AD7885AN [ADI]

LC2MOS 16-Bit, High Speed Sampling ADCs; LC2MOS 16位高速采样ADC
AD7885AN
型号: AD7885AN
厂家: ADI    ADI
描述:

LC2MOS 16-Bit, High Speed Sampling ADCs
LC2MOS 16位高速采样ADC

文件: 总16页 (文件大小:321K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2
LC MOS  
a
16-Bit, High Speed Sampling ADCs  
AD7884/AD7885  
FEATURES  
FUNCTIO NAL BLO CK D IAGRAMS  
Monolithic Construction  
Fast Conversion: 5.3 s  
High Throughput: 166 kSPS  
Low Pow er: 250 m W  
V
V
SS  
±3V  
IN  
F
±3V  
S
AV  
SS  
AV  
DD  
AGNDS AGNDF  
DD  
IN  
R3  
3kΩ  
AD7884  
R2  
3kΩ  
C1  
A1  
±5V  
±5V  
S
F
IN  
APPLICATIONS  
R1  
SW1  
IN  
5kΩ  
Autom atic Test Equipm ent  
Medical Instrum entation  
Industrial Control  
D
O
R4 4kΩ  
R
I
DB15  
DB0  
9-BIT  
ADC  
U
T
P
U
T
9
9
SW2  
LATCH  
V
E
R
S
R5  
4kΩ  
R6  
2kΩ  
Data Acquisition System s  
Robotics  
+
16  
16  
ALU  
V
REF–  
A2  
SW3  
16-BIT  
9
ACCURATE  
DAC  
CS  
RD  
TIMER  
CONTROL  
R7  
2kΩ  
GENERAL D ESCRIP TIO N  
T he AD7884/AD7885 is a 16-bit monolithic analog-to-digital  
converter with internal sample-and-hold and a conversion time  
of 5.3 µs. T he maximum throughput rate is 166 kSPS. It uses a  
two pass flash architecture to achieve this speed. T wo input  
ranges are available: ±5 V and ±3 V. Conversion is initiated by  
the CONVST signal. T he result can be read into a microproces-  
sor using the CS and RD inputs on the device. T he AD7884 has  
a 16-bit parallel reading structure while the AD7885 has a byte  
reading structure. T he conversion result is in 2s complement  
code.  
R8  
2kΩ  
V
V
V
F
V
S
INV  
REF–  
GND  
DGND  
V
REF+  
REF+  
CONVST BUSY  
±3V  
AGNDS AGNDF  
IN  
V
DD  
AV  
AV  
SS  
SS  
DD  
R3 3kΩ  
R2  
AD7885  
3kΩ  
C1  
A1  
±5V  
±5V  
S
F
IN  
IN  
R1  
5kΩ  
SW1  
D
O
T he AD7884/AD7885 has its own internal oscillator which con-  
trols conversion. It runs from ±5 V supplies and needs a VREF+  
of +3 V.  
R4 4kΩ  
R
I
DB7  
DB0  
U
T
P
U
T
9-BIT  
ADC  
9
9
SW2  
LATCH  
V
E
R
S
R5  
4kΩ  
R6  
2kΩ  
+
8
16  
ALU  
V
REF–  
T he AD7884 is available in a 40-pin plastic DIP package and in  
a 44-pin PLCC package.  
A2  
SW3  
16-BIT  
9
T he AD7885 is available in a 28-pin plastic DIP package and  
the AD7885A is available in a 44-pin PLCC package.  
ACCURATE  
DAC  
CS  
RD  
CONTROL  
TIMER  
HBEN  
R7  
2kΩ  
R8  
2kΩ  
V
F
V
S
V
INV  
V
REF–  
DGND  
GND  
REF+  
REF+  
CONVST BUSY  
REV. C  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
© Analog Devices, Inc., 1995  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700 Fax: 617/ 326-8703  
AD7884/AD7885/AD7885ASPECIFICATIONS (V = +5 V ؎ 5%, V = –5 V ؎ 5%, V +S  
DD  
SS  
REF  
= +3 V; AGND = DGND = GND = 0 V; fSAMPLE = 166 kHz. All specifications TMIN to T , unless otherwise noted.)  
MAX  
A
B
P aram eter  
Version1, 2, 3 Versions1, 2, 3 Units  
Test Conditions/Com m ents  
DC ACCURACY  
Resolution  
16  
16  
Bits  
Minimum Resolution for Which  
No Missing Codes Are Guaranteed  
Integral Nonlinearity  
Positive Gain Error  
Positive Gain Error  
Gain T C4  
Bipolar Zero Error  
Bipolar Zero Error  
Bipolar Zero T C4  
Negative Gain Error  
Negative Gain Error  
Offset T C4  
16  
16  
Bits  
% FSR max  
% FSR typ  
% FSR max  
ppm FSR/°C typ  
% FSR typ  
% FSR max  
ppm FSR/°C typ  
% FSR typ  
±0.0075  
±0.03  
±0.05  
±2  
±0.05  
±0.15  
±8  
±0.03  
±0.05  
±2  
T ypically 0.003% FSR  
AD7885AN/BN: 0.1% typ  
AD7885BN: 0.2% max  
±0.03  
±2  
±0.05  
±8  
±0.03  
AD7885AN/BN: 0.1% typ  
AD7885BN: 0.2% max  
% FSR max  
ppm FSR/°C typ  
µV rms typ  
±2  
120  
Noise  
120  
78 µV rms typical in ±3 V Input Range  
DYNAMIC PERFORMANCE  
Signal to (Noise + Distortion) Ratio  
84  
82  
–88  
–84  
–88  
84  
82  
–88  
–84  
–88  
dB min  
dB typ  
dB max  
dB typ  
dB max  
Input Signal: ±5 V, 1 kHz Sine Wave, Typically 86 dB  
Input Signal: ±5 V, 12 kHz Sine Wave  
Input Signal: ±5 V, 1 kHz Sine Wave  
Input Signal: ±5 V, 12 kHz Sine Wave  
Input Signal: ±5 V, 1 kHz Sine Wave  
T otal Harmonic Distortion  
Peak Harmonic or Spurious Noise  
Intermodulation Distortion (IMD)  
2nd Order T erms  
–84  
–84  
–84  
–84  
dB typ  
dB typ  
fA = 11.5 kHz, fB = 12 kHz, fSAMPLE = 166 kHz  
fA = 11.5 kHz, fB = 12 kHz, fSAMPLE = 166 kHz  
3rd Order T erms  
CONVERSION T IME  
Conversion T ime  
Acquisition T ime  
T hroughput Rate  
5.3  
2.5  
166  
5.3  
2.5  
166  
µs max  
µs max  
kSPS max  
T here is an overlap between conversion and acquisition.  
ANALOG INPUT  
Voltage Range  
±5  
±3  
±4  
±5  
±3  
±4  
Volts  
Volts  
mA max  
Input Current  
REFERENCE INPUT  
Reference Input Current  
±5  
±5  
mA max  
VREF + S = +3 V  
LOGIC INPUT S  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IIN  
2.4  
0.8  
±10  
10  
2.4  
0.8  
±10  
10  
V min  
VDD = 5 V ± 5%  
VDD = 5 V ± 5%  
Input Level = 0 V to VDD  
V max  
µA max  
pF max  
4
Input Capacitance, CIN  
LOGIC OUT PUT S  
Output High Voltage, VOH  
Output Low Voltage, VOL  
DB15–DB0  
4.0  
0.4  
4.0  
0.4  
V min  
V max  
ISOURCE = 40 µA  
ISINK = 1.6 mA  
Floating-State Leakage Current  
10  
10  
15  
µA max  
pF max  
Floating-State Output Capacitance4 15  
POWER REQUIREMENT S  
VDD  
VSS  
IDD  
ISS  
+5  
–5  
35  
30  
+5  
–5  
35  
30  
V nom  
V nom  
mA max  
mA max  
±5% for Specified Performance  
