AD827JR-16 [ADI]

High Speed, Low Power Dual Op Amp; 高速,低功耗双运算放大器
AD827JR-16
型号: AD827JR-16
厂家: ADI    ADI
描述:

High Speed, Low Power Dual Op Amp
高速,低功耗双运算放大器

运算放大器
文件: 总12页 (文件大小:228K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed, Low Power  
Dual Op Amp  
a
AD827  
CONNECTION DIAGRAMS  
FEATURES  
High Speed  
50 MHz Unity Gain Stable Operation  
300 V/ms Slew Rate  
8-Lead Plastic (N) and Cerdip  
16-Lead Small Outline  
(R) Package  
(Q) Packages  
120 ns Settling Time  
Drives Unlimited Capacitive Loads  
Excellent Video Performance  
0.04% Differential Gain @ 4.4 MHz  
0.198 Differential Phase @ 4.4 MHz  
Good DC Performance  
2 mV max Input Offset Voltage  
15 mV/8C Input Offset Voltage Drift  
Available in Tape and Reel in Accordance with  
EIA-481A Standard  
Low Power  
20-Lead LCC (E) Package  
Only 10 mA Total Supply Current for Both Amplifiers  
؎5 V to ؎15 V Supplies  
PRODUCT DESCRIPTION  
The AD827 is a dual version of Analog Devices’ industry-  
standard AD847 op amp. Like the AD847, it provides high  
speed, low power performance at low cost. The AD827 achieves  
a 300 V/µs slew rate and 50 MHz unity-gain bandwidth while  
consuming only 100 mW when operating from 5 volt power  
supplies. Performance is specified for operation using 5 V to  
15 V power supplies.  
The AD827 offers an open-loop gain of 3,500 V/V into 500 Ω  
loads. It also features a low input voltage noise of 15 nV/Hz,  
and a low input offset voltage of 2 mV maximum. Common-  
mode rejection ratio is a minimum of 80 dB. Power supply  
rejection ratio is maintained at better than 20 dB with input  
frequencies as high as 1 MHz, thus minimizing noise  
feedthrough from switching power supplies.  
APPLICATION HIGHLIGHTS  
1. Performance is fully specified for operation using 5 V to  
15 V supplies.  
2. A 0.04% differential gain and 0.19° differential phase error at  
the 4.4 MHz color subcarrier frequency, together with its low  
cost, make it ideal for many video applications.  
The AD827 is also ideal for use in demanding video applica-  
tions, driving coaxial cables with less than 0.04% differential  
gain and 0.19° differential phase errors for 643 mV p-p into a  
75 reverse terminated cable.  
3. The AD827 can drive unlimited capacitive loads, while its  
30 mA output current allows 50 and 75 reverse-  
terminated loads to be driven.  
The AD827 is also useful in multichannel, high speed data  
conversion systems where its fast (120 ns to 0.1%) settling time  
is of importance. In such applications, the AD827 serves as an  
input buffer for 8-bit to 10-bit A/D converters and as an output  
amplifier for high speed D/A converters.  
4. The AD827’s 50 MHz unity-gain bandwidth makes it an  
ideal candidate for multistage active filters.  
5. The AD827 is available in 8-lead plastic mini-DIP and cerdip,  
20-lead LCC, and 16-lead SOIC packages. Chips and  
MIL-STD-883B processing are also available.  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
AD827–SPECIFICATIONS (@ T = +25؇C, unless otherwise noted.)  
A
AD827J  
AD827A/S  
Model  
Conditions  
VS  
Min Typ Max Min Typ Max Unit  
DC PERFORMANCE  
Input Offset Voltage1  
5 V  
0.5  
2
3.5  
4
0.3  
2
4
4
6
mV  
mV  
mV  
mV  
µV/°C  
µA  
T
MIN to TMAX  
15 V  
TMIN to TMAX  
6
Offset Voltage Drift  
Input Bias Current  
5 V to 15 V  
5 V to 15 V  
15  
3.3  
