AD8005ARZ-REEL7 [ADI]

270 MHz, 400µA Current Feedback Amplifier;
AD8005ARZ-REEL7
型号: AD8005ARZ-REEL7
厂家: ADI    ADI
描述:

270 MHz, 400µA Current Feedback Amplifier

放大器 光电二极管
文件: 总17页 (文件大小:410K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
270 MHz, 400 μA  
Current Feedback Amplifier  
Data Sheet  
AD8005  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
Ultralow power  
1
2
3
4
8
7
6
5
NC  
+V  
NC  
–IN  
+IN  
AD8005  
400 μA power supply current (4 mW on ±± VS)  
Specified for single supply operation  
High speed  
S
OUT  
NC  
–V  
S
TOP VIEW  
270 MHz, −3 dB bandwidth (G = +1)  
170 MHz, −3 dB bandwidth (G = +2)  
280 V/μs slew rate (G = +2)  
(Not to Scale)  
NC = NO CONNECT  
Figure 1. 8-Lead PDIP and SOIC_N  
28 ns settling time to 0.1%, 2 V step (G = +2)  
Low distortion/noise  
AD8005  
OUT  
1
2
3
5
+V  
S
−63 dBc at 1 MHz, VO = 2 V p-p  
−±0 dBc at 10 MHz, VO = 2 V p-p  
4.0 nV/√Hz input voltage noise at 10 MHz  
Good video specifications (RL = 1 kΩ, G = +2)  
Gain flatness 0.1 dB to 30 MHz  
0.11% differential gain error  
–V  
S
+IN  
4
–IN  
TOP VIEW  
(Not to Scale)  
Figure 2. 5-Lead SOT-23  
0.4° differential phase error  
3
2
G = +2  
= 200mV p-p  
V
APPLICATIONS  
OUT  
= 1k  
R
L
Signal conditioning  
1
A/D buffer  
0
Power sensitive, high speed systems  
Battery powered equipment  
Loop/remote power systems  
Communication or video test systems  
Portable medical instruments  
–1  
–2  
–3  
–4  
–5  
–6  
V
= ±5V  
S
V
= +5V  
S
GENERAL DESCRIPTION  
The AD8005 is an ultralow power, high speed amplifier with a  
wide signal bandwidth of 170 MHz and slew rate of 280 V/μs.  
This performance is achieved while consuming only 400 μA of  
quiescent supply current. These features increase the operating  
time of high speed battery powered systems without reducing  
dynamic performance.  
0.1  
1
10  
100  
500  
FREQUENCY (MHz)  
Figure 3. Frequency Response; G = 2ꢀ VS = +5 V or 5 V  
–40  
G = +2  
= 2V p-p  
V
OUT  
= 1k  
R
L
–50  
–60  
THIRD HARMONIC  
The current feedback design results in gain flatness of 0.1 dB to  
30 MHz while offering differential gain and phase errors of 0.11%  
and 0.4°. Harmonic distortion is low over a wide bandwidth with  
THDs of −63 dBc at 1 MHz and −50 dBc at 10 MHz. Ideal features  
for a signal conditioning amplifier or buffer to a high speed A-to-D  
converter in portable video, medical or communication systems.  
–70  
SECOND HARMONIC  
–80  
The AD8005 is characterized for +5 V and 5 V supplies and  
operates over the industrial temperature range of −40°C to  
+85°C. The amplifier is supplied in 8-lead PDIP, 8-lead SOIC_N,  
and 5-lead SOT-23 packages.  
–90  
–100  
1
10  
20  
FREQUENCY (MHz)  
Figure 4. Distortion vs. Frequency; VS = 5 V  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©1996–2014 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD8005* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
REFERENCE MATERIALS  
Product Selection Guide  
High Speed Amplifiers Selection Table  
Tutorials  
EVALUATION KITS  
Universal Evaluation Board for Single High Speed  
MT-034: Current Feedback (CFB) Op Amps  
MT-051: Current Feedback Op Amp Noise Considerations  
MT-057: High Speed Current Feedback Op Amps  
Operational Amplifiers  
DOCUMENTATION  
Application Notes  
MT-059: Compensating for the Effects of Input  
Capacitance on VFB and CFB Op Amps Used in Current-to-  
Voltage Converters  
AN-253: Find Op Amp Noise with Spreadsheet  
AN-257: Careful Design Tames High Speed Op Amps  
DESIGN RESOURCES  
AD8005 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
AN-356: User's Guide to Applying and Measuring  
Operational Amplifier Specifications  
AN-649: Using the Analog Devices Active Filter Design  
Tool  
AN-692: Universal Precision Op Amp Evaluation Board  
Data Sheet  
AD8005: 270 MHz, 400 µA Current Feedback Amplifier  
Data Sheet  
DISCUSSIONS  
View all AD8005 EngineerZone Discussions.  
User Guides  
UG-755: 8-Lead SOIC Amplifier Evaluation Board User  
Guide  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
UG-838: Evaluation Board for Single, High Speed Op Amps  
Offered in 5-Lead SOT-23 and 6-Lead SOT-23 Packages  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
TOOLS AND SIMULATIONS  
AD8005 SPICE Macro-Model  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD8005  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................5  
Typical Performance Characteristics ..............................................6  
Applications..................................................................................... 10  
Driving Capacitive Loads.......................................................... 10  
Single-Supply Level Shifter ....................................................... 10  
Single-Ended-to-Differential Conversion............................... 10  
Layout Considerations............................................................... 11  
Increasing Feedback Resistors.................................................. 11  
Outline Dimensions....................................................................... 12  
Ordering Guide .......................................................................... 13  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
5 V Supplies ................................................................................ 3  
+5 V Supply................................................................................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
Maximum Power Dissipation ..................................................... 5  
REVISION HISTORY  
3/14—Rev. A to Rev. B  
Updated Format..................................................................Universal  
Deleted Operating Temperature Range Parameter, Table 1........ 3  
Changes to Table 3............................................................................ 5  
Change to Figure 11 ......................................................................... 6  
Changes to Ordering Guide .......................................................... 13  
8/99—Rev. 0 to Rev. A  
Rev. B | Page 2 of 16  
 
