AD8230_16 [ADI]

16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier;
AD8230_16
型号: AD8230_16
厂家: ADI    ADI
描述:

16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier

文件: 总17页 (文件大小:400K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16 V Rail-to-Rail, Zero-Drift,  
Precision Instrumentation Amplifier  
AD8230  
CONNECTION DIAGRAM  
FEATURES  
Resistor programmable gain range: 101 to 1000  
Supply voltage range: 4 V to 8 V  
Rail-to-rail input and output  
Maintains performance over −40°C to +125°C  
Excellent ac and dc performance  
1
2
3
4
8
7
6
5
–V  
+V  
V
OUT  
S
R
G
S
1
V
V
2
REF  
REF  
+IN  
–IN  
AD8230  
TOP VIEW  
110 dB minimum CMR @ 60 Hz, G = 10 to 1000  
10 μV maximum offset voltage (RTI, 5 V operation)  
50 nV/°C maximum offset drift  
(Not to Scale)  
Figure 1. 8-Lead SOIC (R-8)  
2.0  
1.5  
20 ppm maximum gain nonlinearity  
APPLICATIONS  
1.0  
Pressure measurements  
Temperature measurements  
Strain measurements  
0.5  
0
Automotive diagnostics  
–0.5  
–1.0  
–1.5  
–2.0  
GENERAL DESCRIPTION  
The AD8230 is a low drift, differential sampling, precision  
instrumentation amplifier. Auto-zeroing reduces offset voltage  
drift to less than 50 nV/°C. The AD8230 is well-suited for  
thermocouple and bridge transducer applications. The  
AD8230s high CMR of 110 dB (minimum) rejects line noise in  
measurements where the sensor is far from the instrumentation.  
The 16 V rail-to-rail, common-mode input range is useful for  
noisy environments where ground potentials vary by several  
volts. Low frequency noise is kept to a minimal 3 μV p-p,  
making the AD8230 perfect for applications requiring the  
utmost dc precision. Moreover, the AD8230 maintains its high  
performance over the extended industrial temperature range of  
−40°C to +125°C.  
–50 –30 –10  
10  
30  
50  
70  
90  
110 130 150  
TEMPERATURE (°C)  
Figure 2. Relative Offset Voltage vs. Temperature  
+5V  
–5V  
0.1µF  
0.1µF  
2
4
5
1
V
8
TYPE K THERMOCOUPLE  
AD8230  
OUT  
7
6
34.8k  
284Ω  
3
Two external resistors are used to program the gain. By using  
matched external resistors, the gain stability of the AD8230 is  
much higher than instrumentation amplifiers that use a single  
resistor to set the gain. In addition to allowing users to program  
the gain between 101 and 1000, users can adjust the output  
offset voltage.  
Figure 3. Thermocouple Measurement  
The AD8230 is versatile yet simple to use. Its auto-zeroing  
topology significantly minimizes the input and output  
transients typical of commutating or chopper instrumentation  
amplifiers. The AD8230 operates on 4 V to 8 V (+8 V to +16 V)  
supplies and is available in an 8-lead SOIC.  
1 The AD8230 can be programmed for a gain as low as 2, but the maximum  
input voltage is limited to approximately 750 mV.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2004–2007 Analog Devices, Inc. All rights reserved.  
 
 
 
