AD9430/PCB-CMOS [ADI]

12-Bit, 170 MSPS 3.3V A/D Converter; 12位, 170 MSPS 3.3V A / D转换器
AD9430/PCB-CMOS
型号: AD9430/PCB-CMOS
厂家: ADI    ADI
描述:

12-Bit, 170 MSPS 3.3V A/D Converter
12位, 170 MSPS 3.3V A / D转换器

转换器
文件: 总20页 (文件大小:1592K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY TECHNICAL DATA  
12-Bit, 170 MSPS  
3.3V A/D Converter  
a
Preliminary Technical Data  
AD9430  
FEATURES  
PRODUCT DESCRIPTION  
SNR = 65dB @ Fin up to 65MHz at 170Msps  
ENOB of 10.3 @ Fin up to 65MHz at 170 Msps (-1dBFs)  
SFDR = -80dBc @ Fin up to 65MHz at 170Msps (-1dBFs)  
Excellent Linearity:  
The AD9430 is a 12-bit monolithic sampling analog–to–  
digital converter with an on–chip track–and–hold circuit and  
is optimized for low cost, low power, small size and ease of  
use. The product operates up to 170 Msps conversion rate  
and is optimized for outstanding dynamic performance in  
wideband carrier systems.  
- DNL = +/- 1 lsb (typ)  
- INL = +/- 1.5 lsb (typ)  
Two Output Data options  
- Demultiplexed 3.3V CMOS outputs each at 85 Msps  
- LVDS at 170Msps  
700 MHz Full Power Analog Bandwidth  
On–chip reference and track/hold  
Power dissipation = 1.25W typical at 170Msps  
1.5V Input voltage range  
The ADC requires a +3.3V power supply and a differential  
encode clock for full performance operation. No external  
reference or driver components are required for many  
applications. The digital outputs are TTL/CMOS or LVDS  
compatible. Separate output power supply pins support  
interfacing with 3.3V CMOS logic.  
+3.3V Supply Operation  
Output data format option  
Data Sync input and Data Clock output provided  
Interleaved or parallel data output option (CMOS)  
Clock Duty Cycle Stabilizer.  
An output data format select option of two’s complement or  
offset binary is supported. In CMOS mode two output buses  
support demultiplexed data up to 85 Msps rates. A data sync  
input is supported for proper output data port alignment and  
a data clock output is available for proper output data timing.  
Fabricated on an advanced BiCMOS process, the AD9430 is  
available in a 100 pin surface mount plastic package (100  
TQFP ePAD) specified over the industrial temperature range  
(–40°C to +85°C).  
APPLICATIONS  
Wireless and Wired Broadband Communications  
-
-
Wideband carrier frequency systems  
Cable Reverse Path  
Communications Test Equipment  
Radar and Satellite sub-systems  
Power Amplifier Linearization  
DrGND  
DrVDD AVDD  
VREF  
AGND  
SENSE  
Scaleable  
Reference  
AD9430  
Data(24), OR(2)  
LVDS  
Outputs  
AIN+  
AIN-  
ADC  
12-bit  
Pipeline  
Core  
Track &  
Hold  
12  
Data(12), OR(1)  
Data(12), OR(1)  
A port  
B port  
CMOS  
Outputs  
DS+  
DS-  
ENC+  
Clock  
Management  
ENC-  
Select CMOS or LVDS  
DCO+  
DCO-  
S1  
S2  
S4  
S5  
AD9430 FUNCTIONAL BLOCK DIAGRAM  
REV. PrG 4/01/2002  
Information furnished by Analog Devices is believed to be accurate and  
reliable.However,no responsibility is assumed by Analog Devices for its use,nor  
for any infringements of patents or other rights of third parties that may result from  
its use.No license is granted by implication or otherwise under any patent or  
patent rights of Analog Devices.  
One Technology Way,P.O.Box 9106,Norwood,MA 02062-9106,U.S.A.  
Tel:781/329-4700  
Fax:781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
PRELIMINARY TECHNICAL DATA  
AD9430  
DC SPECIFICATIONS (AVDD= DrVDD = 3.3V; TMIN = -40°C, TMAX = +85°C, Fin = -0.5dBFS, 1.235V External  
reference, LVDS Output Mode)  
Test  
AD9430BSV-170  
Parameter  
RESOLUTION  
Temp  
Level  
Min  
Typ  
12  
Max  
Units  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Gain Error  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
Full  
I
I
I
I
I
Guaranteed  
tbd  
mV  
% FS  
LSB  
LSB  
25°C  
25°C  
25°C  
25°C  
tbd  
+/- .3  
+/- .5  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
POWER SUPPLY REJECTION  
Full  
Full  
Full  
Full  
V
V
V
V
tbd  
tbd  
ppm/°C  
ppm/°C  
mV/V  
V
± tbd  
1.235  
REFERENCE OUT (VREF  
)
ANALOG INPUTS (AIN, AIN )  
Input Voltage Range (AIN– AIN )1  
Input Common Mode Voltage  
Input Resistance  
Full  
Full  
Full  
Full  
V
V
V
V
V
V
kW  
pF  
± .768  
2.8  
3
Input Capacitance  
5
POWER SUPPLY  
Supply Voltages  
AVDD  
Full  
Full  
V
V
3.0  
3.0  
3.3  
3.3  
3.6  
3.6  
V
V
DrVDD  
Supply Current  
I
ANALOG (AVDD= 3.3V)2  
Full  
Full  
Full  
V
V
V
335  
55  
1.29  
mA  
mA  
W
I DIGITAL (DrVDD = 3.3V)2  
POWER CONSUMPTION3  
NOTES  
1
Nominal Differential Full Scale = .766 V * 2 = 1.53 V  
for S5 = 0; Nominal Differential Full Scale = .766 Vp-p differential for S5 = 1 (see Fig. X)  
p-p differential  
2 I  
and I  
are measured with an analog input of 10.3MHz, -0.5dBFs, sine wave, rated Encode rate and in LVDS output mode. See Typical Performance  
DrVDD  
AVDD  
Characteristics and Applications section for I  
. 3 Power Consumption is measured with a DC input at rated Encode rate in LVDS output mode  
DrVDD  
DIGITAL SPECIFICATIONS (AVDD= 3.3V, DrVDD = 3.3V; TMIN = -40°C, TMAX = +85°C)  
Test  
AD9430BSV-170  
Parameter (Conditions)  
Temp Level  
Min  
Typ  
Max  
Units  
ENCODE AND DATA SYNC  
INPUTS (ENC, ENC , DS, DS/ )  
Differential Input Voltage1  
Full  
Full  
IV  
IV  
0.2  
2.0  
V
V
1.5  
Encode Common Mode Voltage  
Full  
Full  
IV  
IV  
5.5  
4
kW  
pF  
Input Resistance  
Input Capacitance  
LOGIC INPUTS ( S1,S2,S4,S5 )  
Logic ‘1’ Voltage  
Logic ‘0’ Voltage  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
V
V
kW  
pF  
.8  
30  
4
Input Resistance  
Input Capacitance  
LOGIC OUTPUTS (Demux Mode)  
Logic “1” Voltage2  
