AD9361BBCZ-REEL [ADI]

RF Agile Transceiver; RF收发器敏捷
AD9361BBCZ-REEL
型号: AD9361BBCZ-REEL
厂家: ADI    ADI
描述:

RF Agile Transceiver
RF收发器敏捷

文件: 总36页 (文件大小:596K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RF Agile Transceiver  
Data Sheet  
AD9361  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
RX1B_P,  
RX1B_N  
RF 2 × 2 transceiver with integrated 12-bit DACs and ADCs  
Band: 70 MHz to 6.0 GHz  
Supports TDD and FDD operation  
Tunable channel bandwidth: <200 kHz to 56 MHz  
Dual receivers: 6 differential or 12 single-ended inputs  
Superior receiver sensitivity with a noise figure of 2 dB at  
800 MHz local oscillator (LO)  
AD9361  
RX1A_P,  
RX1A_N  
ADC  
RX1C_P,  
RX1C_N  
RX2B_P,  
RX2B_N  
RX2A_P,  
RX2A_N  
ADC  
RX2C_P,  
RX2C_N  
P0_[D11:D0]/  
TX_[D5:D0]  
RX LO  
RX gain control  
P1_[D11:D0]/  
TX_MON1  
Real-time monitor and control signals for manual gain  
Independent automatic gain control  
Dual transmitters: 4 differential outputs  
Highly linear broadband transmitter  
TX EVM: ≤−40 dB  
TX noise: ≤−157 dBm/Hz noise floor  
TX monitor: ≥66 dB dynamic range with 1 dB accuracy  
Integrated fractional-N synthesizers  
2.4 Hz maximum LO step size  
TX LO  
RX_[D5:D0]  
TX1A_P,  
TX1A_N  
DAC  
TX1B_P,  
TX1B_N  
TX_MON2  
TX2A_P,  
TX2A_N  
DAC  
TX2B_P,  
TX2B_N  
RADIO  
SWITCHING  
GPO  
SPI  
CTRL  
PLLs  
CLK_OUT  
CTRL  
Multichip synchronization  
CMOS/LVDS digital interface  
AUXADC AUXDACx XTALP XTALN  
NOTES  
1. SPI, CTRL, P0_[D11:D0]/TX_[D5:D0], P1_[D11:D0]/RX_[D5:D0],  
AND RADIO SWITCHING CONTAIN MULTIPLE PINS.  
APPLICATIONS  
Figure 1.  
Point to point communication systems  
Femtocell/picocell/microcell base stations  
General-purpose radio systems  
GENERAL DESCRIPTION  
The AD9361 is a high performance, highly integrated radio  
frequency (RF) Agile Transceiver™ designed for use in 3G and 4G  
base station applications. Its programmability and wideband  
capability make it ideal for a broad range of transceiver applications.  
The device combines a RF front end with a flexible mixed-signal  
baseband section and integrated frequency synthesizers,  
simplifying design-in by providing a configurable digital interface  
to a processor. The AD9361 operates in the 70 MHz to 6.0 GHz  
range, covering most licensed and unlicensed bands. Channel  
bandwidths from less than 200 kHz to 56 MHz are supported.  
The transmitters use a direct conversion architecture that  
achieves high modulation accuracy with ultralow noise. This  
transmitter design produces a best in class TX EVM of <−40 dB,  
allowing significant system margin for the external PA selection.  
The on-board transmit (TX) power monitor can be used as a  
power detector, enabling highly accurate TX power measurements.  
The fully integrated phase-locked loops (PLLs) provide low  
power fractional-N frequency synthesis for all receive and  
transmit channels. Channel isolation, demanded by frequency  
division duplex (FDD) systems, is integrated into the design.  
All VCO and loop filter components are integrated.  
The two independent direct conversion receivers have state-of-the-  
art noise figure and linearity. Each receive (RX) subsystem includes  
independent automatic gain control (AGC), dc offset correction,  
quadrature correction, and digital filtering, thereby eliminating  
the need for these functions in the digital baseband. The AD9361  
also has flexible manual gain modes that can be externally  
controlled. Two high dynamic range ADCs per channel digitize  
the received I and Q signals and pass them through configurable  
decimation filters and 128-tap finite impulse response (FIR) filters  
to produce a 12-bit output signal at the appropriate sample rate.  
The core of the AD9361 can be powered directly from a 1.3 V  
regulator. The IC is controlled via a standard 4-wire serial port  
and four real-time I/O control pins. Comprehensive power-down  
modes are included to minimize power consumption during  
normal use. The AD9361 is packaged in a 10 mm × 10 mm,  
144-ball chip scale package ball grid array (CSP_BGA).  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2013 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
AD9361  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 33  
General......................................................................................... 33  
Receiver........................................................................................ 33  
Transmitter.................................................................................. 33  
Clock Input Options .................................................................. 33  
Synthesizers................................................................................. 34  
Digital Data Interface................................................................. 34  
Enable State Machine................................................................. 34  
SPI Interface................................................................................ 35  
Control Pins ................................................................................ 35  
GPO Pins (GPO_3 to GPO_0)................................................. 35  
Auxiliary Converters.................................................................. 35  
Powering the AD9361................................................................ 35  
Packaging and Ordering Information ......................................... 36  
Outline Dimensions................................................................... 36  
Ordering Guide .......................................................................... 36  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Current Consumption—VDD_Interface.................................. 8  
Current Consumption—VDDD1P3_DIG and VDDAx  
(Combination of all 1.3 V Supplies)......................................... 10  
Absolute Maximum Ratings ..................................................... 15  
Reflow Profile.............................................................................. 15  
Thermal Resistance .................................................................... 15  
ESD Caution................................................................................ 15  
Pin Configuration and Function Descriptions........................... 16  
Typical Performance Characteristics ........................................... 20  
800 MHz Frequency Band......................................................... 20  
2.4 GHz Frequency Band .......................................................... 25  
5.5 GHz Frequency Band .......................................................... 29  
REVISION HISTORY  
11/13—Rev. C to Rev. D  
Changes to Ordering Guide .......................................................... 36  
9/13—Revision C: Initial Version  
Rev. D | Page 2 of 36  
 
Data Sheet  
AD9361  
SPECIFICATIONS  
Electrical characteristics at VDD_GPO = 3.3 V, VDD_INTERFACE = 1.8 V, and all other VDDx pins = 1.3 V, TA = 25°C, unless otherwise noted.  
Table 1.  
Test Conditions/  
Comments  
Parameter1  
RECEIVERS, GENERAL  
Center Frequency  
Gain  
Symbol Min  
Typ  
Max  
Unit  
70  
6000  
MHz  
Minimum  
0
dB  
dB  
dB  
dB  
Maximum  
74.5  
73.0  
72.0  
At 800 MHz  
At 2300 MHz (RX1A, RX2A)  
At 2300 MHz (RX1B,  
RX1C, RX2B, RX2C)  
65.5  
1
dB  
dB  
At 5500 MHz (RX1A, RX2A)  
Gain Step  
Received Signal Strength  
Indicator  
RSSI  
Range  
100  
2
dB  
dB  
Accuracy  
RECEIVERS, 800 MHz  
Noise Figure  
NF  
2
dB  
Maximum RX gain  
Maximum RX gain  
Third-Order Input Intermodulation  
Intercept Point  
IIP3  
−18  
dBm  
Second-Order Input  
Intermodulation Intercept Point  
IIP2  
40  
dBm  
dBm  
Maximum RX gain  
Local Oscillator (LO) Leakage  
Quadrature  
−122  
At RX front-end input  
Gain Error  
0.2  
%
Phase Error  
0.2  
Degrees  
dB  
Modulation Accuracy (EVM)  
Input S11  
−42  
−10  
19.2 MHz reference clock  
dB  
RX1 to RX2 Isolation  
RX1A to RX2A, RX1C to RX2C  
RX1B to RX2B  
70  
55  
dB  
dB  
RX2 to RX1 Isolation  
RX2A to RX1A, RX2C to RX1C  
RX2B to RX1B  
70  
55  
dB  
dB  
RECEIVERS, 2.4 GHz  
Noise Figure  
NF  
3
dB  
Maximum RX gain  
Maximum RX gain  
Third-Order Input Intermodulation  
Intercept Point  
IIP3  
−14  
dBm  
Second-Order Input  
Intermodulation Intercept Point  
IIP2  
45  
dBm  
dBm  
Maximum RX gain  
Local Oscillator (LO) Leakage  
−110  
At receiver front-end  
input  
Quadrature  
Gain Error  
0.2  
%
Phase Error  
0.2  
Degrees  
dB  
Modulation Accuracy (EVM)  
Input S11  
−42  
−10  
40 MHz reference clock  
dB  
RX1 to RX2 Isolation  
RX1A to RX2A, RX1C to RX2C  
RX1B to RX2B  
65  
50  
dB  
dB  
RX2 to RX1 Isolation  
RX2A to RX1A, RX2C to RX1C  
RX2B to RX1B  
65  
50  
dB  
dB  
Rev. D | Page 3 of 36  
 
