AD842 [ADI]

Wideband, High Output Current, Fast Settling Op Amp; 宽带,高输出电流,快速建立运算放大器
AD842
型号: AD842
厂家: ADI    ADI
描述:

Wideband, High Output Current, Fast Settling Op Amp
宽带,高输出电流,快速建立运算放大器

运算放大器
文件: 总10页 (文件大小:477K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Wideband, High Output Current,  
Fast Settling Op Amp  
a
AD842*  
CONNECTION DIAGRAMS  
FEATURES  
AC PERFORMANCE  
Plastic DIP (N) Package  
and  
Cerdip (Q) Package  
LCC (E) Package  
Gain Bandwidth Product: 80 MHz (Gain = 2)  
Fast Settling: 100 ns to 0.01% for a 10 V Step  
Slew Rate: 375 V/s  
Stable at Gains of 2 or Greater  
Full Power Bandwidth: 6.0 MHz for 20 V p-p  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
NC  
NC  
NC  
AD842  
BALANCE  
NC  
DC PERFORMANCE  
Input Offset Voltage: 1 mV max  
Input Offset Drift: 14 V/؇C  
Input Voltage Noise: 9 nV/Hz typ  
Open-Loop Gain: 90 V/mV into a 500 Load  
Output Current: 100 mA min  
NC  
IN  
NC  
+IN  
NC  
4
5
6
7
8
18 NC  
BALANCE  
–INPUT  
+INPUT  
17  
16  
+V  
S
V+  
NC  
+
OUTPUT  
NC  
+
15 OUTPUT  
14  
AD842  
NC  
V–  
8
NC  
NC  
TOP VIEW  
Quiescent Supply Current: 14 mA max  
NC = NO CONNECT  
NC = NO CONNECT  
APPLICATIONS  
Line Drivers  
DAC and ADC Buffers  
TO-8 (H) Package  
SOIC (R-16) Package  
Video and Pulse Amplifiers  
Available in Plastic DIP, Hermetic Metal Can,  
Hermetic Cerdip, SOIC and LCC Packages and in  
Chip Form  
MIL-STD-883B Parts Available  
Available in Tape and Reel in Accordance with  
EIA-481A Standard  
NC  
NC  
BALANCE  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
NC  
BALANCE  
BALANCE  
BALANCE  
AD842  
V+  
INPUT  
+V  
S
AD842  
NC  
NC  
INPUT  
OUTPUT  
+
+INPUT  
NC  
OUTPUT  
NC  
+
+INPUT  
V–  
NC  
NC  
V  
S
NC  
NC  
PRODUCT DESCRIPTION  
NC  
NC  
TOP VIEW  
The AD842 is a member of the Analog Devices family of wide  
bandwidth operational amplifiers. This device is fabricated using  
Analog Devices’ junction isolated complementary bipolar (CB)  
process. This process permits a combination of dc precision and  
wideband ac performance previously unobtainable in a mono-  
lithic op amp. In addition to its 80 MHz gain bandwidth, the  
AD842 offers extremely fast settling characteristics, typically  
settling to within 0.01% of final value in less than 100 ns for a  
10 volt step.  
TOP VIEW  
NOTE: CAN BE TIED TO V+  
NC = NO CONNECT  
NC = NO CONNECT  
AD842 is also appropriate for other applications such as high  
speed DAC and ADC buffer amplifiers and other wide band-  
width circuitry.  
APPLICATION HIGHLIGHTS  
The AD842 also offers a low quiescent current of 13 mA, a high  
output current drive capability (100 mA minimum), a low input  
voltage noise of 9 nVHz and a low input offset voltage (1 mV  
maximum).  
1. The high slew rate and fast settling time of the AD842 make  
it ideal for DAC and ADC buffers amplifiers, lines drivers  
and all types of video instrumentation circuitry.  
2. The AD842 is a precision amplifier. It offers accuracy to  
0.01% or better and wide bandwidth; performance previously  
available only in hybrids.  