Full  
Full  
IV  
IV  
DrVDD-0.05  
V
V
Logic “0” Voltage2  
0.05  
LOGIC OUTPUTS (LVDS Mode)2,3  
VOD Differential Output Voltage  
VOS Output Offset Voltage  
Full  
Full  
Full  
IV  
IV  
IV  
247  
1.125  
454  
1.375  
mV  
V
Output Coding  
Two’s Comp or Binary  
1
NOTES  
All AC specifications tested by driving ENCODE and ENCODE differentially | ENCODE - ENCODE | >200mV  
2Digital Output Logic Levels: DrVDD= 3.3V, C  
= 5pF.  
3 LVDS Rl=100 ohms, LVDS Output Swing Set Resistor = 3.7K  
LOAD  
-2-  
4/01/2002 REV. PrG  
PRELIMINARY TECHNICAL DATA  
AD9430  
AC SPECIFICATIONS1 (AVDD= 3.3 V, DrVDD = 3.3V; ENCODE = Maximum Conversion Rate ; TMIN = -40°C, TMAX  
= +85°C, Internal voltage reference, LVDS Output Mode )  
Test  
AD9430BSV-170  
Parameter (Conditions)  
Temp  
Level  
Min  
Typ  
Max  
Units  
SNR  
Analog Input  
@ -0.5dBFS  
10 MHz  
I
I
V
V
65  
65  
65  
64  
dB  
dB  
dB  
dB  
25°C  
25°C  
25°C  
25°C  
65 MHz  
100 MHz  
240 MHz  
SINAD  
Analog Input  
@ -0.5dBFS  
10 MHz  
65 MHz  
100 MHz  
240 MHz  
I
I
V
V
65  
65  
64.5  
60  
dB  
dB  
dB  
dB  
25°C  
25°C  
25°C  
25°C  
Worst Harmonic (2nd or 3rd)  
Analog Input  
@ -0.5dBFS  
10 MHz  
65 MHz  
100 MHz  
240 MHz  
th  
I
I
V
V
-85  
-80  
-77  
-63  
dBc  
dBc  
dBc  
dBc  
25°C  
25°C  
25°C  
25°C  
Worst Harmonic (4 or higher)  
Analog Input  
@ -0.5dBFS  
10 MHz  
65 MHz  
100 MHz  
240 MHz  
I
I
V
V
-87  
-87  
-77  
-63  
dBc  
dBc  
dBc  
dBc  
25°C  
25°C  
25°C  
25°C  
Two-tone IMD2  
F1, F2 @ -7 dBFS  
Analog Input Bandwidth  
Full  
25°C  
V
V
-75  
700  
dBc  
MHz  
NOTES  
1
All AC specifications tested by driving ENCODE and ENCODE differentially.  
2 F1 = 31.5 MHz, F2 = 32.5 MHz  
SWITCHING SPECIFICATIONS (AVDD= 3.3 V, DrVDD = 3.3V; ENCODE = Maximum Conversion Rate ;  
TMIN = -40°C, TMAX = +85°C )  
Test  
Level  
I
V
V
V
IV  
IV  
AD9430BSV-170  
Parameter (Conditions)  
Maximum Conversion Rate1  
Minimum Conversion Rate1  
Encode Pulse Width High (tEH)1  
Temp  
Full  
Full  
Full  
Full  
Full  
Full  
Min  
Typ  
170  
40  
2
Max  
Units  
MSPS  
MSPS  
nS  
nS  
nS  
Encode Pulse Width Low (tEL)1  
2
.5  
1.5  
2
DS Input Setup Time (tSDS  
)
2
DS Input Hold Time (tHDS  
)
nS  
NOTES  
1
All AC specifications tested by driving ENCODE and ENCODE differentially, LVDS Mode.  
2 DS inputs used in CMOS Mode only.  
REV. PrG 4/01/2002  
-3-  
PRELIMINARY TECHNICAL DATA  
AD9430  
SWITCHING SPECIFICATIONS (cont’d)  
Test  
AD9430BSV-170  
Parameter  
Temp Level Min  
Typ Max  
Units  
OUTPUT Parameters in Demux Mode  
Valid Time (tV)  
Propagation Delay (tPD)  
Rise Time (tR) (20% to 80%)  
Fall Time (tF) (20% to 80%)  
Full  
Full  
25°C  
25°C  
Full  
Full  
Full  
Full  
IV  
IV  
V
tbd  
3.8  
1
1
3.8  
0
ns  
ns  
ns  
ns  
ns  
ns  
Cycles  
Cycles  
V
DCO Propagation Delay (tCPD  
)
VI  
IV  
VI  
VI  
Data to DCO Skew (tPD – tCPD  
)
Interleaved Mode (A, B Latency)  
Parallel Mode (A, B Latency)  
14/14  
14/15  
OUTPUT Parameters in LVDS Mode  
Valid Time (tV)  
Propagation Delay (tPD)  
Rise Time (tR) (20% to 80%)  
Fall Time (tF) (20% to 80%)  
Full  
Full  
25°C  
25°C  
Full  
IV  
I
V
2.0  
ns  
ns  
ns  
ns  
ns  
3.2  
.5  
.5  
2.7  
.5  
14  
4.3  
3.8  
V
DCO Propagation Delay (tCPD  
)
VI  
IV  
VI  
1.8  
Data to DCO Skew (tPD – tCPD  
)
ns  
Cycles  
Full  
Full  
Pipeline Latency  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
V
V
1.2  
0.25  
ps  
ps rms  
25°C  
25°C  
Measured Preliminary Performance : FFT 65MHz Ain at 170MSPS  
-4-  
4/01/2002 REV. PrG  
PRELIMINARY TECHNICAL DATA  
AD9430  
AD9430 Timing Diagram  
REV. PrG 4/01/2002  
-5-  
PRELIMINARY TECHNICAL DATA  
AD9430  
ABSOLUTE MAXIMUM RATINGS  
EXPLANATION OF TEST LEVELS  
Test Level  
AVDD, DRVDD.. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 V  
Analog Inputs . . . . . . . . . . .. . .. . . –0.5 V to AVDD + 0.5 V  
Digital Inputs . . .. . . . . . . . .. . . .. –0.5 V to DRVDD + 0.5 V  
REFIN Inputs . . . . . . . . . . . . . . . . –0.5 V to AVDD + 0.5 V  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating Temperature . . . . . . . . . . ... . . . . . –55C to +125C  
Storage Temperature . . . . . . . . . . . . . ... . . . . –65C to +150C  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . 150C  
Maximum Case Temperature . . . . . . . . . . . . . . . . . . . ..150C  
I
100% production tested.  
II 100% production tested at 25C and sample tested at  
specified temperatures.  
III Sample tested only.  
IV Parameter is guaranteed by design and characterization  
testing.  
V Parameter is a typical value only.  
VI 100% production tested at 25C; guaranteed by design  
and characterization testing for industrial temperature  
range; 100% production tested at temperature extremes  
for military devices.  
qJA2 . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 25C/W, 32C/W  
NOTES  
1 Stresses above those listed under Absolute Maximum Ratings may  
cause  
permanent damage to the device. This is a stress rating only; functional  
operation of the device at these or any other conditions outside of those  
indicated in the operation sections of this specification is not implied.  
Exposure to absolute maximum ratings for extended periods may affect  
device reliability.  
2 Typical qJA = 32C/W (heat slug not soldered), Typical qJA =  
25C/W (heat slug soldered), for multilayer board in still air.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD9430 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
ORDERING GUIDE  
Model  
Temperature Range Package Option  
AD9430BSV-170  
–40°C to +85°C  
TQFP–100  
AD9430/PCB-CMOS  
+25°C  