AD9361  
Data Sheet  
Test Conditions/  
Comments  
Parameter1  
Symbol Min  
Typ  
Max  
Unit  
RECEIVERS, 5.5 GHz  
Noise Figure  
NF  
3.8  
dB  
Maximum RX gain  
Maximum RX gain  
Third-Order Input Intermodulation  
Intercept Point  
IIP3  
−17  
dBm  
Second-Order Input  
Intermodulation Intercept Point  
IIP2  
42  
dBm  
dBm  
Maximum RX gain  
Local Oscillator (LO) Leakage  
Quadrature  
−95  
At RX front-end input  
Gain Error  
0.2  
%
Phase Error  
0.2  
Degrees  
dB  
Modulation Accuracy (EVM)  
−37  
40 MHz reference clock  
(doubled internally for  
RF synthesizer)  
Input S11  
−10  
52  
dB  
dB  
dB  
RX1A to RX2A Isolation  
RX2A to RX1A Isolation  
TRANSMITTERS—GENERAL  
Center Frequency  
52  
70  
6000  
MHz  
dB  
Power Control Range  
Power Control Resolution  
TRANSMITTERS, 800 MHz  
Output S22  
90  
0.25  
dB  
−10  
8
dB  
Maximum Output Power  
Modulation Accuracy (EVM)  
dBm  
dB  
1 MHz tone into 50 Ω load  
19.2 MHz reference clock  
−40  
23  
Third-Order Output  
OIP3  
dBm  
Intermodulation Intercept Point  
Carrier Leakage  
−50  
dBc  
dBc  
0 dB attenuation  
40 dB attenuation  
−32  
Noise Floor  
−157  
dBm/Hz 90 MHz offset  
Isolation  
TX1 to TX2  
50  
50  
dB  
dB  
TX2 to TX1  
TRANSMITTERS, 2.4 GHz  
Output S22  
−10  
7.5  
dB  
Maximum Output Power  
Modulation Accuracy (EVM)  
dBm  
dB  
1 MHz tone into 50 Ω load  
−40  
19  
40 MHz reference clock  
Third-Order Output Intermod-  
ulation Intercept Point  
OIP3  
dBm  
Carrier Leakage  
−50  
dBc  
dBc  
0 dB attenuation  
40 dB attenuation  
−32  
Noise Floor  
−156  
dBm/Hz 90 MHz offset  
Isolation  
TX1 to TX2  
50  
50  
dB  
dB  
TX2 to TX1  
TRANSMITTERS, 5.5 GHz  
Output S22  
−10  
6.5  
dB  
Maximum Output Power  
Modulation Accuracy (EVM)  
dBm  
dB  
7 MHz tone into 50 Ω load  
−36  
40 MHz reference clock  
(doubled internally for  
RF synthesizer)  
Third-Order Output  
OIP3  
17  
dBm  
Intermodulation Intercept Point  
Carrier Leakage  
−50  
dBc  
dBc  
0 dB attenuation  
40 dB attenuation  
−30  
Noise Floor  
Isolation  
−151.5  
dBm/Hz 90 MHz offset  
TX1 to TX2  
TX2 to TX1  
50  
50  
dB  
dB  
Rev. D | Page 4 of 36  
Data Sheet  
AD9361  
Test Conditions/  
Comments  
Parameter1  
Symbol Min  
Typ  
Max  
Unit  
TX MONITOR INPUTS (TX_MON1,  
TX_MON2)  
Maximum Input Level  
Dynamic Range  
Accuracy  
4
dBm  
dB  
66  
1
dB  
LO SYNTHESIZER  
LO Frequency Step  
2.4  
Hz  
2.4 GHz, 40 MHz  
reference clock  
Integrated Phase Noise  
800 MHz  
0.13  
° rms  
100 Hz to 100 MHz,  
30.72 MHz reference clock  
(doubled internally for RF  
synthesizer)  
2.4 GHz  
5.5 GHz  
0.37  
0.59  
° rms  
° rms  
100 Hz to 100 MHz,  
40 MHz reference clock  
100 Hz to 100 MHz,  
40 MHz reference clock  
(doubled internally for RF  
synthesizer)  
REFERENCE CLOCK (REF_CLK)  
REF_CLK is either the input  
to the XTALP/XTALN pins  
or a line directly to the  
XTALN pin  
Input  
Frequency Range  
19  
10  
50  
80  
MHz  
MHz  
V p-p  
Crystal input  
External oscillator  
Signal Level  
1.3  
12  
AC-coupled external  
oscillator  
AUXILIARY CONVERTERS  
ADC  
Resolution  
Bits  
Input Voltage  
Minimum  
0.05  
V
V
Maximum  
VDDA1P3_BB − 0.05  
DAC  
Resolution  
10  
Bits  
Output Voltage  
Minimum  
0.5  
V
Maximum  
VDD_GPO − 0.3  
10  
V
Output Current  
DIGITAL SPECIFICATIONS (CMOS)  
Logic Inputs  
Input Voltage  
High  
mA  
VDD_INTERFACE × 0.8  
VDD_INTERFACE  
V
V
Low  
0
VDD_INTERFACE × 0.2  
Input Current  
High  
−10  
−10  
+10  
+10  
μA  
μA  
Low  
Logic Outputs  
Output Voltage  
High  
VDD_INTERFACE × 0.8  
V
V
Low  
VDD_INTERFACE × 0.2  
DIGITAL SPECIFICATIONS (LVDS)  
Logic Inputs  
Input Voltage Range  
825  
1575  
+100  
mV  
mV  
Each differential input in  
the pair  
Input Differential Voltage  
Threshold  
−100  
Receiver Differential Input  
Impedance  
100  
Rev. D | Page 5 of 36  
AD9361  
Data Sheet  
Test Conditions/  
Comments  
Parameter1  
Symbol Min  
Typ  
Max  
Unit  
Logic Outputs  
Output Voltage  
High  
1375  
mV  
mV  
mV  
Low  
1025  
150  
Output Differential Voltage  
Programmable in 75 mV  
steps  
Output Offset Voltage  
GENERAL-PURPOSE OUTPUTS  
Output Voltage  
High  
1200  
10  
mV  
VDD_GPO × 0.8  
V
Low  
VDD_GPO × 0.2  
V
Output Current  
SPI TIMING  
mA  
VDD_INTERFACE = 1.8 V  
SPI_CLK  
Period  
tCP  
tMP  
tSC  
20  
ns  
ns  
ns  
Pulse Width  
9
1
SPI_ENB Setup to First SPI_CLK  
Rising Edge  
Last SPI_CLK Falling Edge to  
SPI_ENB Hold  
tHC  
0
ns  
SPI_DI  
Data Input Setup to SPI_CLK  
Data Input Hold to SPI_CLK  
tS  
2
1
ns  
ns  
tH  
SPI_CLK Rising Edge to Output  
Data Delay  
4-Wire Mode  
tCO  
3
8
ns  
ns  
ns  
3-Wire Mode  
tCO  
3
8
Bus Turnaround Time, Read  
tHZM  
tH  
tCO (max)  
After BBP drives the last  
address bit  
Bus Turnaround Time, Read  
tHZS  
0
tCO (max)  
ns  
After AD9361 drives the  
last data bit  
DIGITAL DATA TIMING (CMOS),  
VDD_INTERFACE = 1.8 V  
DATA_CLK Clock Period  
tCP  
16.276  
ns  
ns  
61.44 MHz  
DATA_CLK and FB_CLK Pulse  
Width  
tMP  
45% of tCP  
55% of tCP  
TX Data  
TX_FRAME, P0_D, and  
P1_D  
Setup to FB_CLK  
Hold to FB_CLK  
tSTX  
1
0
0
ns  
ns  
ns  
tHTX  
tDDRX  
DATA_CLK to Data Bus Output  
Delay  
1.5  
1.0  
DATA_CLK to RX_FRAME Delay  
tDDDV  
0
ns  
Pulse Width  
ENABLE  
tENPW  
tCP  
ns  
ns  
TXNRX  
tTXNRXPW tCP  
FDD independent ENSM  
mode  
TXNRX Setup to ENABLE  
Bus Turnaround Time  
Before RX  
tTXNRXSU  
0
ns  
TDD ENSM mode  
tRPRE  
tRPST  
2 × tCP  
2 × tCP  
ns  
ns  
pF  
pF  
TDD mode  
TDD mode  
After RX  
Capacitive Load  
Capacitive Input  
3
3
Rev. D | Page 6 of 36  
Data Sheet  
AD9361  
Test Conditions/  
Comments  
Parameter1  
Symbol Min  
Typ  
Max  
Unit  
DIGITAL DATA TIMING (CMOS),  
VDD_INTERFACE = 2.5 V  
DATA_CLK Clock Period  
tCP  
16.276  
ns  
ns  
61.44 MHz  
DATA_CLK and FB_CLK Pulse  
Width  
tMP  
45% of tCP  
55% of tCP  
TX Data  
TX_FRAME, P0_D, and  
P1_D  
Setup to FB_CLK  
Hold to FB_CLK  
tSTX  
1
0
0
ns  
ns  
ns  
tHTX  
tDDRX  
DATA_CLK to Data Bus Output  
Delay  
1.2  
1.0  
DATA_CLK to RX_FRAME Delay  
tDDDV  
0
ns  
Pulse Width  
ENABLE  
tENPW  
tCP  
ns  
ns  
TXNRX  
tTXNRXPW tCP  
FDD independent ENSM  
mode  
TXNRX Setup to ENABLE  
Bus Turnaround Time  
Before RX  
tTXNRXSU  
0
ns  
TDD ENSM mode  
tRPRE  
tRPST  
2 × tCP  
2 × tCP  
ns  
ns  
pF  
pF  
TDD mode  
TDD mode  
After RX  
Capacitive Load  
3
Capacitive Input  
3
DIGITAL DATA TIMING (LVDS)  
DATA_CLK Clock Period  
tCP  
4.069  
ns  
ns  
245.76 MHz  
DATA_CLK and FB_CLK Pulse  
Width  
tMP  
45% of tCP  
55% of tCP  
TX Data  
TX_FRAME and TX_D  
Setup to FB_CLK  
Hold to FB_CLK  
tSTX  
1
ns  
ns  
ns  
tHTX  
tDDRX  
0
DATA_CLK to Data Bus Output  
Delay  
0.25  
1.25  
1.25  
DATA_CLK to RX_FRAME Delay  
tDDDV  
0.25  
ns  
Pulse Width  
ENABLE  
tENPW  
tCP  
ns  
ns  
TXNRX  
tTXNRXPW tCP  
FDD independent ENSM  
mode  
TXNRX Setup to ENABLE  
Bus Turnaround Time  
Before RX  
tTXNRXSU  
0
ns  
TDD ENSM mode  
tRPRE  
tRPST  
2 × tCP  
2 × tCP  
ns  
ns  
pF  
pF  
After RX  
Capacitive Load  
3
3
Capacitive Input  
SUPPLY CHARACTERISTICS  
1.3 V Main Supply Voltage  
1.267  
1.3  
1.33  
V
VDD_INTERFACE Supply  
Nominal Settings  
CMOS  
1.2  
1.8  
−5  
2.5  
2.5  
+5  
V
LVDS  
V
VDD_INTERFACE Tolerance  
%
Tolerance is applicable  
to any voltage setting  
VDD_GPO Supply Nominal  
Setting  
1.3  
−5  
3.3  
+5  
V
When unused, must be  
set to 1.3 V  
VDD_GPO Tolerance  
%
Tolerance is applicable  
to any voltage setting  
Current Consumption  
VDDx, Sleep Mode  
VDD_GPO  
180  
50  
μA  
μA  
Sum of all input currents  
No load  
1 When referencing a single function of a multifunction pin in the parameters, only the portion of the pin name that is relevant to the specification is listed. For full pin  
names of multifunction pins, refer to the Pin Configuration and Function Descriptions section.  
Rev. D | Page 7 of 36  
 
 
AD9361  
Data Sheet  
CURRENT CONSUMPTION—VDD_INTERFACE  
Table 2. VDD_INTERFACE = 1.2 V  
Parameter  
SLEEP MODE  
1RX, 1TX, DDR  
LTE10  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
45  
µA  
Power applied, device disabled  
Single Port  
Dual Port  
LTE20  
2.9  
2.7  
mA  
mA  
30.72 MHz data clock, CMOS  
15.36 MHz data clock, CMOS  
Dual Port  
2RX, 2TX, DDR  
LTE3  
Dual Port  
LTE10  
5.2  
1.3  
mA  
mA  
30.72 MHz data clock, CMOS  
7.68 MHz data clock, CMOS  
Single Port  
Dual Port  
LTE20  
4.6  
5.0  
mA  
mA  
61.44 MHz data clock, CMOS  
30.72 MHz data clock, CMOS  
Dual Port  
GSM  
8.2  
0.2  
3.3  
mA  
mA  
mA  
61.44 MHz data clock, CMOS  
1.08 MHz data clock, CMOS  
20 MHz data clock, CMOS  
Dual Port  
WiMAX 8.75  
Dual Port  
WiMAX 10  
Single Port  
TDD RX  
0.5  
3.6  
3.8  
mA  
mA  
mA  
22.4 MHz data clock, CMOS  
22.4 MHz data clock, CMOS  
44.8 MHz data clock, CMOS  
TDD TX  
FDD  
WiMAX 20  
Dual Port  
FDD  
6.7  
mA  
44.8 MHz data clock, CMOS  
Table 3. VDD_INTERFACE = 1.8 V  
Parameter  
SLEEP MODE  
1RX, 1TX, DDR  
LTE10  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
84  
μA  
Power applied, device disabled  
Single Port  
Dual Port  
4.5  
4.1  
mA  
mA  
30.72 MHz data clock, CMOS  
15.36 MHz data clock, CMOS  
LTE20  
Dual Port  
8.0  
2.0  
mA  
mA  
30.72 MHz data clock, CMOS  
7.68 MHz data clock, CMOS  
2RX, 2TX, DDR  
LTE3  
Dual Port  
LTE10  
Single Port  
Dual Port  
8.0  
7.5  
mA  
mA  
61.44 MHz data clock, CMOS  
30.72 MHz data clock, CMOS  
LTE20  
Dual Port  
GSM  
Dual Port  
WiMAX 8.75  
Dual Port  
14.0  
0.3  
mA  
mA  
mA  
61.44 MHz data clock, CMOS  
1.08 MHz data clock, CMOS  
20 MHz data clock, CMOS  
5.0  
Rev. D | Page 8 of 36  
 
