AD8386 [ADI]

10-Bit, 12-Channel Output Decimating LCD Driver; 10位, 12通道输出抽取LCD驱动器
AD8386
型号: AD8386
厂家: ADI    ADI
描述:

10-Bit, 12-Channel Output Decimating LCD Driver
10位, 12通道输出抽取LCD驱动器

驱动器 CD
文件: 总20页 (文件大小:378K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-Bit, 12-Channel Output  
Decimating LCD Driver  
AD8386  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
High voltage drive  
To within 1.3 V of supply rails  
Output short-circuit protection  
High update rates  
Fast, 100 Ms/s 10-bit input data update rate  
Static power dissipation: 1.4 W  
Voltage-controlled video reference (brightness), offset,  
and full-scale (contrast) output levels  
INV bit reverses polarity of video signal  
3.3 V logic, 9 V to 18 V analog supplies  
High accuracy voltage outputs  
BIAS  
BYP  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
VID8  
VID9  
VID10  
VID11  
VRH  
VRH  
VRL  
2
SCALING  
CONTROL  
10  
12  
TWO-STAGE  
LATCH  
10-BIT  
DACs  
DB(0:9)  
R/L  
CLK  
XFR  
3
SEQUENCE  
CONTROL  
INV  
CONTROL  
Laser trimming eliminates the need for adjustments or  
calibration  
INV  
Flexible logic  
GCTL  
GSW  
TSW  
XFR allows parallel AD8386 operation  
Fast settling into capacitive loads  
35 ns settling time to 0.25% into 150 pF load  
Slew rate 400 V/μs  
3
3
2
SDI  
SCL  
SEN  
12-BIT  
SHIFT  
REGISTER  
VAO  
8-BIT  
DAC  
Available in 64-lead 9 mm × 9 mm LFCSP_VQ  
SVRH  
SVRL  
SVRL  
GENERAL DESCRIPTION  
AD8386  
The AD8386 provides a fast, 10-bit, latched, decimating digital  
input that drives 12 high voltage outputs. Input words with  
10 bits are loaded sequentially into 12 separate high speed,  
bipolar DACs. Flexible digital input format allows several  
AD8386s to be used in parallel in high resolution displays.  
The output signal can be adjusted for dc reference, signal  
inversion, and contrast for maximum flexibility.  
Figure 1.  
The AD8386 is fabricated on ADIs fast bipolar, 26 V XFHV  
process, which provides fast input logic, bipolar DACs with  
trimmed accuracy and fast settling, high voltage, precision  
drive amplifiers on the same chip.  
The AD8386 dissipates 1.4 W nominal static power.  
The AD8386 is offered in a 64-lead 9 mm × 9 mm LFCSP_VQ  
package and operates over the commercial temperature range of  
0°C to 85°C.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
 
AD8386  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Reference and Control Input Descriptions............................. 13  
Transfer Function and Analog Output Voltage...................... 13  
Accuracy...................................................................................... 14  
3-Wire Serial Interface............................................................... 14  
Output Operating Modes.......................................................... 14  
Overload Protection................................................................... 14  
Applications..................................................................................... 15  
Optimized Reliability with the Thermal Protection Circuit 15  
Operation in High Ambient Temperature.............................. 15  
Power Supply Sequencing ......................................................... 15  
Grounded Output Mode During Power-Off .......................... 15  
Typical Application Circuits ..................................................... 16  
PCB Design for Optimized Thermal Performance ............... 17  
AD8386 PCB Design Recommendations ............................... 17  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
DecDriver® Section ....................................................................... 3  
Serial Interface Section ................................................................ 5  
Absolute Maximum Ratings............................................................ 6  
Maximum Power Dissipation ..................................................... 6  
Overload Protection..................................................................... 6  
Exposed Paddle............................................................................. 6  
ESD Caution.................................................................................. 6  
Operating Temperature Range ................................................... 7  
Pin Configuration and Function Descriptions............................. 8  
DecDriver Block Diagram and Timing........................................ 10  
Serial Interface Block Diagram and Timing ............................... 12  
Functional Description.................................................................. 13  
REVISION HISTORY  
8/05—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
AD8386  
SPECIFICATIONS  
DECDRIVER® SECTION  
At 25°C, AVCC = 15.5 V, DVCC = 3.3 V, TA MIN = 0°C, TA MAX = 85°C, VRH = 9.5 V, VRL = 7 V, unless otherwise noted.  
Table 1.  
Parameter  
VIDEO DC PERFORMANCE1  
Conditions  
Min  
Typ  
Max  
Unit  
TA MIN to TA MAX  
VDE  
VCME  
DAC Code 450 to 800  
DAC Code 450 to 800  
TA MIN to TA MAX, CL = 150 pF  
20% to 80%, VO = 5 V step  
20% to 80%, VO = 10 V step  
−7.5  
−3.5  
+7.5  
+3.5  
mV  
mV  
VIDEO OUTPUT DYNAMIC PERFORMANCE  
Data Switching Slew Rate  
Invert Switching Slew Rate  
Data Switching Settling Time to 1%  
Data Switching Settling Time to 0.25%  
Invert Switching Settling Time to 1%  
Invert Switching Settling Time to 0.25%  
Invert Switching Overshoot  
CLK and Data Feedthrough2  
All-Hostile Crosstalk3  
400  
560  
24  
35  
80  
250  
100  
15  
V/μs  
V/μs  
ns  
ns  
ns  
ns  
mV  
mV p-p  
35  
50  
130  
500  
200  
10 V Step  
Amplitude  
Glitch Duration  
DAC Transition Glitch Energy  
VIDEO OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Output Voltage—Grounded Mode  
Data Switching Delay: t9  
INV Switching Delay: t10  
Output Current  
50  
30  
0.6  
mV p-p  
ns  
nV-s  
DAC code 511 to 512  
AVCC VOH, VOL − AGND  
1.1  
200  
14  
17  
100  
29  
1.3  
V
mV  
ns  
ns  
mA  
Ω
4
5 V step  
10 V step  
12  
15  
16  
19  
5
Output Resistance  
REFERENCE INPUTS  
VRL Range  
VRH Range  
VRH – VRL Range  
VRH Input Resistance  
VRL Input Current  
VRH Input Current  
VRH ≥ VRL  
VRH ≥ VRL  
VFS = 2 × (VRH − VRL)  
To VRL  
5.25  
VRL  
0
AVCC − 4  
AVCC  
2.75  
V
V
V
kΩ  
μA  
μA  
20  
−45  
125  
RESOLUTION  
Coding  
Binary  
10  
2
Bits  
DIGITAL INPUT CHARACTERISTICS  
CIN  
IIH  
IIL  
3
pF  
μA  
μA  
V
0.05  
−2  
VIH  
VIL  
0.8  
V
VTH  
1.65  
330  
−2  
V
IIH TSW  
IIL TSW  
TSW RPULLDOWN  
μA  
μA  
kΩ  
10  
Rev. 0 | Page 3 of 20  
 