The 375 V/µs slew rate of the AD842, along with its 80 MHz  
gain bandwidth, ensures excellent performance in video and  
pulse amplifier applications. This amplifier is ideally suited for  
use in high frequency signal conditioning circuits and wide  
bandwidth active filters. The extremely rapid settling time of  
the AD842 makes this amplifier the preferred choice for data  
acquisition applications which require 12-bit accuracy. The  
3. Laser-wafer trimming reduces the input offset voltage of  
1 mV max, thus eliminating the need for external offset  
nulling in many applications.  
4. Full differential inputs provide outstanding performance in  
all standard high frequency op amp applications where the  
circuit gain will be 2 or greater.  
*Covered by U.S. Patent Nos. 4,969,823 and 5,141,898.  
5. The AD842 is an enhanced replacement for the HA2542.  
REV. E  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
(@ +25؇C and ؎15 V dc, unless otherwise noted)  
AD842–SPECIFICATIONS  
Model  
AD842J/JR1  
AD842K  
Typ Max  
AD842S2  
Typ  
Conditions  
Min  
Typ  
Max  
Min  
Min  
Max  
Units  
INPUT OFFSET VOLTAGE3  
0.5  
1.5  
2.5/3  
0.3  
1.0  
1.5  
0.5  
1.5  
3.5  
mV  
mV  
T
MIN–TMAX  
Offset Drift  
14  
14  
14  
µV/°C  
INPUT BIAS CURRENT  
4.2  
8
3.5  
5
6
0.2  
0.3  
4.2  
8
µA  
µA  
µA  
µA  
T
MIN–TMAX  
10  
0.4  
0.5  
12  
0.4  
0.6  
Input Offset Current  
0.1  
0.05  
0.1  
TMIN–TMAX  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Differential Mode  
100  
2.0  
100  
2.0  
100  
2.0  
kΩ  
pF  
INPUT VOLTAGE RANGE  
Common Mode  
Common-Mode Rejection  
؎10  
86  
80  
؎10  
90  
86  
؎10  
86  
80  
V
dB  
dB  
VCM  
TMIN–TMAX  
=
10 V  
115  
115  
115  
INPUT VOLTAGE NOISE  
Wideband Noise  
f = 1 kHz  
10 Hz to 10 MHz  
9
28  
9
28  
9
28  
nV/Hz  
µV rms  
OPEN-LOOP GAIN  
VO = 10 V  
RLOAD 500 Ω  
TMIN–TMAX  
40/30  
20/15  
90  
50  
25  
90  
40  
20  
90  
V/mV  
V/mV  
OUTPUT CHARACTERISTICS  
Voltage  
Current  
RLOAD 500 Ω  
؎10  
100  
؎10  
100  
؎10  
100  
V
mA  
VOUT  
=
10 V  
Open Loop  
5
5
5
FREQUENCY RESPONSE  
Gain Bandwidth Product  
Full Power Bandwidth4  
V
OUT = 90 mV  
80  
80  
80  
MHz  
VO = 20 V p-p  
RLOAD 500 Ω  
AVCL = –2  
AVCL = –2  
AVCL = –2  
4.7  
6
4.7  
6
4.7  
6
MHz  
ns  
%
Rise Time5  
Overshoot5  
Slew Rate5  
10  
20  
375  
10  
20  
375  
10  
20  
375  
300  
300  
300  
V/µs  
Settling Time5  
10 V Step  
to 0.1%  
80  
80  
80  
ns  
to 0.01%  
100  
100  
100  
ns  
Differential Gain  
Differential Phase  
f = 4.4 MHz  
f = 4.4 MHz  
0.015  
0.035  
0.015  
0.035  
0.015  
0.035  
%
Degree  
POWER SUPPLY  
Rated Performance  
Operating Range  
Quiescent Current  
15  
15  
13  
15  
13  
V
V
mA  
mA  
dB  
dB  
؎5  
؎18  
؎5  
؎18  
14  
16  
؎5  
؎18  
14  
19  
13/14 14/16  
16/19.5  
100  
T
MIN–TMAX  
Power Supply Rejection Ratio  
VS = 5 V to 18 V  
TMIN–TMAX  
86  
80  
90  
86  
105  
86  
80  
100  
TEMPERATURE RANGE  
Rated Performance6  
0
+75  
0
+75  
–55  
+125  
°C  
PACKAGE OPTIONS  
Plastic (N-14)  
Cerdip (Q-14)  
SOIC (R-16)  
AD842JN  
AD842JQ  
AD842JR-16  
AD842KN  
AD842KQ  