Evaluation Board  
(CMOS Mode)  
Table 1. AD9430 Output Select Coding  
S1  
(Data  
S2  
S4  
S5  
Mode  
(LVDS/CMOS (Select  
(Full Scale  
Format  
Output Mode  
Select )  
Interleaved or  
Adjust)  
Select)1  
Parallel Mode)2  
1
0
X
X
X
X
X
X
0
0
1
X
X
1
0
X
X
X
X
X
X
X
1
2’s Complement  
Offset Binary  
Dual Mode CMOS Interleaved  
Dual Mode CMOS Parallel  
LVDS Mode  
Full Scale -> .766 Vpp differential  
1.533 Vpp Single- Ended  
Full Scale -> 1.533 Vpp differential  
X
X
X
X
0
Notes:  
1
X = Don’t Care  
S1-S5 all have 30K resistive pulldowns on chip  
2In interleaved mode output data on port A is offset from output data changes on port B by ½ output clock cycle.  
Interleaved mode  
Parallel Mode  
-6-  
4/01/2002 REV. PrG  
PRELIMINARY TECHNICAL DATA  
AD9430  
(MSB)  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
1
2
DRVDD  
DRGND  
D8_T  
D8_C  
D7_T  
D7_C  
D6_T  
D6_C  
DRGND  
D5_T  
D5_C  
DCO  
S5  
DNC  
3
S4  
4
AGND  
S2  
5
6
S1  
7
LVDSBIAS  
8
AVDD  
AGND  
SENSE  
9
10  
11  
12  
13  
14  
15  
16  
VREF  
AGND  
AGND  
AD9430  
LVDS PINOUT  
TOP VIEW  
DCO  
(Not to Scale)  
DRVDD  
DRGND  
D4_T  
D4_C  
D3_T  
D3_C  
D2_T  
AVDD  
AVDD  
AGND  
AGND  
AVDD  
59  
58  
57  
56  
55  
54  
53  
17  
18  
19  
20  
21  
22  
23  
24  
25  
AVDD  
AGND  
AIN  
D2_C  
DRVDD  
DRGND  
AIN  
AGND  
AVDD  
AGND  
52 D1_T  
51  
D1_C  
AD9430 LVDS Mode Pinout  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
1
DRVDD  
DRGND  
DA4  
S5  
DNC  
S4  
2
3
4
5
6
7
8
9
DA3  
AGND  
S2  
DA2  
DA1  
S1  
DA0  
DNC  
DNC  
AVDD  
AGND  
SENSE  
DRGND  
DNC  
10  
11  
12  
13  
14  
15  
16  
DNC  
VREF  
AGND  
AGND  
AVDD  
AVDD  
AD9430  
CMOS PINOUT  
TOP VIEW  
DCO  
DCO  
DRVDD  
DRGND  
OR_B  
DB11 (MSB)  
DB10  
DB9  
(Not to Scale)  
AGND  
AGND  
AVDD  
59  
58  
57  
56  
55  
54  
53  
52  
51  
17  
18  
19  
20  
21  
22  
23  
24  
25  
AVDD  
AGND  
AIN  
DB8  
DB7  
DRVDD  
DRGND  
DB6  
AIN  
AGND  
AVDD  
AGND  
DB5  
AD9430 CMOS Dual Mode Pinout  
REV. PrG 4/01/2002  
-7-  
PRELIMINARY TECHNICAL DATA  
AD9430  
PIN FUNCTION DESCRIPTIONS (CMOS mode)  
CMOS Mode  
Pin Number  
2,7,42,43,65,66,68  
1
Function in CMOS Mode  
Name  
DNC  
S5  
Do not connect  
Full Scale Adjust pin : ‘1’ sets FS =.766 Vpp differential,  
‘0’ sets FS = 1.533 Vpp differential  
3
S4  
Interlaced or parallel output mode. (only in Dual Port mode  
operation) HIGH = data arrives in channel A at falling edge of clock  
and data arrives in channel A at rising edge of clock. LOW = data  
arrives in channels A and B at rising edge of clock.  
Output Mode select. Low = Dual Port, CMOS; High = LVDS  
Data format select. Low = Binary, High = Two’s compliment  
3.3V analog supply. (3.0V to 3.6V)  
5
6
S2  
S1  
AVDD  
8,14,15,18,19,24,27,28,29,34,  
39,40,88,89,90,94,95,98,99  
4,9,12,13,16,17,20,23,25,26,3  
AGND  
Analog Ground  
0,31,35,38,41,86,87,91,92,93,  
96,97,100  
10  
11  
21  
22  
32  
SENSE  
VREF  
VIN+  
VIN-  
Control Pin for Reference , Full Scale  
1.235 Reference I/O - function dependent on REFSENSE  
Analog input – true.  
Analog input – compliment.  
Data sync (input) – true. Aligns output channels so that data from  
channel A represents a sample that is prior from data in channel B,  
taking into account the pipeline delay. (See timing diagram). Tie  
LOW if not used.  
DS+  
33  
36  
37  
44  
DS-  
Data sync (input) – compliment. Tie HIGH if not used.  
Clock input – true.  
Clock input – compliment.  
B Port Output Data Bit (LSB)  
B Port Output Data Bit  
ENC+  
ENC-  
DB0  
45  
DB1  
46  
DB2  
B Port Output Data Bit  
49  
DB3  
B Port Output Data Bit  
50  
DB4  
B Port Output Data Bit  
51  
DB5  
B Port Output Data Bit  
52  
DB6  
B Port Output Data Bit  
55  
DB7  
B Port Output Data Bit  
56  
DB8  
B Port Output Data Bit  
57  
DB9  
B Port Output Data Bit  
58  
59  
60  
DB10  
DB11  
OR_B  
DrGND  
DrVDD  
DCO-  
DCO+  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
DA8  
DA9  
DA10  
DA11  
OR_A  
B Port Output Data Bit  
B Port Output Data Bit (MSB)  
B Port Overrange  
48,53,61,67,74,82  
47,54,62,75,83  
Digital ground.  
3.3V digital output supply. (3.0V to 3.6V)  
Data Clock output – compliment.  
Data Clock output – true.  
A port Output Data Bit (LSB)  
A port Output Data Bit  
A port Output Data Bit  
A port Output Data Bit  
A port Output Data Bit  
A port Output Data Bit  
A port Output Data Bit  
A port Output Data Bit  
A port Output Data Bit  
A port Output Data Bit  
A port Output Data Bit  
A port Output Data Bit (MSB)  
A port Overrange  
63  
64  
69  
70  
71  
72  
73  
76  
77  
78  
79  
80  
81  
84  
85  
-8-  
4/01/2002 REV. PrG  
PRELIMINARY TECHNICAL DATA  
AD9430  
PIN FUNCTION DESCRIPTIONS (LVDS mode )  
LVDS Mode  
Pin Number  
2,42,43,44,45,46  
1
Function in LVDS Mode  
Name  
DNC  
S5  
Do not connect  
Full Scale Adjust pin : ‘1’ sets FS =.766 Vpp differential,  
‘0’ sets FS = 1.533 Vpp differential  
3
S4  
Interlaced or parallel output mode. (only in Dual Port mode  
operation) HIGH = data arrives in channel A at falling edge of clock  
and data arrives in channelA at rising edge of clock. LOW = data  
arrives in channels A and B at rising edge of clock.  
5
6
7
S2  
S1  
Output Mode select. Low = Dual Port, CMOS; High = LVDS  
Data format select. Low = Binary, High = Two’s compliment  
LVDSBIAS Sets LVDS Output Current = 3.5mA  
(Place 3.7K RSET resistor from LVDSBIAS to ground)  
3.3V analog supply. (3.0V to 3.6V)  
8,14,15,18,19,24,27,28,29,34,  
AVDD  
39,40,88,89,90,94,95,98,99  
4,9,12,13,16,17,20,23,25,26,3  
AGND  
Analog Ground  