Data Sheet  
AD9361  
Parameter  
WiMAX 10  
Single Port  
TDD RX  
TDD TX  
FDD  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
0.7  
5.6  
6.0  
mA  
mA  
mA  
22.4 MHz data clock, CMOS  
22.4 MHz data clock, CMOS  
44.8 MHz data clock, CMOS  
WiMAX 20  
Dual Port  
FDD  
10.7  
mA  
44.8 MHz data clock, CMOS  
P-P56  
75 mV Differential Output  
300 mV Differential Output  
450 mV Differential Output  
14.0  
35.0  
47.0  
mA  
mA  
mA  
240 MHz data clock, LVDS  
240 MHz data clock, LVDS  
240 MHz data clock, LVDS  
Table 4. VDD_INTERFACE = 2.5 V  
Parameter  
SLEEP MODE  
1RX, 1TX, DDR  
LTE10  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
150  
μA  
Power applied, device disabled  
Single Port  
Dual Port  
6.5  
6.0  
mA  
mA  
30.72 MHz data clock, CMOS  
15.36 MHz data clock, CMOS  
LTE20  
Dual Port  
11.5  
3.0  
mA  
mA  
30.72 MHz data clock, CMOS  
7.68 MHz data clock, CMOS  
2RX, 2TX, DDR  
LTE3  
Dual Port  
LTE10  
Single Port  
Dual Port  
11.5  
10.0  
mA  
mA  
61.44 MHz data clock, CMOS  
30.72 MHz data clock, CMOS  
LTE20  
Dual Port  
GSM  
Dual Port  
WiMAX 8.75  
Dual Port  
20.0  
0.5  
mA  
mA  
mA  
61.44 MHz data clock, CMOS  
1.08 MHz data clock, CMOS  
20 MHz data clock, CMOS  
7.3  
WiMAX 10  
Single Port  
TDD RX  
1.3  
8.0  
8.7  
mA  
mA  
mA  
22.4 MHz data clock, CMOS  
22.4 MHz data clock, CMOS  
44.8 MHz data clock, CMOS  
TDD TX  
FDD  
WiMAX 20  
Dual Port  
FDD  
15.3  
mA  
44.8 MHz data clock, CMOS  
P-P56  
75 mV Differential Output  
300 mV Differential Output  
450 mV Differential Output  
26.0  
45.0  
58.0  
mA  
mA  
mA  
240 MHz data clock, LVDS  
240 MHz data clock, LVDS  
240 MHz data clock, LVDS  
Rev. D | Page 9 of 36  
AD9361  
Data Sheet  
CURRENT CONSUMPTION—VDDD1P3_DIG AND VDDAx (COMBINATION OF ALL 1.3 V SUPPLIES)  
Table 5. 800 MHz, TDD Mode  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
1RX  
5 MHz Bandwidth  
10 MHz Bandwidth  
20 MHz Bandwidth  
2RX  
180  
210  
260  
mA  
mA  
mA  
Continuous RX  
Continuous RX  
Continuous RX  
5 MHz Bandwidth  
10 MHz Bandwidth  
20 MHz Bandwidth  
1TX  
265  
315  
405  
mA  
mA  
mA  
Continuous RX  
Continuous RX  
Continuous RX  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
340  
190  
mA  
mA  
Continuous TX  
Continuous TX  
10 MHz Bandwidth  
7 dBm  
−27 dBm  
360  
220  
mA  
mA  
Continuous TX  
Continuous TX  
20 MHz Bandwidth  
7 dBm  
−27 dBm  
400  
250  
mA  
mA  
Continuous TX  
Continuous TX  
2TX  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
550  
260  
mA  
mA  
Continuous TX  
Continuous TX  
10 MHz Bandwidth  
7 dBm  
−27 dBm  
600  
310  
mA  
mA  
Continuous TX  
Continuous TX  
20 MHz Bandwidth  
7 dBm  
−27 dBm  
660  
370  
mA  
mA  
Continuous TX  
Continuous TX  
Rev. D | Page 10 of 36  
 
Data Sheet  
AD9361  
Table 6. TDD Mode, 2.4 GHz  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
1RX  
5 MHz Bandwidth  
10 MHz Bandwidth  
20 MHz Bandwidth  
2RX  
175  
200  
240  
mA  
mA  
mA  
Continuous RX  
Continuous RX  
Continuous RX  
5 MHz Bandwidth  
10 MHz Bandwidth  
20 MHz Bandwidth  
1TX  
260  
305  
390  
mA  
mA  
mA  
Continuous RX  
Continuous RX  
Continuous RX  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
350  
160  
mA  
mA  
Continuous TX  
Continuous TX  
10 MHz Bandwidth  
7 dBm  
−27 dBm  
380  
220  
mA  
mA  
Continuous TX  
Continuous TX  
20 MHz Bandwidth  
7 dBm  
−27 dBm  
410  
260  
mA  
mA  
Continuous TX  
Continuous TX  
2TX  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
580  
280  
mA  
mA  
Continuous TX  
Continuous TX  
10 MHz Bandwidth  
7 dBm  
−27 dBm  
635  
330  
mA  
mA  
Continuous TX  
Continuous TX  
20 MHz Bandwidth  
7 dBm  
−27 dBm  
690  
390  
mA  
mA  
Continuous TX  
Continuous TX  
Table 7. TDD Mode, 5.5 GHz  
Parameter  
1RX  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
5 MHz Bandwidth  
40 MHz Bandwidth  
2RX  
175  
275  
mA  
mA  
Continuous RX  
Continuous RX  
5 MHz Bandwidth  
40 MHz Bandwidth  
1TX  
270  
445  
mA  
mA  
Continuous RX  
Continuous RX  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
400  
240  
mA  
mA  
Continuous TX  
Continuous TX  
40 MHz Bandwidth  
7 dBm  
−27 dBm  
490  
385  
mA  
mA  
Continuous TX  
Continuous TX  
2TX  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
650  
335  
mA  
mA  
Continuous TX  
Continuous TX  
40 MHz Bandwidth  
7 dBm  
−27 dBm  
820  
500  
mA  
mA  
Continuous TX  
Continuous TX  
Rev. D | Page 11 of 36  
AD9361  
Data Sheet  
Table 8. FDD Mode, 800 MHz  
Parameter  
1RX, 1TX  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
490  
345  
mA  
mA  
10 MHz Bandwidth  
7 dBm  
−27 dBm  
540  
395  
mA  
mA  
20 MHz Bandwidth  
7 dBm  
−27 dBm  
615  
470  
mA  
mA  
2RX, 1TX  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
555  
410  
mA  
mA  
10 MHz Bandwidth  
7 dBm  
−27 dBm  
625  
480  
mA  
mA  
20 MHz Bandwidth  
7 dBm  
−27 dBm  
740  
600  
mA  
mA  
1RX, 2TX  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
685  
395  
mA  
mA  
10 MHz Bandwidth  
7 dBm  
−27 dBm  
755  
465  
mA  
mA  
20 MHz Bandwidth  
7 dBm  
−27 dBm  
850  
570  
mA  
mA  
2RX, 2TX  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
790  
495  
mA  
mA  
10 MHz Bandwidth  
7 dBm  
−27 dBm  
885  
590  
mA  
mA  
20 MHz Bandwidth  
7 dBm  
−27 dBm  
1020  
730  
mA  
mA  
Rev. D | Page 12 of 36  
Data Sheet  
AD9361  
Table 9. FDD Mode, 2.4 GHz  
Parameter  
1RX, 1TX  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
500  
350  
mA  
mA  
10 MHz Bandwidth  
7 dBm  
−27 dBm  
540  
390  
mA  
mA  
20 MHz Bandwidth  
7 dBm  
−27 dBm  
620  
475  
mA  
mA  
2RX, 1TX  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
590  
435  
mA  
mA  
10 MHz Bandwidth  
7 dBm  
−27 dBm  
660  
510  
mA  
20 MHz Bandwidth  
7 dBm  
−27 dBm  
770  
620  
mA  
mA  
mA  
1RX, 2TX  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
730  
425  
mA  
mA  
10 MHz Bandwidth  
7 dBm  
−27dBm  
800  
500  
mA  
mA  
20 MHz Bandwidth  
7 dBm  
−27 dBm  
900  
600  
mA  
mA  
mA  
2RX, 2TX  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
820  
515  
mA  
10 MHz Bandwidth  
7 dBm  
−27 dBm  
900  
595  
mA  
mA  
20 MHz Bandwidth  
7 dBm  
−27 dBm  
1050  
740  
mA  
mA  
Rev. D | Page 13 of 36  
AD9361  
Data Sheet  
Table 10. FDD Mode, 5.5 GHz  
Parameter  
1RX, 1TX  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
550  
385  
mA  
mA  
2RX, 1TX  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
645  
480  
mA  
mA  
1RX, 2TX  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
805  
480  
mA  
mA  
2RX, 2TX  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
895  
575  
mA  
mA  
Rev. D | Page 14 of 36  
Data Sheet  
AD9361  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 11.  
Parameter  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Rating  
VDDx to VSSx  
VDD_INTERFACE to VSSx  
VDD_GPO to VSSx  
Logic Inputs and Outputs to  
VSSx  
Input Current to Any Pin  
Except Supplies  
−0.3 V to +1.4 V  
−0.3 V to +3.0 V  
−0.3 V to +3.9 V  
−0.3 V to VDD_INTERFACE + 0.3 V  
Table 12. Thermal Resistance  
Airflow  
Package  
Type  
Velocity  
(m/sec)  
1, 2  
1, 3  
1, 4  
1, 2  
θJA  
θJC  
9.6  
θJB  
20.2  
ΨJT  
Unit  
10 mA  
144-Ball  
CSP_BGA  
0
32.3  
29.6  
27.8  
0.27  
0.43  
0.57  
°C/W  
°C/W  
°C/W  
1.0  
2.5  
RF Inputs (Peak Power)  
2.5 dBm  
TX Monitor Input Power (Peak 9 dBm  
Power)  
1 Per JEDEC JESD51-7, plus JEDEC JESD51-5 2S2P test board.  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
3 Per MIL-STD 883, Method 1012.1.  
Package Power Dissipation  
(TJMAX − TA)/θJA  
4 Per JEDEC JESD51-8 (still air).  
Maximum Junction  
110°C  
Temperature (TJMAX  
Operating Temperature Range −40°C to +85°C  
Storage Temperature Range −65°C to +150°C  
)
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
REFLOW PROFILE  
The AD9361 reflow profile is in accordance with the JEDEC  
JESD20 criteria for Pb-free devices. The maximum reflow  
temperature is 260°C.  
Rev. D | Page 15 of 36  
 