Data Sheet  
AD8005  
SPECIFICATIONS  
5 V SUPPLIES  
At TA = +25°C, VS = 5 V, RL = 1 kΩ, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
DYNAMIC PERFORMANCE  
RF = 3.01 kΩ for N-8 Package or  
RF = 2.49 kΩ for R-8 Package or  
RF = 2.10 kΩ for RJ-5 Package  
G = +1, VO = 0.2 V p-p  
G = +2, VO = 0.2 V p-p  
G = +2, VO = 0.2 V p-p  
G = +10, VO = 4 V p-p, RF = 499 Ω  
G = +2, VO = 4 V Step  
−3 dB Small Signal Bandwidth  
225  
140  
10  
270  
170  
30  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Large Signal Bandwidth  
Slew Rate (Rising Edge)  
40  
280  
1500  
28  
G = –1, VO = 4 V Step, RF = 1.5 kΩ  
G = +2, VO = 2 V Step  
Settling Time to 0.1%  
DISTORTION/NOISE PERFORMANCE  
RF = 3.01 kΩ for N-8 Package or  
RF = 2.49 kΩ for R-8 Package or  
RF = 2.10 kΩ for RJ-5 Package  
fC = 1 MHz, VO = 2 V p-p, G = +2  
fC = 10 MHz, VO = 2 V p-p, G = +2  
NTSC, G = +2  
Total Harmonic Distortion  
−63  
−50  
0.11  
0.4  
4.0  
1.1  
dBc  
dBc  
%
Degrees  
nV/√Hz  
pA/√Hz  
pA/√Hz  
Differential Gain  
Differential Phase  
Input Voltage Noise  
Input Current Noise  
NTSC, G = +2  
f = 10 MHz  
f = 10 MHz, +IIN  
−IIN  
9.1  
DC PERFORMANCE  
Input Offset Voltage  
5
30  
50  
mV  
mV  
TMIN to TMAX  
Offset Drift  
+Input Bias Current  
40  
0.5  
µV/°C  
µA  
1
TMIN to TMAX  
TMIN to TMAX  
2
10  
12  
µA  
µA  
µA  
−Input Bias Current  
5
Input Bias Current Drift ( )  
Open-Loop Transimpedance  
INPUT CHARACTERISTICS  
Input Resistance  
6
nA/°C  
kΩ  
400  
1000  
+Input  
−Input  
+Input  
90  
MΩ  
Ω
pF  
V
260  
1.6  
3.8  
54  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
VCM = 2.5 V  
46  
dB  
Positive  
Negative  
RL = 50 Ω  
+3.7  
+3.90  
−3.90  
10  
V
V
mA  
mA  
−3.7  
Output Current  
Short Circuit Current  
POWER SUPPLY  
60  
Quiescent Current  
400  
66  
475  
560  
µA  
µA  
dB  
TMIN to TMAX  
VS = 4 V to 6 V  
Power Supply Rejection Ratio  
56  
Rev. B | Page 3 of 16  
 