15  
3.3  
7
7
TMIN to TMAX  
MIN to TMAX  
8.2  
300  
400  
9.5  
300  
400  
µA  
Input Offset Current  
5 V to 15 V  
50  
50  
nA  
nA  
T
Offset Current Drift  
Common-Mode Rejection Ratio  
5 V to 15 V  
5 V  
15 V  
5 V to 15 V 75  
5 V to 15 V 75  
72  
0.5  
95  
95  
0.5  
95  
95  
nA/°C  
VCM  
VCM  
TMIN to TMAX  
=
=
2.5 V  
12 V  
78  
78  
80  
80  
75  
75  
72  
dB  
dB  
dB  
dB  
dB  
Power Supply Rejection Ratio  
Open-Loop Gain  
86  
86  
T
MIN to TMAX  
VO = 2.5 V  
5 V  
RLOAD = 500 Ω  
TMIN to TMAX  
RLOAD = 150 Ω  
2
1
3.5  
1.6  
5.5  
2
1
3.5  
1.6  
5.5  
V/mV  
V/mV  
V/mV  
VOUT  
=
10 V  
15 V  
RLOAD = 1 kΩ  
TMIN to TMAX  
3
1.5  
3
1.5  
V/mV  
V/mV  
MATCHING CHARACTERISTICS  
Input Offset Voltage  
Crosstalk  
5 V  
5 V  
0.4  
85  
0.2  
85  
mV  
dB  
f = 5 MHz  
DYNAMIC PERFORMANCE  
Unity-Gain Bandwidth  
5 V  
15 V  
35  
50  
35  
50  
MHz  
MHz  
Full Power Bandwidth2  
VO = 5 V p-p,  
RLOAD = 500 Ω  
VO = 20 V p-p,  
5 V  
12.7  
12.7  
MHz  
R
LOAD = 1 kΩ  
15 V  
5 V  
15 V  
4.7  
200  
300  
4.7  
200  
300  
MHz  
V/µs  
V/µs  
Slew Rate3  
RLOAD = 500 Ω  
RLOAD = 1 kΩ  
AV = –1  
Settling Time to 0.1%  
–2.5 V to +2.5 V  
–5 V to +5 V  
CLOAD = 10 pF  
RLOAD = 1 kΩ  
f = 4.4 MHz  
f = 4.4 MHz  
f = 10 kHz  
5 V  
15 V  
15 V  
65  
120  
65  
120  
ns  
ns  
Phase Margin  
50  
50  
Degrees  
%
Degrees  
nV/Hz  
pA/Hz  
Differential Gain Error  
Differential Phase Error  
Input Voltage Noise  
Input Current Noise  
Input Common-Mode  
Voltage Range  
15 V  
15 V  
15 V  
15 V  
0.04  
0.19  
15  
0.04  
0.19  
15  
f = 10 kHz  
1.5  
1.5  
5 V  
+4.3  
–3.4  
+14.3  
–13.4  
3.6  
+4.3  
–3.4  
+14.3  
–13.4  
3.6  
V
V
V
V
V
V
V
V
15 V  
Output Voltage Swing  
RLOAD = 500 Ω  
5 V  
5 V  
15 V  
15 V  
3.0  
2.5  
12  
3.0  
2.5  
12  
R
LOAD = 150 Ω  
3.0  
3.0  
RLOAD = 1 kΩ  
RLOAD = 500 Ω  
13.3  
12.2  
32  
13.3  
12.2  
32  
10  
10  
Short-Circuit Current Limit  
5 V to 15 V  
mA  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
300  
1.5  
300  
1.5  
kΩ  
pF  
–2–  
REV. C  
AD827  
AD827J  
Min Typ Max  
AD827A/S  
Min Typ Max  
Model  
Conditions  
VS  
Unit  
OUTPUT RESISTANCE  
Open Loop  
15  
15  
POWER SUPPLY  
Operating Range  
Quiescent Current  
4.5  
18  
13  
16  
4.5  
18  
13  
16.5/17.5  
V
5 V  
15 V  
10  
10  
mA  
mA  
mA  
mA  
TMIN to TMAX  
TMIN to TMAX  
10.5 13.5  
16.5  
10.5 13.5  
17/18  
TRANSISTOR COUNT  
92  
92  
NOTES  
1 Offset voltage for the AD827 is guaranteed after power is applied and the device is fully warmed up. All other specifications are measured using high speed test equipment,  
approximately 1 second after power is applied.  
2 Full Power Bandwidth = Slew Rate/2 π VPEAK  
.
3 Gain = +1, rising edge.  
All min and max specifications are guaranteed.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS1  
ORDERING GUIDE  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
Internal Power Dissipation2  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
Plastic (N) Package (Derate at 10 mW/°C) . . . . . . . . 1.5 W  
Cerdip (Q) Package (Derate at 8.7 mW/°C) . . . . . . . 1.3 W  
Small Outline (R) Package (Derate at 10 mW/°C) . . . 1.5 W  
LCC (E) Package (Derate at 6.7 mW/°C) . . . . . . . . . 1.0 W  