 
 
 
 
 
 
AD9361  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
VDDA1P1_  
TX_VCO  
TX_EXT_  
LO_IN  
A
B
C
D
E
F
RX2A_N  
VSSA  
RX2A_P  
VSSA  
VSSA  
NC  
VSSA  
GPO_3  
TX_MON2  
GPO_2  
VSSA  
GPO_1  
TX2A_N  
GPO_0  
VSSA  
TX2A_P  
VDD_GPO  
VSSA  
TX2B_N  
TX2B_P  
VDDA1P3_  
TX_VCO_  
LDO  
VDDA1P3_  
TX_LO  
TX_VCO_  
LDO_OUT  
AUXDAC1  
AUXDAC2  
VSSA  
TEST/  
ENABLE  
RX2C_P  
RX2C_N  
CTRL_IN0  
CTRL_IN1  
CTRL_IN2  
VSSA  
VSSA  
VSSA  
VSSA  
VSSD  
VDDA1P3_ VDDA1P3_  
RX_RF  
P0_D9/  
TX_D4_P  
P0_D7/  
TX_D3_P  
P0_D5/  
TX_D2_P  
P0_D3/  
TX_D1_P  
P0_D1/  
TX_D0_P  
CTRL_OUT0 CTRL_IN3  
RX_TX  
VDDA1P3_  
TX_LO_  
BUFFER  
VDDA1P3_  
RX_LO  
P0_D11/  
TX_D5_P  
P0_D8/  
TX_D4_N  
P0_D6/  
TX_D3_N  
P0_D4/  
TX_D2_N  
P0_D2/  
TX_D1_N  
P0_D0/  
TX_D0_N  
RX2B_P  
RX2B_N  
CTRL_OUT1 CTRL_OUT2 CTRL_OUT3  
CTRL_OUT6 CTRL_OUT5 CTRL_OUT4  
VDDA1P3_  
RX_VCO_  
LDO  
P0_D10/  
TX_D5_N  
VDDD1P3_  
DIG  
VSSA  
VSSD  
VSSD  
FB_CLK_P  
FB_CLK_N  
VSSD  
VSSD  
RX_EXT_  
LO_IN  
RX_VCO_ VDDA1P1_  
LDO_OUT  
RX_  
FRAME_N  
RX_  
FRAME_P  
TX_  
FRAME_P  
DATA_  
CLK_P  
G
H
J
CTRL_OUT7 EN_AGC  
ENABLE  
VSSA  
VSSD  
RX_VCO  
P1_D11/  
RX_D5_P  
TX_  
FRAME_N  
DATA_  
CLK_N  
VDD_  
INTERFACE  
RX1B_P  
VSSA  
VSSA  
TXNRX  
SPI_DI  
SYNC_IN  
VSSD  
VDDA1P3_  
RX_SYNTH  
P1_D10/  
RX_D5_N  
P1_D9/  
RX_D4_P  
P1_D7/  
RX_D3_P  
P1_D5/  
RX_D2_P  
P1_D3/  
RX_D1_P  
P1_D1/  
RX_D0_P  
RX1B_N  
RX1C_P  
RX1C_N  
RX1A_P  
VSSA  
VSSA  
SPI_CLK  
RESETB  
AUXADC  
TX_MON1  
CLK_OUT  
SPI_ENB  
SPI_DO  
VSSA  
VDDA1P3_ VDDA1P3_  
TX_SYNTH  
P1_D8/  
RX_D4_N  
P1_D6/  
RX_D3_N  
P1_D4/  
RX_D2_N  
P1_D2/  
RX_D1_N  
P1_D0/  
RX_D0_N  
K
L
VSSD  
VSSA  
BB  
VSSA  
VSSA  
RBIAS  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
RX1A_N  
NC  
VSSA  
TX1A_P  
TX1A_N  
TX1B_P  
TX1B_N  
XTALP  
XTALN  
M
ANALOG I/O  
DIGITAL I/O  
NO CONNECT  
DC POWER  
GROUND  
Figure 2. Pin Configuration, Top View  
Table 13. Pin Function Descriptions  
Pin No.  
Type1 Mnemonic  
Description  
A1, A2  
I
RX2A_N, RX2A_P  
Receive Channel 2 Differential Input A. Alternatively, each pin can be used as a  
single-ended input or combined to make a differential pair. Tie unused pins to  
ground.  
A3, M3  
NC  
I
NC  
VSSA  
No Connect. Do not connect to these pins.  
Analog Ground. Tie these pins directly to the VSSD digital ground on the printed  
circuit board (one ground plane).  
A4, A6, B1, B2,  
B12, C2, C7 to  
C12, F3, H2,  
H3, H6, J2, K2,  
L2, L3, L7 to  
L12, M4, M6  
A5  
A7, A8  
A9, A10  
I
O
O
TX_MON2  
TX2A_N, TX2A_P  
TX2B_N, TX2B_P  
Transmit Channel 2 Power Monitor Input. If this pin is unused, tie it to ground.  
Transmit Channel 2 Differential Output A. Tie unused pins to 1.3 V.  
Transmit Channel 2 Differential Output B. Tie unused pins to 1.3 V.  
A11  
A12  
B3  
B4 to B7  
B8  
I
I
O
O
I
VDDA1P1_TX_VCO  
TX_EXT_LO_IN  
AUXDAC1  
GPO_3 to GPO_0  
VDD_GPO  
Transmit VCO Supply Input. Connect to B11.  
External Transmit LO Input. If this pin is unused, tie it to ground.  
Auxiliary DAC 1 Output.  
3.3 V Capable General-Purpose Outputs.  
2.5 V to 3.3 V Supply for the AUXDAC and General-Purpose Output Pins. When  
the VDD_GPO supply is not used, this supply must be set to 1.3 V.  
B9  
I
VDDA1P3_TX_LO  
Transmit LO 1.3 V Supply Input.  
B10  
B11  
I
O
VDDA1P3_TX_VCO_LDO  
TX_VCO_LDO_OUT  
Transmit VCO LDO 1.3 V Supply Input. Connect to B9.  
Transmit VCO LDO Output. Connect to A11 and a 1 µF bypass capacitor in series  
with a 1 Ω resistor to ground.  
C1, D1  
I
RX2C_P, RX2C_N  
Receive Channel 2 Differential Input C. Each pin can be used as a single-ended  
input or combined to make a differential pair. These inputs experience  
degraded performance above 3 GHz. Tie unused pins to ground.  
Rev. D | Page 16 of 36  
 
