
.
110: AGND.  
111: AVCC.  
Address: 0x2A, Reset: 0x00, Name: DIAGNOSTIC_MUX_CH5_6  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[5:3] CH6_DIAG_MUX_CTRL (R/W)  
Channel 6 Diagnostic Mux Control. Select  
±10 V range.  
000: Analog Input pin.  
001: Temperature sensor.  
010: 2.5 V Reference.  
011: ALDO 1.8 V.  
[2:0] CH5_DIAG_MUX_CTRL (R/W)  
Channel 5 Diagnostic Mux Control. Select  
±10 V range.  
000: Analog Input pin.  
001: Temperature sensor.  
010: 2.5 V Reference.  
011: ALDO 1.8 V.  
100: DLDO 1.8 V.  
101: VDRIVE  
110: AGND.  
111: AVCC  
.
100: DLDO 1.8 V.  
101: VDRIVE  
110: AGND.  
111: AVCC  
.
.
.
Table 70. Bit Descriptions for DIAGNOSTIC_MUX_CH5_6  
Bits  
[7:6]  
[5:3]  
Bit Name  
RESERVED  
CH6_DIAG_MUX_CTRL  
Description  
Reserved.  
Reset  
0x0  
0x0  
Access  
R
R/W  
Channel 6 Diagnostic Mux Control. Select 10 V range.  
000: Analog input pin.  
001: Temperature sensor.  
010: 2.5 V reference.  
011: ALDO 1.8 V.  
100: DLDO 1.8 V.  
Rev. 0 | Page 71 of 74  
AD7606C-16  
Data Sheet  
Bits  
Bit Name  
Description  
101: VDRIVE  
Reset  
Access  
.
110: AGND.  
111: AVCC.  
[2:0]  
CH5_DIAG_MUX_CTRL  
Channel 5 Diagnostic Mux Control. Select 10 V range.  
000: Analog input pin.  
001: Temperature sensor.  
010: 2.5 V reference.  
011: ALDO 1.8 V.  
0x0  
R/W  
100: DLDO 1.8 V.  
101: VDRIVE  
.
110: AGND.  
111: AVCC.  
Address: 0x2B, Reset: 0x00, Name: DIAGNOSTIC_MUX_CH7_8  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[5:3] CH8_DIAG_MUX_CTRL (R/W)  
Channel 8 Diagnostic Mux Control. Select  
±10 V range.  
000: Analog Input pin.  
001: Temperature sensor.  
010: 2.5 V Reference.  
011: ALDO 1.8 V.  
[2:0] CH7_DIAG_MUX_CTRL (R/W)  
Channel 7 Diagnostic Mux Control. Select  
±10 V range.  
000: Analog Input pin.  
001: Temperature sensor.  
010: 2.5 V Reference.  
011: ALDO 1.8 V.  
100: DLDO 1.8 V.  
101: VDRIVE  
110: AGND.  
111: AVCC  
.
100: DLDO 1.8 V.  
101: VDRIVE  
110: AGND.  
111: AVCC  
.
.
.
Table 71. Bit Descriptions for DIAGNOSTIC_MUX_CH7_8  
Bits  
[7:6]  
[5:3]  
Bit Name  
RESERVED  
CH8_DIAG_MUX_CTRL  
Description  
Reserved.  
Reset  
0x0  
0x0  
Access  
R
R/W  
Channel 8 Diagnostic Mux Control. Select 10 V range.  
000: Analog input pin.  
001: Temperature sensor.  
010: 2.5 V reference.  
011: ALDO 1.8 V.  
100: DLDO 1.8 V.  
101: VDRIVE  
.
110: AGND.  
111: AVCC.  
[2:0]  
CH7_DIAG_MUX_CTRL  
Channel 7 Diagnostic Mux Control. Select 10 V range.  
000: Analog input pin.  
001: Temperature sensor.  
010: 2.5 V reference.  
011: ALDO 1.8 V.  
0x0  
R/W  
100: DLDO 1.8 V.  
101: VDRIVE  
.
110: AGND.  
111: AVCC.  
Rev. 0 | Page 72 of 74  
Data Sheet  
AD7606C-16  
Address: 0x2C, Reset: 0x00, Name: OPEN_DETECT_QUEUE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] OPEN_DETECT_QUEUE (R/W)  
Open Detect Queue. When set to 1, open  
detect is configured in manual mode. When  
set to >1, open detect operates in automatic  
mode and the value set in this register specifies  
the number of conversions when there is  
no change in output code before the PGA  
common mode is switched.  
Table 72. Bit Descriptions for OPEN_DETECT_QUEUE  
Bits Bit Name Description  
Reset Access  
[7:0] OPEN_DETECT_QUEUE Open Detect Queue. When set to 1, open detect is configured in manual mode. When  
set to >1, open detect operates in automatic mode and the value set in this register  
specifies the number of conversions when there is no change in output code before  
the PGA common mode is switched.  
0x0  
R/W  
Address: 0x2D, Reset: 0x00, Name: FS_CLK_COUNTER  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CLK_FS_COUNTER (R)  
A counter that is incremented at a frequency  
of 16 Meg/64. Reading this register verifies  
the operation and frequency of the FS_CLOCK.  
Table 73. Bit Descriptions for FS_CLK_COUNTER  
Bits Bit Name Description  
[7:0] CLK_FS_COUNTER A counter that is incremented at a frequency of 16 Meg/64. Reading this register verifies  
the operation and frequency of the FS_CLOCK.  
Reset Access  
0x0  
R
Address: 0x2E, Reset: 0x00, Name: OS_CLK_COUNTER  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CLK_OS_COUNTER (R)  
A counter that is incremented at a frequency  
of 12.5 Meg/64. Reading this register verifies  
the operation and frequency of the oversampling  
clock.  
Table 74. Bit Descriptions for OS_CLK_COUNTER  
Bits Bit Name Description  
Reset Access  
[7:0] CLK_OS_COUNTER A counter that is incremented at a frequency of 12.5 Meg/64. Reading this register verifies  
the operation and frequency of the oversampling clock.  
0x0  
R
Address: 0x2F, Reset: 0x31, Name: ID  
7
6
5
4
3
2
1
0
0
0
1
1
0
0
0
1
[7:4] DEVICE_ID (R)  
Generic  
[3:0] SILICON_REVISION (R)  
Silicon Revision.  
0001: AD7606B generic.  
0011: AD7606C-18 generic.  
Table 75. Bit Descriptions for ID  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:4]  
DEVICE_ID  
Generic.  
0x3  
R
0001: AD7606B generic.  
0011: AD7606C-16 generic.  
Silicon Revision.  
[3:0]  
SILICON_REVISION  
0x1  
R
Rev. 0 | Page 73 of 74  
AD7606C-16  
Data Sheet  
OUTLINE DIMENSIONS  
12.20  
12.00 SQ  
11.80  
0.75  
0.60  
0.45  
1.60  
MAX  
64  
49  
1
48  
PIN 1  
10.20  
10.00 SQ  
9.80  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
0.08  
COPLANARITY  
16  
33  
0.15  
0.05  
SEATING  
17  
32  
PLANE  
VIEW A  
0.27  
0.22  
0.17  
0.50  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BCD  
Figure 125. 64-Lead Low Profile Quad Flat Package [LQFP]  
(ST-64-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
AD7606C-16BSTZ  
AD7606C-16BSTZ-RL  
EVAL-AD7606C16FMCZ  
EVAL-SDP-CH1Z  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
Evaluation Board for the AD7606C-16  
Evaluation Controller Board  
ST-64-2  
ST-64-2  
1 Z = RoHS Compliant Part.  
©2021 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D26071-1/21(0)  
Rev. 0 | Page 74 of 74  
 