Input Common-Mode Voltage . . . . . . . . . . . . . . . . . . . . . VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Output Short Circuit Duration3 . . . . . . . . . . . . . . . . Indefinite  
Storage Temperature Range (N, R) . . . . . . . –65°C to +125°C  
Storage Temperature Range (Q) . . . . . . . . . –65°C to +150°C  
Operating Temperature Range  
AD827J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
AD827A . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
AD827S . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
Lead Temperature Range  
AD827JN  
AD827JR  
AD827AQ  
AD827SQ  
AD827SQ/883B  
0°C to +70°C  
0°C to +70°C  
–40°C to +85°C 8-Lead Cerdip  
–55°C to +125°C 8-Lead Cerdip  
–55°C to +125°C 8-Lead Cerdip  
8-Lead Plastic DIP N-8  
16-Lead Plastic SO R-16  
Q-8  
Q-8  
Q-8  
Q-8  
E-20A  
E-20A  
5962-9211701MPA –55°C to +125°C 8-Lead Cerdip  
AD827SE/883B –55°C to +125°C 20-Lead LCC  
5962-9211701M2A –55°C to +125°C 20-Lead LCC  
AD827JR-REEL  
AD827JChips  
AD827SChips  
0°C to +70°C  
0°C to +70°C  
–55°C to +125°C Die  
Tape & Reel  
Die  
METALLIZATION PHOTOGRAPH  
Contact factory for latest dimensions.  
Dimensions shown in inches and (mm).  
Substrate is connected to V+.  
(Soldering to 60 sec) . . . . . . . . . . . . . . . . . . . . . . . . . 300°C  
NOTES  
1 Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only, and functional operation of  
the device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum ratings  
for extended periods may affect device reliability.  
2 Maximum internal power dissipation is specified so that TJ does not exceed 175°C  
at an ambient temperature of 25°C.  
Thermal Characteristics:  
MiniDIP: θJA = 100°C/W; θJC = 33°C/ W  
Cerdip: θJA = 110°C/W; θJC = 30°C/W  
16-Lead Small Outline Package: θJA = 100°C/W  
20-Lead LCC: θJA = 150°C/W; θJC = 35°C/W  
3 Indefinite short circuit duration is only permissible as long as the absolute  
maximum power rating is not exceeded.  
REV. C  
–3–  
–Typical Performance Characteristics (@ +25؇C & ؎15 V, unless otherwise noted)  
AD827  
20  
20  
15  
15  
+V  
OUT  
+V  
IN  
10  
10  
5
–V  
IN  
–V  
OUT  
R
= 1kΩ  
LOAD  
5
0
0
0
0
5
10  
15  
20  
5
10  
15  
20  
SUPPLY VOLTAGE Volts  
SUPPLY VOLTAGE Volts  
Figure 3. Output Voltage  
Swing vs. Load Resistance  
Figure 2. Output Voltage  
Swing vs. Supply Voltage  
Figure1. InputCommon-Mode  
Range vs. Supply Voltage  
Figure 4. Quiescent Current  
vs. Supply Voltage  
Figure 6. Closed-Loop Output  
Impedance vs. Frequency,  
Gain = +1  
Figure 5. Input Bias Current  
vs. Temperature  
14  
12  
V
= 15V  
S
10  
8
V
= 5V  
S
0
–60 –40 –20  
0
20  
40 60  
80 100 120 140  
TEMPERATURE – °C  
Figure 9. Gain Bandwidth vs.  
Temperature  
Figure 7. Quiescent Current  
vs. Temperature  
Figure 8. Short-Circuit  
Current Limit vs. Temperature  
–4–  
REV. C  
AD827  
Figure 12. Power Supply Rejection  
Ratio vs. Frequency  
Figure 11. Open-Loop Gain  
vs. Load Resistance  
Figure 10. Open-Loop Gain and  
Phase Margin vs. Frequency  
Figure 15. Output Swing and  
Error vs. Settling Time  
Figure 13. Common-Mode  
Rejection Ratio vs. Frequency  
Figure 14. Large Signal  
Frequency Response  
400  
RISE  
350  
A
= +1  
V
SLEW RATE 10 – 90%  
300  
FALL  
RISE  
FALL  
V
= 15V  
S
250  
200  
V
= 5V  
S
150  
100  
–60 –40 –20  
20  
40  
80 100 120 140  
0
60  
TEMPERATURE – °C  
Figure 16. Harmonic Distortion  
vs. Frequency  
Figure 18. Slew Rate vs.  