Data Sheet  
AD9361  
Pin No.  
Type1 Mnemonic  
Description  
C3  
O
AUXDAC2  
Auxiliary DAC 2 Output.  
C4  
I
I
I
I
TEST/ENABLE  
Test Input. Ground this pin for normal operation.  
Control Inputs. Used for manual RX gain and TX attenuation control.  
Receiver 1.3 V Supply Input. Connect to D3.  
1.3 V Supply Input.  
C5, C6, D5, D6  
D2  
D3  
CTRL_IN0 to CTRL_IN3  
VDDA1P3_RX_RF  
VDDA1P3_RX_TX  
D4, E4 to E6,  
F4 to F6, G4  
O
CTRL_OUT0, CTRL_OUT1 to  
CTRL_OUT3, CTRL_OUT6 to  
CTRL_OUT4, CTRL_OUT7  
Control Outputs. These pins are multipurpose outputs that have programmable  
functionality.  
D7  
I/O  
I/O  
I/O  
I/O  
I/O  
P0_D9/TX_D4_P  
P0_D7/TX_D3_P  
P0_D5/TX_D2_P  
P0_D3/TX_D1_P  
P0_D1/TX_D0_P  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D9, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 0. Alternatively, this pin (TX_D4_P) can function as part of the LVDS 6-bit TX  
differential input bus with internal LVDS termination.  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D7, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 0. Alternatively, this pin (TX_D3_P) can function as part of the LVDS 6-bit TX  
differential input bus with internal LVDS termination.  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D5, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 0. Alternatively, this pin (TX_D2_P) can function as part of the LVDS 6-bit TX  
differential input bus with internal LVDS termination.  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D3, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 0. Alternatively, this pin (TX_D1_P) can function as part of the LVDS 6-bit TX  
differential input bus with internal LVDS termination.  
D8  
D9  
D10  
D11  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D1, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 0. Alternatively, this pin (TX_D0_P) can function as part of the LVDS 6-bit TX  
differential input bus with internal LVDS termination.  
D12, F7, F9,  
F11, G12, H7,  
H10, K12  
I
I
VSSD  
Digital Ground. Tie these pins directly to the VSSA analog ground on the printed  
circuit board (one ground plane).  
E1, F1  
RX2B_P, RX2B_N  
Receive Channel 2 Differential Input B. Each pin can be used as a single-ended  
input or combined to make a differential pair. These inputs experience  
degraded performance above 3 GHz. Tie unused pins to ground.  
E2  
E3  
E7  
I
I
VDDA1P3_RX_LO  
VDDA1P3_TX_LO_BUFFER  
P0_D11/TX_D5_P  
Receive LO 1.3 V Supply Input.  
1.3 V Supply Input.  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D11, it functions as part of the 12-bit bidirectional parallel CMOS level  
Data Port 0. Alternatively, this pin (TX_D5_P) can function as part of the LVDS  
6-bit TX differential input bus with internal LVDS termination.  
I/O  
E8  
I/O  
I/O  
I/O  
I/O  
I/O  
P0_D8/TX_D4_N  
P0_D6/TX_D3_N  
P0_D4/TX_D2_N  
P0_D2/TX_D1_N  
P0_D0/TX_D0_N  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D8, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 0. Alternatively, this pin (TX_D4_N) can function as part of the LVDS 6-bit TX  
differential input bus with internal LVDS termination.  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D6, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 0. Alternatively, this pin (TX_D3_N) can function as part of the LVDS 6-bit TX  
differential input bus with internal LVDS termination.  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D4, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 0. Alternatively, this pin (TX_D2_N) can function as part of the LVDS 6-bit TX  
differential input bus with internal LVDS termination.  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D2, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 0. Alternatively, this pin (TX_D1_N) can function as part of the LVDS 6-bit TX  
differential input bus with internal LVDS termination.  
E9  
E10  
E11  
E12  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D0, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 0. Alternatively, this pin (TX_D0_N) can function as part of the LVDS 6-bit TX  
differential input bus with internal LVDS termination.  
Rev. D | Page 17 of 36  
AD9361  
Data Sheet  
Pin No.  
F2  
Type1 Mnemonic  
Description  
I
VDDA1P3_RX_VCO_LDO  
Receive VCO LDO 1.3 V Supply Input. Connect to E2.  
F8  
I/O  
P0_D10/TX_D5_N  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D10, it functions as part of the 12-bit bidirectional parallel CMOS level  
Data Port 0. Alternatively, this pin (TX_D5_N) can function as part of the LVDS  
6-bit TX differential input bus with internal LVDS termination.  
F10, G10  
I
FB_CLK_P, FB_CLK_N  
Feedback Clock. These pins receive the FB_CLK signal that clocks in TX data.  
In CMOS mode, use FB_CLK_P as the input and tie FB_CLK_N to ground.  
F12  
G1  
G2  
I
I
O
VDDD1P3_DIG  
RX_EXT_LO_IN  
RX_VCO_LDO_OUT  
1.3 V Digital Supply Input.  
External Receive LO Input. If this pin is unused, tie it to ground.  
Receive VCO LDO Output. Connect this pin directly to G3 and a 1 µF bypass  
capacitor in series with a 1 Ω resistor to ground.  
G3  
G5  
I
I
VDDA1P1_RX_VCO  
EN_AGC  
Receive VCO Supply Input. Connect this pin directly to G2 only.  
Manual Control Input for Automatic Gain Control (AGC).  
G6  
I
ENABLE  
Control Input. This pin moves the device through various operational states.  
G7, G8  
O
RX_FRAME_N, RX_FRAME_P  
Receive Digital Data Framing Output Signal. These pins transmit the RX_FRAME  
signal that indicates whether the RX output data is valid. In CMOS mode, use  
RX_FRAME_P as the output and leave RX_FRAME_N unconnected.  
G9, H9  
G11, H11  
H1, J1  
I
TX_FRAME_P, TX_FRAME_N  
DATA_CLK_P, DATA_CLK_N  
RX1B_P, RX1B_N  
Transmit Digital Data Framing Input Signal. These pins receive the TX_FRAME  
signal that indicates when TX data is valid. In CMOS mode, use TX_FRAME_P as  
the input and tie TX_FRAME_N to ground.  
Receive Data Clock Output. These pins transmit the DATA_CLK signal that is used  
by the BBP to clock RX data. In CMOS mode, use DATA_CLK_P as the output and  
leave DATA_CLK_N unconnected.  
Receive Channel 1 Differential Input B. Alternatively, each pin can be used as a  
single-ended input. These inputs experience degraded performance above  
3 GHz. Tie unused pins to ground.  
O
I
H4  
H5  
H8  
I
TXNRX  
Enable State Machine Control Signal. This pin controls the data port bus direction.  
Logic low selects the RX direction, and logic high selects the TX direction.  
Input to Synchronize Digital Clocks Between Multiple AD9361 Devices. If this pin  
is unused, tied it to ground.  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D11, it functions as part of the 12-bit bidirectional parallel CMOS level  
Data Port 1. Alternatively, this pin (RX_D5_P) can function as part of the LVDS  
6-bit RX differential output bus with internal LVDS termination.  
I
SYNC_IN  
I/O  
P1_D11/RX_D5_P  
H12  
J3  
J4  
I
I
I
I
VDD_INTERFACE  
VDDA1P3_RX_SYNTH  
SPI_DI  
1.2 V to 2.5 V Supply for Digital I/O Pins (1.8 V to 2.5 V in LVDS Mode).  
1.3 V Supply Input.  
SPI Serial Data Input.  
SPI Clock Input.  
J5  
SPI_CLK  
J6  
O
CLK_OUT  
Output Clock. This pin can be configured to output either a buffered version of the  
external input clock, the DCXO, or a divided-down version of the internal ADC_CLK.  
J7  
I/O  
I/O  
I/O  
I/O  
P1_D10/RX_D5_N  
P1_D9/RX_D4_P  
P1_D7/RX_D3_P  
P1_D5/RX_D2_P  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D10, it functions as part of the 12-bit bidirectional parallel CMOS level  
Data Port 1. Alternatively, this pin (RX_D5_N) can function as part of the LVDS  
6-bit RX differential output bus with internal LVDS termination.  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D9, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 1. Alternatively, this pin (RX_D4_P) can function as part of the LVDS 6-bit RX  
differential output bus with internal LVDS termination.  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D7, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 1. Alternatively, this pin (RX_D3_P) can function as part of the LVDS 6-bit RX  
differential output bus with internal LVDS termination.  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D5, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 1. Alternatively, this pin (RX_D2_P) can function as part of the LVDS 6-bit RX  
differential output bus with internal LVDS termination.  
J8  
J9  
J10  
Rev. D | Page 18 of 36  
Data Sheet  
AD9361  
Pin No.  
Type1 Mnemonic  
I/O P1_D3/RX_D1_P  
Description  
J11  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D3, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 1. Alternatively, this pin (RX_D1_P) can function as part of the LVDS 6-bit RX  
differential output bus with internal LVDS termination.  
J12  
I/O  
I
P1_D1/RX_D0_P  
RX1C_P, RX1C_N  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D1, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 1. Alternatively, this pin (RX_D0_P) can function as part of the LVDS 6-bit RX  
differential output bus with internal LVDS termination.  
Receive Channel 1 Differential Input C. Alternatively, each pin can be used as a  
single-ended input. These inputs experience degraded performance above  
3 GHz. Tie unused pins to ground.  
K1, L1  
K3  
K4  
K5  
K6  
K7  
I
I
I
I
VDDA1P3_TX_SYNTH  
VDDA1P3_BB  
RESETB  
SPI_ENB  
P1_D8/RX_D4_N  
1.3 V Supply Input.  
1.3 V Supply Input.  
Asynchronous Reset. Logic low resets the device.  
SPI Enable Input. Set this pin to logic low to enable the SPI bus.  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D8, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 1. Alternatively, this pin (RX_D4_N) can function as part of the LVDS 6-bit RX  
differential output bus with internal LVDS termination.  
I/O  
K8  
I/O  
I/O  
I/O  
I/O  
I
P1_D6/RX_D3_N  
P1_D4/RX_D2_N  
P1_D2/RX_D1_N  
P1_D0/RX_D0_N  
RBIAS  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D6, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 1. Alternatively, this pin (RX_D3_N) can function as part of the LVDS 6-bit RX  
differential output bus with internal LVDS termination.  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D4, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 1. Alternatively, this pin (RX_D2_N) can function as part of the LVDS 6-bit RX  
differential output bus with internal LVDS termination.  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D2, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 1. Alternatively, this pin (RX_D1_N) can function as part of the LVDS 6-bit RX  
differential output bus with internal LVDS termination.  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D0, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 1. Alternatively, this pin (RX_D0_N) can function as part of the LVDS 6-bit RX  
differential output bus with internal LVDS termination.  
K9  
K10  
K11  
L4  
Bias Input Reference. Connect this pin through a 14.3 kΩ (1% tolerance) resistor  
to ground.  
L5  
I
AUXADC  
Auxiliary ADC Input. If this pin is unused, tie it to ground.  
L6  
M1, M2  
O
I
SPI_DO  
RX1A_P, RX1A_N  
SPI Serial Data Output in 4-Wire Mode, or High-Z in 3-Wire Mode.  
Receive Channel 1 Differential Input A. Alternatively, each pin can be used as a  
single-ended input. Tie unused pins to ground.  
M5  
I
TX_MON1  
Transmit Channel 1 Power Monitor Input. When this pin is unused, tie it to ground.  
Transmit Channel 1 Differential Output A. Tie unused pins to 1.3 V.  
Transmit Channel 1 Differential Output B. Tie unused pins to 1.3 V.  
Reference Frequency Crystal Connections. When a crystal is used, connect it  
between these two pins. When an external clock source is used, connect it to  
XTALN and leave XTALP unconnected.  
M7, M8  
M9, M10  
M11, M12  
O
O
I
TX1A_P, TX1A_N  
TX1B_P, TX1B_N  
XTALP, XTALN  
1 I is input, O is output, I/O is input/output, or NC is not connected.  
Rev. D | Page 19 of 36  
 
 
AD9361  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
800 MHz FREQUENCY BAND  
0
–5  
4.0  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–75 –70 –65 –60 –55 –50 –45 –40 –35 –30 –25  
700  
750  
800  
850  
900  
RX INPUT POWER (dBm)  
RF FREQUENCY (MHz)  
Figure 3. RX Noise Figure vs. RF Frequency  
Figure 6. RX EVM vs. RX Input Power, 64 QAM LTE 10 MHz Mode,  
19.2 MHz REF_CLK  
5
4
0
–40°C  
+25°C  
+85°C  
–5  
–40°C  
+25°C  
+85°C  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
3
2
1
0
–1  
–2  
–3  
–100 –90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
RX INPUT POWER (dBm)  
RX INPUT POWER (dBm)  
Figure 4. RSSI Error vs. RX Input Power, LTE 10 MHz Modulation  
(Referenced to −50 dBm Input Power at 800 MHz)  
Figure 7. RX EVM vs. RX Input Power, GSM Mode, 30.72 MHz REF_CLK  
(Doubled Internally for RF Synthesizer)  
3
0
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
2
1
–5  
–10  
–15  
–20  
–25  
–30  
0
–1  
–2  
–3  
72  
68  
64  
60  
56  
52  
48  
44  
40  
36  
32  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
RX INPUT POWER (dBm)  
INTERFERER POWER LEVEL (dBm)  
Figure 8. RX EVM vs. Interferer Power Level, LTE 10 MHz Signal of Interest with  
IN = −82 dBm, 5 MHz OFDM Blocker at 7.5 MHz Offset  
Figure 5. RSSI Error vs. RX Input Power, Edge Modulation  
(Referenced to −50 dBm Input Power at 800 MHz)  
P
Rev. D | Page 20 of 36  
 