 
AD8005  
Data Sheet  
+5 V SUPPLY  
At TA = +25°C, VS = +5 V, R L = 1 kΩ to 2.5 V, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max Units  
DYNAMIC PERFORMANCE  
RF = 3.01 kΩ for N-8 Package or  
RF = 2.49 kΩ for R-8 Package or  
RF = 2.10 kΩ for RJ-5 Package  
G = +1, VO = 0.2 V p-p  
G = +2, VO = 0.2 V p-p  
G = +2, VO = 0.2 V p-p  
G = +10, VO = 4 V p-p, RF = 499 Ω  
G = +2, VO = 4 V Step  
−3 dB Small Signal Bandwidth  
190  
110  
10  
225  
130  
30  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Large Signal Bandwidth  
Slew Rate (Rising Edge)  
45  
260  
775  
30  
G = –1, VO = 4 V Step, RF = 1.5 kΩ  
G = +2, VO = 2 V Step  
Settling Time to 0.1%  
DISTORTION/NOISE PERFORMANCE  
RF = 3.01 kΩ for N-8 Package or  
RF = 2.49 kΩ for R-8 Package or  
RF = 2.10 kΩ for RJ-5 Package  
fC = 1 MHz, VO = 2 V p-p, G = +2  
fC = 10 MHz, VO = 2 V p-p, G = +2  
NTSC, G = +2  
Total Harmonic Distortion  
−60  
−50  
0.14  
0.70  
4.0  
dBc  
dBc  
%
Degrees  
nV/√Hz  
pA/√Hz  
pA/√Hz  
Differential Gain  
Differential Phase  
Input Voltage Noise  
Input Current Noise  
NTSC, G = +2  
f = 10 MHz  
f = 10 MHz, +IIN  
1.1  
9.1  
−IIN  
DC PERFORMANCE  
Input Offset Voltage  
5
35  
50  
mV  
mV  
TMIN to TMAX  
Offset Drift  
+Input Bias Current  
40  
0.5  
µV/°C  
µA  
1
TMIN to TMAX  
TMIN to TMAX  
2
10  
11  
µA  
µA  
µA  
−Input Bias Current  
5
Input Bias Current Drift ( )  
Open-Loop Transimpedance  
INPUT CHARACTERISTICS  
Input Resistance  
8
500  
nA/°C  
kΩ  
50  
48  
+Input  
−Input  
+Input  
120  
300  
1.6  
1.5 to 3.5  
54  
MΩ  
Ω
pF  
V
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Output Current  
VCM = 1.5 V to 3.5 V  
RL = 50 Ω  
dB  
1.1 to 3.9 0.95 to 4.05  
V
mA  
mA  
10  
30  
Short Circuit Current  
POWER SUPPLY  
Quiescent Current  
350  
425  
470  
µA  
µA  
dB  
TMIN to TMAX  
VS = +4 V to +6 V  
Power Supply Rejection Ratio  
56  
66  
OPERATING TEMPERATURE RANGE  
–40  
+85 °C  
Rev. B | Page 4 of 16  
 