±5% for Specified Performance  
T ypically 25 mA  
T ypically 25 mA  
Power Supply Rejection Ratio  
Gain/VDD  
86  
86  
dB typ  
Gain/VSS  
86  
86  
dB typ  
Power Dissipation  
325  
325  
mW max  
T ypically 250 mW  
NOT ES  
1T emperature ranges are as follows: A, B Versions: –40 °C to +85°C.  
2VIN = ±5 V.  
3T he AD7885AAP has the same specs as the AD7884AP. T he AD7885ABP has the same specs as the AD7884BP.  
4Sample tested to ensure compliance.  
Specifications subject to change without notice.  
–2–  
REV. C  
AD7884/AD7885  
1, 2  
(V = +5 V ؎ 5%, V = –5 V ؎ 5%, AGND = DGND = GND = 0 V. See Figures 2, 3, 4 and 5.)  
TIMING CHARACTERISTICS  
DD  
SS  
Lim it at +25؇C  
Lim it at TMIN, TMAX  
(A, B Versions)  
P aram eter  
(All Versions)  
Units  
Conditions/Com m ents  
t1  
t2  
t3  
t4  
t5  
50  
100  
0
60  
0
50  
100  
0
60  
0
ns min  
ns max  
ns min  
ns min  
ns min  
ns max  
ns min  
ns max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns max  
CONVST Pulse Width  
CONVST to BUSY Low Delay  
CS to RD Setup T ime  
RD Pulse Width  
CS to RD Hold T ime  
2
t63  
57  
5
57  
5
Data Access T ime after RD  
Bus Relinquish T ime after RD  
t7  
50  
40  
10  
25  
60  
60  
55  
55  
50  
40  
80  
25  
60  
60  
70  
70  
t8  
t9  
New Data Valid before Rising Edge of BUSY  
HBEN to RD Setup T ime  
HBEN to RD Hold T ime  
HBEN Low Pulse Duration  
HBEN High Pulse Duration  
t10  
t11  
t12  
t13  
t14  
Propagation Delay from HBEN Falling to Data Valid  
Propagation Delay from HBEN Rising to Data Valid  
NOT ES  
1T iming specifications in bold print are 100% production tested. All other times are sample tested at +5 °C to ensure compliance. All input signals are specified  
with tr = tf = 5 ns (10% to 90% of 5 V) and timed from a voltage level of 1.6 V.  
2t6 is measured with the load circuit of Figure 1 and defined as the time required for an output to cross 0.8 V or 2.4 V.  
3t7 is derived from the measured time taken by the data outputs to change 0.5 V when loaded with the circuit of Figure 1. T he measured number is then extrap-  
olated back to remove the effects of charging or discharging the 100 pF capacitor. T his means that the time, t 7, quoted in the T iming Characteristics is the true  
bus relinquish time of the part and as such is independent of external bus loading capacitances.  
Specifications subject to change without notice.  
O RD ERING GUID E  
Linearity  
Tem perature  
Range  
1.6mA  
I
OL  
Error  
(% FSR)  
SNR  
(dB)  
P ackage  
O ption2  
Model1  
AD7884AN –40°C to +85°C  
AD7884BN –40°C to +85°C ±0.0075  
AD7884AP –40°C to +85°C  
AD7884BP –40°C to +85°C ±0.0075  
AD7885AN –40°C to +85°C  
AD7885BN –40°C to +85°C ±0.0075  
AD7885AAP –40°C to +85°C  
84  
84  
84  
84  
84  
84  
84  
84  
N-40A  
N-40A  
P-44A  
P-44A  
N-28A  
N-28A  
P-44A  
P-44A  
TO OUTPUT PIN  
+2.1V  
C
L
100pF  
AD7885ABP –40°C to +85°C ±0.0075  
200µA  
I
OH  
NOT ES  
1Analog Devices reserves the right to ship cerdip (Q) packages in lieu of plastic  
DIP (N) packages.  
2N = Plastic DIP; P = Plastic Leaded Chip Carrier (PLCC).  
Figure 1. Load Circuit for Access Tim e and Bus Relinquish  
Tim e  
REV. C  
–3–  
AD7884/AD7885  
t
1
t1  
CONVST  
CONVST  
CS  
t
2
t5  
t3  
t
CONVERT  
t 4  
RD  
BUSY  
DATA  
t2  
t
8
tCONVERT  
BUSY  
OLD DATA VALID  
NEW DATA VALID  
t7  
Hi-Z  
t6  
Hi-Z  
DATA  
VALID  
DATA  
Figure 3. AD7884 Tim ing Diagram , with CS and RD  
Perm anently Low  
Figure 2. AD7884 Tim ing Diagram , Using CS and RD  
t1  
CONVST  
t9  
t10  
HBEN  
CS  
RD  
t3  
t5  
t 4  
t2  
tCONVERT  
BUSY  
DATA  
t7  
t6  
Hi-Z  
Hi-Z  
Hi-Z  
DATA  
VALID  
DATA  
VALID  
DB0–DB7  
DB8–DB15  
Figure 4. AD7885 Tim ing Diagram , Using CS and RD  
t1  
CONVST  
HBEN  
t12  
t11  
t2  
t CONVERT  
BUSY  
DATA  
t8  
t14  
t13  
NEW DATA VALID  
(DB0 – DB7)  
OLD DATA VALID  
(DB8 – DB15)  
NEW DATA VALID  
(DB8 – DB15)  
NEW DATA VALID  
(DB0 – DB7)  
NEW DATA VALID  
(DB8 – DB15)  
Figure 5. AD7885 Tim ing Diagram , with CS and RD Perm anently Low  
–4–  
REV. C  
AD7884/AD7885  
ABSO LUTE MAXIMUM RATINGS 1  
Operating T emperature Range  
VDD to AGND . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
AVDD to AGND . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
VSS to AGND . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V to –7 V  
AVSS to AGND . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to –7 V  
AGND Pins to DGND . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Commercial Plastic (A, B Versions) . . . . . –40°C to +85°C  
Industrial Cerdip (A, B Versions) . . . . . . . . –40°C to +85°C  
Extended Cerdip (T Versions) . . . . . . . . –55°C to +125°C  
Storage T emperature Range . . . . . . . . . . . –65°C to +150°C  
Lead T emperature (Soldering, 10 secs) . . . . . . . . . . . +300°C  
Power Dissipation (Any Package) to +75°C . . . . . . . 1000 mW  
Derates above +75°C by . . . . . . . . . . . . . . . . . . . . 10 mW/°C  
1Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. T his is a stress rating only and functional  
operation of the device at these or any other conditions above those listed in the  
operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2If the AD7884/AD7885 is being powered from separate analog and digital supplies,  