0,31,35,38,41,86,87,91,92,93,  
96,97,100  
10  
11  
21  
22  
32  
33  
SENSE  
VREF  
VIN+  
VIN-  
DS+  
Control Pin for Reference , Full Scale  
1.235 Reference I/O - function dependent on REFSENSE  
Analog input – true.  
Analog input – compliment.  
Data sync (input) – Not used in LVDS mode.Tie LOW .  
Data sync (input) – compliment. Not used in LVDS mode.Tie HIGH.  
DS-  
36  
37  
ENC+  
ENC-  
DrVDD  
Clock input – true.  
Clock input – compliment. (LVPECL levels)  
3.3V digital output supply.  
(LVPECL levels)  
47,54,62,75,83  
48,53,61,67,74,82  
DrGND  
D0_C  
D0_T  
D1_C  
D1_T  
D2_C  
D2_T  
D3_C  
D3_T  
D4_C  
D4_T  
DCO-  
DCO+  
D5_C  
D5_T  
D6_C  
D6_T  
D7_C  
D7_T  
D8_C  
D8_T  
D9_C  
D9_T  
D10_C  
D10_T  
D11_C  
D11_T  
OR_C  
OR_T  
Digital ground.  
D0 complement output bit (LSB)  
D0 true output bit (LSB)  
D1 complement output bit  
D1 true output bit  
D2 complement output bit (LVDS Levels)  
D2 true output bit (LVDS Levels)  
D3 complement output bit (LVDS Levels)  
D3 true output bit (LVDS Levels)  
D4 complement output bit (LVDS Levels)  
D4 true output bit (LVDS Levels)  
Data Clock output – compliment. (LVDS Levels)  
Data Clock output – true.  
D5 complement output bit (LVDS Levels)  
D5 true output bit (LVDS Levels)  
D6 complement output bit (LVDS Levels)  
D6 true output bit (LVDS Levels)  
D7 complement output bit (LVDS Levels)  
D7 true output bit (LVDS Levels)  
D8 complement output bit (LVDS Levels)  
D8 true output bit (LVDS Levels)  
D9 complement output bit (LVDS Levels)  
D9 true output bit (LVDS Levels)  
D10 complement output bit (LVDS Levels)  
D10 true output bit (LVDS Levels)  
D11 complement output bit (LVDS Levels) MSB  
D11 true output bit (LVDS Levels) MSB  
Overrange complement output bit (LVDS Levels)  
Overrange true output bit (LVDS Levels)  
49  
50  
51  
52  
55  
56  
57  
58  
59  
60  
63  
64  
65  
66  
68  
69  
70  
71  
72  
73  
76  
77  
78  
79  
80  
81  
84  
85  
(LVDS Levels)  
(LVDS Levels)  
(LVDS Levels)  
(LVDS Levels)  
(LVDS Levels)  
REV. PrG 4/01/2002  
-9-  
PRELIMINARY TECHNICAL DATA  
AD9430  
TERMINOLOGY  
Analog Bandwidth  
The analog input frequency at which the spectral power of  
the fundamental frequency (as determined by the FFT  
analysis) is reduced by 3 dB.  
Full-Scale Input Power  
Expressed in dBm. Computed using the following equation:  
2
æ
ö
V
Fullscalrems  
ç
ç
÷
Aperture Delay  
÷
÷
÷
ZInput  
PowerFullscale= 10log  
The delay between the 50% point of the rising edge of the  
ENCODE command and the instant at which the analog  
input is sampled.  
ç
ç
.001  
ç
÷
è
ø
Gain Error  
Aperture Uncertainty (Jitter)  
Gain error is the difference between the measured and ideal  
full scale input voltage range of the ADC.  
The sample-to-sample variation in aperture delay.  
Crosstalk  
Harmonic Distortion, Second  
The ratio of the rms signal amplitude to the rms value of the  
second harmonic component, reported in dBc.  
Coupling onto one channel being driven by a low level (–40  
dBFS) signal when the adjacent interfering channel is driven  
by a full-scale signal.  
Harmonic Distortion, Third  
The ratio of the rms signal amplitude to the rms value of the  
third harmonic component, reported in dBc.  
Differential Analog Input Resistance, Differential Analog  
Input Capacitance and Differential Analog Input  
Impedance  
The real and complex impedances measured at each analog  
input port. The resistance is measured statically and the  
capacitance and differential input impedances are measured  
with a network analyzer.  
Integral Nonlinearity  
The deviation of the transfer function from a reference line  
measured in fractions of 1 LSB using a “best straight line”  
determined by a least square curve fit.  
Differential Analog Input Voltage Range  
Minimum Conversion Rate  
The peak-to-peak differential voltage that must be applied to  
the converter to generate a full-scale response. Peak  
differential voltage is computed by observing the voltage on  
a single pin and subtracting the voltage from the other pin,  
which is 180 degrees out of phase. Peak-to-peak differential  
is computed by rotating the inputs phase 180 degrees and  
again taking the peak measurement. The difference is then  
computed between both peak measurements.  
The encode rate at which the SNR of the lowest analog  
signal frequency drops by no more than 3 dB below the  
guaranteed limit.  
Maximum Conversion Rate  
The encode rate at which parametric testing is performed.  
Output Propagation Delay  
The delay between a differential crossing of ENCODE and  
ENCODE and the time when all output data bits are within  
valid logic levels.  
Differential Nonlinearity  
The deviation of any code width from an ideal 1 LSB step.  
Effective Number of Bits  
The effective number of bits (ENOB) is calculated from the  
measured SNR based on the equation:  
Noise (for Any Range within the ADC)  
FSdBm - SNRdBc - SignadlBFS  
æ
ö
÷
Vnoise = Z *.001*10èç  
10  
ø
SNRMEASURED- 1.76dB  
ENOB =  
6.02  
Where Z is the input impedance, FS is the full scale of the  
device for the frequency in question, SNR is the value for the  
particular input level, and Signal is the signal level within  
the ADC reported in dB below full scale. This value includes  
both thermal and quantization noise.  
ENCODE Pulsewidth / Duty Cycle  
Pulsewidth high is the minimum amount of time that the  
ENCODE pulse should be left in Logic 1 state to achieve  
rated performance; pulsewidth low is the minimum time  
ENCODE pulse should be left in low state. See timing  
implications of changing tENCH in text. At a given clock rate,  