AD8386  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DIGITAL TIMING CHARACTERISTICS  
Maximum Input Data Update Rate  
Data Setup Time: t1  
XFR Setup Time: t3  
TA MIN to TA MAX  
100  
1
0
Ms/s  
ns  
ns  
INV Setup Time: t11  
Data Hold Time: t2  
XFR Hold Time: t4  
0
ns  
ns  
ns  
ns  
3.5  
4.5  
4
INV Hold Time: t12  
CLK High Time: t7  
6
ns  
CLK Low Time: t8  
4
ns  
1 VDE = differential error voltage. VCME = common-mode error voltage. Full-scale output voltage = VFS = 2 × (VRH − VRL). See the Accuracy section.  
2 Measured on two outputs differentially as CLK and DB (0:9) are driven and XFR is held low.  
3 Measured on two outputs differentially as the others are transitioning by 5 V. Measured for both states of INV.  
4 Measured from 50% of rising CLK edge to 50% of output change. Measurement is made for both states of INV.  
5 Measured from 50% of rising CLK edge, which follows a valid XFR, to 50% of output change. See Figure 6 for the definition.  
Rev. 0 | Page 4 of 20  
 
AD8386  
SERIAL INTERFACE SECTION  
At 25°C, AVCC = 15.5 V, DVCC = 3.3 V, TA MIN = 0°C, TA MAX = 85°C, VRH = 9.5 V, VRL = 7 V, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SERIAL DAC DC PERFORMANCE  
DNL  
INL  
Output Offset Error  
Scale Factor Error  
SERIAL DAC OUTPUT DYNAMIC PERFORMANCE  
VAO Settling Time, t26  
VAO Settling Time, t26  
SERIAL DAC OUTPUT CHARACTERISTICS  
VAO Maximum  
SVFS = 5 V  
SVFS = 5 V  
−1  
+1  
LSB  
LSB  
LSB  
LSB  
−1.5  
−2.0  
−3.0  
+1.5  
+2.0  
+3.0  
To 0.5%  
CL = 100 pF  
CL = 33 μF  
1
2
15  
μs  
ms  
SVRH − 1 LSB  
V
VAO Minimum  
SVRL  
150  
75  
V
VAO − Grounded Mode  
VAO Output Resistance  
IOUT  
CLOAD Low Range1  
CLOAD High Range1  
REFERENCE INPUTS  
SVRH Range  
mV  
kΩ  
mA  
μF  
μF  
All supplies OFF  
30  
0.002  
0.047  
SVRL < SVRH  
SVRL < SVRH  
SVRL + 1  
AGND + 1.5  
1
AVCC − 3.5  
SVRH − 1  
8
V
V
V
SVRL Range  
SVFS Range  
SVRH Input Current  
SVRL Input Current  
DIGITAL INPUT CHARACTERISTICS  
CIN  
IIH  
IIL  
SVRS = 5 V  
SVRS = 5 V  
0.1  
−1.3  
μA  
mA  
−1.6  
3
pF  
μA  
μA  
V
0.05  
−1  
VIH  
VIL  
2.0  
DGND  
DVCC  
0.8  
V
VTH  
1.65  
V
DIGITAL TIMING CHARACTERISTICS  
SEN to SCL Setup Time, t20  
SCL, High Level Pulse Width, t21  
SCL, Low Level Pulse Width, t22  
SCL to SEN Hold Time, t23  
SDI Setup Time, t24  
SDI Hold Time, t25  
POWER SUPPLIES  
DVCC, Operating Range  
DVCC, Quiescent Current  
AVCC Operating Range  
Total AVCC Quiescent Current  
OPERATING TEMPERATURES  
TA MIN to TA MAX  
10  
10  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
3
9
3.3  
54  
3.6  
75  
18  
V
mA  
V
80  
100  
mA  
2
Ambient Temperature Range, TA  
Still air, TSW = HIGH  
Still air, TSW = LOW  
0
0
70  
85  
°C  
°C  
2
Ambient Temperature Range, TA  
1 Output VAO is designed to drive capacitive loads less than 0.002 μF or more than 0.047 μF. Load capacitances in the range 0.002 μF − 0.047 μF cause the output  
overshoot to exceed 100 mV.  
2 Operation at high ambient temperature requires a thermally optimized PCB layout (see the Applications section). In systems with limited or no airflow, the maximum  
ambient operating temperature is limited to 70°C with the thermal protection enabled, VFS = 4 V, data update rate = 85 Ms/s. Operation at 85°C ambient temperature  
requires the thermal protection circuit turned disabled (TSW = LOW).  
Rev. 0 | Page 5 of 20  
 