AVSS should always come up before VSS. See Figure 12 for a recommended  
protection circuit using Schottky diodes.  
2
AVDD to VD2D . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
AVSS to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V to –7 V  
GND to DGND . . . . . . . . . . . . . . . . . 0.3 V to VDD + 0.3 V  
VINS, VINF to AGND . . . . . . . . . . VSS –0.3 V to VDD + 0.3 V  
VREF+ to AGND . . . . . . . . . . . . . . . VSS –0.3 V to VDD + 0.3 V  
VREF– to AGND . . . . . . . . . . . . . . . VSS –0.3 V to VDD + 0.3 V  
VINV to AGND . . . . . . . . . . . . . . . VSS –0.3 V to VDD + 0.3 V  
Digital Inputs to DGND . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Digital Outputs to DGND . . . . . . . . . . –0.3 V to VDD + 0.3 V  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although these devices feature proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
P IN CO NFIGURATIO NS  
D IP  
P LCC  
V
INV  
1
V
V
V
1
28  
27  
26  
25  
24  
23  
22  
40  
39  
V
S
F
REF–  
INV  
REF+  
6
5
4
3
2
1
44 43 42 41 40  
V
V
2
3
2
3
REF–  
±3V  
S
F
REF+  
IN  
S
REF+  
7
8
39 DB12  
DB11  
±5V  
F
±3V  
±3V  
±5V  
±5V  
S
F
S
F
±5V  
38  
37  
V
REF+  
DB15  
DB14  
IN  
IN  
IN  
IN  
IN  
38  
AGNDS  
AGNDF  
DB7  
DB6  
DB5  
DB4  
4
5
±5V  
F
4
5
37 DB10  
36 DB9  
9
AV  
DD  
10  
36 DB13  
35 DB12  
AGNDS  
AGNDF  
IN  
IN  
AV  
35  
DB8  
34 NC  
SS 11  
AD7884  
TOP VIEW  
6
6
12  
13  
14  
15  
16  
17  
NC  
(Not to Scale)  
AGNDS  
AGNDF  
7
34  
DB11  
7
AD7885  
TOP VIEW  
(Not to Scale)  
AV  
DD  
GND  
DGND  
33  
32  
31  
30  
V
AD7884  
TOP VIEW  
(Not to Scale)  
GND  
DD  
8
33 DB10  
8
21 DGND  
20  
AV  
SS  
DB7  
DB6  
V
SS  
AV  
DD  
9
32  
GND  
9
DB9  
DB3  
V
SS  
10  
V
AV  
SS  
10  
11  
12  
13  
14  
V
31 DB8  
19 DB2  
18 DB1  
29 DB5  
SS  
DD  
V
11  
12  
13  
14  
15  
16  
17  
18  
19  
30 DGND  
GND  
GND  
18 19 20 21 22 23 24 25 26 27 28  
DD  
V
29  
CONVST  
CS  
17 DB0  
16  
DD  
NC = NO CONNECT  
V
28 DB7  
27 DB6  
BUSY  
SS  
V
15 HBEN  
RD  
SS  
DB5  
V
26  
DD  
6
5
4
3
2
1
44 43 42 41 40  
25 DB4  
CONVST  
CS  
DB3  
DB2  
DB1  
24  
23  
22  
±5V  
F
DB7  
DB6  
NC  
7
8
39  
38  
37  
36  
35  
34  
33  
IN  
AGNDS  
AGNDF  
RD  
9
V
SS  
AV  
DD  
DB5  
DB4  
NC  
10  
11  
12  
13  
14  
15  
AV  
SS  
AD7885A  
TOP VIEW  
20  
21 DB0  
BUSY  
NC  
GND  
GND  
(Not to Scale)  
DGND  
32  
V
DD  
V
31 DB3  
30 DB2  
29 DB1  
SS  
V
SS 16  
DD 17  
V
18 19 20 21 22 23 24 25 26 27 28  
NC = NO CONNECT  
REV. C  
–5–  
AD7884/AD7885  
P IN FUNCTIO N D ESCRIP TIO N  
D escription  
AD 7884  
AD 7885  
AD 7885A  
VINV  
VINV  
VINV  
T his pin is connected to the inverting terminal of an op amp, as in Figure 6, and allows  
the inversion of the supplied +3 V reference.  
VREF–  
VREF–  
VREF–  
T his is the negative reference input, and it can be obtained by using an external amplifier  
to invert the positive reference input. In this case, the amplifier output is connected to  
VREF–. See Figure 6.  
±3 VIN  
S
_
_
±3 VIN  
±3 VIN  
S
F
T his is the analog input sense pin for the ±3 volt analog input range on the AD7884 and  
AD7885A.  
±3 VINF  
T his is the analog input force pin for the ±3 volt analog input range on the AD7884 and  
AD7885A. When using this input range, the ±5 VINF and ±5 VINS pins should be tied to  
AGND.  
±3 VIN  
T his is the analog input pin for the ±3 volt analog input range on the AD7885. When us-  
ing this input range, the ±5 VINF and ±5 VINS pins should be tied to AGND.  
±5 VINS  
±5 VINF  
±5 VIN  
±5 VIN  
S
F
±5 VIN  
±5 VIN  
S
F
T his is the analog input sense pin for the ±5 volt analog input range on both the AD7884,  
AD7885 and AD7885A.  
T his is the analog input force pin for the ±5 volt analog input range on both the AD7884,  
AD7885 and AD7885A. When using this input range, the ±3 VINF and ±3 VINS pins  
should be tied to AGND.  
AGNDS  
AGNDF  
AVDD  
AVSS  
AGNDS  
AGNDF  
AVDD  
AVSS  
AGNDS  
AGNDF  
AVDD  
AVSS  
T his is the ground return sense pin for the 9-bit ADC and the on-chip residue amplifier.  
T his is the ground return force pin for the 9-bit ADC and the on-chip residue amplifier.  
Positive analog power rail for the sample-and-hold amplifier and the residue amplifier.  
Negative analog power rail for the sample-and-hold amplifier and the residue amplifier.  
T his is the ground return for sample-and-hold section.  
GND  
VSS  
GND  
VSS  
GND  
VSS  
Negative supply for the 9-bit ADC.  
VDD  
VDD  
VDD  
Positive supply for the 9-bit ADC and all device logic.  
CONVST  
CS  
CONVST  
CS  
CONVST  
CS  
T his asynchronous control input starts conversion.  
Chip Select control input.  
RD  
RD  
RD  
Read control input. T his is used in conjunction with CS to read the conversion result  
from the device output latch.  
HBEN  
BUSY  
HBEN  
BUSY  
High Byte Enable. Active high control input for the AD7885. It selects either the high or  
the low byte of the conversion for reading.  
BUSY  
Busy output. T he Busy output goes low when conversion begins and stays low until it is  
completed, at which time it goes high.  
DB0–DB15  
Sixteen-bit parallel data word output on the AD7884.  
Eight-bit parallel data byte output on the AD7885.  
Ground return for all device logic.  
DB0–DB7 DB0–DB7  
DGND DGND  
DGND  
V
REF+F  
VREF+  
