AD8387 [ADI]

High Performance, 12-Bit, 12-Channel Decimating, LCD DecDriver; 高性能, 12位, 12通道抽选,液晶DecDriver
AD8387
型号: AD8387
厂家: ADI    ADI
描述:

High Performance, 12-Bit, 12-Channel Decimating, LCD DecDriver
高性能, 12位, 12通道抽选,液晶DecDriver

CD
文件: 总16页 (文件大小:398K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Performance, 12-Bit, 12-Channel  
Decimating, LCD DecDriver®  
AD8387  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
High accuracy, high-resolution voltage outputs  
1 mV channel matching  
12-bit input resolution  
12  
12  
12  
TWO-STAGE  
LATCH  
DAC  
DAC  
VID0  
VID1  
DBA(0:11)  
DBB(0:11)  
12  
12  
12  
TWO-STAGE  
LATCH  
Laser-trimmed outputs  
Fast settling, high voltage drive  
35 ns settling time to 0.25% into 150 pF load  
Slew rate 420 V/μs  
Outputs to within 1.3 V of supply rails  
High update rates  
BIAS  
BYP  
TSW  
THERMAL  
SWITCH  
12  
12  
12  
TWO-STAGE  
LATCH  
DAC  
DAC  
VID10  
VID11  
G-MODE  
SWITCH  
GSW  
DSW  
Fast, 110 MHz clock  
12  
TWO-STAGE  
LATCH  
Programmable video reference (brightness) and  
full-scale (contrast) output levels  
Flexible logic  
INV bit reverses polarity of video signal  
R/L reverses loading order of data  
ISW selects frame/row or column/dot inversion  
DSW selects single or dual data bus mode  
Output short-circuit protection  
3.3 V logic, 11 V to 18 V analog supplies  
Available in 80-lead, 12 mm × 12 mm, TQFP E-pad  
CLK  
XFR  
R/L  
SEQUENCE  
CONTROL  
SCALING  
CONTROL  
AD8387  
INV ISW  
VRH VRL  
Figure 1.  
APPLICATIONS  
LCD microdisplay driver  
GENERAL DESCRIPTION  
5
4
3
2
1
0
The AD8387 DecDriver provides dual, fast latched, 12-bit  
decimating input, which drives 12 high voltage outputs. Twelve-  
bit input words are loaded into 12 separate high speed, bipolar  
DACs sequentially. Flexible digital input format allows more  
than one AD8387 to be used in parallel for higher resolution  
displays. The output signal can be adjusted for dc reference,  
signal inversion, and contrast for maximum flexibility.  
NORMAL PROJECTOR OPERATING  
TEMPERATURE RANGE  
CODE 0  
CODE 2048  
The AD8387 is fabricated on ADIs fast bipolar, 26 V XFCB  
process, providing fast input logic, bipolar DACs with trimmed  
accuracy and fast settling, high voltage, precision drive  
amplifiers on the same chip.  
CODE 4095  
0
10  
20  
30  
40  
50  
60  
70  
80  
The AD8387 dissipates 1.34 W nominal static power. The  
AD8387 is offered in an 80-lead TQFP E-pad package and  
operates over the commercial temperature range of 0°C to  
+85°C.  
INTERNAL AMBIENT TEMPERATURE (°C)  
Figure 2. Channel Matching vs. Temperature  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
 
AD8387  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 13  
Transfer Function and Analog Output Voltage...................... 13  
Accuracy ...................................................................................... 13  
Applications..................................................................................... 14  
Optimized Reliability with the Thermal Switch .................... 14  
Initial Power-Up After Assembly or Repair............................ 14  
Power-Up During Normal Operation..................................... 14  
Power Supply Sequencing ......................................................... 14  
Power-On Sequence................................................................... 14  
Power-Off Sequence................................................................... 14  
Grounded Output Mode During Power-Off .......................... 14  
PCB Design for Optimized Thermal Performance ............... 14  
Thermal Pad Design .................................................................. 15  
Thermal via Structure Design .................................................. 15  
AD8387 PCB Design Recommendations ............................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Exposed Paddle............................................................................. 5  
Overload Protection..................................................................... 5  
Maximum Power Dissipation ..................................................... 5  
Operating Temperature Range ................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 8  
Timing Diagrams.............................................................................. 9  
Single Data Bus Configuration, DSW = LOW......................... 9  
Dual Data Bus Configuration, DSW = HIGH........................ 10  
Functional Description.................................................................. 12  
Reference and Control Input Description............................... 12  
REVISION HISTORY  
10/05—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
AD8387  
SPECIFICATIONS  
TA = 25°C, AVCC = 15.5 V, DVCC = 3.3 V, VRH = 9.5 V, VRL = 7 V, TA MIN = 0°C, TA MAX = 75°C still air, unless otherwise noted.  
Table 1.  
Parameter  
VIDEO DC PERFORMANCE1  
Conditions  
Min  
Typ  
Max  
Unit  
TA MIN to TA MAX ,VFS = 5 V  
VDE—Differential Error Voltage  
VCME—Common-Mode Error Voltage  
ΔVDE—VDE Channel Matching  
ΔV—Channel Matching  
@ DAC code 0  
−5.5  
−4.4  
−3.6  
−2.8  
−2.1  
−6.0  
−0.8  
−0.5  
−0.3  
−0.3  
+0.2  
+5.0  
+3.6  
+3.3  
+2.8  
+2.1  
+6.0  
mV  
mV  
mV  
mV  
mV  
mV  
@ DAC code 1024  
@ DAC code 2048  
@ DAC code 3072  
@ DAC code 4095  
DAC code range 0 to 4095  
@ DAC code 0  
−2.5  
−2.5  
−2.5  
−2.5  
−2.5  
−3.5  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
+2.5  
+2.5  
+2.5  
+2.5  
+2.5  
+3.5  
mV  
mV  
mV  
mV  
mV  
mV  
@ DAC code 1024  
@ DAC code 2048  
@ DAC code 3072  
@ DAC code 4095  
DAC code range 0 to 4095  
@ DAC code 0  
1.9  
1.8  
1.6  
1.4  
1.0  
4.8  
4.3  
4.0  
3.8  
2.8  
5.5  
mV  
mV  
mV  
mV  
mV  
mV  
@ DAC code 1024  
@ DAC code 2048  
@ DAC code 3072  
@ DAC code 4095  
DAC code range 0 to 4095  
@ DAC code 0  
2.7  
2.7  
2.5  
2.5  
2.0  
mV  
mV  
mV  
mV  
mV  
mV  
@ DAC code 1024  
@ DAC code 2048  
@ DAC code 3072  
@ DAC code 4095  
DAC code range 0 to 4095  
7.5  
DNL2  
−1  
−0.2  
LSB  
VIDEO OUTPUT DYNAMIC PERFORMANCE  
Data Switching Settling Time to 0.25%  
Data Switching Settling Time to 1%  
Data Switching Slew Rate  
CLK and Data Feedthrough3  
All-Hostile Crosstalk4  
TA MIN to TA MAX  
VIDx = 5 V step, CL = 150 pF  
35  
22  
420  
15  
50  
28  
ns  
ns  
V/μs  
mV p-p  
20% to 80%  
Amplitude  
Glitch Duration  
DAC Transition Glitch Energy  
69  
50  
0.4  
mV p-p  
ns  
nV-s  
DAC Code 2047 to 2048  
VIDx = 10 V step, CL = 150 pF  
20% to 80%  
Invert Switching Settling Time to 0.25%  
Invert Switching Settling Time to 1%  
Invert Switching Slew Rate  
70  
34  
700  
25  
150  
40  
ns  
ns  
V/μs  
mV  
Invert Switching Overshoot  
Rev. 0 | Page 3 of 16  
 
AD8387  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIDEO OUTPUT CHARACTERISTICS  
Output Voltage Swing  
AVCC − VOH, VOL − AGND  
VIDx = 5 V step  
0.9  
0.06  
15.7  
1.3  
0.150  
V
V
Output Voltage—Grounded Mode  
5
Data Switching Delay: t7  
ns  
ns  
ns  
ns  
mA  
Ω
5
Data Switching Delay Skew: Δt7  
4
4
6
INV Switching Delay: t8  
VIDx = 10 V step  
16.2  
6
INV Switching Delay Skew: Δt8  
Output Current  
Output Resistance  
REFERENCE INPUTS  
VRL Range  
100  
28  
VRH ≥ VRL  
VRH ≥ VRL  
5.25  
VRL  
0
AVCC − 4  
VRL + 2.75  
2.75  
V
V
V
kΩ  
μA  
μA  
Bits  
VRH Range  
VRH to VRL Range1  
VRH Input Resistance  
VRL Input Current  
VRH Input Current  
RESOLUTION  
To VRL  
22  
−44  
111  
Binary Coding  
12  
DIGITAL INPUT CHARACTERISTICS  
TA MIN to TA MAX  
CLK input duty cycle 40% to 60%  
CLK Frequency  
DSW = HIGH  
DSW = LOW  
110  
85  
MHz  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Setup Time: t1  
XFR Setup Time: t3  
Data Hold Time: t2  
XFR Hold Time: t4  
CLK High Time: t5  
CLK Low Time: t6  
CLK High Time: t7  
CLK Low Time: t8  
CIN  
IIH  
IIH TSW  
IIH XFR  
IIL  
0
0
3.5  
3.5  
2.5  
3.0  
3.5  
4.0  
DSW = HIGH  
DSW = HIGH  
DSW = LOW  
DSW = LOW  
ns  
3
pF  
μA  
μA  
μA  
μA  
μA  
μA  
V
0.05  
333  
0.05  
−0.6  
−1.3  
−1.2  
IIL TSW  
IIL XFR  
VIH  
2
VIL  
0.8  
V
VTH  
1.65  
V
POWER SUPPLIES  
DVCC, Operating Range  
DVCC, Quiescent Current  
AVCC, Operating Range  
AVCC, Quiescent Current  
OPERATING TEMPERATURE  
3
3.3  
54  
3.6  
70  
18  
V
mA  
V
11  
75  
100  
mA  
7
Ambient Temperature Range, TA  
Ambient Temperature Range, TA  
Still air, TSW = LOW  
200 lfm airflow, TSW = LOW  
0
0
75  
85  
°C  
°C  
7
1 VDE = differential error voltage, VCME = common-mode error voltage, ΔVDE = VDE matching between outputs, ΔV = maximum deviation between outputs, and full-scale output  
voltage = VFS = 2 × (VRH − VRL). See the Accuracy section.  
2 Guaranteed monotonic by characterization to four sigma limits.  
3 Measured on two outputs differentially as CLK and DBx(0:11) are driven and XFR is held LOW.  
4 Measured on two outputs differentially as the others are transitioning by 5 V. Measured for both states of INV.  
5 Measured from 50% of rising CLK edge to 50% of output change. Measurement is made for both states of INV.  
6 Measured from 50% of INV transition to 50% of output change.  
7 Operation at elevated ambient temperature requires a thermally optimized PCB and additional thermal management, such as airflow across the surface of the AD8387.  
Rev. 0 | Page 4 of 16  
 
 
 
 
AD8387  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
When TSW is HIGH, the output current limiter, as well as the  
thermal switch, is enabled. The thermal switch debiases the  
output amplifier when the junction temperature reaches the  
internally set trip point. In the event of an extended short-  
circuit between a video output and a power supply rail, the  
output amplifier current continues to switch between 0 and  
100 mA typical with a period determined by the thermal time  
constant and the hysteresis of the thermal trip point. The  
thermal switch, when enabled, provides long-term protection  
from accidental shorts during the assembly process by limiting  
the average junction temperature to a safe level.  
Rating  
Supply Voltages  
AVCCx − AGNDx  
DVCC − DGND  
Input Voltages  
Maximum Digital Input Voltage  
Minimum Digital Input Voltage  
Maximum Analog Input Voltage  
Minimum Analog Input Voltage  
Internal Power Dissipation1  
TQFP E-Pad @ TA = 25°C  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature Range (Soldering 10 sec)  
18 V  
4.5 V  
DVCC + 0.5 V  
DGND − 0.5 V  
AVCC + 0.5 V  
AGND − 0.5 V  
4.38 W  
MAXIMUM POWER DISSIPATION  
0°C to 85°C  
−65°C to +125°C  
300°C  
The maximum power that the AD8387 can safely dissipate is  
limited by its junction temperature. The maximum safe junction  
temperature for plastic encapsulated devices, as determined by the  
glass transition temperature of the plastic, is approximately 150°C.  
Exceeding this limit temporarily can cause a shift in the parametric  
performance due to a change in the stresses exerted on the die by  
the package. Exceeding a junction temperature of 150°C for an  
extended period can result in device failure.  
1 80-lead TQFP E-Pad:  
θJA = 28.5°C/W (still air) [JEDEC Standard, 4-layer PCB in still air]  
θJC = 12.2°C/W  
θ
JB = 14.6°C/W  
ΨJB = 12.0°C/W  
ΨJT = 0.3°C/W.  
Stresses above those listed under the Absolute Maximum  
Ratings may cause permanent damage to the device. This is a  
stress rating only; functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to the  
absolute maximum ratings for extended periods may reduce  
device reliability.  
OPERATING TEMPERATURE RANGE  
To ensure operation within the specified operating temperature  
range, it is necessary to limit the maximum power dissipation as  
follows.  
3.0  
EXPOSED PADDLE  
500LFM  
200LFM  
2.5  
To ensure optimized thermal performance, the exposed paddle  
must be thermally connected to an external plane, such as  
AVCC or GND, as described in the Applications section.  
STILL AIR  
2.0  
OVERLOAD PROTECTION  
The AD8387 overload protection circuit consists of an output  
current limiter and a thermal switch.  
1.5  
QUIESCENT  
When TSW is LOW, the thermal switch is disabled and the  
output current limiter is enabled. The maximum current at any  
one output is internally limited to 100 mA average. In the event  
of a momentary short-circuit between a video output and a  
power supply rail (VCC or AGND), the output current limit is  
sufficiently low to provide temporary protection.  
THERMAL  
SWITCH  
1.0  
50  
75  
ENABLED  
55  
80  
60  
85  
65  
90  
70  
95  
75  
80  
85  
90  
95  
100  
DISABLED  
100 105 110 115 120 125  
AMBIENT TEMPERATURE (°C)  
Figure 3. Maximum Power Dissipation vs. Temperature,  
AD8387 on a 4-Layer JEDEC PCB with Thermally Optimized Landing  
Pattern as Described in the Applications Section  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 5 of 16  
 
 
AD8387  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
DBA5  
DBA6  
DBA7  
DBA8  
DBA9  
DBA10  
DBA11  
XFR  
VID1  
PIN 1  
2
AGND1, 2  
VID2  
3
4
AVCC2, 3  
VID3  
5
6
AGND3, 4  
VID4  
7
AD8387  
8
AVCC4, 5  
VID5  
TOP VIEW  
(Not to Scale)  
9
DVCC1  
DGND1  
CLK  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
AGND5, 6  
VID6  
DSW  
AVCC6, 7  
VID7  
R/L  
DBB11  
DBB10  
DBB9  
DBB8  
DBB7  
DBB6  
DBB5  
AGND7, 8  
VID8  
AVCC8, 9  
VID9  
AGND9, 10  
VID10  
AVCC10, 11  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
NC = NO CONNECT  
Figure 4. 80-Lead TQFP E-Pad Pin Configuration  
Rev. 0 | Page 6 of 16  
 
AD8387  
Table 3. 80-Lead TQFP E-Pad Pin Configurations  
Pin No.  
Mnemonic  
Function  
Description  
1 to 7,  
DBA(0:11)  
Data Input  
12-Bit Data Input for Even Channels. VID(0, 2, 4, 6, 8, 10), MSB = DBA11.  
76 to 80;  
14 to 25  
8
DBB(0:11)  
XFR  
Data Input  
12-Bit Data Input for Odd Channels. VID(1, 3, 5, 7, 9, 11), MSB = DBB11.  
Transfer/Start Sequence  
Simultaneously initiates a new data loading sequence and transfers data  
loaded previously, to the outputs.  
9, 26, 75  
10, 27, 74  
DVCCx  
DGNDx  
CLK  
DSW  
R/L  
ISW  
INV  
GSW  
TSW  
AGNDx  
Digital Power Supplies  
Digital Ground  
Clock  
Data Mode Switch  
Right/Left Select  
Invert Mode Switch  
Invert  
Output Mode Switch  
Thermal Switch  
Analog Ground  
Digital Power Supplies.  
These pins are normally connected to the digital ground plane.  
Clock Input.  
Selects Single Buss or Dual Buss Operating Modes.  
Selects Left Direction or Right Direction Operating Mode.  
Enables and Disables Column Inversion.  
Changes the Polarity of the Analog Output Signals.  
Enables and Disables Grounded Mode.  
Enables and Disables Long-Term Output Protection.  
Analog Supply Returns.  
11  
12  
13  
28  
29  
30  
31  
32, 33, 39, 43,  
47, 51, 55, 59,  
63, 69, 70  
34, 35, 41,  
45, 49, 53,  
57, 61, 67, 68  
36  
AVCCx  
BYP  
Analog Power Supplies  
Bypass  
Analog Power Supplies.  
A 0.1 μF capacitor connected between BYP and AGND ensures optimum  
settling time.  
37  
TSTA  
Test Pin  
Connect This Pin to AGND.  
38, 71 to 73  
NC  
NC  
No Connect. No internal connection.  
40, 42, 44, 46,  
48, 50, 52, 54,  
56, 58, 60, 62  
VID0 to VID11  
Analog Outputs  
These pins are connected directly to the analog inputs of the LCD panel.  
64  
VRL  
Video Center Reference  
Full-Scale Reference  
This Voltage Sets the Video Center Voltage. The video outputs are above  
this reference while INV = HIGH and below this reference while INV = LOW.  
Twice the voltage applied between VRH and VRL sets the full-scale  
video output voltage.  
65, 66  
VRH  
Rev. 0 | Page 7 of 16  
AD8387  
TYPICAL PERFORMANCE CHARACTERISTICS  
5.0  
4.5  
4.0  
3.5  
3.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
CODE 0  
2.5  
ΔVP  
2.0  
CODE 2048  
1.5  
ΔVDE  
1.0  
CODE 4095  
0.5  
ΔVN  
0
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
0
10  
20  
30  
40  
50  
60  
70  
80  
INPUT CODE  
AMBIENT TEMPERATURE (°C)  
Figure 5. Channel Matching vs. Code @ TA = 25°C  
Figure 8. Channel Matching vs. TA @ Codes 0, 2048, 4095  
3.5  
5
4
2.5  
1.5  
3
2
1
0.5  
0
–0.5  
–1.5  
–2.5  
–3.5  
–1  
–2  
–3  
–4  
–5  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
INPUT CODE  
INPUT CODE  
Figure 9. VCME vs. Code  
Figure 6. VDE vs. Code  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
INPUT CODE  
INPUT CODE  
Figure 10. DNL vs. Code @ TA = 25°C, INV = L  
Figure 7. DNL vs. Code @ TA = 25°C, INV = H  
Rev. 0 | Page 8 of 16  
 
AD8387  
TIMING DIAGRAMS  
SINGLE DATA BUS CONFIGURATION, DSW = LOW  
12-CHANNEL  
LCD  
DBA(0:11)  
DBB(0:11)  
CLK  
12  
D(0:11)  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
VID8  
VID9  
VID10  
VID11  
CHANNEL 0  
CHANNEL 1  
CHANNEL 2  
CHANNEL 3  
CHANNEL 4  
CHANNEL 5  
CHANNEL 6  
CHANNEL 7  
CHANNEL 8  
CHANNEL 9  
CHANNEL 10  
CHANNEL 11  
PIXEL  
CLK  
÷2  
CLK  
XFR  
R/L  
AD8387  
XFR  
R/L  
INV  
INV  
IMAGE  
DSW  
ISW  
PROCESSOR  
REFERENCES  
VRH  
VRL  
VRH  
VRL  
Figure 11. AD8387 in Single Data Bus System  
LEFT  
RIGHT  
PIXEL CLK  
PIXEL CLK  
D(0:11)  
3  
2
1
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
D(0:11)  
3  
2
1
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
CLK  
XFR  
CLK  
XFR  
R/L  
R/L  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
–12  
–11  
–10  
–9  
0
1
2
3
4
5
12  
13  
14  
15  
16  
17  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
–1  
–2  
–3  
–4  
–5  
–6  
11  
10  
9
23  
22  
21  
20  
19  
18  
8
–8  
7
–7  
6
VID6  
VID7  
–6  
–5  
–4  
–3  
–2  
–1  
6
18  
19  
20  
21  
22  
23  
VID6  
VID7  
–7  
–8  
–9  
5
4
3
2
1
0
17  
16  
15  
14  
13  
12  
7
VID8  
8
VID8  
VID9  
9
VID9  
–10  
–11  
–12  
VID10  
VID11  
10  
11  
VID10  
VID11  
Figure 12. AD8387 in Single Data Bus Configuration Scanning Left-to-Right and Right-to-Left  
Rev. 0 | Page 9 of 16  
 
AD8387  
DUAL DATA BUS CONFIGURATION, DSW = HIGH  
12  
12-CHANNEL  
LCD  
DA(0:11)  
DBA(0:11)  
DBB(0:11)  
CLK  
12  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
VID8  
VID9  
VID10  
VID11  
CHANNEL 0  
CHANNEL 1  
CHANNEL 2  
CHANNEL 3  
CHANNEL 4  
CHANNEL 5  
CHANNEL 6  
CHANNEL 7  
CHANNEL 8  
CHANNEL 9  
CHANNEL 10  
CHANNEL 11  
DB(0:11)  
PIXEL  
CLK  
÷2  
CLK  
AD8387  
XFR  
R/L  
INV  
XFR  
R/L  
INV  
DVCC  
IMAGE  
PROCESSOR  
DSW  
ISW  
REFERENCES  
VRH  
VRL  
VRH  
VRL  
Figure 13. AD8387 in Dual Data Bus System  
LEFT  
RIGHT  
PIXEL CLK  
PIXEL CLK  
DBA(0:11)  
DBB(0:11)  
DBA(0:11)  
DBB(0:11)  
–2  
–1  
0
1
2
3
4
5
6
7
8
9
10 12 14 16 18 20 22 24  
11 13 15 17 19 21 23 25  
–1  
–2  
1
0
3
5
4
7
6
9
8
11 13 15 17 19 21 23 25  
10 12 14 16 18 20 22 24  
2
CLK  
XFR  
CLK  
XFR  
R/L  
R/L  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
–12  
0
1
2
3
4
5
12  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
–1  
–2  
–3  
–4  
–5  
–6  
11  
10  
9
23  
–11  
–10  
–9  
13  
14  
15  
16  
17  
22  
21  
20  
19  
18  
8
–8  
7
–7  
6
VID6  
VID7  
–6  
–5  
–4  
–3  
–2  
–1  
6
18  
19  
20  
21  
22  
23  
VID6  
VID7  
–7  
–8  
–9  
5
4
3
2
1
0
17  
16  
15  
14  
13  
12  
7
VID8  
8
VID8  
VID9  
9
VID9  
–10  
–11  
–12  
VID10  
VID11  
10  
11  
VID10  
VID11  
Figure 14. AD8387 in Dual Data Bus Configuration Scanning Left-to-Right and Right-to-Left  
Rev. 0 | Page 10 of 16  
 
AD8387  
t6  
CLK  
V
V
TH  
TH  
t5  
t1  
t2  
t2  
t1  
DB(0:11)  
V
XFR  
TH  
t3  
t4  
Figure 15. Input Timing (DSW = LOW)  
CLK  
–2 –1  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
DB(0:11)  
XFR  
INV  
VRL + VFS  
50%  
VID(0:11)  
VRL  
VRL  
t7  
t8  
t7  
VRL–VFS  
PIXELS  
–12, –11, –10, –9, –8, –7, –6, –5, –4, –3, –2, –1  
PIXELS  
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11  
Figure 16. Output Timing (DSW = LOW)  
Table 4.  
Parameter  
Conditions  
Min  
0
0
3.5  
3.5  
2.5  
3.0  
3.5  
4.0  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Setup Time: t1  
XFR Setup Time: t3  
Data Hold Time: t2  
XFR Hold Time: t4  
CLK High Time: t5  
CLK Low Time: t6  
CLK High Time: t7  
CLK Low Time: t8  
DSW = HIGH  
DSW = HIGH  
DSW = LOW  
DSW = LOW  
Data Switching Delay: t7  
Data Switching Delay Skew: Δt7  
Invert Switching Delay: t8  
15.7  
16.2  
VIDx = 5 V step  
4
4
Invert Switching Delay Skew: Δt8  
Rev. 0 | Page 11 of 16  
AD8387  
FUNCTIONAL DESCRIPTION  
Right/Left Control—Input Data Loading  
The AD8387 is a system building block designed to directly  
drive the columns of LCD microdisplays of the type popularized  
for use in projection systems. It has 12 channels of precision,  
12-bit DACs loaded from a dual, high speed, 12-bit wide input.  
Precision current feedback amplifiers, providing well damped  
pulse response and fast voltage settling into large capacitive  
loads, buffer the 12 outputs. Laser trimming at the wafer level  
ensures low absolute output errors and tight channel-to-channel  
matching. Tight part-to-part matching in high resolution  
systems is guaranteed by the use of external voltage references.  
To facilitate image mirroring, the direction of the loading  
sequence is set by the R/L control. A new loading sequence  
begins at Channel 0 and proceeds to Channel 11 when the R/L  
control is held LOW. It begins at Channel 11 and proceeds to  
Channel 0 when the R/L control is held HIGH.  
TSW Control—Thermal Switch Control  
When this input is HIGH, the thermal switch is enabled. When  
LOW or left unconnected, the thermal switch is disabled.  
REFERENCE AND CONTROL INPUT DESCRIPTION  
Data Transfer/Start Sequence Control—Input Data  
Loading, Data Transfer  
An internal, 10 kΩ pull-down resistor disables the thermal  
switch when this pin is left unconnected.  
GSW Control—Output Mode Switch  
A valid XFR is initiated when it is held HIGH during a rising  
CLK edge.  
When this input is HIGH, the video outputs operate normally.  
When LOW or left open, the video outputs are forced to  
AGND. This function operates when AVCC power is off but  
requires DVCC power to be on.  
Data is transferred to the outputs and a new loading sequence is  
initiated on the next rising CLK edge, immediately following a  
valid XFR.  
INV Control and ISW Control—Analog Output Inversion  
During a loading sequence, 12-bit words are loaded sequentially  
into 12 internal channels.  
When ISW = LOW, the analog outputs’ transfer function is  
below VRL, while INV is held LOW, and is above VRL, while  
INV is held HIGH.  
When the AD8387 is configured for single data bus (DSW =  
LOW), data is loaded on both the rising and falling edges of  
CLK. When configured for dual data bus (DSW = HIGH),  
data is loaded on the rising edges of CLK only.  
With ISW = HIGH, the analog outputs’ transfer function is  
above VRL for VID(0, 2, 4, 6, 8, 10) and is below VRL for  
VID(1, 3, 5, 7, 9, 11), while INV is held HIGH. Conversely, the  
analog outputs’ transfer function is below VRL for VID(0, 2, 4,  
6, 8, 10) and is above VRL for VID(1, 3, 5, 7, 9, 11), while INV is  
held LOW.  
DSW Control—Data Mode Switch  
When this input is HIGH, the AD8387 is in dual data bus  
mode. Data is loaded from both DBA(0:11) and DBB(0:11)  
on the rising CLK edge simultaneously. R/L does not change  
the active CLK edge in dual data bus mode. When LOW, the  
AD8387 is in single data bus mode. Data is loaded on the rising  
CLK edge from DBA(0:11) and on the falling CLK edge from  
DBB(0:11) when R/L is LOW. With R/L HIGH, data is loaded  
on the falling CLK edge from DBA(0:11) and on the rising CLK  
edge from DBB(0:11).  
VRH, VRL Inputs—Full-Scale Video Reference Inputs  
Two times the difference between VRH and VRL (analog input  
voltages) sets the full-scale output voltage.  
VFS = 2 × (VRH VRL)  
Rev. 0 | Page 12 of 16  
 
AD8387  
THEORY OF OPERATION  
TRANSFER FUNCTION AND ANALOG OUTPUT  
VOLTAGE  
ACCURACY  
To best correlate transfer function errors to image artifacts, the  
overall accuracy of the DecDriver is defined by three  
parameters, VDE , VCME, and ΔVDE.  
The DecDriver has two regions of operation where the video  
output voltages are either above or below the reference voltage  
VRL. The transfer function defines the video output voltage as  
the function of the digital input code as:  
VDE, the differential error voltage, measures the difference  
between the rms value of a channel and the ideal rms value of  
that channel. The defining expression is  
VOUTN(n) = VIDx(n) = VRL + VFS × (1 − n/4095),  
for INV = HIGH  
VOUTN(n) VOUTP(n)  
n
4095 ⎠  
VOUTP(n) = VIDx(n) = VRL VFS × (1 − n/4095),  
for INV = LOW  
VDE(n) =  
1 −  
×VFS  
2
VCME, the common-mode error voltage, measures ½ the dc  
bias of a channel. The defining expression is  
where n is the input code.  
VFS = 2 × (VRH VRL)  
VOUTN(n) + VOUTP(n)  
1
2
VCME(n) =  
VRL  
A number of internal limits define the usable range of the video  
output voltages, VIDx, as shown in Figure 17.  
2
ΔVDE measures the maximum VDE mismatch between  
channels. The defining equation is  
VIDx – VOLTS  
AVCC  
1.3V  
(VRL + VFS)  
ΔVDE = max{VDE(n)(0 − 11)} − min{VDE(n)(0 − 11)  
}
VOUTN  
VOUTP  
0 VFS 5.25V  
ΔV measures the maximum mismatch between channels. The  
defining expression is  
11V AVCC  
18V  
VRL  
ΔV(n) = maxVN(n), ΔVP(n)}  
0 VFS  
5.25V VRL  
(AVCC – 4)  
where:  
5.25V  
(VRL – VFS)  
AGND  
ΔVN(n) = max{VOUTN(n)(0 − 11)} − min{VOUTN(n)(0 − 11)  
}
1.3V  
0
INPUT CODE  
VIDx vs. INPUT CODE  
4095  
ΔVP(n) = max{VOUTP(n)(0 − 11)} − min{VOUTP(n)(0 − 11)  
}
INTERNAL LIMITS AND  
USABLE VOLTAGE RANGES  
Figure 17. AD8387 Transfer Function and Usable Voltage Ranges  
Rev. 0 | Page 13 of 16  
 
 
AD8387  
APPLICATIONS  
OPTIMIZED RELIABILITY WITH THE THERMAL  
SWITCH  
POWER-OFF SEQUENCE  
1. Turn off input signals  
While internal current limiters provide short-term protection  
against temporary shorts at the outputs, the thermal switch  
provides protection against persistent shorts lasting for several  
seconds. To optimize reliability with the use of the thermal  
switch, the following sequence of operations is recommended.  
2. Turn off VRL  
3. Turn off VRH  
4. Turn off AVCC  
5. Turn off DVCC  
GROUNDED OUTPUT MODE DURING POWER-OFF  
INITIAL POWER-UP AFTER ASSEMBLY OR REPAIR  
Certain applications require that video outputs be held near  
AGND during power-down. The following power-off sequence  
ensures that the outputs are near ground during power-off and  
that the Absolute Maximum Ratings are not violated.  
Grounded output mode is disabled, and thermal switch is  
enabled. Ensure that the GSW pin is HIGH and that the  
TSW pin is HIGH upon initial power-up and that they remain  
unchanged throughout this procedure.  
1. Enable grounded output mode: GSW = LOW  
2. Turn off input signals  
3. Turn off VRL  
The initial power-up sequence follows:  
1. Execute the initial power-up.  
2. Identify any shorts at outputs. Power down, repair shorts,  
and repeat the initial power-up sequence until proper system  
functionality is verified.  
4. Turn off VRH  
5. Turn off AVCC  
3. Disable the thermal switch.  
6. Turn off DVCC  
POWER-UP DURING NORMAL OPERATION  
PCB DESIGN FOR OPTIMIZED THERMAL  
PERFORMANCE  
Grounded output mode is disabled, and thermal switch is  
disabled.  
Although the maximum safe operating junction temperature is  
higher, the AD8387 is 100% tested at a junction temperature of  
125°C. Consequently, the maximum guaranteed operating  
junction temperature is 125°C. To limit the maximum junction  
temperature at or below the guaranteed maximum, the package  
in conjunction with the PCB must effectively conduct heat away  
from the junction.  
If TSW = LOW and GSW = HIGH, all outputs go into normal  
operating mode with the thermal switch disabled.  
POWER SUPPLY SEQUENCING  
As indicated under the Absolute Maximum Ratings, the voltage  
at any input pin cannot exceed its supply voltage by more than  
0.5 V. Power-on and power-off sequencing can be required to  
comply with the absolute maximum ratings.  
The AD8387 package is designed to provide enhanced thermal  
characteristics through the exposed die paddle on the bottom  
surface of the package. To take full advantage of this feature, the  
exposed paddle must be in direct thermal contact with the PCB,  
which then serves as a heat sink.  
Failure to comply with the Absolute Maximum Ratings can  
result in functional failure or damage to the internal ESD  
diodes. Damaged ESD diodes can cause temporary parametric  
failures, which can result in image artifacts. Damaged ESD  
diodes cannot provide full ESD protection, reducing reliability.  
A thermally effective PCB must incorporate two thermal  
pads and a thermal via structure. The thermal pad on the top  
surface of the PCB provides a solderable contact surface on the  
top surface of the PCB. The thermal pad on the bottom PCB  
layer provides a surface in direct contact with the ambient. The  
thermal via structure provides a thermal path to the inner and  
bottom layers of the PCB to remove heat.  
POWER-ON SEQUENCE  
1. Turn on AVCC  
2. Turn on VRH  
3. Turn on VRL  
4. Turn on DVCC  
5. Disable thermal switch: TSW = LOW  
6. Turn on input signals  
Rev. 0 | Page 14 of 16  
 
 
AD8387  
THERMAL PAD DESIGN  
To minimize thermal performance degradation of production  
PCBs, the contact area between the thermal pad and the PCB  
should be maximized. Therefore, the size of the thermal pad  
on the top PCB layer should match the exposed paddle. The  
second thermal pad of the same size should be placed on the  
bottom side of the PCB. At least one thermal pad should be in  
direct thermal contact with an external plane, such as AVCC  
or GND.  
16mm  
6.5mm  
THERMAL VIA STRUCTURE DESIGN  
Effective heat transfer from the top to the inner and bottom  
layers of the PCB requires thermal vias incorporated into the  
thermal pad design. Thermal performance increases  
logarithmically with the number of vias.  
Figure 18. Land Pattern—Top Layer  
Near optimum thermal performance of production PCBs is  
attained only when tightly spaced thermal vias are placed on  
the full extent of the thermal pad.  
6.5mm  
Thermal Pad and Thermal via Connections  
The thermal pad on the solder side is connected to a plane. The  
use of thermal spokes is not recommended when connecting  
the thermal pads or via structure to the plane.  
Solder Masking  
Figure 19. Land Pattern—Bottom Layer  
Solder masking of the via holes on the top layer of the PCB  
plugs the via holes, inhibiting solder flow into the holes. To  
minimize the formation of solder voids due to solder flowing  
into the via holes (solder wicking), via diameter should be made  
small, and an optional solder mask can be used. To optimize the  
thermal pad coverage when using the solder mask, its diameter  
should be no more than 0.1 mm larger than the via hole  
diameter.  
Pads are set by customer’s PCB design rules.  
Thermal via Holes—Circular mask, centered on the via holes.  
Diameter of the mask should be 0.1 mm larger than the via hole  
diameter.  
Figure 20. Solder Mask—Top Layer  
Solder Mask—Bottom Layer  
This is set by customers PCB design rules.  
AD8387 PCB DESIGN RECOMMENDATIONS  
Table 5. Land Pattern Dimensions  
Pad Size  
Pad Pitch  
Thermal Pad Size  
Thermal Via Structure  
0.25 mm − 0.35 mm holes  
0.5 mm − 1.0 mm grid  
0.6 mm × 0.25 mm  
0.5 mm  
6 mm × 6 mm  
Rev. 0 | Page 15 of 16  
 
AD8387  
OUTLINE DIMENSIONS  
14.20  
14.00 SQ  
13.80  
12.20  
1.20  
MAX  
12.00 SQ  
11.80  
0.75  
0.60  
0.45  
61  
80  
80  
61  
1
60  
1
60  
PIN 1  
EXPOSED  
PAD  
6.00  
BSC SQ  
TOP VIEW  
(PINS DOWN)  
BOTTOM VIEW  
(PINS UP)  
0° MIN  
1.05  
1.00  
0.95  
0.20  
0.09  
7°  
20  
41  
41  
20  
40  
40  
21  
21  
3.5°  
0°  
VIEW A  
0.15  
0.05  
0.50 BSC  
LEAD PITCH  
0.27  
0.22  
0.17  
SEATING  
PLANE  
0.08 MAX  
COPLANARITY  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-ADD-HD  
Figure 21. 80-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]  
(SV-80-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD8387JSVZ1  
Temperature Range  
0°C to 85°C  
Package Description  
80-Lead TQFP  
Package Option  
SV-80-1  
AD8387-EB  
Evaluation Board  
1 Z = Pb-free part.  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05653-0-10/05(0)  
Rev. 0 | Page 16 of 16  
 
 

相关型号:

AD8387-EB

High Performance, 12-Bit, 12-Channel Decimating, LCD DecDriver
ADI

AD8387JSVZ

High Performance, 12-Bit, 12-Channel Decimating, LCD DecDriver
ADI

AD8389

Triple, 6-Channel LCD Timing Delay-Locked Loop
ADI

AD8389ACPZ

Triple, 6-Channel LCD Timing Delay-Locked Loop
ADI

AD8389ACPZ

SPECIALTY CONSUMER CIRCUIT, QCC48, LEAD FREE, MO-220-VKKD-2, LFCSP-48
ROCHESTER

AD8390

Low Power, High Output Current Differential Amplifier
ADI

AD8390A

Low Power, High Output Current Differential Amplifier
ADI

AD8390AACPZ-R2

Low Power, High Output Current Differential Amplifier
ADI

AD8390AACPZ-R7

Low Power, High Output Current Differential Amplifier
ADI

AD8390AACPZ-RL

Low Power, High Output Current Differential Amplifier
ADI

AD8390ACP-EVAL

Low Power, High Output Current Differential Amplifier
ADI

AD8390ACP-R2

Low Power, High Output Current Differential Amplifier
ADI