 
 
AD8386  
ABSOLUTE MAXIMUM RATINGS  
MAXIMUM POWER DISSIPATION  
Table 3.  
The maximum power that can be safely dissipated by the  
AD8386 is limited by its junction temperature. The maximum  
safe junction temperature for plastic encapsulated devices, as  
determined by the glass transition temperature of the plastic, is  
approximately 150°C. Exceeding this limit temporarily may  
cause a shift in the parametric performance due to a change in  
the stresses exerted on the die by the package. Exceeding a  
junction temperature of 175°C for an extended period can  
result in device failure.  
Parameter  
Rating  
Supply Voltage  
AVCCx − AGNDx  
DVCC − DGND  
Input Voltage  
18 V  
4.5 V  
Maximum Digital Input Voltage  
Minimum Digital Input Voltage  
Maximum Analog Input Voltage  
Minimum Analog Input Voltage  
Internal Power Dissipation1  
LFCSP @ TA = 25°C  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature Range  
(Soldering 10 sec)  
DVCC + 0.5 V  
DGND − 0.5 V  
AVCC + 0.5 V  
AGND − 0.5 V  
OVERLOAD PROTECTION  
3.7 W  
The AD8386 overload protection circuit consists of an output  
current limiter and a thermal protection circuit.  
0°C to 85°C  
–65°C to +125°C  
300°C  
When TSW is LOW, the thermal protection circuit is disabled,  
and the output current limiter is turned on. The maximum  
current at any one output of the AD8386 is internally limited to  
100 mA average. In the event of a momentary short circuit  
between a video output and a power supply rail (AVCC or  
AGND), the output current limit is sufficiently low to provide  
temporary protection.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
When TSW is HIGH, the output current limiter, as well as the  
thermal protection circuit, is turned on. The thermal protection  
circuit debiases the output amplifier when the junction  
temperature reaches the internally set trip point. In the event of  
an extended short circuit between a video output and a power  
supply rail, the output amplifier current continues to switch  
between 0 mA and 100 mA typical with a period determined by  
the thermal time constant and the hysteresis of the thermal trip  
point. The thermal protection circuit limits the average junction  
temperature to a safe level, which provides long-term  
protection.  
1 64-lead VQ_LFCSP:  
θJA = 27°C/W in still air (JEDEC STD, 4-layer PCB with 16 vias on Epad)  
θJA = 25°C/W @ 200 lfm airflow (JEDEC STD, 4-layer PCB with 16 vias on Epad)  
θJA = 24°C/W @ 400 lfm airflow (JEDEC STD, 4-layer PCB with 16 vias on Epad)  
ΨJT = 0.2°C/W in still air (JEDEC STD, 4-layer PCB with 16 vias on Epad)  
ΨJB = 13.8°C/W in still air (JEDEC STD, 4-layer PCB with 16 vias on Epad)  
EXPOSED PADDLE  
To ensure optimal thermal performance, the exposed paddle  
must be electrically connected to an external plane, such as  
AVCC or GND, as described in the Applications section.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate  
on the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 6 of 20  
 
 
 
AD8386  
OPERATING TEMPERATURE RANGE  
The maximum operating junction temperature is 150°C. The  
junction temperature trip point of the thermal protection  
circuit is 165°C. Production tests guarantee a minimum  
junction temperature trip point of 125°C.  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
STILL AIR  
200LFM  
400LFM  
Consequently, the maximum guaranteed operating junction  
temperature is 125°C when the thermal protection circuit is  
enabled and 150°C when the thermal protection circuit is  
disabled.  
720p HDTV  
QUIESCENT  
To ensure operation within the specified operating temperature  
range, it is necessary to limit the maximum power dissipation as  
OVERLOAD  
PROTECTION  
(
TJMAX TA  
)
ENABLED  
40  
45  
70  
50  
75  
55  
80  
60  
85  
65  
90  
70  
75  
80  
85  
90  
95  
PDMAX  
Airflow in lfm 0.59  
)
DISABLED  
65  
95 100 105 110 115 120  
θJA Still Air 0.09×  
(
AMBIENT TEMPERATURE (°C)  
Figure 2. Maximum Power Dissipation vs. Temperature  
The AD8386 is on a 4-layer JEDEC PCB with a thermally  
optimized landing pattern with 16 vias.  
The quiescent power dissipation of the AD8386 is 1.4 W.  
When driving a 12-channel 720p HDTV panel with an input  
capacitance of 150 pF, the AD8386 dissipates 1.66 W when  
displaying 1 pixel wide alternating white and black vertical lines  
generated by a standard 720p HDTV input video.  
Conditions include the following:  
AVCC = 15.5 V  
DVCC = 3.3 V  
VFS = 5 V  
CL = 150 pF  
fPIXEL = 74.25 MHz  
Black-to-white transition = 4 V  
Active video time = 75%  
Figure 2 shows these power dissipations.  
Rev. 0 | Page 7 of 20  
 