 
Data Sheet  
AD9361  
0
20  
15  
–40°C  
+25°C  
+85°C  
10  
–4  
–8  
5
0
–5  
–40°C  
+25°C  
+85°C  
–10  
–15  
–20  
–25  
–12  
–16  
20  
28  
36  
44  
52  
60  
68  
76  
–56 –54 –52 –50 –48 –46 –44 –42 –40 –38 –36  
RX GAIN INDEX  
INTERFERER POWER LEVEL (dBm)  
Figure 12. Third-Order Input Intercept Point (IIP3) vs. RX Gain Index,  
f1 = 1.45 MHz, f2 = 2.89 MHz, GSM Mode  
Figure 9. RX EVM vs. Interferer Power Level, LTE 10 MHz Signal of Interest with  
PIN = −90 dBm, 5 MHz OFDM Blocker at 17.5 MHz Offset  
14  
100  
90  
–40°C  
+25°C  
+85°C  
12  
10  
8
80  
70  
–40°C  
+25°C  
+85°C  
60  
50  
40  
30  
20  
10  
0
6
4
2
0
20  
28  
36  
44  
52  
60  
68  
76  
–47  
–43  
–39  
–35  
–31  
–27  
–23  
RX GAIN INDEX  
INTERFERER POWER LEVEL (dBm)  
Figure 13. Second-Order Input Intercept Point (IIP2) vs. RX Gain Index,  
f1 = 2.00 MHz, f2 = 2.01 MHz, GSM Mode  
Figure 10. RX Noise Figure vs. Interferer Power Level, Edge Signal of Interest  
with PIN = −90 dBm, CW Blocker at 3 MHz Offset, Gain Index = 64  
80  
–100  
–40°C  
–40°C  
+25°C  
+85°C  
+25°C  
+85°C  
78  
–105  
–110  
–115  
–120  
–125  
–130  
76  
74  
72  
70  
68  
66  
700  
750  
800  
850  
900  
700  
750  
800  
850  
900  
RX LO FREQUENCY (MHz)  
RX LO FREQUENCY (MHz)  
Figure 11. RX Gain vs. RX LO Frequency, Gain Index = 76 (Maximum Setting)  
Figure 14. RX Local Oscillator (LO) Leakage vs. RX LO Frequency  
Rev. D | Page 21 of 36  
AD9361  
Data Sheet  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
ATT 0dB  
ATT 3dB  
ATT 6dB  
–20  
–40  
–60  
–80  
–100  
–120  
0
2000  
4000  
6000  
8000  
10000  
12000  
–15  
–10  
–5  
0
5
10  
15  
FREQUENCY (MHz)  
FREQUENCY OFFSET (MHz)  
Figure 15. RX Emission at LNA Input, DC to 12 GHz, fLO_RX = 800 MHz,  
LTE 10 MHz, fLO_TX = 860 MHz  
Figure 18. TX Spectrum vs. Frequency Offset from Carrier Frequency, fLO_TX  
800 MHz, LTE 10 MHz Downlink (Digital Attenuation Variations Shown)  
=
10.0  
20  
–40°C  
+25°C  
ATT 0dB  
ATT 3dB  
ATT 6dB  
+85°C  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
0
–20  
–40  
–60  
–80  
–100  
700  
750  
800  
850  
900  
TX LO FREQUENCY (MHz)  
FREQUENCY OFFSET (MHz)  
Figure 16. TX Output Power vs. TX LO Frequency, Attenuation Setting = 0 dB,  
Single Tone Output  
Figure 19. TX Spectrum vs. Frequency Offset from Carrier Frequency, fLO_TX =  
800 MHz, GSM Downlink (Digital Attenuation Variations Shown), 3 MHz Range  
0.5  
20  
–40°C  
+25°C  
0.4  
+85°C  
ATT 0dB  
0
ATT 3dB  
ATT 6dB  
0.3  
0.2  
–20  
0.1  
–40  
–60  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–80  
–100  
–120  
0
10  
20  
30  
40  
50  
–6  
–4  
–2  
0
2
4
6
ATTENUATION SETTING (dB)  
FREQUENCY OFFSET (MHz)  
Figure 17. TX Power Control Linearity Error vs. Attenuation Setting  
Figure 20. TX Spectrum vs. Frequency Offset from Carrier Frequency, fLO_TX  
=
800 MHz, GSM Downlink (Digital Attenuation Variations Shown), 12 MHz Range  
Rev. D | Page 22 of 36  
Data Sheet  
AD9361  
–20  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
–25  
–30  
–35  
–40  
–45  
–50  
0
5
10  
15  
20  
25  
30  
35  
40  
700  
750  
800  
850  
900  
FREQUENCY (MHz)  
TX ATTENUATION SETTING (dB)  
Figure 21. TX EVM vs. TX Attenuation Setting, fLO_TX = 800 MHz,  
LTE 10 MHz, 64 QAM Modulation, 19.2 MHz REF_CLK  
Figure 24. Integrated TX LO Phase Noise vs. Frequency, 30.72 MHz REF_CLK  
(Doubled Internally for RF Synthesizer)  
–30  
–20  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–40°C  
–25  
+25°C  
+85°C  
–30  
–35  
–40  
–45  
–50  
700  
750  
800  
850  
900  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
TX ATTENUATION SETTING (dB)  
Figure 25. TX Carrier Rejection vs. Frequency  
Figure 22. TX EVM vs. TX Attenuation Setting, fLO_TX = 800 MHz, GSM  
Modulation, 30.72 MHz REF_CLK (Doubled Internally for RF Synthesizer)  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
0.5  
–40°C  
+25°C  
+85°C  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
0.4  
0.3  
0.2  
0.1  
0
700  
750  
800  
850  
900  
700  
750  
800  
850  
900  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 23. Integrated TX LO Phase Noise vs. Frequency, 19.2 MHz REF_CLK  
Figure 26. TX Second-Order Harmonic Distortion (HD2) vs. Frequency  
Rev. D | Page 23 of 36  
AD9361  
Data Sheet  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
170  
165  
160  
155  
150  
145  
140  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
–40°C  
+25°C  
+85°C  
–60  
700  
0
4
8
12  
16  
20  
750  
800  
850  
900  
TX ATTENUATION SETTING (dB)  
FREQUENCY (MHz)  
Figure 27. TX Third-Order Harmonic Distortion (HD3) vs. Frequency  
Figure 30. TX Signal-to-Noise Ratio (SNR) vs. TX Attenuation Setting,  
GSM Signal of Interest with Noise Measured at 20 MHz Offset  
30  
–30  
–40°C  
+25°C  
+85°C  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
25  
20  
15  
10  
5
0
0
4
8
12  
16  
20  
700  
750  
800  
850  
900  
TX ATTENUATION SETTING (dB)  
FREQUENCY (MHz)  
Figure 28. TX Third-Order Output Intercept Point (OIP3) vs.  
TX Attenuation Setting  
Figure 31. TX Single Sideband (SSB) Rejection vs. Frequency,  
1.5375 MHz Offset  
170  
–40°C  
+25°C  
+85°C  
165  
160  
155  
150  
145  
140  
0
3
6
9
12  
15  
TX ATTENUATION SETTING (dB)  
Figure 29. TX Signal-to-Noise Ratio (SNR) vs. TX Attenuation Setting,  
LTE 10 MHz Signal of Interest with Noise Measured at 90 MHz Offset  
Rev. D | Page 24 of 36  
Data Sheet  
AD9361  
2.4 GHz FREQUENCY BAND  
0
–5  
4.0  
–40°C  
+25°C  
+85°C  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
–10  
–15  
–20  
–25  
–30  
0.5  
0
–40°C  
+25°C  
+85°C  
–72 –68 –64 –60 –56 –52 –48 –44 –40 –36 –32 –28  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
INTERFERER POWER LEVEL (dBm)  
RF FREQUENCY (MHz)  
Figure 32. RX Noise Figure vs. RF Frequency  
Figure 35. RX EVM vs. Interferer Power Level, LTE 20 MHz Signal of Interest  
with PIN = −75 dBm, LTE 20 MHz Blocker at 20 MHz Offset  
5
0
–40°C  
–40°C  
+25°C  
+85°C  
+25°C  
+85°C  
4
–5  
–10  
–15  
–20  
–25  
–30  
3
2
1
0
–1  
–2  
–3  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
–60  
–55  
–50  
–45  
–40  
–35  
–30  
–25  
–20  
RX INPUT POWER (dBm)  
INTERFERER POWER LEVEL (dBm)  
Figure 33. RSSI Error vs. RX Input Power, Referenced to −50 dBm Input Power  
at 2.4 GHz  
Figure 36. RX EVM vs. Interferer Power Level, LTE 20 MHz Signal of Interest  
with PIN = −75 dBm, LTE 20 MHz Blocker at 40 MHz Offset  
0
80  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
78  
76  
74  
72  
70  
68  
66  
–75 –70 –65 –60 –55 –50 –45 –40 –35 –30 –25  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
INPUT POWER (dBm)  
RX LO FREQUENCY (MHz)  
Figure 34. RX EVM vs. Input Power, 64 QAM LTE 20 MHz Mode,  
40 MHz REF_CLK  
Figure 37. RX Gain vs. RX LO Frequency, Gain Index = 76 (Maximum Setting)  
Rev. D | Page 25 of 36  
 
AD9361  
Data Sheet  
20  
0
–20  
–40°C  
+25°C  
+85°C  
15  
10  
5
–40  
0
–60  
–5  
–10  
–15  
–20  
–80  
–100  
–120  
–25  
20  
0
2000  
4000  
6000  
8000  
10000  
12000  
28  
36  
44  
52  
60  
68  
76  
RX GAIN INDEX  
FREQUENCY (MHz)  
Figure 38. Third-Order Input Intercept Point (IIP3) vs. RX Gain Index,  
f1 = 30 MHz, f2 = 61 MHz  
Figure 41. RX Emission at LNA Input, DC to 12 GHz, fLO_RX = 2.4 GHz,  
LTE 20 MHz, fLO_TX = 2.46 GHz  
80  
10.0  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
70  
60  
50  
40  
30  
20  
20  
28  
36  
44  
52  
60  
68  
76  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
RX GAIN INDEX  
TX LO FREQUENCY (MHz)  
Figure 39. Second-Order Input Intercept Point (IIP2) vs. RX Gain Index,  
f1 = 60 MHz, f2 = 61 MHz  
Figure 42. TX Output Power vs. TX LO Frequency, Attenuation Setting = 0 dB,  
Single Tone Output  
0.5  
–100  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
0.4  
+85°C  
–105  
–110  
–115  
–120  
–125  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–130  
0
10  
20  
30  
40  
50  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
ATTENUATION SETTING (dB)  
RX LO FREQUENCY (MHz)  
Figure 40. RX Local Oscillator (LO) Leakage vs. RX LO Frequency  
Figure 43. TX Power Control Linearity Error vs. Attenuation Setting  
Rev. D | Page 26 of 36  
Data Sheet  
AD9361  
0
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
ATT 0dB  
ATT 3dB  
ATT6dB  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
–20  
–40  
–60  
–80  
–100  
–120  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
FREQUENCY (MHz)  
FREQUENCY OFFSET (MHz)  
Figure 47. TX Carrier Rejection vs. Frequency  
Figure 44. TX Spectrum vs. Frequency Offset from Carrier Frequency, fLO_TX  
2.3 GHz, LTE 20 MHz Downlink (Digital Attenuation Variations Shown)  
=
–20  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–40°C  
+25°C  
+85°C  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
–25  
–30  
–35  
–40  
–45  
–50  
0
5
10  
15  
20  
25  
30  
35  
40  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
ATTENUATION SETTING (dB)  
FREQUENCY (MHz)  
Figure 45. TX EVM vs. Transmitter Attenuation Setting, 40 MHz REF_CLK,  
LTE 20 MHz, 64 QAM Modulation  
Figure 48. TX Second-Order Harmonic Distortion (HD2) vs. Frequency  
0.5  
–20  
–40°C  
+25°C  
+85°C  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
0.4  
0.3  
0.2  
0.1  
0
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 46. Integrated TX LO Phase Noise vs. Frequency, 40 MHz REF_CLK  
Figure 49. TX Third-Order Harmonic Distortion (HD3) vs. Frequency  
Rev. D | Page 27 of 36  
AD9361  
Data Sheet  
30  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–40°C  
+25°C  
+85°C  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
25  
20  
15  
10  
5
0
0
4
8
12  
16  
20  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
FREQUENCY (MHz)  
TX ATTENUATION SETTING (dB)  
Figure 50. TX Third-Order Output Intercept Point (OIP3) vs.  
TX Attenuation Setting  
Figure 52. TX Single Sideband (SSB) Rejection vs. Frequency,  
3.075 MHz Offset  
160  
–40°C  
+25°C  
+85°C  
158  
156  
154  
152  
150  
148  
146  
144  
142  
140  
0
3
6
9
12  
15  
TX ATTENUATION SETTING (dB)  
Figure 51. TX Signal-to-Noise Ratio (SNR) vs. TX Attenuation Setting,  
LTE 20 MHz Signal of Interest with Noise Measured at 90 MHz Offset  
Rev. D | Page 28 of 36  
Data Sheet  
AD9361  
5.5 GHz FREQUENCY BAND  
6
5
0
5
4
–5  
–10  
–15  
–20  
–25  
3
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
2
1
0
–72  
–67  
–62  
–57  
–52  
–47  
–42  
–37  
–32  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
INTERFERER POWER LEVEL (dBm)  
RF FREQUENCY (GHz)  
Figure 53. RX Noise Figure vs. RF Frequency  
Figure 56. RX EVM vs. Interferer Power Level, WiMAX 40 MHz Signal of  
Interest with PIN = −74 dBm, WiMAX 40 MHz Blocker at 40 MHz Offset  
5
4
5
0
3
–40°C  
+25°C  
+85°C  
–5  
2
–40°C  
+25°C  
+85°C  
1
–10  
–15  
–20  
–25  
0
–1  
–2  
–3  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
–60  
–55  
–50  
–45  
–40  
–35  
–30  
–25  
RX INPUT POWER (dBm)  
INTERFERER POWER LEVEL (dBm)  
Figure 54. RSSI Error vs. RX Input Power, Referenced to −50 dBm Input Power  
at 5.8 GHz  
Figure 57. RX EVM vs. Interferer Power Level, WiMAX 40 MHz Signal of  
Interest with PIN = −74 dBm, WiMAX 40 MHz Blocker at 80 MHz Offset  
0
70  
68  
66  
–5  
–40°C  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
+25°C  
+85°C  
64  
–40°C  
+25°C  
+85°C  
62  
60  
–74  
–68  
–62  
–56  
–50  
–44  
–38  
–32  
–26  
–20  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
RX INPUT POWER (dBm)  
FREQUENCY (GHz)  
Figure 55. RX EVM vs. RX Input Power, 64 QAM WiMAX 40 MHz Mode,  
40 MHz REF_CLK (Doubled Internally for RF Synthesizer)  
Figure 58. RX Gain vs. Frequency, Gain Index = 76 (Maximum Setting)  
Rev. D | Page 29 of 36  
 