these specifica-tions define an acceptable ENCODE duty  
cycle.  
Power Supply Rejection Ratio  
The ratio of a change in input offset voltage to a change in  
power supply voltage.  
Signal -to-Noise-and-Distortion (SINAD)  
The ratio of the rms signal amplitude (set 1 dB below full  
scale) to the rms value of the sum of all other spectral  
components, including harmonics but excluding dc.  
-10-  
4/01/2002 REV. PrG  
PRELIMINARY TECHNICAL DATA  
AD9430  
Signal -to-Noise Ratio (without Harmonics)  
The ratio of the rms signal amplitude (set at 1 dB below full  
scale) to the rms value of the sum of all other spectral  
components, excluding the first five harmonics and dc.  
Spurious-Free Dynamic Range (SFDR)  
The ratio of the rms signal amplitude to the rms value of the  
peak spurious spectral component. The peak spurious  
component may or may not be a harmonic. May be reported  
in dBc (i.e., degrades as signal level is lowered), or dBFS  
(always related back to converter full scale).  
Figure X Analog Inputs  
Two-Tone Intermodulation Distortion Rejection  
The ratio of the rms value of either input tone to the rms  
value of the worst third order intermodulation product;  
reported in dBc.  
Two-Tone SFDR  
The ratio of the rms value of either input tone to the rms  
value of the peak spurious component. The peak spurious  
component may or may not be an IMD product. May be  
reported in dBc (i.e., degrades as signal level is lowered), or  
in dBFS (always related back to converter full scale).  
Figure X S1-S5 Inputs  
Worst Other Spur  
The ratio of the rms signal amplitude to the rms value of the  
worst spurious component (excluding the second and third  
harmonic) reported in dBc.  
Transient Response Time  
Transient response is defined as the time it takes for the  
ADC to reacquire the analog input after a transient from  
10% above negative full scale to 10% below positive full  
scale.  
Out-of-Range Recovery Time  
Figure X VREF, SENSE I/O  
Out of range recovery time is the time it takes for the ADC  
to reacquire the analog input after a transient from 10%  
above positive full scale to 10% above negative full scale, or  
from 10% below negative full scale to 10% below positive  
full scale.  
EQUIVALENT CIRCUITS  
Figure X Data Outputs (CMOS Mode)  
Figure X Encode and DS Inputs  
Figure X Data Outputs (LVDS Mode)  
REV. PrG 4/01/2002  
-11-  
PRELIMINARY TECHNICAL DATA  
AD9430  
APPLICATION NOTES  
THEORY OF OPERATION  
differential analog inputs for applications that require a  
single-ended-to-differential conversion. Both analog inputs  
are self-biased by an on-chip resistor divider to a nominal  
2.8 V. (See Equivalent Circuits section TBD.)  
Special care was taken in the design of the Analog Input  
section of the AD9430 to prevent damage and corruption of  
data when the input is overdriven. The nominal input range  
is 1.5 V diff p-p. The nominal differential input range is 768  
mV p-p × 2.  
The AD9430 architecture is optimized for high speed and  
ease of use. The analog inputs drive an integrated high  
bandwidth track-and-hold circuit that samples the signal  
prior to quantization by the 12-bit core. For ease of use the  
part includes an onboard reference and input logic that  
accepts TTL, CMOS, or LVPECL levels. The digital outputs  
logic levels are user selectable as standard 3V CMOS or  
LVDS (ANSI-644 compatible) via pin S2.  
USING THE AD9430  
ENCODE Input  
Any high speed A/D converter is extremely sensitive to the  
quality of the sampling clock provided by the user. A  
track/hold circuit is essentially a mixer, and any noise,  
distortion, or timing jitter on the clock will be combined  
with the desired signal at the A/D output. For that reason,  
considerable care has been taken in the design of the  
ENCODE input of the AD9430, and the user is advised to  
give commensurate thought to the clock source.  
The AD9430 has an internal clock duty cycle stabilization  
circuit that locks to the rising edge of ENCODE (falling  
edge of ENCODE if driven differentially), and optimizes  
timing internally. This allows for a wide range of input duty  
cycles at the input without degrading performance. Jitter in  
the rising edge of the input is still of paramount concern, and  
is not reduced by the internal stabilization circuit. This  
circuit is always on, and cannot be disabled by the user.  
The ENCODE and ENCODE inputs are internally biased to  
1.5V (nominal), and support either differential or single–  
ended signals. For best dynamic performance, a differential  
signal is recommended. Good performance is obtained  
using an MC10EL16 in the circuit to drive the  
Differential Analog Input Range  
encode inputs , as illustrated in figure below.  
Single Ended Analog Input Range  
Driving Encode with EL16  
Analog Input  
The analog input to the AD9430 is a differential buffer. For  
____  
best dynamic performance, impedances at AIN and AIN  
should match. The analog input has been optimized to  
provide superior wideband performance and requires that the  
analog inputs be driven differentially. SNR and SINAD  
performance will degrade significantly (~6dB) if the analog  
input is driven with a single-ended signal. A wideband  
transformer such as Minicircuits ADT1-1WT can be used to  
provide the  
-12-  
4/01/2002 REV. PrG  
PRELIMINARY TECHNICAL DATA  
AD9430  
Digital Outputs  
Voltage Reference  
The off chip drivers on the chip can be configured by the  
user to provide CMOS or LVDS compatible output levels  
via pin S2.  