 
AD8386  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
NC  
NC  
1
2
3
4
5
6
7
8
9
48 AGND1, 2  
47 VID2  
46 AVCC2, 3  
45 VID3  
44 AGND3, 4  
43 VID4  
42 AVCC4, 5  
41 VID5  
40 AGND5, 6  
39 VID6  
38 AVCC6, 7  
37 VID7  
36 AGND7, 8  
35 VID8  
34 AVCC8, 9  
33 VID9  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7 10  
DB8 11  
DB9 12  
SDI 13  
AD8386  
TOP VIEW  
(Not to Scale)  
SEN 14  
SCL 15  
GCTL 16  
NC = NO CONNECT  
Figure 3. 64-Lead LFCSP_VQ Pin Configuration  
Rev. 0 | Page 8 of 20  
 
AD8386  
Table 4. 64-Lead LFCSP_VQ Pin Function Descriptions  
Pin No.  
Mnemonic Function  
NC No Connect  
DB0 to DB9 Data Input  
Description  
1, 2  
3 to 12  
13  
No Internal Connection.  
10-Bit Data Input. MSB = DB(9).  
While the SEN input is LOW, one 12-bit serial word is loaded into the  
serial DAC on the rising edges of the SCL.  
SDI  
Serial Data Input  
14  
SEN  
Serial DAC Enable  
A falling edge of this input initiates a loading cycle. While this input is held  
LOW, the serial DAC is enabled and data is loaded on every rising edge of  
SCL. The output is updated on the rising edge of a valid SEN. A valid  
SEN must remain LOW for at least three SCL cycles. While this input is  
held HIGH, the control DAC is disabled.  
15  
16  
SCL  
GCTL  
Serial Data Clock  
Output Mode Control  
Serial Data Clock.  
When this input is HIGH, the output mode is determined by the function  
programmed into the serial interface. When LOW, the output mode is  
controlled by the GSW input.  
17  
18  
GSW  
TSW  
Output Mode Switch  
Thermal Switch  
When GCTL is LOW and this input is HIGH, the video outputs and VAO  
operate normally. When GCTL and this input are both LOW, the video  
outputs and VAO are asynchronously forced to AGND, regardless of  
the function programmed into the serial interface. This function operates  
when AVCC power is OFF but requires DVCC power supply to be ON.  
When this input is LOW, the thermal protection circuit is disabled. When  
HIGH, the thermal protection circuit is enabled. This pin has a 10 kΩ  
internal pull-down resistor.  
19, 64  
20, 63  
21  
DVCC  
DGND  
AGNDS  
Digital Power Supply  
Digital Ground  
Analog Ground  
Digital Power Supply.  
Digital Supply Return.  
Analog Supply Return.  
22, 23, 24  
25  
26  
SVRL, SVRH Serial DAC Reference Voltage The voltage applied between these pins sets the serial DAC full-scale voltage.  
VAO  
Serial DAC Output  
Analog Power Supply  
Bypass  
This output voltage is updated in the rising edge of the SEN input.  
Analog Power Supply.  
AVCCS  
BYP  
27  
A 0.1 μF capacitor connected between this pin and AGND ensures  
optimum settling time.  
28, 32, 36,  
AGND11 to Analog Ground  
Analog Supply Returns.  
40, 44, 48, 52 AGND0  
29, 31, 33, 35, VID11 to  
37, 39, 41, 43, VID0  
45, 47, 49, 51  
Analog Output  
These pins are directly connected to the analog inputs of the LCD panel.  
30, 34, 38,  
42, 46, 50  
AVCC10, 11 Analog Power Supply  
to AVCC0, 1  
Analog Power Supplies.  
53  
VRL  
Video Center Reference  
The voltage applied to this pin sets the video center voltage. The video  
outputs are above this reference while the INV = HIGH and below this  
reference while INV = LOW.  
54, 55  
56  
57  
VRH  
Full-Scale Reference  
Analog Power Supply  
Analog Ground  
Test Pin  
The full-scale video output voltage is VFS = 2 × (VRH − VRL).  
Analog Power Supply.  
Analog Supply Return.  
AVCCD  
AGNDD  
TSTA  
58  
Connect this pin to AGND.  
59  
R/L  
Right/Left Select  
A new data loading sequence begins on the left with Channel 0 when  
this input is LOW, and on the right with Channel 11 when this input is HIGH.  
60  
INV  
Invert  
When this input is HIGH, the VIDx output voltages are above VRL. When  
LOW, the VIDx outputs voltages are below VRL. The state of INV is latched  
on the first rising CLK edge after XFR is detected. The VIDx outputs change  
on the rising CLK edge after the next XFR is detected.  
61  
62  
XFR  
CLK  
Transfer/Start Sequence  
Clock  
The state of XFR is detected on the rising edge of CLK. Data is transferred to  
the outputs and a new loading sequence begins on the next rising edge of  
CLK after XFR is detected HIGH.  
Video Data Clock.  
Rev. 0 | Page 9 of 20  
AD8386  
DECDRIVER BLOCK DIAGRAM AND TIMING  
TWO-  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
VID0  
VID2  
VID4  
VID6  
VID8  
VID10  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
STAGE  
LATCH  
TWO-  
STAGE  
LATCH  
BIAS  
BYP  
TWO-  
STAGE  
LATCH  
TWO-  
STAGE  
LATCH  
TWO-  
STAGE  
LATCH  
TWO-  
STAGE  
LATCH  
10  
10  
DB(0:9)  
TWO-  
STAGE  
LATCH  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
VID1  
VID3  
VID5  
VID7  
VID9  
VID11  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
TWO-  
STAGE  
LATCH  
TWO-  
STAGE  
LATCH  
CLK  
XFR  
R/L  
SEQUENCE  
CONTROL  
TWO-  
STAGE  
LATCH  
TWO-  
STAGE  
LATCH  
TWO-  
STAGE  
LATCH  
INV  
CONTROL  
INV  
SCALING  
CONTROL  
VRH  
VRL  
Figure 4. AD8386 DecDriver Section  
Rev. 0 | Page 10 of 20  
 