VREF+  
F
S
VREF+  
VREF+  
F
S
Reference force input.  
VREF+  
S
Reference sense input. T he device operates from a +3 V reference.  
–6–  
REV. C  
AD7884/AD7885  
TERMINO LO GY  
Integr al Nonlinear ity  
T his is the maximum deviation from a straight line passing  
through the endpoints of the ADC transfer function.  
T he AD7884/AD7885 is tested using the CCIFF standard  
where two input frequencies near the top end of the input band-  
width are used. In this case, the second and third order terms  
are of different significance. T he second order terms are usually  
distanced in frequency from the original sine waves while the  
third order terms are usually at a frequency close to the input  
frequencies. As a result, the second and third order terms are  
specified separately. T he calculation of the intermodulation dis-  
tortion is as per the T HD specification where it is the ratio of  
the rms sum of the individual distortion products to the rms am-  
plitude of the fundamental expressed in dBs.  
D iffer ential Nonlinear ity  
T his is the difference between the measured and the ideal 1 LSB  
change between any two adjacent codes in the ADC.  
Bipolar Zer o Er r or  
T his is the deviation of the midscale transition (all 0s to all 1s)  
from the ideal (AGND).  
P ower Supply Rejection Ratio  
P ositive Gain Er r or  
T his is the ratio, in dBs, of the change in positive gain error to  
the change in VDD or VSS. It is a dc measurement.  
T his is the deviation of the last code transition (01 . . . 110 to  
01 . . . 111) from the ideal (+VREF+S – 1 LSB), after Bipolar  
Zero Error has been adjusted out.  
O P ERATIO NAL D IAGRAM  
Negative Gain Er r or  
An operational diagram for the AD7884/AD7885 is shown in  
Figure 6. It is set up for an analog input range of ±5 V. If a  
±3 V input range is required, A1 should drive ±3 VINS and  
±3 VINF with ±5 VINS, ±5 VINF being tied to system AGND.  
T his is the deviation of the first code transition (10 . . . 000 to  
10 . . . 001) from the ideal (–VREF+S + 1 LSB), after Bipolar  
Zero Error has been adjusted out.  
Signal to (Noise + D istor tion) Ratio  
+5V  
–5V  
T his is the measured ratio of signal to (noise + distortion) at the  
output of the A/D converter. T he signal is the rms amplitude of  
the fundamental. Noise is the rms sum of all nonfundamental  
signals up to half the sampling frequency (fS/2), excluding dc.  
T he ratio is dependent upon the number of quantization levels  
in the digitization process; the more levels, the smaller the quan-  
tization noise. T he theoretical signal to (noise + distortion) ratio  
for an ideal N-bit converter with a sine wave input is given by:  
AV  
V
AV  
DD SS  
V
DD  
SS  
±5V  
S
IN  
A1  
AD817  
AD711  
±5V  
F
IN  
V
IN  
±3V  
±3V  
S
F
IN  
AD7884  
AD7885  
DATA  
OUTPUTS  
IN  
Signal to (Noise + Distortion) = (6.02N + 1.76) dB  
AGNDS  
AGNDF  
T hus for an ideal 16-bit converter, this is 98 dB.  
AD817  
Total H ar m onic D istor tion  
A2  
T otal harmonic distortion (T HD) is the ratio of the rms sum of  
harmonics to the fundamental. For the AD7884/AD7885, it is  
defined as:  
CONTROL  
INPUTS  
V
= +5V  
2
DD  
V
V
S
REF+  
AD845, AD817 OR  
EQUIVALENT  
A3  
V22 +V32 +V42 +V52 +V62  
6
F
REF+  
INV  
THD (dB) = 20 log  
AD780  
4
10µF  
V1  
V
8
AD845, AD817 OR  
EQUIVALENT  
A4  
where V1 is the rms amplitude of the fundamental and V2, V3,  
V4, V5 and V6 are the rms amplitudes of the second through the  
sixth harmonics.  
V
REF–  
GND DGND  
P eak H ar m onic or Spur ious Noise  
Peak harmonic or spurious noise is defined as the ratio of the  
rms value of the next largest component in the ADC output  
spectrum (up to fS/2 and excluding dc) to the rms value of the  
fundamental. Normally, the value of this specification is deter-  
mined by the largest harmonic in the spectrum, but for parts  
where the harmonics are buried in the noise floor, it will be a  
noise peak.  
NOTE: POWER SUPPLY DECOUPLING NOT SHOWN  
Figure 6. AD7884/AD7885 Operational Diagram  
T he chosen input buffer amplifier (A1) should have low noise  
and distortion and fast settling time for high bandwidth applica-  
tions. Both the AD711 and the AD845 are suitable amplifiers.  
A2 is the force, sense amplifier for AGND. T he AGNDS pin  
should be at zero potential. T herefore, the amplifier must have a  
low input offset voltage and good noise performance. It must  
also have the ability to deal with fast current transients on the  
AGNDS pin. T he AD817 has the required performance and is  
the recommended amplifier.  
Inter m odulation D istor tion  
With inputs consisting of sine waves at two frequencies, fa and  
fb, any active device with nonlinearities will create distortion  
products at sum and difference frequencies of mfa ± nfb where  
m, n = 0, 1, 2, 3, etc. Intermodulation terms are those for which  
neither m or n are equal to zero. For example, the second order  
terms include (fa + fb) and (fa – fb), while the third order terms  
include (2fa + fb), (2fa – fb), (fa + 2fb) and (fa – 2fb).  
If AGNDS and AGNDF are simply tied together to Star  
Ground instead of buffering, the SNR and T HD are not signifi-  
cantly degraded. However, dc specifications like INL, Bipolar  
Zero and Gain Error will be degraded.  