AD842SQ, AD842SQ/883B  
Tape and Reel  
AD842JR-16-REEL  
AD842JR-16-REEL7  
AD842JH  
TO-8 (H-12A)  
LCC (E-20A)  
Chips  
AD842KH  
AD842SH  
AD842SE/883B  
AD842SCHIPS  
AD842JCHIPS  
NOTES  
1AD842JR specifications differ from those of the AD842JN, JQ and JH due to the thermal characteristics of the SOIC package.  
2Standard Military Drawing available 5962-8964201xx  
2A – (SE/883B); XA – (SH/883B); CA – (SQ/883B).  
3Input offset voltage specifications are guaranteed after 5 minutes at TA = +25°C.  
4Full power bandwidth = slew rate/2 π VPEAK  
.
5Refer to Figures 22 and 23.  
6“S” grade TMIN–TMAX specifications are tested with automatic test equipment at TA = –55°C and TA = +125°C.  
All min and max specifications are guaranteed. Specifications shown in boldface are tested on all production units.  
Specifications subject to change without notice.  
REV. E  
–2–  
AD842  
ABSOLUTE MAXIMUM RATINGS1  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
Internal Power Dissipation2  
Plastic (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 W  
Cerdip (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 W  
TO-8 (H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 W  
SOIC (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 W  
LCC (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 W  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Storage Temperature Range  
Q, H, E . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
N, R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +125°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . +175°C  
Lead Temperature Range (Soldering 60 sec) . . . . . . . . +300°C  
2Maximum internal power dissipation is specified so that TJ does not exceed  
+150°C at an ambient temperature of +25°C.  
Thermal Characteristics:  
θJC  
θJA  
θSA  
Plastic Package  
Cerdip Package  
TO-8 Package  
16-Lead SOIC Package 30°C/W  
20-Lead LCC Package 35°C/W  
Recommended Heat Sink: Aavid Engineering© #602B  
30°C/W  
30°C/W  
30°C/W  
100°C/W  
110°C/W  
100°C/W  
100°C/W  
150°C/W  
38°C/W  
27°C/W  
METALIZATION PHOTOGRAPH  
Contact factory for latest dimensions.  
Dimensions shown in inches and (mm).  
REV. E  
–3–  
AD842–Typical Characteristics(at +25؇C and V = ؎15 V, unless otherwise noted)  
S
20  
20  
15  
10  
30  
25  
20  
15  
؎ 15V SUPPLIES  
15  
10  
؎ V  
OUT  
V
IN  
10  
5
0
5
0
5
0
10  
100  
1k  
10k  
0
5
10  
15  
20  
0
5
10  
15  
20  
SUPPLY VOLTAGE ؎Volts  
SUPPLY VOLTAGE ؎ Volts  
LOAD RESISTANCE ⍀  
Figure 1. Input Common-Mode  
Range vs. Supply Voltage  
Figure 2. Output Voltage Swing  
vs. Supply Voltage  
Figure 3. Output Voltage Swing  
vs. Load Resistance  
18  
16  
14  
12  
10  
5  
4  
100  
10  
1
3  
2  
0.1  
0.01  
10k  
0
5
10  
15  
20  
100k  
1M  
10M  
100M  
60 40 20  
0
20 40 60 80 100 120 140  
SUPPLY VOLTAGE ؎ Volts  
TEMPERATURE ؇C  
FREQUENCY Hz  
Figure 4. Quiescent Current vs.  
Supply Voltage  
Figure 5. Input Bias Current vs.  
Temperature  
Figure 6. Output Impedance vs.  
Frequency  
85  
80  
300  
18  
17  
16  
15  
14  
13  
12  
275  
250  
225  
200  
175  