AD8386  
tr  
tf  
t8  
CLK  
V
TH  
t7  
t1  
t1  
t2  
t2  
DB(0:9)  
XFR  
V
TH  
V
TH  
t4  
t3  
Figure 5. Input Timing  
CLK  
–9 –8 –7 –6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
DB(0:9)  
XFR  
INV  
VRL + VFS  
VRL  
PIXELS  
–12, –11, –10, –9, –8, –7, –6, –5, –4, –3, –2, –1  
50%  
VID(0:11)  
t9  
t9  
VRL  
VRL – VFS  
t10  
t11 MIN  
t11 MAX  
t12  
PIXELS  
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11  
Figure 6. Output Timing (R/L LOW)  
Table 5.  
Parameter  
Conditions  
Min  
1
3.5  
0
4.5  
6
4
12  
15  
0
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Setup Time, t1  
Data Hold Time, t2  
XFR Setup Time, t3  
XFR Hold Time, t4  
CLK High Time, t7  
CLK Low Time, t8  
Data Switching Delay, t9  
Invert Switching Delay, t10  
Invert Setup Time, t11  
Invert Hold Time, t12  
Input tr, tf = 2 ns  
14  
17  
16  
19  
4
Rev. 0 | Page 11 of 20  
 
AD8386  
SERIAL INTERFACE BLOCK DIAGRAM AND TIMING  
SVRH  
SVRL  
VAO = SVRL + SDI  
× (SVRH – SVRL)/256  
CODE  
SDI  
12-BIT SHIFT REGISTER  
SCL  
SDI  
8
CODE  
SDAC  
SDI  
CODE  
VAO  
SEN  
SD0 SD1 SD2 SD3 SD4 SD5 SD6 SD7 SD8 SD9 SD10 SD11  
SELECT LOAD  
75kΩ  
CONTROL  
THERMAL  
SWITCH  
TSW  
10kΩ  
12  
12  
VIDEO  
DACs  
12  
VID(0:11)  
GSW  
GCTL  
Figure 7. Serial Interface Block Diagram  
SEN  
SCL  
SEN  
SCL  
SDI  
t22  
t20  
t23  
t21  
t24 t25  
D11  
SDI  
D10  
D0  
D1  
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
VAO  
VAO  
t26  
Figure 8. Serial Interface Timing Diagram  
Figure 9. Serial Interface Timing Diagram  
Table 6.  
Parameter  
Conditions  
Min  
10  
10  
10  
10  
10  
10  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
SEN to SCL Setup Time, t20  
SCL, High Level Pulse Width, t21  
SCL, Low Level Pulse Width, t22  
SCL to SEN Hold Time, t23  
SDI Setup Time, t24  
ns  
ns  
SDI Hold Time, t25  
VAO Settling Time, t26  
VAO Settling Time, t26  
SVFS = 5 V, to 0.5 %, CL = 100 pF  
SVFS = 5 V, to 0.5 %, CL = 33 μF  
1
2
15  
μs  
ms  
Rev. 0 | Page 12 of 20  
 
AD8386  
FUNCTIONAL DESCRIPTION  
The AD8386 is a system building block designed to  
An internal 10 kΩ pull-down resistor disables the thermal  
directly drive the columns of LCD microdisplays of the type  
popularized for use in projection systems. It has 12 channels of  
precision, 10-bit digital-to-analog converters (DACs) loaded  
from a single high speed serial input. Precision current feedback  
amplifiers, which provide well-damped pulse response and fast  
voltage settling into large capacitive loads, buffer the 12 outputs.  
Laser trimming at the wafer level ensures low absolute output  
errors and tight channel-to-channel matching. Tight part-to-  
part matching in high resolution systems is guaranteed by the  
use of external voltage references.  
switch when this pin is left unconnected.  
GCTL, GSW controls—output mode control.  
Table 7. GTCL, GSW Truth Table  
GTCL GSW Action  
0
0
All video outputs and VAO are forced near  
AGND. While the outputs are disabled, AVCC can  
be removed.  
0
1
1
X
All video outputs and VAO operate normally.  
Output operating mode is controlled by the  
serial interface.  
REFERENCE AND CONTROL INPUT DESCRIPTIONS  
TRANSFER FUNCTION AND ANALOG OUTPUT  
VOLTAGE  
Data transfer/start sequence control—input data loading,  
data transfer.  
The DecDriver has two regions of operation where the video  
output voltages are either above or below the reference voltage  
VRL. The transfer function defines the video output voltage as  
the function of the digital input code as  
A valid XFR control input initiates a new six-clock loading  
cycle, during which data is transferred to the outputs, and 12  
input data-words are loaded sequentially into the 12 internal  
channels. Data is loaded on both the rising and falling edges of  
CLK. Data loaded from the previous cycle is transferred to the  
outputs on the rising CLK edge when the XFR is held HIGH at  
the preceding rising CLK edge only. A new loading sequence  
begins on the current rising CLK edge when XFR is held HIGH  
at the preceding rising CLK edge only.  
VIDx(n) = VRL + VFS × (1 − n/1023), for INV = HIGH  
VIDx(n) = VRL − VFS × (1 − n/1023), for INV = LOW  
where:  
n = input code  
VFS = 2 × (VRH VRL)  
Right/left control—input data loading.  
To facilitate image mirroring, the direction of the loading  
sequence is set by the R/L control.  
A number of internal limits define the usable range of the video  
output voltages, VIDx, shown in Figure 10.  
VIDx – VOLTS  
A new loading sequence begins at Channel 0 and proceeds to  
Channel 11 when the R/L control is held LOW. It begins at  
Channel 11 and proceeds to Channel 0 when the R/L control is  
held HIGH.  
AVCC  
1.3V  
(VRL + VFS)  
VOUTN(n)  
0 VFS 5.5V  
INV = HIGH  
VRH, VRL inputs—full-scale video reference inputs.  
The full-scale output voltage is VFS = 2 × (VRH − VRL).  
INV control—analog output inversion.  
9V AVCC  
18V  
VRL  
INV = LOW  
0 VFS  
5.5V  
5.25V VRL  
(AVCC – 4)  
VOUTP(n)  
(VRL – VFS)  
AGND  
The analog voltage equivalent of the input code is subtracted  
from (VRL + VFS) while INV is held HIGH, and added to  
(VRL − VFS) while INV is held LOW.  
1.3V  
0
INPUT CODE (n)  
1023  
INTERNAL LIMITS AND  
USABLE VOLTAGE RANGES  
VIDx vs. INPUT CODE  
The state of the INV input is latched on the first rising edge of  
CLK, immediately following a valid XFR. The VIDx outputs  
invert on the first rising CLK edge, immediately following the  
next valid XFR.  
Figure 10. Transfer Function and Usable Voltage Ranges  
TSW control—thermal switch control.  
When this input is HIGH, the thermal protection circuit is  
enabled. When LOW or left unconnected, the thermal  
protection circuit is disabled.  
Rev. 0 | Page 13 of 20  
 