REV. C  
–7–  
AD7884/AD7885  
T he required +3 V reference is derived from the AD780 and  
buffered by the high-speed amplifier A3 (AD845, AD817 or  
equivalent). A4 is a unity gain inverter which provides the –3 V  
negative reference. T he gain setting resistors are on-chip and  
are factory trimmed to ensure precise tracking of VREF+. Figure  
6 shows A3 and A4 as AD845s or AD817s. These have the ability  
to respond to the rapidly changing reference input impedance.  
A/D Conver ter Section  
T he AD7884/AD7885 uses a two-pass flash technique in order  
to achieve the required speed and resolution. When the CONVST  
control input goes from low to high, the sample-and-hold ampli-  
fier goes into the hold mode and a 0 V to –3 V signal is pre-  
sented to the input of the 9-bit ADC. T he first phase of  
conversion generates the 9 MSBs of the 16-bit result and trans-  
fers these to the latch and ALU combination. T hey are also fed  
back to the 9 MSBs of the 16-bit DAC. T he 7 LSBs of the  
DAC are permanently loaded with 0s. T he DAC output is sub-  
tracted from the analog input with the result being amplified  
and offset in the Residue Amplifier Section. T he signal at the  
output of A2 is proportional to the error between the first phase  
result and the actual analog input signal and is digitized in the  
second conversion phase. T his second phase begins when the  
16-bit DAC and the Residue Error Amplifier have both settled.  
First, SW2 is turned off and SW3 is turned on. T hen, the SHA  
section of the Residue Amplifier goes into hold mode. Next  
SW2 is turned off and SW3 is turned on. T he 9-bit result is  
transferred to the output latch and ALU. An error correction al-  
gorithm now compensates for the offset inserted in the Residue  
Amplifier Section and errors introduced in the first pass conver-  
sion and combines both results to give the 16-bit answer.  
CIRCUIT D ESCRIP TIO N  
Analog Input Section  
T he analog input section of the AD7884/AD7885 is shown in  
Figure 7. It contains both the input signal conditioning and  
sample-and-hold amplifier. Note that the analog input is truly  
benign. When SW1a goes open circuit to put the SHA into the  
hold mode, SW1b is closed. T his means that the input resis-  
tors, R1 and R2 are always connected to either virtual ground  
or true ground.  
R3 3kΩ  
C1  
±3V  
F
R1 3kΩ  
R2 5kΩ  
IN  
TO  
R4 4kΩ  
9-BIT  
ADC  
A1  
SW1a  
±3V  
±5V  
±5V  
S
F
S
IN  
IN  
IN  
R5 4kΩ  
±3V SIGNAL  
FROM INPUT  
SHA  
R4  
4kΩ  
0 TO –3V  
SW2  
9-BIT  
ADC  
R6 2kΩ  
9
9
LATCH  
+
ALU  
R5  
4kΩ  
SW1b  
R6  
2kΩ  
16  
V
REF–  
TO RESIDUE  
AMPLIFIER A2  
V
REF–  
SW3  
A2  
Figure 7. AD7884/AD7885 Analog Input Section  
RESIDUE AMP  
+ SHA  
When the ±3 VINS and ±3 VINF inputs are tied to 0 V, the in-  
put section has a gain of –0.6 and transforms an input signal  
of ±5 volts to the required ±3 volts. When the ±5 VINS and  
±5 VINF inputs are grounded, the input section has a gain of  
–1 and so the analog input range is now ±3 volts. Resistors R4  
and R5, at the amplifier output, further condition the ±3 volts  
signal to be 0 to –3 volts. T his is the required input for the 9-bit  
A/D converter section.  
16-BIT  
9
ACCURATE  
DAC  
+3V  
–3V  
R7  
2kΩ  
R8  
2kΩ  
With SW1a closed, the output of A1 follows the input (the  
sample-and-hold is in the track mode). On the rising edge of  
the CONVST pulse, SW1a goes open circuit, and capacitor C1  
holds the voltage on the output of A1. T he sample-and-  
hold is now in the hold mode. T he aperture delay time for the  
sample-and-hold is nominally 50 ns.  
V
F
V
S
V
REF–  
V
REF+  
REF+  
INV  
Figure 8. A/D Converter Section  
–8–  
REV. C  
AD7884/AD7885  
Tim ing and Contr ol Section  
±5V  
S
IN  
Figure 9 shows the timing and control sequence for the  
AD7884/AD7885. When the part receives a CONVST pulse,  
the conversion begins. T he input sample-and-hold goes into the  
hold mode 50 ns after the rising edge of CONVST and BUSY  
goes low. T his is the first phase of conversion and takes 3.35 µs  
to complete. T he second phase of conversion begins when SW2  
is turned off and SW3 turned on. T he Residue Amplifier and  
SHA section (A2 in Figure 8) goes into hold mode at this point  
and allows the input sample-and-hold to go back into sample  
mode. T hus, while the second phase of conversion is ongoing,  
the input sample-and-hold is also acquiring the input signal for  
the next conversion. T his overlap between conversion and ac-  
quisition allows throughput rates of 166 kSPS to be achieved.  
±5V  
F
A1  
IN  
V
INV  
±3V  
±3V  
S
F
IN  
IN  
Figure 10. ±5 V Input Range Connection  
±5V  
±5V  
S
F
IN  
IN  
CONVST  
SECOND  
PHASE  
FIRST PHASE  
±3V  
±3V  
S
F
3.5µs  
IN  
IN  
1.8µs  
BUSY  
TACQ  
2.5µs  
INPUT HOLD  
A1  
V
SHA  
SAMPLE  
INV  
FIRST PHASE OF CONVERSION  
1ST 9-BIT CONVERSION  
DAC SETTLING TIME  
RESIDUE AMPLIFIER  
SETTLING TIME  
SECOND PHASE OF CONVERSION  
2ND 9-BIT CONVERSION  
ERROR CORRECTION  
Figure 11. ±3 V Input Range Connections  
OUTPUT LATCH UPDATE  
T he critical performance specification for a reference in a 16-bit  
application is noise. T he reference pk-pk noise should be insig-  
nificant in comparison to the ADC noise. T he AD7884/  