AD9361  
Data Sheet  
20  
15  
10  
5
0
–20  
–40  
–40°C  
+25°C  
+85°C  
0
–60  
–5  
–10  
–15  
–80  
–100  
–120  
–20  
6
16  
26  
36  
46  
56  
66  
76  
0
5
10  
15  
20  
25  
30  
RX GAIN INDEX  
FREQUENCY (GHz)  
Figure 59. Third-Order Input Intercept Point (IIP3) vs. RX Gain Index,  
f1 = 50 MHz, f2 = 101 MHz  
Figure 62. RX Emission at LNA Input, DC to 26 GHz, fLO_RX = 5.8 GHz,  
WiMAX 40 MHz  
80  
70  
60  
10  
–40°C  
+25°C  
+85°C  
9
8
7
6
5
4
–40°C  
+25°C  
50  
40  
30  
20  
+85°C  
20  
28  
36  
44  
52  
60  
68  
76  
5.0  
5.1  
5.2  
5.3  
5.4 5.5. 5.6  
5.7  
5.8  
5.9  
6.0  
RX GAIN INDEX  
FREQUENCY (GHz)  
Figure 60. Second-Order Input Intercept Point (IIP2) vs. RX Gain Index,  
f1 = 70 MHz, f2 = 71 MHz  
Figure 63. TX Output Power vs. Frequency, Attenuation Setting = 0 dB,  
Single Tone  
–90  
–92  
–94  
–96  
0.5  
0.4  
0.3  
0.2  
0.1  
–98  
–40°C  
0.0  
–100  
–102  
–104  
–106  
–108  
–110  
+25°C  
+85°C  
–0.1  
–0.2  
–40°C  
+25°C  
+85°C  
–0.3  
–0.4  
–0.5  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
ATTENUATION SETTING (dB)  
FREQUENCY (GHz)  
Figure 61. RX Local Oscillator (LO) Leakage vs. Frequency  
Figure 64. TX Power Control Linearity Error vs. Attenuation Setting  
Rev. D | Page 30 of 36  
Data Sheet  
AD9361  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
ATT 0dB  
ATT 3dB  
ATT 6dB  
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
FREQUENCY OFFSET (MHz)  
FREQUENCY (GHz)  
Figure 65. TX Spectrum vs. Frequency Offset from Carrier Frequency, fLO_TX  
=
Figure 68. TX Carrier Rejection vs. Frequency  
5.8 GHz, WiMAX 40 MHz Downlink (Digital Attenuation Variations Shown)  
–30  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
–32  
–34  
–36  
–40°C  
+25°C  
+85°C  
–38  
–40  
0
2
4
6
8
10  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
TX ATTENUATION SETTING (dB)  
FREQUENCY (GHz)  
Figure 66. TX EVM vs. TX Attenuation Setting, WiMAX 40 MHz,  
64 QAM Modulation, fLO_TX = 5.495 GHz, 40 MHz REF_CLK  
(Doubled Internally for RF Synthesizer)  
Figure 69. TX Second-Order Harmonic Distortion (HD2) vs. Frequency  
0.8  
0.7  
0.6  
0.5  
–10  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
0.4  
–40°C  
+25°C  
+85°C  
0.3  
0.2  
0.1  
0
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 67. Integrated TX LO Phase Noise vs. Frequency, 40 MHz REF_CLK  
(Doubled Internally for RF Synthesizer)  
Figure 70. TX Third-Order Harmonic Distortion (HD3) vs. Frequency  
Rev. D | Page 31 of 36  
AD9361  
Data Sheet  
20  
16  
12  
8
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
–40°C  
+25°C  
+85°C  
4
0
–4  
0
4
8
12  
16  
20  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
TX ATTENUATION SETTING (dB)  
FREQUENCY (GHz)  
Figure 73. TX Single Sideband (SSB) Rejection vs. Frequency, 7 MHz Offset  
Figure 71. TX Third-Order Output Intercept Point (OIP3) vs.  
TX Attenuation Setting, fLO_TX = 5.8 GHz  
150  
149  
148  
147  
146  
145  
144  
143  
142  
–40°C  
+25°C  
+85°C  
0
3
6
9
12  
15  
TX ATTENUATION SETTING (dB)  
Figure 72. TX Signal-to-Noise Ratio (SNR) vs. TX Attenuation Setting,  
WiMAX 40 MHz Signal of Interest with Noise Measured at 90 MHz Offset,  
f
LO_TX = 5.745 GHz  
Rev. D | Page 32 of 36  
Data Sheet  
AD9361  
THEORY OF OPERATION  
GENERAL  
digital filter block is adjustable by changing decimation factors  
to produce the desired output data rate.  
The AD9361 is a highly integrated radio frequency (RF)  
transceiver capable of being configured for a wide range of  
applications. The device integrates all RF, mixed signal, and  
digital blocks necessary to provide all transceiver functions in a  
single device. Programmability allows this broadband transceiver  
to be adapted for use with multiple communication standards,  
including frequency division duplex (FDD) and time division  
duplex (TDD) systems. This programmability also allows the  
device to be interfaced to various baseband processors (BBPs) using  
a single 12-bit parallel data port, dual 12-bit parallel data ports,  
or a 12-bit low voltage differential signaling (LVDS) interface.  
TRANSMITTER  
The transmitter section consists of two identical and independently  
controlled channels that provide all digital processing, mixed  
signal, and RF blocks necessary to implement a direct conversion  
system while sharing a common frequency synthesizer. The digital  
data received from the BBP passes through a fully programmable  
128-tap FIR filter with interpolation options. The FIR output is  
sent to a series of interpolation filters that provide additional  
filtering and data rate interpolation prior to reaching the DAC.  
Each 12-bit DAC has an adjustable sampling rate. Both the I  
and Q channels are fed to the RF block for upconversion.  
The AD9361 also provides self-calibration and automatic gain  
control (AGC) systems to maintain a high performance level  
under varying temperatures and input signal conditions. In  
addition, the device includes several test modes that allow system  
designers to insert test tones and create internal loopback modes  
that can be used by designers to debug their designs during  
prototyping and optimize their radio configuration for a  
specific application.  
When converted to baseband analog signals, the I and Q signals are  
filtered to remove sampling artifacts and fed to the upconversion  
mixers. At this point, the I and Q signals are recombined and  
modulated on the carrier frequency for transmission to the  
output stage. The combined signal also passes through analog  
filters that provide additional band shaping, and then the signal  
is transmitted to the output amplifier. Each transmit channel  
provides a wide attenuation adjustment range with fine granularity  
to help designers optimize signal-to-noise ratio (SNR).  
RECEIVER  
The receiver section contains all blocks necessary to receive RF  
signals and convert them to digital data that is usable by a BBP.  
There are two independently controlled channels that can receive  
signals from different sources, allowing the device to be used in  
multiple input, multiple output (MIMO) systems while sharing  
a common frequency synthesizer.  
Self-calibration circuitry is built into each transmit channel to  
provide automatic real-time adjustment. The transmitter block  
also provides a TX monitor block for each channel. This block  
monitors the transmitter output and routes it back through an  
unused receiver channel to the BBP for signal monitoring. The  
TX monitor blocks are available only in TDD mode operation  
while the receiver is idle.  
Each channel has three inputs that can be multiplexed to the  
signal chain, making the AD9361 suitable for use in diversity  
systems with multiple antenna inputs. The receiver is a direct  
conversion system that contains a low noise amplifier (LNA),  
followed by matched in-phase (I) and quadrature (Q) amplifiers,  
mixers, and band shaping filters that down convert received  
signals to baseband for digitization. External LNAs can also be  
interfaced to the device, allowing designers the flexibility to  
customize the receiver front end for their specific application.  
CLOCK INPUT OPTIONS  
The AD9361 operates using a reference clock that can be provided  
by two different sources. The first option is to use a dedicated  
crystal with a frequency between 19 MHz and 50 MHz connected  
between the XTALP and XTALN pins. The second option is to  
connect an external oscillator or clock distribution device (such as  
the AD9548) to the XTALN pin (with the XTALP pin remaining  
unconnected). If an external oscillator is used, the frequency  
can vary between 10 MHz and 80 MHz. This reference clock  
is used to supply the synthesizer blocks that generate all data  
clocks, sample clocks, and local oscillators inside the device.  
Gain control is achieved by following a preprogrammed gain  
index map that distributes gain among the blocks for optimal  
performance at each level. This can be achieved by enabling the  
internal AGC in either fast or slow mode or by using manual  
gain control, allowing the BBP to make the gain adjustments as  
needed. Additionally, each channel contains independent RSSI  
measurement capability, dc offset tracking, and all circuitry  
necessary for self-calibration.  
Errors in the crystal frequency can be removed by using the  
digitally programmable digitally controlled crystal oscillator  
(DCXO) function to adjust the on-chip variable capacitor. This  
capacitor can tune the crystal frequency variance out of the  
system, resulting in a more accurate reference clock from which  
all other frequency signals are generated. This function can also  
be used with on-chip temperature sensing to provide oscillator  
frequency temperature compensation during normal operation.  
The receivers include 12-bit, sigma-delta (Σ-Δ) ADCs and  
adjustable sample rates that produce data streams from the received  
signals. The digitized signals can be conditioned further by a series  
of decimation filters and a fully programmable 128-tap FIR filter  
with additional decimation settings. The sample rate of each  
Rev. D | Page 33 of 36  
 
 
 
 
 