Temperature  
Figure 17. Input Voltage  
Noise Spectral Density  
REV. C  
–5–  
AD827  
Figure 20. Crosstalk Test Circuit  
Figure 19. Crosstalk vs. Frequency  
INPUT PROTECTION PRECAUTIONS  
For high performance circuits, it is recommended that a second  
resistor (RB in Figures 21a and 22a) be used to reduce bias-  
current errors by matching the impedance at each input. This  
resistor reduces the error caused by offset voltages by more than  
an order of magnitude.  
An input resistor (resistor RIN of Figure 21a) is recommended in  
circuits where the input common-mode voltage to the AD827  
may exceed (on a transient basis) the positive supply voltage.  
This resistor provides protection for the input transistors by  
limiting the maximum current that can be forced into their bases.  
Figure 21b. Follower Large  
Signal Pulse Response  
Figure 21c. Follower Small  
Signal Pulse Response  
Figure 21a. Follower Connection  
Figure 22b. Inverter Large  
Signal Pulse Response  
Figure 22c. Inverter Small  
Signal Pulse Response  
Figure 22a. Inverter Connection  
–6–  
REV. C  
AD827  
VIDEO LINE DRIVER  
A HIGH SPEED THREE OP AMP INSTRUMENTATION  
The AD827 functions very well as a low cost, high speed line  
driver for either terminated or unterminated cables. Figure 23  
shows the AD827 driving a doubly terminated cable in a  
follower configuration.  
AMPLIFIER CIRCUIT  
The instrumentation amplifier circuit shown in Figure 24 can  
provide a range of gains. Table II details performance.  
+VS  
TRIM FOR BEST  
SETTLING TIME  
+V  
S
0.1µF  
2 – 8pF  
–V  
IN  
3
2
8
0.1 µF  
+
V
1
2kΩ  
IN  
1/2  
AD827  
R
BT  
+VS  
1/2  
V
OUT  
50Ω  
AD827  
0.1µF  
50Ω  
R
1kΩ  
T
50Ω  
7
2kΩ  
2kΩ  
2
3
500Ω  
TRIM FOR  
OPTIMUM  
BANDWIDTH  
7 – 15 pF  
0.1 µF  
6
RG  
AD847  
+
VOUT  
2kΩ  
4
0.1µF  
–V  
S
RL  
3pF  
2kΩ  
1kΩ  
6
1/2  
7
–V  
C
S
500Ω  
C
AD827  
5
+V  
+
4
IN  
2000  
RG  
0.1µF  
CIRCUIT GAIN =  
+ 1  
NOTE: PINOUT SHOWN IS FOR MINIDIP PACKAGE  
–V  
S
Figure 23. A Video Line Driver  
Figure 24. A High Bandwidth Three Op Amp  
Instrumentation Amplifier  
The termination resistor, RT, (when equal to the cable’s  
characteristic impedance) minimizes reflections from the far end  
of the cable. While operating from 5 V supplies, the AD827  
maintains a typical slew rate of 200 V/µs, which means it can  
drive a 1 V, 30 MHz signal into a terminated cable.  
Table II. Performance Specifications for the  
Three Op Amp Instrumentation Amplifier  
Small Signal  
Bandwidth  
@ 1 V p-p Output  
Table I. Video Line Driver Performance Summary  
Over-  
Gain  
RG  
1
2
10  
100  
Open  
2 k  
226 Ω  
20 Ω  
16.1 MHz  
14.7 MHz  
4.9 MHz  
660 kHz  
VIN*  
VSUPPLY CC  
–3 dB BW shoot  
0 dB or 500 mV Step  
0 dB or 500 mV Step  
0 dB or 500 mV Step  
0 dB or 500 mV Step  
0 dB or 500 mV Step  
0 dB or 500 mV Step  
15  
15  
15  
5
5
5
20 pF 23 MHz  
15 pF 21 MHz  
0 pF 13 MHz  
20 pF 18 MHz  
15 pF 16 MHz  
4%  
0%  
0%  
2%  
0%  
0%  
0 pF  
11 MHz  
*–3 dB bandwidth numbers are for the 0 dBm signal input. Overshoot numbers  
are the percent overshoot of the 1 V step input.  
A back-termination resistor (RBT, also equal to the characteristic  
impedance of the cable) may be placed between the AD827  
output and the cable input, in order to damp any reflected  
signals caused by a mismatch between RT and the cable’s  