AD7885 has a typical rms noise of 120 µV. For example a rea-  
sonable target would be to keep the total rms noise less than  
125 µV. T o do this the reference noise needs to be less than  
35 µV rms. In the 100 kHz band, the AD780 noise is less than  
30 µV rms, making it a very suitable reference.  
Figure 9. Tim ing and Control Sequence  
USING TH E AD 7884/AD 7885 ANALO G INP UT RANGES  
T he AD7884/AD7885 can be set up to have either a ±3 volts  
analog input range or a ±5 volts analog input range. Figures 10  
and 11 show the necessary corrections for each of these. T he  
output code is 2s complement and the ideal code table for both  
input ranges is shown in T able I.  
T he buffer amplifier used to drive the device VREF+ should have  
low enough noise performance so as not to affect the overall  
system noise requirement. T he AD845 and AD817 achieve  
this.  
Refer ence Consider ations  
T he AD7884/AD7885 operates from a ±3 volt reference. T his  
can be derived simply using the AD780 as shown in Figure 6.  
Table I. Ideal O utput Code Table for the AD 7884/AD 7885  
Analog Input  
؎3 V Range3  
D igital O utput  
In Term s of FSR2  
؎5 V Range4  
Code Transitionl  
+FSR/2 – 1 LSB  
+FSR/2 – 2 LSBs  
+FSR/2 – 3 LSBs  
2.999908  
2.999817  
2.999726  
4.999847  
4.999695  
4.999543  
011 . . . 111 to 111 . . . 110  
011 . . . 110 to 011 . . . 101  
011 . . . 101 to 011 . . . 100  
AGND + 1 LSB  
AGND  
AGND – 1 LSB  
0.000092  
0.000000  
–0.000092  
0.000153  
0.000000  
–0.000153  
000 . . . 001 to 000 . . . 000  
000 . . . 000 to 111 . . . 111  
111 . . . 111 to 111 . . . 110  
–(FSR/2 – 3 LSBs)  
–(FSR/2 – 2 LSBs)  
–(FSR/2 – 1 LSB)  
–2.999726  
–2.999817  
–2.999908  
–4.999543  
–4.999695  
–4.999847  
100 . . . 011 to 100 . . . 010  
100 . . . 010 to 100 . . . 001  
100 . . . 001 to 100 . . . 000  
NOT ES  
1T his table applies for VREF+S = +3 V.  
2FSR (Full-Scale Range) is 6 volts for the ±3 V input range and 10 volts for the ±5 V input range.  
31 LSB on the ±3 V range is FSR/216 and is equal to 91.5 µV.  
41 LSB on the ±5 V range is FSR/216 and is equal to 152.6 µV.  
REV. C  
–9–  
AD7884/AD7885  
D ecoupling and Gr ounding  
AD 7884/AD 7885 P ERFO RMANCE  
T he AD7884 and AD7885A have one AVDD pin and two VDD  
pins. T hey also have one AVSS pin and three VSS pins. T he  
AD7885 has one AVDD pin, one VDD pin, one AVSS pin and one  
VSS pin. Figure 6 shows how a common +5 V supply should be  
used for the positive supply pins and a common –5 V supply for  
the negative supply pins.  
Linear ity  
T he linearity of the AD7884/AD7885 is determined by the  
on-chip 16-bit D/A converter. T his is a segmented DAC which  
is laser trimmed for 16-bit DNL performance to ensure that  
there are no missing codes in the ADC transfer function. Figure  
13 shows a typical INL plot for the AD7884/AD7885.  
For decoupling purposes, the critical pins on both devices are  
the AVDD and AVSS pins. Each of these should be decoupled to  
system AGND with 10 µF tantalum and 0.1 µF ceramic capaci-  
tors right at the pins. With the VDD and VSS pins, it is sufficient  
to decouple each of these with ceramic 1 µF capacitors.  
2.0  
V
V
= +5V  
= –5V  
= +25°C  
DD  
SS  
1.5  
1.0  
0.5  
0
T
A
AGNDS, AGNDF are the ground return points for the on-chip  
9-bit ADC. T hey should be driven by a buffer amplifier as  
shown in Figure 6. If they are tied directly together and then  
to ground, there will he a marginal degradation in linearity  
performance.  
0
16384  
32768  
49152  
65535  
OUTPUT CODE  
T he GND pin is the analog ground return for the on-chip linear  
circuitry. It should he connected to system analog ground.  
Figure 13. AD7884/AD7885 Typical Linearity Perform ance  
Noise  
T he DGND pin is the ground return for the on-chip digital  
circuitry. It should be connected to the ground terminal of the  
VDD and VSS supplies. If a common analog supply is used for  
AVDD and VDD then DGND should be connected to the com-  
mon ground point.  
In an A/D converter, noise exhibits itself as code uncertainty in  
dc applications and as the noise floor (in an FFT , for example)  
in ac applications.  
In a sampling A/D converter like the AD7884/AD7885, all in-  
formation about the analog input appears in the baseband from  
dc to 1/2 the sampling frequency. An antialiasing filter will re-  
move unwanted signals above fS/2 in the input signal but the  
converter wideband noise will alias into the baseband. In the  
AD7884/AD7885, this noise is made up of sample-and-hold  
noise and A/D converter noise. T he sample-and-hold section  
contributes 51 µV rms and the ADC section contributes 59 µV  
rms. T hese add up to a total rms noise of 78 µV. T his is the in-  
put referred noise in the ±3 V analog input range. When operat-  
ing in the ±5 V input range, the input gain is reduced to –0.6.  
T his means that the input referred noise is now increased by a  
factor of 1.66 to 120 µV rms.  
P ower Supply Sequencing  
AVDD and VDD are connected to a common substrate and there  
is typically 17 resistance between them. If they are powered  
by separate +5 V supplies, then these should come up simulta-  
neously. Otherwise, the one that comes up first will have to  
drive +5 V into a 17 load for a short period of time. However,  