 

相关型号:

AD7606C-16BSTZ

8-Channel DAS with 16-Bit, 1 MSPS Bipolar Input, Simultaneous Sampling ADC
ADI

AD7606C-16BSTZ-RL

8-Channel DAS with 16-Bit, 1 MSPS Bipolar Input, Simultaneous Sampling ADC
ADI

AD7606C-18

8-Channel DAS with 18-Bit, 1 MSPS Bipolar Input, Simultaneous Sampling ADC
ADI

AD7606C-18BSTZ

8-Channel DAS with 18-Bit, 1 MSPS Bipolar Input, Simultaneous Sampling ADC
ADI

AD7606C-18BSTZ-RL

8-Channel DAS with 18-Bit, 1 MSPS Bipolar Input, Simultaneous Sampling ADC
ADI

AD7607

8-Channel DAS with 18-Bit, Bipolar, Simultaneous Sampling ADC
ADI

AD7607BSTZ

8-Channel DAS with 14-Bit, Bipolar Input, Simultaneous Sampling ADC
ADI

AD7607BSTZ-RL

8-Channel DAS with 14-Bit, Bipolar Input, Simultaneous Sampling ADC
ADI

AD7608

8-Channel DAS with 18-Bit, Bipolar, Simultaneous Sampling ADC
ADI

AD7608BSTZ

8-Channel DAS with 18-Bit, Bipolar, Simultaneous Sampling ADC
ADI

AD7608BSTZ-RL

暂无描述
ADI

AD7609

8-Channel Differential DAS with 18-Bit, Bipolar, Simultaneous Sampling ADC
ADI