characteristic impedance. This will result in a flatter frequency  
response, although this requires that the op amp supply 2 V to  
the output in order to achieve a 1 V swing at resistor RT.  
REV. C  
–7–  
AD827  
A TWO-CHIP VOLTAGE-CONTROLLED AMPLIFIER  
(VCA) WITH EXPONENTIAL RESPONSE  
Voltage-controlled amplifiers are often used as building blocks  
in automatic gain control systems. Figure 25 shows a two-chip  
VCA built using the AD827 and the AD539, a dual, current-  
output multiplier. As configured, the circuit has its two  
between the CH1 output and Z1, the other between the CH1  
output and W1. Likewise, in the CH2 multiplier, one of the  
feedback resistors is connected between CH2 and Z2 and the  
other is connected between CH2 and Z2. In Figure 25, Z1 and  
W1 are tied together, as are Z2 and W2, providing a 3 kΩ  
feedback resistor for the op amp. The 2 pF capacitors connected  
between the AD539’s W1 and CH1 and W2 and CH2 pins are  
in parallel with the feedback resistors and thus reduce peaking  
in the VCA’s frequency response. Increasing the values of C3  
and C4 can further reduce the peaking at the expense of  
reduced bandwidth. The 1.25 mA full-scale output current of  
the AD539 and the 3 kfeedback resistor set the full-scale  
output voltage of each multiplier at 3.25 V p-p.  
Current limiting in the AD827 (typically 30 mA) limits the out-  
put voltage in this application to about 3 V p-p across a 100 Ω  
load. Driving a 50 reverse-terminated load divides this value  
by two, limiting the maximum signal delivered to a 50 load to  
about 1.5 V p-p, which suffices for video signal levels. The  
dynamic range of this circuit is approximately 55 dB and is  
primarily limited by feedthrough at low input levels and by the  
maximum output voltage at high levels.  
Guidelines for Grounding and Bypassing  
Figure 25. A Wide Range Voltage-Controlled  
Amplifier Circuit  
When designing practical high frequency circuits using the AD827,  
some special precautions are in order. Both short interconnection  
leads and a large ground plane are needed whenever possible to  
provide low resistance, low inductance circuit paths. One should  
remember to minimize the effects of capacitive coupling  
between circuits. Furthermore, IC sockets should be avoided.  
Feedback resistors should be of a low enough value that the  
time constant formed with stray circuit capacitances at the  
amplifier summing junction will not limit circuit performance.  
As a rule of thumb, use feedback resistor values that are less  
than 5 k. If a larger resistor value is necessary, a small (<10 pF)  
feedback capacitor in parallel with the feedback resistor may be  
used. The use of 0.1 µF ceramic disc capacitors is recommended  
for bypassing the op amp’s power supply leads.  
multipliers connected in series. They could also be placed in  
parallel with an increase in bandwidth and a reduction in gain.  
The gain of the circuit is controlled by VX, which can range  
from 0 to 3 V dc. Measurements show that this circuit easily  
supplies 2 V p-p into a 100 load while operating from 5 V  
supplies. The overall bandwidth of the circuit is approximately  
7 MHz with 0.5 dB of peaking.  
Each half of the AD827 serves as an I/V converter and converts  
the output current of one of the two multipliers in the AD539  