AD8230* Product Page Quick Links  
Last Content Update: 11/01/2016  
Comparable Parts  
Design Resources  
View a parametric search of comparable parts  
• AD8230 Material Declaration  
• PCN-PDN Information  
• Quality And Reliability  
• Symbols and Footprints  
Documentation  
Application Notes  
• AN-282: Fundamentals of Sampled Data Systems  
Discussions  
View all AD8230 EngineerZone Discussions  
• AN-671: Reducing RFI Rectification Errors in In-Amp  
Circuits  
Data Sheet  
• AD8230: 16 V Rail-to-Rail, Zero-Drift, Precision  
Instrumentation Amplifier Data Sheet  
Sample and Buy  
Visit the product page to see pricing options  
Technical Books  
• A Designer's Guide to Instrumentation Amplifiers, 3rd  
Edition, 2006  
Technical Support  
Submit a technical question or find your regional support  
number  
Reference Materials  
Technical Articles  
• Auto-Zero Amplifiers  
• High-performance Adder Uses Instrumentation Amplifiers  
• Input Filter Prevents Instrumentation-amp RF-Rectification  
Errors  
• The AD8221 - Setting a New Industry Standard for  
Instrumentation Amplifiers  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to  
the content on this page does not constitute a change to the revision number of the product data sheet. This content may be  
frequently modified.  
AD8230  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Level-Shifting the Output ......................................................... 12  
Source Impedance and Input Settling Time ........................... 12  
Input Voltage Range................................................................... 13  
Input Protection ......................................................................... 13  
Power Supply Bypassing............................................................ 13  
Power Supply Bypassing for Multiple Channel Systems ....... 13  
Layout .......................................................................................... 14  
Applications ................................................................................ 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Connection Diagram ....................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Characteristics .............................................................. 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ...................................................................... 11  
Setting the Gain .......................................................................... 11  
REVISION HISTORY  
9/07—Rev. A to Rev. B  
7/05—Rev. 0 to Rev. A  
Changes to Features and Layout..................................................... 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Changes to Layout ............................................................................ 5  
Inserted Figure 13, Figure 14, and Figure 15; Renumbered  
Sequentially ....................................................................................... 7  
Changes to Figure 16 and Figure 19............................................... 8  
Updated Outline Dimensions....................................................... 15  
Changes to Excellent AC and DC Performance............................1  
Changes to Table 1.............................................................................3  
Changes to Table 2.............................................................................4  
Changes to Figure 7 and Figure 8....................................................6  
Changes to Figure 10 and Figure 11................................................7  
Changes to Level-Shifting the Output Section........................... 11  
Changes to Figure 31...................................................................... 11  
Inserted Figure 32 and Figure 33; Renumbered Sequentially .. 11  
Changes to Source Impedance and Input Settling Time Section,  
Input Protection Section and Power Supply Bypassing for  
Multiple Channel Systems Section............................................... 12  
Changes to Figure 36...................................................................... 13  
Changes to Applications Section.................................................. 13  
10/04—Revision 0: Initial Version  
Rev. B | Page 2 of 16  
 
AD8230  
SPECIFICATIONS  
VS = 5 V, VREF = 0 V, RF = 100 kΩ, RG = 1 kΩ (@ TA = 25°C, G = 202, RL = 10 kΩ, unless otherwise noted).  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOLTAGE OFFSET  
RTI Offset, VOSI  
Offset Drift  
V+IN = V−IN = 0 V  
V+IN = V−IN = 0 V,  
10  
50  
μV  
nV/°C  
TA = −40°C to +125°C  
COMMON-MODE REJECTION (CMR)  
CMR to 60 Hz with 1 kΩ Source Imbalance  
VOLTAGE OFFSET RTI vs. SUPPLY (PSR)  
G = 2  
VCM = −5 V to +5 V  
G = 2(1 + RF/RG)  
110  
120  
dB  
120  
120  
120  
140  
dB  
dB  
G = 202  
GAIN  
Gain Range  
Gain Error2  
101  
1000  
V/V  
G = 2  
G = 10  
G = 100  
G = 1000  
Gain Nonlinearity  
Gain Drift  
0.01  
0.01  
0.01  
0.02  
0.04  
0.04  
0.04  
0.05  
20  
%
%
%
%
ppm  
G = 2, 10, 102  
G = 1002  
14  
60  
ppm/°C  
ppm/°C  
INPUT  
Input Common-Mode Operating Voltage Range  
Over Temperature  
Input Differential Operating Voltage Range  
Average Input Offset Current3  
Average Input Bias Current3  
OUTPUT  
−VS  
−VS  
+VS  
+VS  
V
V
mV  
pA  
nA  
T = −40°C to +125°C  
750  
33  
0.15  
VCM = 0 V  
VCM = 0 V  
300  
1
Output Swing  
−VS + 0.1  
−VS + 0.1  
+VS − 0.2  
+VS − 0.2  
V
V
mA  
Over Temperature  
Short-Circuit Current  
REFERENCE INPUT  
Voltage Range4  
T = −40°C to +125°C  
15  
−VS + 3.5  
+VS − 2.5  
V
NOISE  
Voltage Noise Density, 1 kHz, RTI  
Voltage Noise  
VIN+, VIN−, VREF = 0 V  
f = 0.1 Hz to 10 Hz  
VIN = 500 mV, G = 10  
240  
3
nV/√Hz  
μV p-p  
V/μs  
SLEW RATE  
2
INTERNAL SAMPLE RATE  
POWER SUPPLY  
6
kHz  
Operating Range (Dual Supplies)  
Operating Range (Single Supply)  
Quiescent Current  
TEMPERATURE RANGE  
Specified Performance  
4
8
8
16  
3.5  
V
V
mA  
T = −40°C to +125°C  
2.7  
−40  
+125  
°C  
1 The AD8230 can operate as low as G = 2. However, since the differential input range is limited to approximately 750 mV, the AD8230 configured at G < 10 does not  
make use of the full output voltage range.  
2 Gain drift is determined by the TC match of the external gain setting resistors.  
3 Differential source resistance less than 10 kΩ does not result in voltage offset due to input bias current or mismatched series resistors.  
4 For G < 10, the reference voltage range is limited to −VS + 4.24 V to +VS – 2.75 V.  
Rev. B | Page 3 of 16  
 