the standard short-circuit protection on regulators like the 7800  
series will ensure that there is no possibility of damage to the  
driving device.  
AVSS should always come up either before or at the same time  
as VSS. If this cannot be guaranteed, Schottky diodes should be  
used to ensure that VSS never exceeds AVSS by more than 0.3 V.  
Arranging the power supplies as in Figure 6 and using the recom-  
mended decoupling ensures that there are no power supply  
sequencing issues as well as giving the specified noise performance.  
Figure 14 shows a histogram plot for 5000 conversions of a dc  
input using the AD7884/AD7885 in the ±5 V input range. T he  
analog input was set as close as possible to the center of a code  
transition. All codes other than the center code are due to the  
ADC noise. In this case, the spread is six codes.  
+5V  
+5V  
–5V  
–5V  
HP5082-2810  
OR  
3000  
2000  
1000  
0
EQUIVALENT  
AV  
V
AV  
V
DD  
DD  
SS  
SS  
AD7884/AD7885  
Figure 12. Schottky Diodes Used to Protect Against  
Incorrect Power Supply Sequencing  
(X – 2) (X – 1)  
(X)  
(X + 1) (X + 2) (X + 3)  
CODE  
Figure 14. Histogram of 5000 Conversions of a DC Input  
–10–  
REV. C  
AD7884/AD7885  
16  
If the noise in the converter is too high for an application, it can  
be reduced by oversampling and digital filtering. T his involves  
sampling the input at higher than the required word rate and  
then averaging to arrive at the final result. T he very fast conver-  
sion time of the AD7884/AD7885 makes it very suitable for  
oversampling. For example, if the required input bandwidth is  
40 kHz, the AD7884/AD7885 could be oversampled by a factor  
of 2. T his yields a 3 dB improvement in the effective SNR per-  
formance. T he noise performance in the ±5 volt input range is  
now effectively 85 µV rms and the resultant spread of codes for  
2500 conversions will be four. T his is shown in Figure 15.  
15  
14  
13  
12  
11  
10  
1500  
1000  
500  
0
0
20  
40  
60  
80  
FREQUENCY – kHz  
Figure 17. Effective Num ber of Bits vs. Frequency  
T he effective number of bits for a device can be calculated from  
its measured SNR. Figure 17 shows a typical plot of effective  
number of bits versus frequency for the AD7884. T he sampling  
frequency is 166 kHz.  
MICRO P RO CESSO R INTERFACING  
T he AD7884/AD7885 is designed on a high speed process  
which results in very fast interfacing timing (Data Access T ime  
of 57 ns max). T he AD7884 has a full 16-bit parallel bus, and  
the AD7885 has an 8-bit wide bus. T he AD7884, with its paral-  
lel interface, is suited to 16-bit parallel machines whereas the  
AD7885, with its byte interface, is suited to 8-bit machines.  
Some examples of typical interface configurations follow.  
(X – 1)  
(X)  
(X + 1) (X + 2)  
CODE  
Figure 15. Histogram of 2500 Conversions of a DC Input  
Using a ×2 Oversam pling Ratio  
D ynam ic P er for m ance  
AD 7884 to MC68000 Inter face  
With a combined conversion and acquisition time of 6 µs, the  
AD7884/AD7885 is ideal for wide bandwidth signal processing  
applications. Signal to (Noise + Distortion), T otal Harmonic  
Distortion, Peak Harmonic or Spurious Noise and Intermodula-  
tion Distortion are all specified. Figure 16 shows a typical  
FFT plot of a 1.8 kH z, ± 5 V input after being digitized by the  
AD7884/AD7885.  
Figure 18 shows a general interface diagram for the MC68000,  
16-bit microprocessor to the AD7884. In Figure 18, conversion  
is initiated by bringing CSA low (i.e., writing to the appropriate  
address). T his allows the processor to maintain control over the  
complete conversion process. In some cases it may be more  
desirable to control conversion independent from the processor.  
T his can be done by using an external sampling timer.  
0
f
f
= 1.8kHz, ± 5V SINE WAVE  
IN  
ADDRESS BUS  
A23 – A1  
MC68000  
= 163kHz  
SAMPLE  
SNR = 87dB  
THD = –95dB  
–30  
–60  
ADDRESS  
DECODE LOGIC  
AD7884  
CSB  
CSA  
CONVST  
CS  
DTACK  
–90  
AS  
RD  
R/W  
–120  
–150  
DB15 – DB0  
DATA BUS  
D15 – D0  
2048 POINT FFT  
Figure 18. AD7884 to MC68000 Interface  
Figure 16. AD7884/AD7885 FFT Plot  
Once conversion has been started, the processor must wait until  
it is completed before reading the result. T here are two ways of  
ensuring this. T he first way is to simply use a software delay to  
wait for 6.5 µs before bringing CS and RD low to read the data.  
Effective Num ber of Bits  
T he formula for SNR (see T erminology section) is related to  
the resolution or number of bits in the converter. Rewriting the  
formula, below, gives a measure of performance expressed in  
effective number of bits (N).  
N = (SNR – 1.76)/6.02  
REV. C  
–11–  
AD7884/AD7885  
Figure 19 shows an interface configuration for the AD7884 to  
such a system. Note that only signals relevant to the AD7884  
are shown. For the full 80286 configuration refer to the iAPX  
286 data sheet (Basic System Configuration).  
T he second way is to use the BUSY output of the AD7884 to  
generate an interrupt in the MC68000. Because of the nature of  
its interrupts, the MC68000 requires additional logic (not  
shown in Figure 18) to allow it to be interrupted correctly. For  
full information on this, consult the MC68000 User’s Manual.  
In Figure 19 conversion is started by writing to a selected ad-  