Data Sheet  
AD8005  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
MAXIMUM POWER DISSIPATION  
The maximum power that can be safely dissipated by the AD8005  
is limited by the associated rise in junction temperature. The  
maximum safe junction temperature for plastic encapsulated  
devices is determined by the glass transition temperature of the  
plastic, approximately +150°C. Exceeding this limit temporarily  
causes a shift in parametric performance due to a change in the  
stresses exerted on the die by the package. Exceeding a junction  
temperature of +175°C for an extended period can result in  
device failure.  
Parameter  
Rating  
Supply Voltage  
Internal Power Dissipation1  
PDIP Package (N-8)  
SOIC_N (R-8)  
SOT-23 Package (RJ-5)  
Input Voltage (Common Mode)  
Differential Input Voltage  
Output Short Circuit Duration  
Storage Temperature Range  
Operating Temperature Range –40°C to +85°C  
Lead Temperature Range  
(Soldering 10 sec)  
12.6 V  
1.3 Watts  
0.75 Watts  
0.5 Watts  
VS 1 V  
3.5 V  
Observe Power Derating Curves  
–65°C to +125°C  
While the AD8005 is internally short circuit protected, this is  
not sufficient to guarantee that the maximum junction temper-  
ature (+150°C) is not exceeded under all conditions. To ensure  
proper operation, it is necessary to observe the maximum  
power derating curves shown in Figure 5.  
+300°C  
1 See Table 4.  
2.0  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
T
= 150°C  
J
8-LEAD PDIP PACKAGE  
1.5  
1.0  
0.5  
0
8-LEAD SOIC_N PACKAGES  
THERMAL RESISTANCE  
5-LEAD SOT-23 PACKAGE  
θJA is specified for device in free air.  
Table 4. Thermal Resistance  
Package Type  
θJA  
90  
155  
240  
Unit  
°C/W  
°C/W  
°C/W  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
8-Lead PDIP Package  
8-Lead SOIC_N Package  
5-Lead SOT-23 Package  
AMBIENT TEMPERATURE (°C)  
Figure 5. Maximum Power Dissipation vs. Temperature  
ESD CAUTION  
Rev. B | Page 5 of 16  
 
 
 
 
 
 
AD8005  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
5
5
4
V
V
R
= ±5V  
V
V
= ±5V  
S
S
= 200mV p-p  
= 200mV p-p  
4
3
OUT  
OUT  
= 1kΩ  
R = 1kΩ  
G = +1  
L
L
3
2
2
1
1
G = –1  
R = 1.5kΩ  
F
0
0
G = +2  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
G = –10  
= 1kΩ  
G = +10  
= 499Ω  
R
F
R
F
1
10  
FREQUENCY (MHz)  
100  
500  
1
10  
FREQUENCY (MHz)  
100  
500  
Figure 6. Frequency Response; G = +1, +2, +10; VS = 5 V  
Figure 9. Frequency Response; G = −1, −10; VS = 5 V  
6.2  
140  
120  
100  
80  
0
G = +2  
= 200mV p-p  
V
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
OUT  
R
= 1kΩ  
–40  
L
PHASE  
–80  
–120  
–160  
–200  
–240  
–280  
60  
GAIN  
40  
20  
0
0.1  
1
10  
100  
500  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 7. Gain Flatness; G = +2; VS = 5 V or +5 V  
Figure 10. Transimpedance Gain and Phase vs. Frequency  
7
6
10  
9
8
7
6
5
4
3
2
1
0
V
= ±5V  
S
G = +2  
R
= 1kΩ  
L
5
V
V
= ±5V  
S
4
= 2V p-p  
OUT  
3
V
V
= ±5V  
2
S
= 4V p-p  
OUT  
1
0
–1  
–2  
1
10  
FREQUENCY (MHz)  
100  
500  
0.5  
1
10  
100  
FREQUENCY (MHz)  
Figure 8. Large Signal Frequency Response; G = +2, RL = 1 kΩ  
Figure 11. Output Swing vs. Frequency; VS = 5 V  
Rev. B | Page 6 of 16  
 