 
AD8386  
Table 10. Truth Table @ GCTL = LOW  
ACCURACY  
SEN SD  
Action  
To best correlate transfer function errors to image artifacts, the  
overall accuracy of the DecDriver is defined by two parameters,  
VDE and VCME.  
11 10  
9
X
X
X
8
X
X
X
X
X
X
0
1
X
No Change to VAO.  
Load VAO.  
Start a Serial Interface Loading Cycle. No  
change to VAO.  
VDE, the differential error voltage, measures the difference  
between the rms value of the output and the rms value of the  
ideal. The defining expression is  
Serial DAC  
[
VOUTN  
(
n
)
VOUTP  
2
(
n
)
]
n
1023  
The serial DAC is loaded via the serial interface. The output  
voltage is determined by  
VDE  
(
n
)
=
1−  
×VFS  
VAO = SVRL + (SVRH SVRL) × n/256  
where n is the SD(0:7) serial input code.  
VCME, the common-mode error voltage, measures ½ the dc  
offset of the output. The defining expression is  
1 VOUTN  
(
n
)
+VOUTP n  
( )  
2
VCME  
(
n
)
=
VRL  
Output VAO is designed to drive capacitive loads less than  
0.002 μF or more than 0.047 μF. Load capacitances in the  
0.002 μF − 0.047 μF range cause the output overshoot to exceed  
100 mV.  
2
3-WIRE SERIAL INTERFACE  
The serial interface controls the 8-bit serial DAC and the video  
output operating mode via a 12-bit serial word. The two most  
significant bits (MSB) select the function and the eight least  
significant bits (LSB) are the data for the serial DAC.  
OUTPUT OPERATING MODES  
In normal operating mode, the voltage of the video outputs is  
determined by the inputs.  
Table 8. Bit Definitions  
In grounded output mode, the video outputs are forced to  
(AGND + 0.2 V) typ.  
Bit Name  
SD (0:7)  
SD8  
Bit Functionality  
8-Bit SDAC Data. MSB = SD7.  
Not Used.  
OVERLOAD PROTECTION  
SD9  
Not Used.  
The overload protection employs current limiters and a thermal  
protection circuit to protect the video output pins against accidental  
shorts between any video output pin and AVCC or AGND.  
SD10  
SD11  
VAO Load Selection.  
Output Mode Selection When GCTL = 1.  
Table 9. Truth Table @ GCTL = HIGH  
The junction temperature trip point of the thermal protection  
circuit is 165°C. Production tests guarantee a minimum  
junction temperature trip point of 125°C. Consequently, the  
operating junction temperature should not rise above 125°C  
when the thermal protection circuit is enabled.  
SEN SD  
Action  
11 10  
9
X
X
X
8
X
X
X
0
0
1
0
1
0
Normal Output Mode. No change to VAO.  
Normal Output Mode. Load VAO.  
Grounded Output Mode. No change to  
VAO.  
For systems that operate at high internal ambient temperatures  
and require large capacitive loads to be driven by the AD8386 at  
high frequencies, junction temperatures above 125°C may be  
required. In such systems, the thermal protection circuit should  
either be disabled or a minimum airflow of 200 lfm must be  
maintained.  
1
X
1
X
X
X
X
X
Grounded Output Mode. Load VAO.  
Start a Serial Interface Loading Cycle. No  
change to VAO.  
Rev. 0 | Page 14 of 20  
 