150  
+ OUTPUT CURRENT  
75  
70  
65  
OUTPUT CURRENT  
125  
100  
11  
10  
60 40 20  
0
20 40 60 80 100 120 140  
TEMPERATURE ؇C  
60 40 20  
0
20 40 60 80 100 120 140  
60 40 20  
0
20 40 60 80 100 120 140  
AMBIENT TEMPERATURE ؇C  
TEMPERATURE ؇C  
Figure 7. Quiescent Current vs.  
Temperature  
Figure 8. Short-Circuit Current  
Limit vs. Temperature  
Figure 9. Gain Bandwidth Product  
vs. Temperature  
REV. E  
–4–  
AD842  
120  
100  
100  
80  
120  
100  
80  
110  
105  
100  
95  
+ SUPPLY  
80  
60  
40  
60  
40  
20  
60  
SUPPLY  
500LOAD  
40  
500LOAD  
20  
0
0
20  
0
90  
100  
1k  
10k  
100k  
1M  
10M 100M  
0
5
10  
15  
20  
100  
1k  
10k  
100k  
1M  
10M 100M  
SUPPLY VOLTAGE ؎V  
FREQUENCY Hz  
FREQUENCY Hz  
Figure 10. Open-Loop Gain and  
Phase Margin vs. Frequency  
Figure 11. Open-Loop Gain vs.  
Supply Voltage  
Figure 12. Power Supply Rejection  
vs. Frequency  
120  
10  
8
30  
25  
20  
15  
10  
5
R
= 1kV  
V
V
= ؎ 15V  
L
S
+25؇C  
= ؎15V  
= 1V p-p  
CM  
V
+ 25؇C  
S
100  
80  
6
4
2
0.1% 0.01%  
0
0.1% 0.01%  
60  
2  
4  
40  
20  
6  
8  
10  
0
1M  
1k  
10k  
100k  
1M  
10M  
100M  
10M  
100M  
30 40  
50  
60  
70  
80  
90 100 110  
FREQUENCY Hz  
SETTLING TIME ns  
FREQUENCY Hz  
Figure 13. Common-Mode  
Rejection vs. Frequency  
Figure 14. Large Signal Frequency  
Response  
Figure 15. Output Swing and  
Error vs. Settling Time  
50  
40  
30  
20  
80  
90  
550  
500  
450  
400  
350  
3V RMS  
L
R
= 1k⍀  
100  
110  
120  
2ND HARMONIC  
10  
0
3RD HARMONIC  
10k  
130  
140  
300  
250  
0
100  
1k  
100k  
10  
100  
1k  
10k  
100k  
1M  
10M  
60 40 20  
20 40 60 80 100 120 140  
TEMPERATURE ؇C  
FREQUENCY Hz  
FREQUENCY Hz  
Figure 16. Harmonic Distortion vs.  
Frequency  
Figure 17. Input Voltage vs.  
Frequency  
Figure 18. Slew Rate vs.  
Temperature  
REV. E  
5–  
AD842  
RF = 1k  
0.1F  
2.2F  
+VS  
RIN  
499⍀  
=
HP3314A  
FUNCTION  
GENERATOR  
OR  
VOUT  
AD842  
+
49.9⍀  
EQUIVALENT  
0.1F  
2.2F  
499⍀  
332⍀  
VS  
Figure 19a. Inverting Amplifier  
Configuration (DIP Pinout)  
Figure 19b. Inverter Large Signal  
Pulse Response  
Figure 19c. Inverter Small Signal  
Pulse Response  
R1 = 205  
R
= 205⍀  
F
0.1F  
2.2F  
+V  
S
V
OUT  
HP3314A  
FUNCTION  
GENERATOR  
OR  
AD842  
+
V
IN  
100⍀  
0.1F  
2.2F  
499⍀  
49.9⍀  
EQUIVALENT  
V  
S
Figure 20b. Noninverting Large  
Signal Pulse Response  
Figure 20c. Noninverting Small  
Signal Pulse Response  
Figure 20a. Noninverting Amplifier  
Configuration (DIP Pinout)  
REV. E  
6–  
AD842  
OFFSET NULLING  
The input offset voltage of the AD842 is very low for a high  
speed op amp, but if additional nulling is required, the circuit  
shown in Figure 21 can be used.  
ERROR  
AMP  
(
؋
15)  
TEK  
7A13  
TEK  
7603  
OSCILLOSCOPE  
AD842 SETTLING TIME  
Figures 22 and 24 show the settling performance of the AD842  
in the test circuit shown in Figure 23.  
TEK  
7A16  
HP6263  
DDD5109  
FLAT-TOP  
PULSE  
499⍀  
499⍀  
1k⍀  
1k⍀  
Settling time is defined as:  
GENERATOR  
The interval of time from the application of an ideal step  