 
AD8230  
VS = 8 V, VREF = 0 V, RF = 100 kΩ, RG = 1 kΩ (@ TA = 25°C, G = 202, RL = 10 kΩ, unless otherwise noted).  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOLTAGE OFFSET  
RTI Offset, VOSI  
Offset Drift  
V+IN = V−IN = 0 V  
V+IN = V−IN = 0 V,  
20  
50  
μV  
nV/°C  
T = −40°C to +125°C  
COMMON-MODE REJECTION (CMR)  
CMR to 60 Hz with 1 kΩ Source Imbalance  
VOLTAGE OFFSET RTI vs. SUPPLY (PSR)  
G = 2  
VCM = −8 V to +8 V  
G = 2(1 + RF/RG)  
110  
120  
dB  
120  
120  
120  
140  
dB  
dB  
G = 202  
GAIN  
Gain Range  
Gain Error2  
101  
1000  
V/V  
G = 2  
G = 10  
G = 100  
G = 1000  
Gain Nonlinearity  
Gain Drift  
0.01  
0.01  
0.01  
0.02  
0.04  
0.04  
0.04  
0.05  
20  
%
%
%
%
ppm  
G = 2, 10, 102  
G=1002  
14  
60  
ppm/°C  
ppm/°C  
INPUT  
Input Common-Mode Operating Voltage Range  
Over Temperature  
Input Differential Operating Voltage Range  
Average Input Offset Current3  
Average Input Bias Current3  
OUTPUT  
−VS  
−VS  
+VS  
+VS  
V
V
mV  
pA  
nA  
T = −40°C to +125°C  
750  
33  
0.15  
VCM = 0 V  
VCM = 0 V  
300  
1
Output Swing  
−VS + 0.1  
−VS + 0.1  
+VS − 0.2  
+VS − 0.4  
V
V
mA  
Over Temperature  
Short-Circuit Current  
REFERENCE INPUT  
Voltage Range4  
T = −40°C to +125°C  
15  
−VS + 3.5  
+VS − 2.5  
V
NOISE  
Voltage Noise Density, 1 kHz, RTI  
Voltage Noise  
VIN+, VIN−, VREF = 0 V  
f = 0.1 Hz to 10 Hz  
VIN = 500 mV, G = 10  
240  
3
nV/√Hz  
μV p-p  
V/μs  
SLEW RATE  
2
INTERNAL SAMPLE RATE  
POWER SUPPLY  
6
kHz  
Operating Range (Dual Supplies)  
Operating Range (Single Supply)  
Quiescent Current  
TEMPERATURE RANGE  
Specified Performance  
4
8
8
16  
4
V
V
mA  
T = −40°C to +125°C  
3.2  
−40  
+125  
°C  
1 The AD8230 can operate as low as G = 2. However, since the differential input range is limited to approximately 750 mV, the AD8230 configured at G < 10 does not  
make use of the full output voltage range.  
2 Gain drift is determined by the TC match of the external gain setting resistors.  
3 Differential source resistance less than 10 kΩ does not result in voltage offset due to input bias current or mismatched series resistors.  
4 For G < 10, the reference voltage range is limited to −VS + 4.24 V to +VS − 2.75V.  
Rev. B | Page 4 of 16  
 
 
AD8230  
ABSOLUTE MAXIMUM RATINGS  
THERMAL CHARACTERISTICS  
Table 3.  
Specification is for device in free air SOIC.  
Parameter  
Rating  
Supply Voltage  
8 V, +16 V  
304 mW  
20 mA  
VS  
VS  
Table 4.  
Parameter  
Internal Power Dissipation  
Output Short-Circuit Current  
Input Voltage (Common-Mode)  
Differential Input Voltage  
Storage Temperature Range  
Operational Temperature Range  
Value  
121  
Unit  
θJA (4-Layer JEDEC Board)  
°C/W  
−65°C to +150°C  
−40°C to +125°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. B | Page 5 of 16  
 