AD8386  
APPLICATIONS  
OPTIMIZED RELIABILITY WITH THE THERMAL  
PROTECTION CIRCUIT  
POWER SUPPLY SEQUENCING  
As indicated in the Absolute Maximum Ratings section, the  
voltage at any input pin cannot exceed its supply voltage by  
more than 0.5 V. Power-on and power-off sequencing may be  
required to comply with the Absolute Maximum Ratings.  
The AD8386 is designed for enhanced reliability through  
features that provide protection against accidental shorts that  
may occur during PCB assembly repair, such as solder bridging,  
or during system assembly, such as a misaligned flat panel cable  
in the connector.  
Failure to comply with the Absolute Maximum Ratings may  
result in functional failure or damage to the internal ESD  
diodes. Damaged ESD diodes may cause temporary parametric  
failures, which may result in image artifacts. Damaged ESD  
diodes cannot provide full ESD protection, reducing reliability.  
While internal current limiters provide short-term protection  
against temporary shorts at the outputs, the thermal shutdown  
provides protection against persistent shorts lasting for several  
seconds. To optimize reliability, the following sequence of  
operations is recommended.  
The following power supply sequencing ensures that the  
Absolute Maximum Ratings are not violated.  
Initial Power-Up after PCB Assembly or Repair  
Power-on sequence is:  
Disable grounded output mode and enable thermal protection.  
Turn ON AVCC and analog reference voltages.  
Turn ON DVCC and digital signals.  
Power-off sequence is:  
Ensure that the GCTL and GSW pins are LOW and the TSW  
pin is HIGH upon initial power-up and remains unchanged  
throughout this procedure.  
Execute the initial power-up.  
Turn OFF AVCC and analog reference voltages.  
Turn OFF DVCC and digital signals.  
GROUNDED OUTPUT MODE DURING POWER-OFF  
Identify any shorts at the outputs.  
Power-down, repair shorts, and repeat the initial power-up  
sequence until proper system functionality is verified.  
Certain applications require that the video outputs be held near  
AGND during power-down. The following power-off sequence  
ensures that the outputs are near ground during power-off and  
the Absolute Maximum Ratings are not violated.  
Power-Up during Normal Operation  
Disable grounded output mode and disable the thermal  
protection circuit using either of the following two methods:  
GCTL = HIGH, TSW = HIGH and serial code  
0XXXXXXXXXXX sent immediately following a power-up,  
places all outputs into normal operating mode and disables  
the thermal protection circuit.  
Enable grounded output mode in one of two ways:  
GTCL = LOW and GSW = LOW, or GCTL = HIGH  
and code 1XXXXXXXXXXX sent via the serial interface.  
Turn OFF AVCC and analog reference voltages.  
Turn OFF DVCC and digital signals.  
TSW = LOW disables the thermal protection circuit.  
GCTL = LOW and GSW = HIGH puts all outputs into  
normal operating mode.  
OPERATION IN HIGH AMBIENT TEMPERATURE  
To extend the maximum operating junction temperature of the  
AD8386 to 150°C, keep the thermal protection circuit disabled  
(TSW = LOW) during normal operation.  
Rev. 0 | Page 15 of 20  
 
 
 
AD8386  
TYPICAL APPLICATION CIRCUITS  
12-CHANNEL  
LCD  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
VID8  
VID9  
VID10  
VID11  
CHANNEL 0  
CHANNEL 1  
CHANNEL 2  
CHANNEL 3  
CHANNEL 4  
CHANNEL 5  
CHANNEL 6  
CHANNEL 7  
CHANNEL 8  
CHANNEL 9  
CHANNEL 10  
CHANNEL 11  
DB(0:9)  
PIXEL  
DB(0:9)  
CLK  
R/L  
÷2  
CLK  
CLK  
AD8386  
R/L  
XFR  
INV  
XFR  
INV  
IMAGE  
PROCESSOR  
VRH  
VRL  
REFERENCES  
SVRH  
SVRL  
SDI SCL  
SEN  
VAO  
μP  
Figure 11. 12-Channel System  
VID0  
CHANNEL 0  
CHANNEL 1  
CHANNEL 2  
CHANNEL 3  
CHANNEL 4  
CHANNEL 5  
CHANNEL 6  
CHANNEL 7  
CHANNEL 8  
CHANNEL 9  
CHANNEL 10  
CHANNEL 11  
DB(0:9)  
PIXEL  
DB(0:9)  
CLK  
R/L  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
VID8  
VID9  
VID10  
VID11  
÷2  
CLK  
CLK  
AD8386  
R/L  
XFR  
INV  
XFR  
INV  
SCL  
SDI  
SEN  
VAO  
μP  
REFERENCES  
24-CHANNEL  
LCD  
IMAGE  
PROCESSOR  
VRH  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
VID8  
VID9  
VID10  
VID11  
CHANNEL 12  
CHANNEL 13  
CHANNEL 14  
CHANNEL 15  
CHANNEL 16  
CHANNEL 17  
CHANNEL 18  
CHANNEL 19  
CHANNEL 20  
CHANNEL 21  
CHANNEL 22  
CHANNEL 23  
SCL  
SDI  
SEN  
CLK  
R/L  
XFR  
DB(0:9)  
INV  
DB(0:9)  
INV  
AD8386  
VAO  
Figure 12. 24-Channel System  
Rev. 0 | Page 16 of 20  
 