function input until the closed-loop amplifier output has  
entered and remains within a specified error band.  
0.1F  
50⍀  
+15V  
2.2F  
This definition encompasses the major components which com-  
prise settling time. They include (1) propagation delay through  
the amplifier; (2) slewing time to approach the final output value;  
(3) the time of recovery from the overload associated with slew-  
ing and (4) linear settling to within the specified error band.  
FET PROBE  
TEK P6201  
AD842  
0.1F  
2.2F  
499⍀  
499⍀  
15V  
Expressed in these terms, the measurement of settling time is  
obviously a challenge and needs to be done accurately to assure  
the user that the amplifier is worth consideration for the  
application.  
Figure 23. Settling Time Test Circuit  
Figure 23 shows how measurement of the AD842’s 0.01% set-  
tling in 100 ns was accomplished by amplifying the error signal  
from a false summing junction with a very high-speed propri-  
etary hybrid error amplifier specially designed to enable testing  
of small settling errors. The device under test was driving a  
300 load. The input to the error amp is clamped in order to  
avoid possible problems associated with the overdrive recovery  
of the oscilloscope input amplifier. The error amp gains the  
error from the false summing junction by 15, and it contains a  
gain vernier to fine trim the gain.  
+V  
S
0.1F  
2.2F  
10k⍀  
INPUT  
OUTPUT  
AD842  
+
0.1F  
2.2F  
R
L
V  
S
Figure 24 shows the “long term” stability of the settling charac-  
teristics of the AD842 output after a 10 V step. There is no  
evidence of settling tails after the initial transient recovery time.  
The use of a junction isolated process, together with careful  
layout, avoids these problems by minimizing the effects of tran-  
sistor isolation capacitance discharge and thermally induced  
shifts in circuit operating points. These problems do not occur  
even under high output current conditions.  
Figure 21. Offset Nulling (DIP Pinout)  
Figure 22. 0.01% Settling Time  
REV. E  
7–  
AD842  
GROUNDING AND BYPASSING  
USING A HEAT SINK  
In designing practical circuits with the AD842, the user must  
remember that whenever high frequencies are involved, some  
The AD842 draws less quiescent power than most precision  
high speed amplifiers and is specified for operation without a  
heat sink. However, when driving low impedance loads, the cur-  
rent to the load can be 10 times the quiescent current. This will  
create a noticeable temperature rise. Improved performance can  
be achieved by using a small heat sink such as the Aavid Engi-  
neering #602B.  
TERMINATED LINE DRIVER  
The AD842 is optimized for high speed line driver applications.  
Figure 25 shows the AD842 driving a doubly terminated cable  
in a gain-of-2 follower configuration. The AD842 maintains a  
typical slew rate of 375 V/µs, which means it can drive a 10 V,  
6.0 MHz signal or a 3 V, 19.9 MHz signal.  
The termination resistor, RT, (when equal to the characteristic  
impedance of the cable) minimizes reflections from the far end  