AD8230  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
15  
TOTAL NUMBER OF  
SAMPLES = 2839 FROM 3 LOTS  
NORMALIZED FOR V  
= 0V  
CM  
500  
400  
300  
200  
100  
0
10  
5
0
–5  
–10  
–15  
–20  
–9  
–6  
–3  
0
3
6
9
–6  
–4  
–2  
0
2
4
6
OFFSET VOLTAGE (µV RTI)  
COMMON-MODE VOLTAGE (V)  
Figure 4. Offset Voltage (RTI) Distribution at 5 V, CM = 0 V, TA = 25°C  
Figure 7. Offset Voltage (RTI) vs. Common-Mode Voltage, VS = 5 V  
40  
20  
TOTAL NUMBER OF SAMPLES = 300 FROM 3 LOTS  
NORMALIZED FOR V  
= 0V  
CM  
35  
30  
25  
20  
15  
10  
5
15  
10  
5
0
–5  
–10  
–15  
–20  
0
–50  
–30  
–10  
10  
30  
50  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
OFFSET VOLTAGE DRIFT (nV/°C)  
COMMON-MODE VOLTAGE (V)  
Figure 5. Offset Voltage (RTI) Drift Distribution  
Figure 8. Offset Voltage (RTI) vs. Common-Mode Voltage, VS = 8 V  
0
0
–1  
–2  
–3  
–4  
–2  
–4  
V
= ±5V  
S
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
V
= ±8V  
S
–5  
±5V SUPPLY  
–6  
–7  
±8V SUPPLY  
–8  
–50 –30 –10  
10  
30  
50  
70  
90  
110 130 150  
0
1
2
3
4
5
6
TEMPERATURE (°C)  
SOURCE IMPEDANCE (k)  
Figure 6. Offset Voltage (RTI) vs. Temperature  
Figure 9. Offset Voltage (RTI) vs. Source Impedance, 1 μF Across Input Pins  
Rev. B | Page 6 of 16  
 