Data Sheet  
AD8005  
–40  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
G = +2  
G = +2  
V = 2V p-p  
OUT  
V
= 2V p-p  
OUT  
R
= 1kΩ  
R = 1kΩ  
THIRD HARMONIC  
L
L
–50  
–60  
THIRD HARMONIC  
–70  
SECOND HARMONIC  
SECOND HARMONIC  
–80  
–90  
–100  
1
10  
20  
1
10  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. Distortion vs. Frequency; VS = 5 V  
Figure 15. Distortion vs. Frequency VS = +5 V  
MIN = –0.06 MAX = 0.03 p-p/MAX = 0.09  
= ±5V  
MIN = –0.08 MAX = 0.04 p-p/MAX = 0.12  
0.10  
0.05  
0
0.10  
0.05  
0
V
V
= +5V  
S
S
G = +2  
= 1kΩ  
G = +2  
R
R = 1kΩ TO +1.5V  
L
L
–0.05  
–0.10  
–0.05  
–0.10  
1.0  
MIN = –0.01 MAX = 0.39 p-p = 0.40  
MIN = 0.00 MAX = 0.70 p-p = 0.70  
0.06  
0.04  
0.02  
0
0.5  
0
–0.02  
–0.04  
–0.06  
V
= ±5V  
V = +5V  
S
G = +2  
S
–0.5  
–1.0  
G = +2  
= 1kΩ  
R
R
= 1kΩ TO +1.5V  
L
L
ST  
ND  
RD  
TH  
TH  
TH  
TH  
TH  
TH  
TH  
TH  
ST  
ND  
RD  
TH  
TH  
TH  
TH  
TH  
TH  
TH  
TH  
11  
1
2
3
4
5
6
7
8
9
10  
11  
1
2
3
4
5
6
7
8
9
10  
MODULATING RAMP LEVEL (IRE)  
MODULATING RAMP LEVEL (IRE)  
Figure 13. Differential Gain and Phase, VS = 5 V  
Figure 16. Differential Gain and Phase, VS = +5 V  
9
8
7
6
5
4
3
2
1
9
8
7
6
5
4
3
2
1
f = 5MHz  
G = +2  
R
= 1kΩ  
V
= ±5V  
L
S
V
= +5V  
S
0
3
0
10  
4
5
6
7
8
9
10  
11  
100  
1k  
10k  
TOTAL SUPPLY VOLTAGES (V)  
LOAD RESISTANCE (Ω)  
Figure 17. Output Swing vs. Supply  
Figure 14. Output Voltage Swing vs. Load  
Rev. B | Page 7 of 16  
AD8005  
Data Sheet  
–5  
V
12.5  
10.0  
7.5  
5.0  
2.5  
0
= +5V OR ±5V  
S
G = +2  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
R
= 1kΩ  
L
10  
100  
1k  
10k  
100k  
1M  
10M  
0.03  
0.1  
1
10  
100  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 18. CMRR vs. Frequency; VS = +5 V or 5 V  
Figure 21. Noise vs. Frequency; VS = +5 V or 5 V  
62.5  
50.0  
37.5  
25.0  
12.5  
0
V
= +5V OR ±5V  
S
G = +2  
R
= 1kΩ  
L
100  
10  
1
V
= +5V  
S
INVERTING CURRENT  
V
= ±5V  
S
NONINVERTING CURRENT  
0.03  
0.1  
1
10  
100  
500  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 19. Output Resistance vs. Frequency; VS = 5 V and +5 V  
Figure 22. Noise vs. Frequency; VS = +5 V or 5 V  
10  
V
= +5V OR ±5V  
S
–PSRR  
G = +2  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
R
= 1kΩ  
L
V
OUT  
100  
90  
V
IN  
+PSRR  
V
= ±5V  
S
G = +6  
R
= 1kΩ  
L
10  
0%  
1V  
2V  
150ns  
0.03  
0.1  
1
10  
100  
500  
FREQUENCY (MHz)  
Figure 23. Overdrive Recovery, VS = 5 V, VIN = 2 V Step  
Figure 20. PSRR vs. Frequency; VS = +5 V or 5 V  
Rev. B | Page 8 of 16  
Data Sheet  
AD8005  
R
1.5kΩ  
51.1Ω  
1.5kΩ  
R
G
F
V
V
OUT  
V
IN  
OUT  
R
1kΩ  
L
R
1kΩ  
L
C
PROBE  
C
PROBE  
V
IN  
+V  
+V  
–V  
S
S
S
50Ω  
0.01µF  
0.01µF  
10µF  
10µF  
0.01µF  
0.01µF  
10µF  
10µF  
–V  
S
PROBE: TEK P6137  
= 10pF NOMINAL  
PROBE: TEK P6137  
= 10pF NOMINAL  
C
LOAD  
C
LOAD  
Figure 24. Test Circuit; G = +2; RF = RG = 3.01 kΩ for N-8 Package;  
RF = RG = 2.49 kΩ for R-8 and RJ-5 Packages  
Figure 27. Test Circuit; G = –1, RF = RG = 1.5 kΩ for N-8, R-8, and RJ-5  
Packages  
100  
90  
100  
90  
10  
10  
0%  
0%  
50mV  
10ns  
50mV  
10ns  
Figure 25. 200 mV Step Response; G = +2, VS = 2.5 V or 5 V  
Figure 28. 200 mV Step Response; G = –1, VS = 2.5 V or 5 V  
100  
90  
100  
90  
10  
10  
0%  
0%  
1V  
10ns  
1V  
10ns  
Figure 26. Step Response; G = +2, VS = 5 V  
Figure 29. Step Response; G = −1, VS = 5 V  
Rev. B | Page 9 of 16  
AD8005  
Data Sheet  
APPLICATIONS  
R2  
1.5kΩ  
DRIVING CAPACITIVE LOADS  
5V  
Capacitive loads interact with the output impedance of an op  
amp to create an extra delay in the feedback path. This reduces  
circuit stability and can cause unwanted ringing and oscillation.  
A given value of capacitance causes much less ringing when the  
amplifier is used with a higher noise gain.  
R1  
1.5kΩ  
0.01µF  
10µF  
V
IN  
AD8005  
V
OUT  
V
REF  
5V  
The capacitive load drive of the AD8005 can be increased by  
adding a low valued resistor in series with the capacitive load.  
Introducing a series resistor tends to isolate the capacitive load  
from the feedback loop, thereby diminishing its influence.  
Figure 31 shows the effects of a series resistor on capacitive drive  
for varying voltage gains. As the closed-loop gain is increased,  
the larger phase margin allows for larger capacitive loads with  
less overshoot. Adding a series resistor at lower closed-loop  
gains accomplishes the same effect. For large capacitive loads,  
the frequency response of the amplifier is dominated by the  
roll-off of the series resistor and capacitive load.  
R3  
R4  
30.1kΩ  
10kΩ  
0.1µF  
Figure 32. Bipolar to Unipolar Shift Lever  
Figure 32 shows a level shifter circuit that can move a bipolar  
signal into a unipolar range. A positive reference voltage, derived  
from the +5 V supply, sets a bias level of +1.25 V at the nonin-  
verting terminal of the op amp. In ac applications, the accuracy  
of this voltage level is not important; however, noise is a serious  
consideration. A 0.1 mF capacitor provides useful decoupling of  
this noise.  
R
F
The bias level on the noninverting terminal sets the input common-  
mode voltage to +1.25 V. Because the output is always positive,  
the op amp can be powered with a single +5 V power supply.  
R
S
R
G
AD8005  
R
L
C
L
1kΩ  
The overall gain function is given by the equation:  
R2  
R1  
R4  
R3 + R4  
R2  
R1  
  