AD9361  
Data Sheet  
RX_FRAME Signal  
SYNTHESIZERS  
The device generates an RX_FRAME output signal whenever the  
receiver outputs valid data. This signal has two modes: level  
mode (RX_FRAME stays high as long as the data is valid) and  
pulse mode (RX_FRAME pulses with a 50% duty cycle). Similarly,  
the BBP must provide a TX_FRAME signal that indicates the  
beginning of a valid data transmission with a rising edge. Similar  
to the RX_FRAME, the TX_FRAME signal can remain high  
throughout the burst or it can be pulsed with a 50% duty cycle.  
RF PLLs  
The AD9361 contains two identical synthesizers to generate the  
required LO signals for the RF signal paths:—one for the receiver  
and one for the transmitter. Phase-locked loop (PLL) synthesizers  
are fractional-N designs incorporating completely integrated  
voltage controlled oscillators (VCOs) and loop filters. In TDD  
operation, the synthesizers turn on and off as appropriate for the  
RX and TX frames. In FDD mode, the TX PLL and the RX PLL  
can be activated simultaneously. These PLLs require no external  
components.  
ENABLE STATE MACHINE  
The AD9361 transceiver includes an enable state machine (ENSM)  
that allows real-time control over the current state of the device.  
The device can be placed in several different states during normal  
operation, including  
BB PLL  
The AD9361 also contains a baseband PLL synthesizer that is  
used to generate all baseband related clock signals. These include  
the ADC and DAC sampling clocks, the DATA_CLK signal (see  
the Digital Data Interface section), and all data framing signals.  
This PLL is programmed from 700 MHz to 1400 MHz based on  
the data rate and sample rate requirements of the system.  
Wait—power save, synthesizers disabled  
Sleep—wait with all clocks/BB PLL disabled  
TX—TX signal chain enabled  
RX—RX signal chain enabled  
FDD—TX and RX signal chains enabled  
Alert—synthesizers enabled  
DIGITAL DATA INTERFACE  
The AD9361 data interface uses parallel data ports (P0 and P1)  
to transfer data between the device and the BBP. The data ports can  
be configured in either single-ended CMOS format or differential  
LVDS format. Both formats can be configured in multiple  
arrangements to match system requirements for data ordering and  
data port connections. These arrangements include single port  
data bus, dual port data bus, single data rate, double data rate,  
and various combinations of data ordering to transmit data  
from different channels across the bus at appropriate times.  
The ENSM has two possible control methods: SPI control and  
pin control.  
SPI Control Mode  
In SPI control mode, the ENSM is controlled asynchronously  
by writing SPI registers to advance the current state to the next  
state. SPI control is considered asynchronous to the DATA_CLK  
because the SPI_CLK can be derived from a different clock  
reference and can still function properly. The SPI control  
ENSM method is recommended when real-time control of the  
synthesizers is not necessary. SPI control can be used for real-  
time control as long as the BBIC has the ability to perform  
timed SPI writes accurately.  
Bus transfers are controlled using simple hardware handshake  
signaling. The two ports can be operated in either bidirectional  
(TDD) mode or in full duplex (FDD) mode where half the bits  
are used for transmitting data and half are used for receiving data.  
The interface can also be configured to use only one of the data  
ports for applications that do not require high data rates and  
prefer to use fewer interface pins.  
Pin Control Mode  
In pin control mode, the enable function of the ENABLE pin  
and the TXNRX pin allow real-time control of the current state.  
The ENSM allows TDD or FDD operation depending on the  
configuration of the corresponding SPI register. The ENABLE  
and TXNRX pin control method is recommended if the BBIC  
has extra control outputs that can be controlled in real time,  
allowing a simple 2-wire interface to control the state of the  
device. To advance the current state of the ENSM to the next  
state, the enable function of the ENABLE pin can be driven by  
either a pulse (edge detected internally) or a level.  
DATA_CLK Signal  
RX data supplies the DATA_CLK signal that the BBP can use  
when receiving the data. The DATA_CLK can be set to a rate that  
provides single data rate (SDR) timing where data is sampled on  
each rising clock edge, or it can be set to provide double data rate  
(DDR) timing where data is captured on both rising and falling  
edges. This timing applies to operation using either a single port  
or both ports.  
FB_CLK Signal  
When a pulse is used, it must have a minimum pulse width of  
one FB_CLK cycle. In level mode, the ENABLE and TXNRX  
pins are also edge detected by the AD9361 and must meet the  
same minimum pulse width requirement of one FB_CLK cycle.  
For transmit data, the interface uses the FB_CLK signal as the  
timing reference. FB_CLK allows source synchronous timing  
with rising edge capture for burst control signals and either  
rising edge (SDR mode) or both edge capture (DDR mode) for  
transmit signal bursts. The FB_CLK signal must have the same  
frequency and duty cycle as DATA_CLK.  
Rev. D | Page 34 of 36  
 
 
 
Data Sheet  
AD9361  
In FDD mode, the ENABLE and TXNRX pins can be remapped  
to serve as real-time RX and TX data transfer control signals. In  
this mode, the ENABLE pin enables or disables the receive signal  
path, and the TXNRX pin enables or disables the transmit signal  
path. In this mode, the ENSM is removed from the system for  
control of all data flow by these pins.  
AUXILIARY CONVERTERS  
AUXADC  
The AD9361 contains an auxiliary ADC that can be used to  
monitor system functions such as temperature or power output.  
The converter is 12 bits wide and has an input range of 0 V to  
1.25 V. When enabled, the ADC is free running. SPI reads provide  
the last value latched at the ADC output. A multiplexer in front  
of the ADC allows the user to select between the AUXADC input  
pin and a built-in temperature sensor.  
SPI INTERFACE  
The AD9361 uses a serial peripheral interface (SPI) to  
communicate with the BBP. This interface can be configured  
as a 4-wire interface with dedicated receive and transmit ports,  
or it can be configured as a 3-wire interface with a bidirectional  
data communication port. This bus allows the BBP to set all device  
control parameters using a simple address data serial bus protocol.  
AUXDAC1 and AUXDAC2  
The AD9361 contains two identical auxiliary DACs that can  
provide power amplifier (PA) bias or other system functionality.  
The auxiliary DACs are 10 bits wide, have an output voltage range  
of 0.5 V to VDD_GPO − 0.3 V, a current drive of 10 mA, and  
can be directly controlled by the internal enable state machine.  
Write commands follow a 24-bit format. The first six bits are  
used to set the bus direction and number of bytes to transfer.  
The next 10 bits set the address where data is to be written. The  
final eight bits are the data to be transferred to the specified register  
address (MSB to LSB). The AD9361 also supports an LSB-first  
format that allows the commands to be written in LSB to MSB  
format. In this mode, the register addresses are incremented for  
multibyte writes.  
POWERING THE AD9361  
The AD9361 must be powered by the following three supplies:  
the analog supply (VDDD1P3_DIG/VDDAx = 1.3 V), the  
interface supply (VDD_INTERFACE = 1.8 V), and the GPO  
supply (VDD_GPO = 3.3 V).  
For applications requiring optimal noise performance, it is  
recommended that the 1.3 V analog supply be split and sourced  
from low noise, low dropout (LDO) regulators. Figure 74 shows  
the recommended method.  
Read commands follow a similar format with the exception that  
the first 16 bits are transferred on the SPI_DI pin and the final  
eight bits are read from the AD9361, either on the SPI_DO pin  
in 4-wire mode or on the SPI_DI pin in 3-wire mode.  
3.3V  
CONTROL PINS  
Control Outputs (CTRL_OUT[7:0])  
ADP2164  
1.8V  
The AD9361 provides eight simultaneous real-time output signals  
for use as interrupts to the BBP. These outputs can be configured to  
output a number of internal settings and measurements that the  
BBP can use when monitoring transceiver performance in different  
situations. The control output pointer register selects what  
information is output to these pins, and the control output enable  
register determines which signals are activated for monitoring by  
the BBP. Signals used for manual gain mode, calibration flags,  
state machine states, and the ADC output are among the outputs  
that can be monitored on these pins.  
ADP1755  
ADP1755  
1.3V_A  
1.3V_B  
Figure 74. Low Noise Power Solution for the AD9361  
For applications where board space is at a premium, and  
optimal noise performance is not an absolute requirement, the  
1.3 V analog rail can be provided directly from a switcher, and a  
more integrated power management unit (PMU) approach can  
be adopted. Figure 75 shows this approach.  
Control Inputs (CTRL_IN[3:0])  
1.3V  
ADP5040  
ADP1755  
The AD9361 provides four edge detected control input pins. In  
manual gain mode, the BBP can use these pins to change the gain  
table index in real time. In transmit mode, the BBP can use two  
of the pins to change the transmit gain in real time.  
VDDD1P3_DIG/VDDAx  
LDO  
1.2A  
BUCK  
AD9361  
1.8V  
3.3V  
300mA  
LDO  
VDD_INTERFACE  
GPO PINS (GPO_3 TO GPO_0)  
300mA  
LDO  
VDD_GPO  
The AD9361 provides four, 3.3 V capable general-purpose logic  
output pins: GPO_3, GPO_2, GPO_1, and GPO_0. These pins  
can be used to control other peripheral devices such as regulators  
and switches via the AD9361 SPI bus, or they can function as  
slaves for the internal AD9361 state machine.  
Figure 75. Space-Optimized Power Solution for the AD9361  
Rev. D | Page 35 of 36  
 
 
 
 
 
 
 
AD9361  
Data Sheet  
PACKAGING AND ORDERING INFORMATION  
OUTLINE DIMENSIONS  
10.10  
A1 BALL  
CORNER  
10.00 SQ  
9.90  
A1 BALL  
CORNER  
12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
8.80 SQ  
G
H
J
0.80  
K
L
M
0.60  
REF  
TOP VIEW  
DETAIL A  
BOTTOM VIEW  
1.70 MAX  
1.00 MIN  
DETAIL A  
0.32 MIN  
0.50  
0.45  
0.40  
COPLANARITY  
0.12  
SEATING  
PLANE  
BALL DIAMETER  
COMPLIANT TO JEDEC STANDARDS MO-275-EEAB-1.  
Figure 76. 144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-144-7)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
BC-144-7  
BC-144-7  
AD9361BBCZ  
AD9361BBCZ-REEL  
−40°C to +85°C  
−40°C to +85°C  
144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
1 Z = RoHS Compliant Part.  
©2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10453-0-11/13(D)  
Rev. D | Page 36 of 36  
 
 
 
 

相关型号:

AD9363

Radio frequency (RF) 2 × 2 transceiver with integrated 12-bit DACs and ADCs
ADI

AD9363ABCZ

Radio frequency (RF) 2 × 2 transceiver with integrated 12-bit DACs and ADCs
ADI

AD9363ABCZ-REEL

Radio frequency (RF) 2 × 2 transceiver with integrated 12-bit DACs and ADCs
ADI

AD9364

Point to point communication systems
ADI

AD9364BBCZ

1 x 1 RF Agile Transceiver
ADI

AD9364BBCZREEL

Point to point communication systems
ADI

AD9371

Dual differential transmitters
ADI

AD9371BBCZ

Dual differential transmitters
ADI

AD9371BBCZ-REEL

Dual differential transmitters
ADI

AD9375

Integrated, Dual RF Transceiver with Observation Path
ADI

AD9375BBCZ

Integrated, Dual RF Transceiver with Observation Path
ADI

AD9375BBCZ-REEL

Integrated, Dual RF Transceiver with Observation Path
ADI