into an output voltage. Each of the AD539’s two multipliers  
contains two internal 6 kfeedback resistors; one is connected  
–8–  
REV. C  
AD827  
OUTLINE DIMENSIONS  
8-Lead Plastic Dual-in-Line Package [PDIP]  
(N-8)  
8-Lead Ceramic DIP-Glass Hermetic Seal Package [CERDIP]  
(Q-8)  
Dimensions shown in millimeters and (inches)  
Dimensions shown in millimeters and (inches)  
10.92 (0.4299)  
8.84 (0.3480)  
0.13 (0.0051) 1.40 (0.0551)  
MIN  
MAX  
8
5
8
5
7.11 (0.2799)  
6.10 (0.2402)  
7.87 (0.3089)  
5.59 (0.2201)  
PIN 1  
1
4
1
4
8.25 (0.3248)  
7.62 (0.3000)  
PIN 1  
2.54 (0.1000)  
BSC  
2.54 (0.1000) BSC  
10.29 (0.4051) MAX  
8.13 (0.3201)  
7.37 (0.2902)  
1.52 (0.0598)  
0.38 (0.0150)  
5.33  
(0.2098)  
MAX  
4.95 (0.1949)  
2.93 (0.1154)  
1.52 (0.0600)  
0.38 (0.0150)  
5.08 (0.2000)  
MAX  
(
3.30  
4.06 (0.1598)  
2.93 (0.1154)  
0.38 (0.0150)  
0.20 (0.0079)  
(0.1299)  
MIN  
3.81 (0.1500)  
5.08 (0.2000)  
3.18 (0.1252)  
MIN  
0.56 (0.0220)  
0.36 (0.0142)  
SEATING  
PLANE  
1.77 (0.0697)  
1.15 (0.0453)  
0.38 (0.0150)  
0.20 (0.0079)  
0.58 (0.0228)  
0.36 (0.0142)  
SEATING  
PLANE  
15  
0
1.78 (0.0701)  
0.76 (0.0299)  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
20-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-20A)  
16-Lead Standard Small Outline Package [SOIC]  
Wide Body  
(R-16)  
Dimensions shown in millimeters and (inches)  
Dimensions shown in millimeters and (inches)  
1.91  
(0.0752)  
REF  
5.08 (0.2000)  
BSC  
2.54 (0.1000)  
1.63 (0.0642)  
10.50 (0.4134)  
10.10 (0.3976)  
2.54 (0.1000) BSC  
0.38 (0.0150)  
2.41 (0.0949)  
1.90 (0.0748)  
3
19  
18  
MIN  
20  
4
16  
1
9
8
0.71 (0.0278)  
0.56 (0.0220)  
1
9.09  
9.09 (0.3579)  
8.69 (0.3421)  
SQ  
7.60 (0.2992)  
7.40 (0.2913)  
0.28 (0.0110)  
0.18 (0.0071)  
R TYP  
1.91 (0.0752)  
REF  
1.40 (0.0551)  
1.14 (0.0449)  
(0.3579)  
MAX  
BOTTOM  
VIEW  
1.27 (0.0500)  
BSC  
SQ  
10.65 (0.4193)  
10.00 (0.3937)  
8
14  
13  
9
45 TYP  
3.81 (0.1500)  
BSC  
2.24 (0.0882)  
1.37 (0.0539)  
PIN 1  
2.65 (0.1043)  
2.35 (0.0925)  
0.75 (0.0295)  
0.25 (0.0098)  
1.27 (0.0500)  
BSC  
؋
 45؇  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
0.30 (0.0118)  
0.10 (0.0039)  
8؇  
0؇  
0.51 (0.0201)  
0.33 (0.0130)  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.32 (0.0126)  
0.23 (0.0091)  
COPLANARITY  
0.10  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MS-013AA  
REV. C  
–9–  
AD827  
Revision History  
Location  
Page  
8/02—Data Sheet changed from REV. B to REV. C.  
Updated Outline Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
–10–  
REV. C  
–11–  
–12–  

相关型号:

AD827JR-16-REEL7

DUAL OP-AMP, 3500 uV OFFSET-MAX, 35 MHz BAND WIDTH, PDSO16, PLASTIC, SOIC-16
ROCHESTER

AD827JR-REEL

High Speed, Low Power Dual Op Amp
ADI

AD827JRZ-16

DUAL OP-AMP, 3500 uV OFFSET-MAX, 35 MHz BAND WIDTH, PDSO16, ROHS COMPLIANT, PLASTIC, SOIC-16
ROCHESTER

AD827S

High Speed, Low Power Dual Op Amp
ADI

AD827SCHIPS

High Speed, Low Power Dual Op Amp
ADI

AD827SE/883B

High Speed, Low Power Dual Op Amp
ADI

AD827SQ

High Speed, Low Power Dual Op Amp
ADI

AD827SQ/883B

High Speed, Low Power Dual Op Amp
ADI

AD827_02

High Speed, Low Power Dual Op Amp
ADI

AD828

Dual, Low Power Video Op Amp
ADI

AD8280

Lithium Ion Battery Safety Monitor
ADI

AD8280-EVALZ

Lithium Ion Battery Safety Monitor
ADI