  
  
Figure 30. Driving Capacitive Loads  
VOUT = −  
V
+
1+  
V
REF  
IN  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= ±5V  
2V OUTPUT STEP  
WITH 30% OVERSHOOT  
S
In the above example, the equation simplifies to  
VOUT = −VIN + 2.5 V  
R
= 10Ω  
SINGLE-ENDED-TO-DIFFERENTIAL CONVERSION  
S
Many single supply ADCs have differential inputs. In such  
cases, the ideal common-mode operating point is usually  
halfway between supply and ground. Figure 33 shows how to  
convert a single-ended bipolar signal into a differential signal  
with a common-mode level of 2.5 V.  
R
= 5Ω  
= 0Ω  
S
R
S
+5V  
+5V  
2.49kΩ  
0.1µF  
R
1kΩ  
IN  
0.1µF  
BIPOLAR  
SIGNAL  
±0.5V  
1
2
3
4
5
CLOSED-LOOP GAIN (V/V)  
AD8005  
2.49kΩ  
Figure 31. Capacitive Load Drive vs. Closed-Loop Gain  
R
F1  
2.49kΩ  
SINGLE-SUPPLY LEVEL SHIFTER  
R
619Ω  
G
R
F1  
V
In addition to providing buffering, many systems require that an  
op amp provide level shifting. A common example is the level  
shifting required to move a bipolar signal into the unipolar range  
of many modern analog-to-digital converters (ADCs). In general,  
single supply ADCs have input ranges that are referenced neither  
to ground nor supply. Instead the reference level is some point  
in between, usually halfway between ground and supply (+2.5 V  
for a single supply 5 V ADC). Because high-speed ADCs typically  
have input voltage ranges of 1 V to 2 V, the op amp driving it  
must be single supply but not necessarily rail-to-rail.  
OUT  
3.09kΩ  
+5V  
0.1µF  
+5V  
AD8005  
2.49kΩ  
2.49kΩ  
0.1µF  
Figure 33. Single-Ended-to-Differential Converter  
Rev. B | Page 10 of 16  
 