AD8230  
40  
30  
10  
8
–856mV, +8.2V  
0V, +8.4V  
= ±8V  
+592mV, +8.2V  
NORMALIZED FOR V  
= 0V  
REF  
V
S
6
20  
–812mV, +5V  
+644mV, +5V  
4
0V, +5.5V  
10  
2
V
= ±5V  
S
0
0
–2  
–4  
–6  
–8  
–10  
–10  
–20  
–30  
–40  
–652mV, –5V  
+800mV, –5V  
0V, –5.5V  
0V, –8.4V  
–616mV, –8.2V  
+840mV, –8.2V  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
–1000 –800 –600 –400 –200  
0
200 400 600 800 1000  
V
(V)  
OUTPUT VOLTAGE (mV)  
REF  
Figure 13. Input Common-Mode Voltage Range vs. Output Voltage, G = 2  
Figure 10. Offset Voltage (RTI) vs. Reference Voltage  
10  
130  
120  
110  
100  
90  
V
= ±8V  
S
–7.9V, +8V  
+7.9V, +8V  
CMR WITH NO SOURCE IMBALANCE  
8
6
–4.9V, +5V  
+4.88V, +5V  
4
V
= ±5V  
S
2
0
80  
–2  
–4  
–6  
–8  
–10  
70  
CMR WITH 1kSOURCE IMBALANCE  
60  
–4.9V, –5V  
+4.88V, –5V  
50  
–7.9V, –8V  
–10 –8 –6  
+7.9V, –8V  
40  
–4  
–2  
0
2
4
6
8
10  
10  
100  
1k  
10k  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 14. Input Common-Mode Voltage Range vs. Output Voltage, G = 10  
Figure 11. Common-Mode Rejection (CMR) vs. Frequency  
130  
10  
–7.9V, +8V  
+7.9V, +8V  
128  
126  
124  
122  
120  
118  
116  
114  
112  
110  
8
6
V
= ±8V  
S
–4.8V, +5.5V  
+4.8V, +5.5V  
4
2
V
= ±5V  
S
±5V SUPPLY  
0
–2  
–4  
–6  
–8  
–10  
±8V SUPPLY  
–4.8V, –5.5V  
+4.8V, –5.5V  
–7.9V, –8V  
–10 –8 –6  
+7.9V, –8V  
8 10  
–4  
–2  
0
2
4
6
0
2
4
6
8
10  
12  
OUTPUT VOLTAGE (V)  
SOURCE IMPEDANCE (k)  
Figure 15. Input Common-Mode Voltage Range vs. Output Voltage, G = 100  
Figure 12. Common-Mode Rejection (CMR) vs.  
Source Impedance, 1.1 μF Across Input Pins  
Rev. B | Page 7 of 16  
AD8230  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6.8  
6.6  
6.4  
6.2  
6.0  
5.8  
5.6  
±8V  
±5V  
–10  
5.4  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 16. Clock Frequency vs. Temperature  
Figure 19. Gain vs. Frequency, G = 2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+85°C  
+125°C  
–40°C  
–0.2  
–0.4  
0°C  
–0.6  
–0.8  
–1.0  
+25°C  
–10  
–6  
–4  
–2  
0
2
4
6
10  
100  
1k  
10k  
100k  
COMMON-MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 17. Average Input Bias Current vs. Common-Mode Voltage,  
−40°C, +25°C, +85°C, +125°C  
Figure 20. Gain vs. Frequency, G = 10  
3.5  
3.4  
40  
30  
G = +20  
±8V  
3.3  
20  
3.2  
3.1  
10  
0
3.0  
±5V  
2.9  
–10  
–20  
–30  
–40  
2.8  
2.7  
2.6  
2.5  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
–50  
0
50  
100  
150  
V
(V)  
TEMPERATURE (°C)  
OUT  
Figure 18. Supply Current vs. Temperature  
Figure 21. Gain Nonlinearity, G = 20  
Rev. B | Page 8 of 16  
AD8230  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
–10  
1
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
100k  
20  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22. Gain vs. Frequency, G = 100  
Figure 25. Voltage Noise Spectral Density vs. Frequency  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.90  
3.70  
3.50  
3.30  
3.10  
2.90  
2.70  
2.50  
–10  
10  
100  
1k  
10k  
2µV/DIV  
–50 –30  
1s/DIV  
110 130  
–10  
10  
30  
50  
70  
90  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 23. Gain vs. Frequency, G = 1000  
Figure 26. 0.1 Hz to 10 Hz RTI Voltage Noise, G = 100  
0.010  
0.008  
0.006  
0.004  
0.002  
0
160  
140  
120  
100  
80  
G = +1000  
G = +100  
G = +10  
G = +2  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
60  
40  
20  
0
0
5
10  
15  
0.1  
1
10  
SOURCE IMPEDANCE (k)  
FREQUENCY (kHz)  
Figure 24. Gain Error vs. Differential Source Impedance  
Figure 27. Positive PSR vs. Frequency, RTI  
Rev. B | Page 9 of 16  
AD8230  
140  
120  
100  
80  
10  
8
V
V
= ±8V  
= ±5V  
–40°C  
S
S
G = +100  
6
–40°C  
+125°C  
+25  
°C  
4
G = +1000  
2
+125°C  
+25°C  
0
G = +10  
60  
+25  
+25  
°
C
C
–2  
–4  
–6  
–8  
–10  
G = +2  
+125°C  
V
V
= ±5V  
= ±8V  
S
S
40  
°
–40°C  
+125  
8
°C  
20  
–40°C  
0
0.1  
1
10  
0
2
4
6
10  
12  
FREQUENCY (kHz)  
OUTPUT CURRENT (mA)  
Figure 28. Negative PSR vs. Frequency, RTI  
Figure 29. Output Voltage Swing vs. Output Current,  
−40°C, +25°C, +85°C, +125°C  
Rev. B | Page 10 of 16  
AD8230  
THEORY OF OPERATION  
Auto-zeroing is a dynamic offset and drift cancellation  
technique that reduces input-referred voltage offset to the  
μV level and voltage offset drift to the nV/°C level. A further  
advantage of dynamic offset cancellation is the reduction of  
low frequency noise, in particular the 1/f component.  
In Phase B, the differential signal is transferred to the hold  
capacitors refreshing the value stored on CHOLD. The output of  
the preamplifier is held at a common-mode voltage determined  
by the reference potential, VREF. In this manner, the AD8230 is  
able to condition the difference signal and set the output voltage  
level. The gain amplifier conditions the updated signal stored  
The AD8230 is an instrumentation amplifier that uses an  
auto-zeroing topology and combines it with high common-  
mode signal rejection. The internal signal path consists of an  
active differential sample-and-hold stage (preamp) followed by  
a differential amplifier (gain amp). Both amplifiers implement  
auto-zeroing to minimize offset and drift. A fully differential  
topology increases the immunity of the signals to parasitic noise  
and temperature effects. Amplifier gain is set by two external  
resistors for convenient TC matching.  
on the hold capacitors, CHOLD  
.
SETTING THE GAIN  
Two external resistors set the gain of the AD8230. The gain is  
expressed in the following equation:  
RF  
RG  
Gain = 2(1+  
)
(1)  
+V  
S
–V  
S
The signal sampling rate is controlled by an on-chip, 6 kHz  
oscillator and logic to derive the required nonoverlapping  
clock phases. For simplification of the functional description,  
two sequential clock phases, A and B, are shown to distinguish  
the order of internal operation, as depicted in Figure 30 and  
Figure 31, respectively.  
0.1µF  
10µF  
0.1µF  
10µF  
2
4
5
1
AD8230  
V
8
F
R
OUT  
G
V
2
7
REF  
6
V
1
REF  
3
R
G
GAIN AMP  
PREAMP  
R
–V  
S
C
HOLD  
V
+IN  
+
V
OUT  
V
DIFF  
+V  
C
SAMPLE  
Figure 32. Gain Setting  
CM  
+
V
–IN  
C
HOLD  
Table 5. Gains Using Standard 1% Resistors  
–V  
S
Gain  
RF  
RG  
Actual Gain  
2
10  
50  
100  
200  
500  
1000  
0 Ω (short)  
8.06 kΩ  
12.1 kΩ  
9.76 kΩ  
10 kΩ  
None  
2 kΩ  
2
10  
V
R
G
R
REF  
F
Figure 30. Phase A of the Sampling Phase  
499 Ω  
200 Ω  
100 Ω  
200 Ω  
200 Ω  
50.5  
99.6  
202  
501  
1002  
During Phase A, the sampling capacitors are connected to the  
inputs. The input signals difference voltage, VDIFF, is stored  
across the sampling capacitors, CSAMPLE. Because the sampling  
capacitors only retain the difference voltage, the common-mode  
voltage is rejected. During this period, the gain amplifier is not  
connected to the preamplifier so its output remains at the level  
set by the previously sampled input signal held on CHOLD, as  
shown in Figure 30.  
49.9 kΩ  
100 kΩ  
Figure 32 and Table 5 provide an example of some gain settings.  
As Table 5 shows, the AD8230 accepts a wide range of resistor  
values. Because the instrumentation amplifier has finite driving  
capability, ensure that the output load in parallel with the sum  
of the gain setting resistors is greater than 2 kΩ.  
GAIN AMP  
PREAMP  
–V  
S
C
HOLD  
RL||(RF + RG) > 2 kΩ  
(2)  
V
+IN  
+
V
OUT  
V
DIFF  
+V  
C
SAMPLE  
Offset voltage drift at high temperature can be minimized by  
CM  
+
V
–IN  
keeping the value of the feedback resistor, RF, small. This is due  
to the junction leakage current on the RG pin, Pin 7. The effect  
of the gain setting resistor on offset voltage drift is shown in  
Figure 33. In addition, experience has shown that wire-wound  
resistors in the gain feedback loop may degrade the offset  
voltage performance.  
C
HOLD  
–V  
S
V
R
R
REF  
G
F
Figure 31. Phase B of the Sampling Phase  
Rev. B | Page 11 of 16  
 