A stable and accurate 1.25 V voltage reference is built into  
the AD9430 (VREF). The analog input Full Scale Range is  
linearly proportional to the voltage at VREF. VREF (and in  
turn input full scale ) can be varied by adding an external  
resistor network at VREF, SENSE and GROUND. (See  
figure X ) . No appreciable degradation in performance  
occurs when VREF is adjusted ±5%. Note that an external  
reference can be used by connecting the SENSE pin to VDD  
(disabling internal reference) and driving VREF with the  
external reference source. A .1uF capacitor to ground is  
recommended at VREF pin in internal and external reference  
applications.  
The CMOS digital outputs (S2=0) are TTL/CMOS-  
compatible for lower power consumption. The outputs are  
biased from a separate supply (VDD), allowing easy  
interface to external logic. The outputs are CMOS devices  
which will swing from ground to VDD (with no dc load). It  
is recommended to minimize the capacitive load the ADC  
drives by keeping the output traces short (<1 inch, for a total  
CLOAD < 5 pF). When operating in cmos mode it is also  
recommended to place low value (220 ohm) series damping  
resistors on the data lines to reduce switching transient  
effects on performance.  
LVDS outputs are available when S2=VDD and a 3.7K  
RSET resistor is placed at pin 7 ( LVDSBIAS) to ground .  
This resistor sets the output current at each output equal to a  
nominal 3.5mA ( 10* IRSET) . A 100 ohm differential  
termination resistor placed at the lvds receiver inputs results  
in a nominal 350mV voltage swing at the receiver. Note that  
when operating in LVDS mode the output supply must be at  
a dc potential greater than or equal to the analog supply level  
(AVDD). This can be accomplished simply by biasing the  
two supplies from the same power plane or by tying the two  
supplies on the pcb through an inductor. When operating in  
CMOS mode this is not required and separate supplies are  
recommended.  
Simplified Voltage Reference Equivalent Circuit  
Clock Outputs (DCO+, DCO-)  
The input ENCODE is divided by two (in CMOS mode) and  
available off-chip at DCO+ and DCO-. These clocks can  
facilitate latching off-chip, providing a low skew clocking  
solution (see timing diagram). The on-chip clock buffers  
should not drive more than 5 pF of capacitance to limit  
switching transient effects on performance.  
Note that the Outputs clocks are CMOS levels when CMOS  
mode is selected(S2=0) and are LVDS levels when in LVDS  
mode(S2=VDD). (Requiring a 100ohm differential  
termination at receiver in LVDS mode). The output clock in  
LVDS mode switches at the encode rate.  
REV. PrG 4/01/2002  
-13-  
PRELIMINARY TECHNICAL DATA  
AD9430  
AD9430 EVALUATION BOARD  
> 0.5 V p-p. Power to the EL16 is set at jumper E47. E47–E45  
powers the buffer from AVDD, E47–E46 powers the buffer from  
VCLK/V_XTAL.  
The AD9430 evaluation board offers an easy way to test the  
AD9430. It requires a clock source, an analog input signal, and  
a 3.3 V power supply. The clock source is buffered on the board  
to provide the clocks for the ADC, an on-board DAC, latches,  
and a data ready signal. The digital outputs and output clocks  
are available at two 40-pin connectors, P3 and P4. The board  
has several different modes of operation, and is shipped in the  
following configuration:  
Voltage Reference  
The AD9430 has an internal 1.23 V voltage reference. The  
ADC uses the internal reference as the default when jumpers  
E24–E27 and E25–E26 are left open. The full scale can be  
increased by placing optional resistor R3. The required value  
would vary with process and needs to be tuned for the specific  
application. Full scale can similarly be reduced by placing R4;  
tuning would be required here as well. An external reference can  
be used by shorting the SENSE pin to 3.3 V (place jumper  
E26–E25). E27–E24 jumper connects the ADC VREF pin to  
EXT_VREF pin at the power connector.  
Offset Binary  
Internal Voltage Reference  
CMOS Parallel Timing  
Full-Scale Adjust = Low  
Data Format Select  
Power Connector  
Data Format Select sets the output data format of the ADC. Set-  
ting DFS (E1–E2) low sets the output format to be offset binary;  
setting DFS high (E1–E3) sets the output to two’s complement.  
Power is supplied to the board via a detachable 12-lead power  
strip (three 4-pin blocks).  
Table II. Power Connector  
I/P  
Output timing is set at E11–E13. E12–E11 sets S4 low for  
parallel output timing mode. E11–E13 sets S4 high for interleaved  
timing mode.  
AVDD 3.3 V  
DRVDD 3.3 V  
VDL 3.3 V  
Analog Supply for ADC (~ 350 mA)  
Output Supply for ADC (~ 28 mA)  
Supply for Support Logic and DAC (~350 mA)  
Optional External Reference Input  
Timing Controls  
EXT_VREF*  
Flexibility in latch clocking and output timing is accomplished  
by allowing for clock inversion at the timing controls section of  
the PCB. Each buffered clock is buffered by an XOR and can be  
inverted by moving the appropriate jumper for that clock.  
VCLK/V_XTAL Supply for Clock Buffer/Optional XTAL  
VAMP Supply for Optional Amp  
*LVEL16 clock buffer can be powered from AVDD or VCLK at E47 jumper  
(AVDD, DrVDD,VDL are the minimum required power connections).  
Data Outputs  
Analog Inputs  
The ADC digital outputs are latched on the board by four LVT574s;  
the latch outputs are available at the two 40-pin connectors at pins  
11–33 on P23 (channel A) and pins 11–33 on P3 (channel B).  
The latch output clocks (data ready) are available at Pin 37 on  
P23 (channel A) and Pin 37 on P3 (channel B). The data ready  