 
 
 
 
 
 
Data Sheet  
AD8005  
Amp 1 has its +input driven with the ac-coupled input signal  
while the +input of Amp 2 is connected to a bias level of +2.5 V.  
Thus the −input of Amp 2 is driven to virtual +2.5 V by its output.  
Therefore, Amp 1 is configured for a noninverting gain of five,  
(1 + RF1/RG), because RG is connected to the virtual +2.5 V of  
the –input of Amp 2.  
one end of the capacitor is within 1/8 inch of each power pin  
with the other end connected to the ground plane. An additional  
large (0.47 µF − 10 µF) tantalum electrolytic capacitor must also  
be connected in parallel. This capacitor supplies current for fast,  
large signal changes at the output. It must not necessarily be as  
close to the power pin as the smaller capacitor.  
When the +input of Amp 1 is driven with a signal, the same  
signal appears at the −input of Amp 1. This signal serves as an  
input to Amp 2 configured for a gain of −5, (−RF2/RG). Thus the  
two outputs move in opposite directions with the same gain and  
create a balanced differential signal.  
Locate the feedback resistor close to the inverting input pin in  
order to keep the stray capacitance at this node to a minimum.  
Capacitance variations of less than 1.5 pF at the inverting input  
significantly affect high-speed performance.  
Use stripline design techniques for long signal traces (that is,  
greater than about 1 inch). Striplines must have a characteristic  
impedance of either 50 Ω or 75 Ω. For the stripline to be effective,  
correct termination at both ends of the line is necessary.  
This circuit can be simplified to create a bipolar in/bipolar out  
single-ended to differential converter. Obviously, a single supply  
is no longer adequate and the −VS pins must now be powered  
with −5 V. The +input to Amp 2 is tied to ground. The ac coupling  
on the +input of Amp 1 is removed and the signal can be fed  
directly into Amp 1.  
Table 5. Typical Bandwidth vs. Gain Setting Resistors  
Small Signal 3 dB BW  
(MHz), VS = 5 V  
Gain RF  
RG  
RT  
LAYOUT CONSIDERATIONS  
−1  
1.49 kΩ 1.49 kΩ 52.3  
120 MHz  
−10  
+1  
+2  
1 kΩ  
2.49 kΩ  
2.49 kΩ 2.49 kΩ 49.9 Ω  
499 Ω 56.2 Ω 49.9 Ω  
100 Ω  
100 Ω  
49.9 Ω  
60 MHz  
270 MHz  
170 MHz  
40 MHz  
In order to achieve the specified high-speed performance of the  
AD8005, the user must be attentive to board layout and component  
selection. Proper RF design techniques and selection of components  
with low parasitics are necessary.  
+10  
INCREASING FEEDBACK RESISTORS  
The printed circuit board (PCB) must have a ground plane that  
covers all unused portions of the component side of the board.  
This provides a low impedance path for signals flowing to ground.  
Remove the ground plane from the area under and around the  
chip (leave about 2 mm between the pin contacts and the  
ground plane). This helps to reduce stray capacitance. If both  
signal tracks and the ground plane are on the same side of the  
PCB, also leave a 2 mm gap between ground plane and track.  
Unlike conventional voltage feedback op amps, the choice of  
feedback resistor has a direct impact on the closed-loop bandwidth  
and stability of a current feedback op amp circuit. Reducing the  
resistance below the recommended value makes the amplifier  
more unstable. Increasing the size of the feedback resistor  
reduces the closed-loop bandwidth.  
360µA (rms)  
R
R
R
G
F
O
562Ω  
4.99kΩ  
V
V
OUT  
IN  
R
T
+5V  
+V  
S
S
C3  
C1  
10µF  
0.01µF  
V
OUT  
AD8005  
2V (rms)  
V
C2  
0.01µF  
C4  
10µF  
IN  
0.2V (rms)  
QUIESCENT CURRENT  
475µA (MAX)  
–V  
INVERTING CONFIGURATION  
–5V  
Figure 35. Saving Power by Increasing Feedback Resistor Network  
R
R
R
R
O
G
F
V
OUT  
In power-critical applications where some bandwidth can be  
sacrificed, increasing the size of the feedback resistor yields  
significant power savings. A good example of this is the gain of  
+10 case. Operating from a bipolar supply ( 5 V), the quiescent  
current is 475 µA (excluding the feedback network). The recom-  
mended feedback and gain resistors are 499 Ω and 56.2 Ω  
respectively. In order to drive an rms output voltage of 2 V, t h e  
output must deliver a current of 3.6 mA to the feedback network.  
Increasing the size of the resistor network by a factor of 10, as  
shown in Figure 35, reduces this current to 360 µA; however,  
the closed loop bandwidth decreases to 20 MHz.  
V
IN  
+V  
S
S
C3  
C1  
T
10µF  
0.01µF  
C2  
C4  
10µF  
0.01µF  
–V  
NONINVERTING CONFIGURATION  
Figure 34. Inverting and Nonconverting Configurations  
Chip capacitors have low parasitic resistance and inductance and  
are suitable for supply bypassing (see Figure 34). Make sure that  
Rev. B | Page 11 of 16  
 