dress and causing it CS2 to go low. When conversion is com-  
plete, BUSY goes high and initiates an interrupt. T he processor  
can then read the conversion result.  
AD 7884 to 80286 Inter face  
T he 80286 is an advanced high performance processor with spe-  
cial capabilities aimed at multiuser and multitasking systems.  
MEMORY READ  
MRDC  
82288 BUS  
CONTROLLER  
CS1  
CS2  
DECODE  
CIRCUITRY  
CLK  
CLK  
AD7884  
82284 CLOCK  
GENERATOR  
RD  
CS  
CONVST  
8282 OR  
8283  
LATCH  
CLK  
A
– A  
DB15  
23 0  
DB0  
BUSY  
80286  
CPU  
D
– D  
0
15  
IR – IR  
0
7
8259A  
INTERRUPT  
CONTROLLER  
8286 OR 8287  
TRANSCEIVER  
Figure 19. AD7884 Interfacing to Basic iAPX 286 System  
–12–  
REV. C  
AD7884/AD7885  
AD 7885 to 8088 Inter face  
Stand-Alone O per ation  
T he AD7885, with its byte (8 + 8) data format, is ideal for use  
with the 8088 microprocessor. Figure 20 is the interface dia-  
gram. Conversion is started by enabling CSA. At the end of  
conversion, data is read into the processor. T he read instruc-  
tions are:  
If CS and RD are tied permanently low on the AD7884, then,  
when a conversion is completed, output data will be valid on the  
rising edge of BUSY. T his makes the device very suitable for  
stand-alone operation. All that is required to run the device is an  
external CONVST pulse which can be supplied by a sample  
timer. Figure 22 shows the AD7884 set up in this mode with the  
BUSY signal providing the clock for the 74HC574 3-state  
latches.  
MOV AX, C001 Read 8 MSBs of data  
MOV AX, C000 Read 8 LSBs of data  
+5 V  
MN/MX  
A0  
A15 – A8  
A0  
ADDRESS BUS  
TIMER  
HBEN  
HBEN  
ADDRESS  
IO/M  
CONVST  
DECODE LOGIC  
CSB  
CSA  
8088  
74HC574  
DB15 – DB8  
CONVST  
CS  
RD  
RD  
AD7884  
CLK  
STB  
8282  
ALE  
AD7885  
74HC574  
DB7 – DB0  
DB7 – DB0  
DATA BUS  
AD7 – AD0  
BUSY  
CLK  
CS  
RD  
Figure 20. AD7885 to 8088 Interface  
AD 7884 to AD SP -2101 Inter face  
Figure 21 shows an intcrface between the AD7884 and the  
ADSP-2101. Conversion is initiated using a timer which allows  
very accurate control of the sampling instant. T he AD7884  
BUSY line provides an interrupt to the ADSP-2101 when con-  
version is completed. T he RD pulse width of the processor can  
be programmed using the Data Memory Wait State Control  
Register. T he result can then be read from the ADC using the  
following instruction:  
Figure 22. Stand-Alone Operation  
D igital Feedthr ough fr om an Active Bus  
It is very important when using the AD7884/AD7885 in a  
microprocessor-based system to isolate the ADC data bus from  
the active processor bus while a conversion is being executed.  
T his will yield the best noise performance from the ADC.  
Latches like the 74HC574 can be used to do this. If the device  
is connected directly to an active bus then the converter noise  
will typically increase by a factor of 30%.  
MR0 = DM (ADC)  
where MR0 is the ADSP-2101 MR0 register, and  
where ADC is the AD7884 address.  
TIMER  
ADDRESS BUS  
DMA13 – DMA0  
ADSP-2101  
ADDRESS  
AD7884  
DECODE LOGIC  
DMS  
EN  
CONVST  
CS  
BUSY  
RD  
IRQn  
RD  
DB15 – DB0  
DATA BUS  
DMD15 – DMD0  
Figure 21. AD7884 to ADSP-2101 Interface  
REV. C  
–13–  
AD7884/AD7885  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
28-P in P lastic D IP (N-28A)  
1.450 (36.83)  
1.440 (35.576)  
28  
15  
0.550 (13.97)  
0.530 (13.462)  
14  
1
0.606 (15.39)  
0.594 (15.09)  
0.200  
(5.080)  
MAX  
0.160 (4.06)  
0.140 (3.56)  
SEATING  
PLANE  
15°  
0°  
0.012 (0.305)  
0.008 (0.203)  
0.175 (4.45)  
0.120 (3.05)  
0.105 (2.67)  
0.095 (2.41)  
0.020 (0.508)  
0.015 (0.381)  
0.06 (1.52)  
0.05 (1.27)  
LEADS ARE SOLDER DIPPED OR TIN-PLATED ALLOY 42 OR COPPER.  
40-P in P lastic D IP (N-40A)  
0.005 (0.13) MIN  
0.110 (2.79) MAX  
40  
21  
0.55 (13.97)  
0.53 (13.46)  
PIN 1  
1
20  
0.620 (15.75)  
0.580 (14.73)  
2.08 (52.83) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200  
(5.08)  
MAX  
0.140  
(3.56)  
MIN  
0.175 (4.45)  
0.120 (3.05)  
0.015 (0.38)  
0.008 (0.20)  
0.025 (0.64)  
0.015 (0.38)  
0.060 (1.52)  
0.040 (1.02)  
SEATING  
PLANE  
0.100 (2.54)  
BSC  
0˚-15˚  
–14–  
REV. C  
AD7884/AD7885  
44-P in P LCC (P -44A)  
0.045 (1.143) TYP  
0.045 (1.143) TYP  
PIN 1  
IDENTIFIER  
0.050 ± 0.005  
(1.27 ± 0.13)  
0.045  
(1.143)  
TYP  
0.045  
(1.143)  
TYP  
0.630 (16.00)  
0.590 (14.99)  
0.021 (0.533)  
0.013 (0.331)  
TOP VIEW  
0.032 (0.812)  
0.026 (0.661)  
0.656 (16.662)  
0.650 (16.510)  
0.020 (0.508) MIN  
SQ  
SQ  
0.120 (3.04)  
0.090 (2.29)  
0.695 (17.65)  
0.685 (17.40)  
0.180 (4.57)  
0.165 (4.20)  
R.020 (0.508) MAX  
3 PLCS  
REV. C  
–15–  
–16–  

相关型号:

AD7885AP

Analog-to-Digital Converter, 16-Bit
ETC

AD7885AQ

A/D CONVERTER
ETC

AD7885BN

LC2MOS 16-Bit, High Speed Sampling ADCs
ADI

AD7885BP

Analog-to-Digital Converter, 16-Bit
ETC

AD7885BQ

Analog-to-Digital Converter, 16-Bit
ETC

AD7885JQ

A/D CONVERTER
ETC

AD7885TQ

Analog-to-Digital Converter, 16-Bit
ETC

AD7885_15

LC MOS 16-Bit, High Speed Sampling ADCs
ADI

AD7886

LC2MOS 12-Bit, 750 kHz/1 MHz, Sampling ADC
ADI

AD7886BD

LC2MOS 12-Bit, 750 kHz/1 MHz, Sampling ADC
ADI

AD7886JD

LC2MOS 12-Bit, 750 kHz/1 MHz, Sampling ADC
ADI

AD7886JP

LC2MOS 12-Bit, 750 kHz/1 MHz, Sampling ADC
ADI