 
 
 
 
AD8230  
0
The following steps can be taken to set the gain and level-shift  
the output:  
–1  
–2  
–3  
–4  
1. Select an RF value. Table 5 shows RF values for various gains.  
2. Solve for RO using Equation 4.  
VR' ×RF  
RO = −  
(4)  
VDESIRED  
LEVEL  
R
= 100k, R = 1kΩ  
G
F
where:  
VR’ is a voltage source, such as a supply voltage.  
VDESIRED-LEVEL is the desired output bias voltage.  
R
= 10k, R = 100Ω  
F
G
3. Solve for RG.  
–5  
–50  
0
50  
TEMPERATURE (°C)  
100  
150  
RO  
RG  
=
(5)  
R
R
F
Gain  
2
O
1  
1  
Figure 33. Effect of Feedback Resistor on Offset Voltage Drift  
LEVEL-SHIFTING THE OUTPUT  
+V  
S
–V  
S
A reference voltage, as shown in Figure 34, can be used to  
level-shift the output. The reference voltage, VR, is limited to  
−VS + 3.5 V to +VS − 2.5 V. (For G < 10, the reference voltage  
range is limited to −VS + 4.24 V to +VS – 2.75 V.) Otherwise, it  
is nominally tied to midsupply. The voltage source used to level-  
shift the output should have a low output impedance to avoid  
contributing to gain error. In addition, it should be able to  
source and sink current. To minimize offset voltage, the VREF  
pins should be connected either to the local ground or to a  
reference voltage source that is connected to the local ground.  
0.1µF  
0.1µF  
8
2
4
1
V
AD8230  
OUT  
7
5
R
6
F
3
R
G
R
O
V
'
R
+V  
S
Figure 35. Level-Shifting the Output Without an  
Additional Voltage Reference  
–V  
S
0.1µF  
+5V  
–5V  
0.1µF  
2
0.1µF  
4
1
0.1µF  
V
8
F
AD8230  
OUT  
7
2
5
6
4
5
1
R
G
3
V
8
AD8230  
OUT  
7
R
9.76k  
6
3
V
R
203Ω  
10.2kΩ  
Figure 34. Level-Shifting the Output  
+5V  
The output can also be level-shifted by adding a resistor, RO, as  
shown in Figure 35. The benefit is that the output can be level-  
shifted to as low as 100 mV of the negative supply rail and to as  
high as 200 mV of the positive supply rail, increasing unipolar  
output swing. This can be useful in applications, such as strain  
gauges, where the force is only applied in one direction. Another  
benefit of this configuration is that a supply rail can be used for  
VR’ eliminating the need to add an additional external reference  
voltage.  
Figure 36. An AD8230 with its Output Biased at −4.8 V;  
G = 100; VDESIRED-LEVEL = −4.8 V  
SOURCE IMPEDANCE AND INPUT SETTLING TIME  
The input stage of the AD8230 consists of two actively driven,  
differential switched capacitors, as described in Figure 30 and  
Figure 31. Differential input signals are sampled on CSAMPLE such  
that the associated parasitic capacitances, 70 pF, are balanced  
between the inputs to achieve high common-mode rejection.  
On each sample period (approximately 85 μs), these parasitic  
capacitances must be recharged to the common-mode voltage  
by the signal source impedance (10 kΩ maximum). If resistors  
and capacitors are used at the input of the AD8230, care should  
be taken to maintain close match to maximize CMRR.  
The gain changes with the inclusion of RO. The full expression is  
RF  
(
RG + RO  
RGRO  
)
RF  
RO  
RF  
RG || RO  
RF  
RO  
(3)  
VOUT = 2  
+1 VIN  
VR' = 2  
+1 VIN  
VR  
'
Rev. B | Page 12 of 16  
 