of the cable. A back-termination resistor (RBT, also equal to the  
characteristic impedance of the cable) may be placed between  
the AD842 output and the cable in order to damp any stray  
signals caused by a mismatch between RT and the cable’s char-  
acteristic impedance. This will result in a “cleaner” signal. With  
this circuit, the voltage on the line equals VIN because one half  
Figure 24. AD842 Settling Demonstrating No Settling  
Tails  
special precautions are in order. Circuits must be built with  
short interconnect leads. Large ground planes should be used  
whenever possible to provide a low resistance, low inductance  
circuit path, as well as minimizing the effects of high frequency  
coupling. Sockets should be avoided because the increased  
interlead capacitance can degrade bandwidth.  
of VOUT is dropped across RBT  
.
Feedback resistors should be of low enough value to assure that  
the time constant formed with the circuit capacitances will not  
limit the amplifier performance. Resistor values of less than  
5 kare recommended. If a larger resistor must be used, a small  
(<10 pF) feedback capacitor connected in parallel with the feed-  
back resistor, RF, may be used to compensate for these stray  
capacitances and optimize the dynamic performance of the  
amplifier in the particular application.  
The AD842 has 100 mA minimum output current and, there-  
fore, can drive 5 V into a 50 cable.  
The feedback resistors, R1 and R2, must be chosen carefully.  
Large value resistors are desirable in order to limit the amount  
of current drawn from the amplifier output. But large resistors  
can cause amplifier instability because the parallel resistance  
R1ʈR2 combines with the input capacitance (typically 2–5 pF) to  
create an additional pole. Also, the voltage noise of the AD842  
is equivalent to a 5 kresistor, so large resistors can signifi-  
cantly increase the system noise. Resistor values of 1 kor 2 kΩ  
are recommended.  
Power supply leads should be bypassed to ground as close as  
possible to the amplifier pins. A 2.2 µF capacitor in parallel with  
a 0.1 µF ceramic disk capacitor is recommended.  
If termination is not used, cables appear as capacitive loads and  
can be decoupled from the AD842 by a resistor in series with  
the output.  
CAPACITIVE LOAD DRIVING ABILITY  
Like all wideband amplifiers, the AD842 is sensitive to capaci-  
tive loading. The AD842 is designed to drive capacitive loads of  
up to 20 pF without degradation of its rated performance. Ca-  
pacitive loads of greater than 20 pF will decrease the dynamic  
performance of the part although instability should not occur  
unless the load exceeds 100 pF.  
2.2F  
+V  
S
0.1F  
50OR 75⍀  
CABLE  
V
+
IN  
R
ST  
AD842  
TERMINATION  
RESISTOR FOR  
INPUT SIGNAL  
0.1F  
2.2F  
R
T
R1  
VS  
R
= R = CABLE CHARACTERISTIC  
ST  
T
IMPEDANCE  
R2  
Figure 25. Line Driver Configuration  
REV. E  
8–  
AD842  
2.2F  
0.1F  
OVERDRIVE RECOVERY  
Figure 26 shows the overdrive recovery capability of the AD842.  
Typical recovery time is 80 ns from negative overdrive and  
400 ns from positive overdrive.  
+V  
S
HP3314A  
OUTPUT  
PULSE GENERATOR  
OR EQUIVALENT  
AD842  
+
0.1F  
2.2F  
1k⍀  
1s, ؎1V SQUARE  
WAVE INPUT  
50⍀  
V  
S
Figure 27. Overdrive Recovery Test Circuit  
Figure 26. Overdrive Recovery  
REV. E  
9–  
AD842  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
14-Lead Cerdip Package  
(Q-14)  
14-Lead Plastic Package  
(N-14)  
0.005 (0.13) MIN  
14  
0.098 (2.49) MAX  
0.795 (20.19)  
0.725 (18.42)  
8
14  
8
0.310 (7.87)  
0.280 (7.11)  
0.220 (5.59)  
7
0.240 (6.10)  
7
1
1
0.325 (8.25)  
0.300 (7.62)  
PIN 1  
0.320 (8.13)  
0.290 (7.37)  
PIN 1  
0.785 (19.94) MAX  
0.100 (2.54)  
BSC  
0.060 (1.52)  
0.015 (0.38)  
0.060 (1.52)  
0.015 (0.38)  
0.195 (4.95)  
0.115 (2.93)  
0.210 (5.33)  
0.200 (5.08)  
MAX  
MAX  
0.130  
(3.30)  
MIN  
0.150  
(3.81)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.381)  
0.008 (0.204)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.022 (0.558) 0.070 (1.77)  
0.014 (0.356) 0.045 (1.15)  
SEATING  
PLANE  
0.023 (0.58)  
0.014 (0.36)  
0.100  
(2.54)  
BSC  
0.070 (1.78)  
0.030 (0.76)  
15°  
0°  
20-Terminal Leadless Ceramic Chip Carrier Package  
(E-20A)  
16-Lead SOIC Package  
(R-16)  
0.200 (5.08)  
BSC  
0.4133 (10.50)  
0.3977 (10.00)  
0.075  
(1.91)  
REF  
0.100 (2.54)  
0.064 (1.63)  
0.100 (2.54) BSC  
0.015 (0.38)  
MIN  
16  
1
9
8
0.095 (2.41)  
0.075 (1.90)  
3
4
19  
18  
0.2992 (7.60)  
0.2914 (7.40)  
20  
0.028 (0.71)  
0.022 (0.56)  
0.358  
1
0.358 (9.09)  
0.342 (8.69)  
SQ  
0.011 (0.28)  
0.007 (0.18)  
R TYP  
0.075 (1.91)  
REF  
(9.09)  
MAX  
SQ  
BOTTOM  
VIEW  
0.4193 (10.65)  
0.3937 (10.00)  
0.050 (1.27)  
BSC  
8
14  
13  
9
45° TYP  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
0.050 (1.27)  
BSC  
0.088 (2.24)  
0.054 (1.37)  
0.055 (1.40)  
0.045 (1.14)  
0.150 (3.81)  
BSC  
؋
 45؇  
8؇  
0؇  
0.0192 (0.49)  
0.0138 (0.35)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0500 (1.27)  
0.0157 (0.40)  
0.0125 (0.32)  
0.0091 (0.23)  
12-Lead Metal Can Package  
(TO-8 Style)  
REFERENCE PLANE  
0.375 (9.53)  
0.181 (4.60)  
0.148 (3.76)  
0.200 (5.08)  
BSC  
MIN  
0.050 (1.27) MAX  
0.100 (2.54)  
BSC  
7
3
8
9
1
10  
11  
12  
6
5
4
0.400  
(10.16)  
BSC  
0.200  
(5.08)  
BSC  
2
0.019 (0.48)  
0.016 (0.41)  
0.036 (0.91)  
0.026 (0.66)  
0.040 (1.02) MAX  
0.045 (1.14)  
0.037 (0.94)  
0.026 (0.66)  
0.021 (0.53)  
0.016 (0.41)  
0.000 (0.00)  
BASE & SEATING PLANE  
REV. E  
10–  

相关型号:

AD842*

Wideband. High Output Current. Fast Settling Op Amp
ETC

AD8420

Low Noise, Low Gain Drift, G = 2000
ADI

AD8420ARMZ

Wide Supply Range, Micropower,
ADI

AD8420ARMZ-R7

Wide Supply Range, Micropower,
ADI

AD8420ARMZ-RL

Wide Supply Range, Micropower,
ADI

AD8420BRMZ

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8420BRMZ-R7

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8420BRMZ-RL

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8420_12

Wide Supply Range, Micropower,
ADI

AD8421

3 nV/√Hz, Low Power
ADI

AD8421-KGD-WP

3 nV /&#8730;Hz, Low Power Instrumentation Amplifier
ADI

AD8421ARMZ

3 nV/√Hz, Low Power
ADI