AD8386  
Bottom PCB Layer  
PCB DESIGN FOR OPTIMIZED THERMAL  
PERFORMANCE  
It is recommended that the bottom thermal pad be thermally  
connected to a plane. The connection should be direct such that  
the thermal pad becomes part of the plane.  
The total maximum power dissipated by the AD8386 is partly  
load dependent. In a 12-channel, 60 Hz XGA system running at  
a 65 MHz pixel rate, the total maximum power dissipated is  
1.7 W, assuming a 15.5 V analog power supply, a 4 V white-to-  
black swing, and a 150 pF LCD input capacitance.  
The use of thermal spokes is not recommended when  
connecting the thermal pads or via structure to a plane.  
Solder Masking  
To limit the operating junction temperature at or below the  
guaranteed maximum, the package in conjunction with the  
PCB must effectively conduct heat away from the junction.  
To minimize the formation of solder voids due to solder flowing  
into the via holes (solder wicking), the via diameter should be  
small. Optional solder masking of the via holes on the top layer  
of the PCB plug the via holes, inhibiting solder flow into the  
holes. To optimize the thermal pad coverage, the solder mask  
diameter should be no more than 0.1 mm larger than the via  
hole diameter.  
The AD8386 package is designed to provide enhanced thermal  
characteristics through the exposed die paddle on the bottom  
surface of the package. In order to take full advantage of this  
feature, the exposed paddle must be in direct thermal contact  
with the PCB, which then serves as a heat sink.  
Pads are set by the customers PCB design rules, and thermal  
vias are 0.25 mm diameter circular mask, centered on the vias.  
A thermally effective PCB must incorporate two thermal pads  
and a thermal via structure. The thermal pad on the top PCB  
layer provides a solderable contact surface on the top surface of  
the PCB. The thermal pad on the bottom PCB layer provides a  
surface in direct contact with the ambient air. The thermal via  
structure provides a thermal path to the inner and bottom  
layers of the PCB to remove heat.  
Thermal Pad Design  
To minimize thermal performance degradation of production  
PCBs, the contact area between the thermal pad and the PCB  
should be maximized. Therefore, the size of the thermal pad on  
the top PCB layer should match the exposed paddle size. The  
second thermal pad of at least the same size should be placed on  
the bottom side of the PCB. At least one thermal pad should be  
in direct thermal contact with a plane, such as AVCC or GND.  
Figure 13. Land Patter—Top PCB Layer  
Figure 14. Land Patter—Bottom PCB Layer  
Figure 15. Solder Mask—Top Layer  
Thermal via Structure Design  
Effective heat transfer from the top to the inner and bottom  
layers of the PCB requires thermal vias incorporated into the  
thermal pad design. Thermal performance increases  
logarithmically with the number of vias.  
Near optimum thermal performance of production PCBs is  
attained when tightly spaced thermal vias are placed on the full  
extent of the thermal pad only.  
AD8386 PCB DESIGN RECOMMENDATIONS  
Table 11. Top PCB Layer  
0.25 mm × 0.4 mm  
Pad Size  
0.5 mm  
Pad Pitch  
4.7 mm × 4.7 mm  
0.25 mm diameter vias on a 0.5 mm grid  
Thermal Pad Size  
Thermal via Structure  
Rev. 0 | Page 17 of 20  
 
AD8386  
0.5  
0.5  
9.00  
4.7 SQ CU w/4.8 SQ SOLDER MASK  
R 0.05 OPTIONAL FILLETS  
VIA ARRAY ON 0.5 GRID  
0.25 DRILL, 0.35 SOLDER MASK SWELL  
0.05  
SOLDER MASK  
SWELL  
0.25  
R 0.05  
OPTIONAL FILLETS  
Figure 16. Suggested Land Pattern  
Dimensions shown in millimeters  
Rev. 0 | Page 18 of 20  
AD8386  
OUTLINE DIMENSIONS  
0.30  
0.25  
0.18  
9.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
64  
49  
48  
1
PIN 1  
INDICATOR  
*
4.85  
4.70 SQ  
4.55  
8.75  
BSC SQ  
TOP  
VIEW  
EXPOSED PAD  
(BOTTOM VIEW)  
0.45  
0.40  
0.35  
33  
32  
16  
17  
7.50  
REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
0.50 BSC  
0.20 REF  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD  
EXCEPT FOR EXPOSED PAD DIMENSION  
Figure 17. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
9 mm × 9 mm Body, Very Thin Quad (CP-64-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD8386JCPZ1  
Temperature Range  
Package Description  
Package Option  
CP-64-1  
0°C to 85°C  
64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
1 Z = Pb-free part.  
Rev. 0 | Page 19 of 20  
 
AD8386  
NOTES  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05687–0–8/05(0)  
Rev. 0 | Page 20 of 20  

相关型号:

AD8386JCPZ

10-Bit, 12-Channel Output Decimating LCD Driver
ADI

AD8387

High Performance, 12-Bit, 12-Channel Decimating, LCD DecDriver
ADI

AD8387-EB

High Performance, 12-Bit, 12-Channel Decimating, LCD DecDriver
ADI

AD8387JSVZ

High Performance, 12-Bit, 12-Channel Decimating, LCD DecDriver
ADI

AD8389

Triple, 6-Channel LCD Timing Delay-Locked Loop
ADI

AD8389ACPZ

Triple, 6-Channel LCD Timing Delay-Locked Loop
ADI

AD8389ACPZ

SPECIALTY CONSUMER CIRCUIT, QCC48, LEAD FREE, MO-220-VKKD-2, LFCSP-48
ROCHESTER

AD8390

Low Power, High Output Current Differential Amplifier
ADI

AD8390A

Low Power, High Output Current Differential Amplifier
ADI

AD8390AACPZ-R2

Low Power, High Output Current Differential Amplifier
ADI

AD8390AACPZ-R7

Low Power, High Output Current Differential Amplifier
ADI

AD8390AACPZ-RL

Low Power, High Output Current Differential Amplifier
ADI