clocks can be inverted at the timing controls section if needed.  
The evaluation board accepts a 1.3 V p-p analog input signal  
centered at ground at SMB connector J4. This signal is terminated  
to ground through 50 by R16. The input can be alternatively  
terminated at T1 transformer secondary by R13, R14. T1 is a  
wideband RF transformer providing the single-ended to differential  
conversion allowing the ADC to be driven differentially, minimizing  
even order harmonics. An optional second transformer T2 can be  
placed following T1 if desired. This would provide some perfor-  
mance advantage (~1–2 dB) for high analog input frequencies  
(>100 MHz). If T2 is placed, two shorting traces at the pads would  
need to be cut. The analog signal is low pass filtered by R41,  
C12, and R42, C13 at the ADC input.  
: 4.6nS  
C1 FREQ  
84.65608MHz  
Gain  
1
2
Full scale is set at E17–E19, E17–E18 sets S5 low, full scale =  
1.5 V differential; E17–E19 sets S5 high, full scale = 0.75 V  
differential.  
Encode  
The encode clock is terminated to ground through 50 at SMB  
connector J5. The input is ac-coupled to a high-speed differential  
receiver (LVEL16) which provides the required low-jitter, fast  
edge rates needed for optimum performance. J5 input should be  
CH1  
2.00VCH2  
2.00VM 5.00nS  
CH2  
Figure 13. Data Output and Clock @ 80-Pin Connector  
-14-  
4/01/2002 REV. PrG  
PRELIMINARY TECHNICAL DATA  
AD9430  
DAC Outputs  
Optional Amplifier  
Each channel is reconstructed by an on-board dual-channel DAC,  
an AD9753. This DAC is intended to assist in debug—it should  
not be used to measure the performance of the ADC. It is a current  
output DAC with on-board 50 termination resistors. The  
figure below is representative of the DAC output with a full-scale  
analog input. The scope setting is low bandwidth.  
The footprint for transformer T2 can be modified to accept a  
wideband differential amplifier (AD8350) for low frequency  
applications where gain is required. Note that Pin 2 would need  
to be lifted and left floating for operation. Input transformer T1  
would need to be modified to a 4:1 for impedance matching and  
ADC input filtering would enhance performance (see AD8350  
data sheet). SNR/SINAD Performance of 61 dB/60 dB is pos-  
sible and would start to degrade at about 30 MHz.  
C1 FREQ  
10.33592MHz  
CUT TRACE  
C1 PK-PK  
448mV  
1
AD9430  
1
CH1 2.00mV⍀  
M 25.0nS CH1  
248mV  
CUT TRACE  
Figure 14. DAC Output  
Encode Xtal  
An optional xtal oscillator can be placed on the board to serve  
as a clock source for the PCB. Power to the xtal is through the  
VCLK/VXTAL pin at the power connector. If an oscillator is used,  
ensure proper termination for best results. The board has been  
tested with a Valpey Fisher VF561 and a Vectron JN00158-163.84.  
Test results for the VF561 are shown below.  
Figure 16. Using the AD8350 on the AD9430 PCB  
0
ENCODE 163.84MHz  
ANALOG 65.02MHz  
SNR 63.93dB  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
SINAD 63.87dB  
FUND 0.45dBFS  
2ND 85.62dBc  
3RD 91.31dBc  
4TH 90.54dBc  
5TH 90.56dBc  
6TH 91.12dBc  
THD 82.21dBc  
SFDR 83.93dBc  
SAMPLES 8k  
NOISEFLR 100.44dBFS  
WORSTSP 83.93dBc  
0
20  
40  
60  
80  
MHz  
Figure 15. FFT—Using VF561 XTAL as Clock Source  
REV. PrG 4/01/2002  
-15-  
PRELIMINARY TECHNICAL DATA  
AD9430  
Table III. Evaluation Board Bill of Materials  
No. Qty.  
Reference Designator  
Device  
Package  
Value  
Comments  
1
45  
C1, C3–C11, C15–C17,  
C19–C29, C31–C48,  
C58–C62  
Capacitor  
0603  
0.1 µF  
C43, C47  
Not Placed  
2
3
4
5
6
7
0
0
1
0
7
9
C2  
C12, C13  
C14  
C18  
C30, C49, C63–C67  
E3–E1–E2  
E19–E17–E18  
E13–E11–E12  
E26–E25–E27–E24  
E46–E47–E45  
E35–E33–E34  
E32–E30–E31  
E29–E23–E28  
E22–E16–E21  
J1, J2, J3, J4, J5, J6  
P3, P23  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
0603  
0603  
0603  
0603  
CAPL  
10 pF  
20 pF  
0.01 µF  
1 µF  
Not Placed  
Not Placed  
Capacitor  
10 µF  
C30 Not Placed  
3-Pin Header/Jumper  
3-Pin Header/Jumper  
3-Pin Header/Jumper  
4-Pin Header  
3-Pin Header/Jumper  
3-Pin Header/Jumper  
3-Pin Header/Jumper  
3-Pin Header/Jumper  
3-Pin Header/Jumper  
SMB  
8
9
10  
5
2
3
SMB  
J1 Not Placed  
Wieland  
40-Pin Header  
4-Pin Power Connector Post  
P4, P21, P22  
25.531.3425.0  
Detachable  
Connector  
0603  
25.602.5453.0  
50 Ω  
Wieland  
R1, R13, R14  
Not Placed  
11  
8
R1, R5, R13, R14, R16,  
Resistor  
R25, R27, R28, R41, R42  
R2, R3, R4  
12  
13  
1
8
Resistor  
Resistor  
0603  
0603  
3.9 kΩ  
100 Ω  
R3, R4 Not Placed  
R6–R8, R10, R15,  
R15, R21–R24, R38  
Not Placed  
R21–R24, R33–R36, R38  
R12, R30, R37  
R17, R18, R19, R20  
R26  
R29  
14  
15  
16  
17  
18  
5
4
1
1
7
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
0603  
0603  
0603  
0603  
0603  
0 Ω  
510 Ω  
2 kΩ  
390 Ω  
1 kΩ  
R31, R32, R39, R40, R43,  
R44, R45  
19  
20  
4
8
RZ1, RZ2, RZ3, RZ4  
RZ5, RZ6, RZ7, RZ8, RZ9,  
RZ10, RZ11, RZ12  
T1, T2  
Resistor Pack 220 Ω  
Resistor Pack 22 Ω  
SO16RES  
SO16RES  
742C163221JTR  
742C163220JTR  
CTS  
CTS  
21  
1
Transformer  
CD542  
Minicircuits  
ADT1–1WT  
ADC  
Clock Buffer  
Xor/Buffer  
Latch  
T2 Not Placed  
22  
23  
24  
25  
26  
1
1
1
4
1
U1  
U2  
U3  
AD9430BSV  
MC100LVEL16D  
74LCX86  
74LVT574  
AD9753AST  
TQFP100  
SO8NB  
SO14NB  
SO20  
U4, U5, U6, U7  
U9  
LQFP48  
DAC  
-16-  
4/01/2002 REV. PrG  
PRELIMINARY TECHNICAL DATA  
AD9430  
7 6  
7 7  
7 8  
7 9  
8 0  
8 1  
8 2  
8 3  
8 4  
8 5  
8 6  
8 7  
8 8  
8 9  
9 0  
9 1  
9 2  
9 3  
9 4  
9 5  
9 6  
9 7  
9 8  
9 9  
1 0 0  
5 0  
4 9  
4 8  
4 7  
4 6  
4 5  
4 4  
4 3  
4 2  
4 1  
4 0  
3 9  
3 8  
3 7  
3 6  
3 5  
3 4  
3 3  
3 2  
3 1  
3 0  
2 9  
2 8  
2 7  
2 6  
G N D  
V D D R  
G N D  
V D D R  
G N D  
G N D  
G N D  
V C C  
V C C  
V C C  
G N D  
G N D  
G N D  
V C C  
V C C  
G N D  
G N D  
V C C  
V C C  
G N D  
V C C  
G N D  
C L K  
C L K +  
G N D  
V C C  
G N D  
G N D  
V C C  
V C C  
V C C  
G N D  
P T M I C A 0 4  
P T M I C A 0 4 P T M I C A 0 4  
P 2 2  
P 4  
P 2 1  
Figure 17a. Evaluation Board Schematic  
REV. PrG 4/01/2002  
-17-  
PRELIMINARY TECHNICAL DATA  
AD9430  
V
CC  
+
C64  
10F  
C16  
0.1F  
C17  
0.1F  
C24  
0.1F  
C27  
0.1F  
C26  
0.1F  
C29  
0.1F  
C19  
0.1F  
C21  
0.1F  
C25  
0.1F  
C31  
0.1F  
C35  
0.1F  
C20  
0.1F  
C23  
0.1F  
C22  
0.1F  
C28  
0.1F  
C32  
0.1F  
GND  
VDL  
+
C67  
10F  
C44  
0.1F  
C42  
0.1F  
C41  
0.1F  
C15  
0.1F  
C37  
0.1F  
GND  
DRV  
DD  
VCLK  
VREF  
GND  
VAMP  
+
C61  
0.1F  
C62  
0.1F  
C60  
0.1F  
+
C65  
10F  
C14  
0.01F  
C59  
0.1F  
C58  
0.1F  
+
C66  
10F  
C49  
10F  
C48  
0.1F  
C63  
10F  
GND  
GND  
GND  
GND  
R15  
OPIN B  
OPIN B  
VCLK  
GND  
GND  
R21  
100⍀  
100⍀  
1
2
3
6
5
4
V
E/D  
NC  
VCLK  
CC  
R38  
100⍀  
OUTPUT B  
OUTPUT  
P1  
8
1
7
6
3
5
4
R22  
100⍀  
GND  
GND  
VCLK  
U8  
AD9430  
OPTIONAL AMP  
GND  
R38 FOR  
VF561 CRYSTAL  
R23  
100⍀  
P2  
2
U10  
R24  
100⍀  
GND  
VAMP  
OPIN  
OPTIONAL XTAL  
GND  
OPIN  
J6  
C34  
0.1U  
R25  
50⍀  
VOL  
GND  
GND  
J3  
E4Z  
VOL  
GND  
R28  
E40  
E37  
GND  
E41  
R44  
50⍀  
VOL  
R30  
0⍀  
GND  
GND  
C33  
0.1U  
1k⍀  
GND  
GND  
E39  
VOL  
GND  
GND  
C18  
0.1U  
C38  
.1U  
GND  
R26  
2k⍀  
R29  
392⍀  
E38  
RZ12  
R45  
1k⍀  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
VOL  
9
8
7
6
5
4
3
2
1
R43  
1k⍀  
10  
11  
12  
13  
14  
15  
16  
1
2
3
GND  
36  
35  
34  
33  
32  
31  
R37  
0⍀  
DYB  
DYA  
DY0  
DY1  
DY2  
DY3  
R31  
1k⍀  
DRA  
C40  
0.1U  
4
GND  
R32  
1k⍀  
VOL  
5
6
C48  
C45  
0.1U  
0.1U  
GND  
220  
GND  
AD9430  
RZ10  
GND  
RZ9  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
30  
29  
28  
27  
26  
25  
9
8
7
6
5
4
3
2
1
DY4  
DY5  
DY6  
DY7  
DY8  
DY9  
DY10  
DY11  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
7
8
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
10  
11  
12  
13  
14  
15  
16  
DX11  
DX10  
DX9  
DX8  
DX7  
DX6  
DX5  
DX4  
9
10  
11  
12  
220  
220  
RZ11  
R1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
DX3  
DX2  
DX1  
DX0  
DXA  
DXB  
R2  
R3  
R4  
R5  
R6  
R7  
VOL  
GND  
R8  
C35  
0.1U  
220  
Figure 17b. Evaluation Board Schematic  
-18-  
4/01/2002 REV. PrG  
PRELIMINARY TECHNICAL DATA  
AD9430  
Figure 18. PCB Top Side Silkscreen  
Figure 21. PCB Split Power Plane  
Figure 19. PCB Top Side Copper  
Figure 22. PCB Bottom Side Copper  
Figure 23. PCB Bottom Side Silkscreen  
Figure 20. PCB Ground Layer  
REV. PrG 4/01/2002  
-19-  
PRELIMINARY TECHNICAL DATA  
AD9430  
Troubleshooting  
If the board does not seem to be working correctly, try the following:  
The AD9430 Evaluation Board is provided as a design example  
for customers of Analog Devices, Inc. ADI makes no warranties,  
express, statutory, or implied, regarding merchantability or  
fitness for a particular purpose.  
Verify power at IC pins.  
Check that all jumpers are in the correct position for the  
desired mode of operation.  
Verify VREF is at 1.23 V.  
Try running Encode Clock and Analog Inputs at low speeds  
(10 MSPS/1 MHz) and monitor 574, DAC, and ADC outputs  
for toggling.  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
100-Lead TQFP (with Exposed Heat Sink)  
(TQFP-100)  
0.047 (1.20)  
MAX  
0.630 (16.00) SQ  
0.551 (14.00) SQ  
0.030 (0.75)  
0.024 (0.60)  
0.018 (0.45)  
100  
1
76  
76  
100  
1
75  
75  
SEATING  
PLANE  
TOP VIEW  
(PINS DOWN)  
CONDUCTIVE  
HEAT SINK  
50  
50  
25  
25  
26  
49  
49  
26  
0.041 (1.05)  
0.039 (1.00)  
0.037 (0.95)  
0.006 (0.15)  
0.002 (0.05)  
0.260 (6.00) NOM  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS.  
CENTER FIGURES ARE TYPICAL UNLESS  
OTHERWISE NOTED.  
0.011 (0.27)  
0.009 (0.22)  
0.007 (0.17)  
0.0197 (0.50)  
BSC  
7؇  
0؇  
NOTE:  
THE AD9430 HAS A CONDUCTIVE HEAT SLUG TO HELP DISSIPATE HEAT AND ENSURE RELIABLE OPERATION OF  
THE DEVICE OVER THE FULL INDUSTRIAL TEMPERATURE RANGE. THE SLUG IS EXPOSED ON THE BOTTOM OF  
THE PACKAGE AND ELECTRICALLY CONNECTED TO CHIP GROUND. IT IS RECOMMENDED THAT NO PCB SIGNAL  
TRACES OR VIAS BE LOCATED UNDER THE PACKAGE THAT COULD COME IN CONTACT WITH THE CONDUCTIVE  
SLUG. ATTACHING THE SLUG TO A GROUND PLANE WILL REDUCE THE JUNCTION TEMPERATURE OF THE DEVICE  
WHICH MAY BE BENEFICIAL IN HIGH TEMPERATURE ENVIRONMENTS.  
-20-  
4/01/2002 REV. PrG  

相关型号:

AD9430BST-170

IC 1-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP100, HEAT SINK, PLASTIC, TQFP-100, Analog to Digital Converter
ADI

AD9430BSV-170

12-Bit, 170 MSPS 3.3V A/D Converter
ADI

AD9430BSV-210

12-Bit, 170/210 MSPS 3.3 V A/D Converter
ADI

AD9430BSVZ-170

12-Bit, 170/210 MSPS 3.3 V A/D Converter
ADI

AD9430BSVZ-210

12-Bit, 170/210 MSPS 3.3 V A/D Converter
ADI

AD9430_10

12-Bit, 170/210 MSPS 3.3 V A/D Converter
ADI

AD9432

12-Bit, 80 MSPS/105 MSPS A/D Converter
ADI

AD9432/PCB

12-Bit, 80 MSPS/105 MSPS A/D Converter
ADI

AD9432BSQ-105

12-Bit, 80 MSPS/105 MSPS A/D Converter
ADI

AD9432BSQ-80

12-Bit, 80 MSPS/105 MSPS A/D Converter
ADI

AD9432BSQZ-80

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BST-100

IC 1-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP52, PLASTIC, LQFP-52, Analog to Digital Converter
ADI