 
 
 
AD8005  
Data Sheet  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 36. 8-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-8)  
Dimensions shown in inches and (millimeters)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 37. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. B | Page 12 of 16  
 
Data Sheet  
AD8005  
3.00  
2.90  
2.80  
5
1
4
3
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
2
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
0.20 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
0.55  
0.45  
0.35  
0.15 MAX  
0.05 MIN  
10°  
5°  
0°  
SEATING  
PLANE  
0.60  
BSC  
0.50 MAX  
0.35 MIN  
COMPLIANT TO JEDEC STANDARDS MO-178-AA  
Figure 38. 5-Lead Small Outline Transistor Package [SOT-23]  
(RJ-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
AD8005ANZ  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
Package Option  
Branding Code  
8-Lead Plastic Dual In-Line Package [PDIP]  
N-8  
AD8005ARZ  
8-Lead Standard Small Outline Package [SOIC_N] R-8  
8-Lead Standard Small Outline Package [SOIC_N] R-8  
8-Lead Standard Small Outline Package [SOIC_N] R-8  
5-Lead Small Outline Transistor Package [SOT-23] RJ-5  
5-Lead Small Outline Transistor Package [SOT-23] RJ-5  
Evaluation Board  
AD8005ARZ-REEL  
AD8005ARZ-REEL7  
AD8005ARTZ-R2  
AD8005ARTZ-REEL7  
AD8005AR-EBZ  
AD8005ART-EBZ  
H05  
H05  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. B | Page 13 of 16  
 
 
AD8005  
NOTES  
Data Sheet  
Rev. B | Page 14 of 16  
Data Sheet  
NOTES  
AD8005  
Rev. B | Page 15 of 16  
AD8005  
NOTES  
Data Sheet  
©1996–2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12146-0-3/14(B)  
Rev. B | Page 16 of 16  

相关型号:

AD80066

Complete 16-Bit CCD/CIS Signal Processor
ADI

AD80066KRSZ

Complete 16-Bit CCD/CIS Signal Processor
ADI

AD80066KRSZRL

Complete 16-Bit CCD/CIS Signal Processor
ADI

AD8007

Ultralow Distortion High Speed Amplifiers
ADI

AD8007AKS-R2

Ultralow Distortion High Speed Amplifiers
ADI

AD8007AKS-REEL

Ultralow Distortion High Speed Amplifiers
ADI

AD8007AKS-REEL7

Ultralow Distortion High Speed Amplifiers
ADI

AD8007AKS-REEL7

OP-AMP, 4000 uV OFFSET-MAX, PDSO5, MO-203AA, SC-70, 5 PIN
ROCHESTER

AD8007AKS-RL

IC OP-AMP, 4000 uV OFFSET-MAX, PDSO5, SC-70, 5 PIN, Operational Amplifier
ADI

AD8007AKS-RL7

IC OP-AMP, 4000 uV OFFSET-MAX, PDSO5, SC-70, 5 PIN, Operational Amplifier
ADI

AD8007AKSZ-R2

OP-AMP, 4000 uV OFFSET-MAX, PDSO5, ROHS COMPLIANT, MO-203AA, SC70-5
ROCHESTER

AD8007AKSZ-R2

Ultralow Distortion, High Speed Amplifiers
ADI