 
 
 
AD8230  
INPUT VOLTAGE RANGE  
POWER SUPPLY BYPASSING  
The input common-mode range of the AD8230 is rail to rail.  
However, the differential input voltage range is limited to  
approximately 750 mV. The AD8230 does not phase invert  
when its inputs are overdriven.  
A regulated dc voltage should be used to power the  
instrumentation amplifier. Noise on the supply pins can  
adversely affect performance. Bypass capacitors should be  
used to decouple the amplifier.  
The AD8230 has internal clocked circuitry that requires  
adequate supply bypassing. A 0.1 μF capacitor should be placed  
as close to each supply pin as possible. As shown in Figure 32, a  
10 μF tantalum capacitor can be used further away from the part.  
INPUT PROTECTION  
The input voltage is limited to within 0.6 V beyond the supply  
rails by the internal ESD protection diodes. Resistors and low  
leakage diodes can be used to limit excessive, external voltage  
and current from damaging the inputs, as shown in Figure 37.  
Figure 39 shows an overvoltage protection circuit between the  
thermocouple and the AD8230.  
POWER SUPPLY BYPASSING FOR MULTIPLE  
CHANNEL SYSTEMS  
The best way to prevent clock interference in multichannel  
systems is to lay out the PCB with a star node for the positive  
supply and a star node for the negative supply. Using such a  
technique, crosstalk between clocks is minimized. If laying out  
star nodes is not feasible, use wide traces to minimize parasitic  
inductance and decouple frequently along the power supply  
traces. Examples are shown in Figure 38. Care and forethought  
go a long way in maximizing performance.  
+V  
S
–V  
S
BAV199  
0.1µF  
+V –V  
S
S
0.1µF  
8
2
4
1
2.49k  
2.49kΩ  
V
AD8230  
OUT  
7
5
6
19.1kΩ  
200Ω  
3
+V –V  
S
S
BAV199  
Figure 37. Overvoltage Input Protection  
–V  
S
+V  
S
1µF  
0.1µF  
–V  
1µF  
1µF  
0.1µF  
–V  
1µF  
10µF  
10µF  
0.1µF  
1
0.1µF  
1
0.1µF  
1
–V  
–V  
–V  
S
S
S
S
S
S
S
1
2
3
4
1
2
3
4
8
7
6
5
8
7
6
5
8
8
7
6
5
8
7
6
5
+V  
+V  
+V  
+V  
+V  
S
S
S
2
3
4
2
3
4
2
3
4
7
6
5
0.1µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
AD8230  
AD8230  
AD8230  
AD8230  
AD8230  
STAR –V  
S
10µF  
STAR +V  
S
10µF  
0.1µF  
1
0.1µF  
0.1µF  
1
0.1µF  
–V  
–V  
–V  
S
–V  
S
S
S
S
1
2
3
4
1
2
3
4
8
7
6
5
8
7
6
5
8
7
6
8
7
+V  
+V  
+V  
+V  
S
S
S
2
3
4
2
3
4
6
0.1µF  
0.1µF  
0.1µF  
0.1µF  
5
5
AD8230  
AD8230  
AD8230  
AD8230  
Figure 38. Use Star Nodes for +VS and −VS or Use Thick Traces and Decouple Frequently Along the Supply Lines  
Rev. B | Page 13 of 16  
 
 
 
 
AD8230  
An antialiasing filter reduces unwanted high frequency signals.  
The matched 100 MΩ resistors serve to provide input bias  
current to the input transistors and serve as an indicator as to  
when the thermocouple connection is broken. Well-matched  
1% 4.99 kΩ resistors are used to form the antialiasing filter. It is  
good practice to match the source impedances to ensure high  
CMR. The circuit is configured for a gain of 193, which  
provides an overall temperature sensitivity of 10 mV/°C.  
LAYOUT  
The AD8230 has two reference pins: VREF1 and VREF2. VREF  
1
draws current to set the internal voltage references. In contrast,  
REF2 does not draw current. It sets the common mode of the  
V
output signal. As such, VREF1 and VREF2 should be star-connected to  
ground (or to a reference voltage). In addition, to maximize  
CMR, the trace between VREF2 and the gain resistor, RG, should  
be kept short.  
+V  
S
–V  
APPLICATIONS  
S
0.1µF  
The AD8230 can be used in thermocouple applications, as  
shown in Figure 3 and Figure 39. Figure 39 is an example of  
such a circuit for use in an industrial environment. Series  
resistors and low leakage diodes serve to clamp overload  
voltages (see the Input Protection section for more information).  
0.1µF  
8
+V  
S
2
4
1
4k  
V
AD8230  
OUT  
350Ω  
350Ω  
350Ω  
350Ω  
7
1µF  
5
6
102kΩ  
1kΩ  
3
+V  
S
BAV199  
+V –V  
–V  
S
S
S
+V  
0.1µF  
S
0.1µF  
8
–V  
S
100M  
2
Figure 40. Bridge Measurement with Filtered Output  
TYPE J  
THERMOCOUPLE  
4
1
4.99kΩ  
4.99kΩ  
V
1µF  
AD8230  
OUT  
Measuring load cells in industrial environments can be a  
challenge. Often, the load cell is located some distance away  
from the instrumentation amplifier. The common-mode  
potential can be several volts, exceeding the common-mode  
input range of many 5 V auto-zero instrumentation amplifiers.  
Fortunately, the wide common-mode input voltage range of the  
AD8230 spans 16 V, relieving designers of having to worry  
about the common-mode range.  
7
5
6
100MΩ  
19.1kΩ  
200Ω  
3
–V  
S
+V –V  
S
S
BAV199  
Figure 39. Type J Thermocouple with Overvoltage Protection and RFI Filter  
Rev. B | Page 14 of 16  
 
 
AD8230  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 41. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
AD8230YRZ1  
AD8230YRZ-REEL1  
AD8230YRZ-REEL71  
AD8230-EVAL  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
8-Lead SOIC_N  
R-8  
R-8  
R-8  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. B | Page 15 of 16  
 
 
AD8230  
NOTES  
©2004–2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05063-0-9/07(B)  
Rev. B | Page 16 of 16  

相关型号:

AD8231

Zero Drift, Digital Programmable Instrumentation Amplifier
ADI

AD8231-EVALZ

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI

AD82311

10 MHz, 20 V/レs, G = 1, 10, 100, 1000 i CMOS㈢ Programmable Gain Instrumentation Amplifier
ADI

AD8231ACPZ-R7

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI

AD8231ACPZ-R7

INSTRUMENTATION AMPLIFIER, 15 uV OFFSET-MAX, 1 MHz BAND WIDTH, QCC16, 4 X 4 MM, ROHS COMPLIANT, MO-220VGGC, LFCSP-16
ROCHESTER

AD8231ACPZ-RL

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI

AD8231ACPZ-WP

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI

AD8231ACPZ-WP

INSTRUMENTATION AMPLIFIER, 15 uV OFFSET-MAX, 1 MHz BAND WIDTH, QCC16, 4 X 4 MM, ROHS COMPLIANT, MO-220VGGC, LFCSP-16
ROCHESTER

AD8231TCPZ-EP-R7

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI

AD8231WACPZ-RL

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI

AD8231_07

Zero Drift, Digital Programmable Instrumentation Amplifier
ADI

AD8231_1

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI