AD9430_10 [ADI]

12-Bit, 170/210 MSPS 3.3 V A/D Converter; 12位,二百一分之一百七十〇 MSPS 3.3 V A / D转换器
AD9430_10
型号: AD9430_10
厂家: ADI    ADI
描述:

12-Bit, 170/210 MSPS 3.3 V A/D Converter
12位,二百一分之一百七十〇 MSPS 3.3 V A / D转换器

转换器
文件: 总44页 (文件大小:1513K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit, 170/210 MSPS  
3.3 V A/D Converter  
AD9430  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
SNR = 65 dB @ fIN = 70 MHz @ 210 MSPS  
ENOB of 10.6 @ fIN = 70 MHz @ 210 MSPS (–0.5 dBFS)  
SFDR = 80 dBc @ fIN = 70 MHz @ 210 MSPS (–0.5 dBFS)  
Excellent linearity:  
DRGND DRVDD  
AGND  
AVDD  
SENSE  
VREF  
AD9430  
SCALABLE  
REFERENCE  
DNL = 0.3 LSB (typical)  
INL = 0.5 LSB (typical)  
2 output data options:  
Demultiplexed 3.3 V CMOS outputs each @ 105 MSPS  
Interleaved or parallel data output option  
LVDS at 210 MSPS  
700 MHz full-power analog bandwidth  
On-chip reference and track-and-hold  
Power dissipation = 1.3 W typical @ 210 MSPS  
1.5 V input voltage range  
LVDS  
OUTPUTS  
ADC  
VIN+  
VIN–  
DATA,  
12  
TRACK-  
AND-HOLD  
12-BIT  
PIPELINE  
CORE  
OVERRANGE  
IN LVDS OR  
2-PORT CMOS  
CMOS  
OUTPUTS  
DS+  
DS–  
SELECT CMOS  
OR LVDS  
DCO+  
DCO–  
CLOCK  
MANAGEMENT  
CLK+  
CLK–  
3.3 V supply operation  
S1  
S2  
S4  
S5  
Output data format option  
Figure 1.  
Data sync input and data clock output provided  
Clock duty cycle stabilizer  
APPLICATIONS  
GENERAL DESCRIPTION  
Wireless and wired broadband communications  
Cable reverse path  
Communications test equipment  
Radar and satellite subsystems  
Power amplifier linearization  
The AD9430 is a 12-bit, monolithic, sampling analog-to-digital  
converter (ADC) optimized for high performance, low power,  
and ease of use. The product operates up to a 210 MSPS  
conversion rate and is optimized for outstanding dynamic  
performance in wideband carrier and broadband systems. All  
necessary functions, including a track-and-hold (T/H) and  
reference, are included on the chip to provide a complete  
conversion solution.  
PRODUCT HIGHLIGHTS  
1. High performance.  
Maintains 65 dB SNR @ 210 MSPS with a 65 MHz input.  
2. Low power.  
Consumes only 1.3 W @ 210 MSPS.  
3. Ease of use.  
The ADC requires a 3.3 V power supply and a differential  
ENCODE clock for full performance operation. The digital  
outputs are TTL/CMOS or LVDS compatible and support either  
twos complement or offset binary format. Separate output  
power supply pins support interfacing with 3.3 V CMOS logic.  
LVDS output data and output clock signal allow interface  
to current FPGA technology. The on-chip reference and  
sample-and-hold provide flexibility in system design. Use  
of a single 3.3 V supply simplifies system power supply  
design.  
Two output buses support demultiplexed data up to 105 MSPS  
rates in CMOS mode. A data sync input is supported for proper  
output data port alignment in CMOS mode, and a data clock  
output is available for proper output data timing. In LVDS  
mode, the chip provides data at the ENCODE clock rate.  
4. Out of range (OR) feature.  
The OR output bit indicates when the input signal is  
beyond the selected input range.  
5. Pin compatible with 10-bit AD9411 (LVDS only).  
Fabricated on an advanced BiCMOS process, the AD9430 is  
available in a 100-lead, surface-mount plastic package  
(100 e-PAD TQFP) specified over the industrial temperature  
range (–40°C to +85°C).  
.
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2005–2010 Analog Devices, Inc. All rights reserved.  
AD9430  
TABLE OF CONTENTS  
DC Specifications ............................................................................. 4  
Analog Inputs ............................................................................. 28  
Gain.............................................................................................. 28  
ENCODE..................................................................................... 28  
Voltage Reference ....................................................................... 28  
Data Format Select..................................................................... 28  
I/P Timing Select........................................................................ 28  
Timing Controls ......................................................................... 28  
CMOS Data Outputs.................................................................. 29  
Crystal Oscillator........................................................................ 29  
Optional Amplifier..................................................................... 29  
Troubleshooting.......................................................................... 30  
Evaluation Board, LVDS Mode .................................................... 36  
Power Connector........................................................................ 36  
Analog Inputs ............................................................................. 36  
Gain.............................................................................................. 36  
Clock ............................................................................................ 36  
Voltage Reference ....................................................................... 36  
Data Format Select..................................................................... 36  
Data Outputs............................................................................... 36  
Crystal Oscillator........................................................................ 36  
Outline Dimensions....................................................................... 42  
Ordering Guide .......................................................................... 42  
AC Specifications.............................................................................. 6  
Digital Specifications........................................................................ 7  
Switching Specifications .................................................................. 8  
Timing Diagrams.............................................................................. 9  
Absolute Maximum Ratings.......................................................... 10  
Explanation of Test Levels......................................................... 10  
ESD Caution................................................................................ 10  
Pin Configurations and Function Descriptions ......................... 11  
Equivalent Circuits......................................................................... 15  
Typical Performance Characteristics ........................................... 16  
Terminology .................................................................................... 23  
Application Notes ........................................................................... 25  
Theory of Operation .................................................................. 25  
Encode Input............................................................................... 25  
Analog Input ............................................................................... 26  
DS Inputs (DS+, DS–)................................................................ 26  
CMOS Outputs ........................................................................... 26  
LVDS Outputs............................................................................. 27  
Voltage Reference ....................................................................... 27  
Noise Power Ratio Testing (NPR)............................................ 27  
Evaluation Board, CMOS Mode................................................... 28  
Power Connector........................................................................ 28  
Rev. E | Page 2 of 44  
AD9430  
REVISION HISTORY  
Add New AD9430 EVALUATION BOARD, LVDS MODE  
Section ......................................................................................... 27  
Updated OUTLINE DIMENSIONS ........................................... 32  
9/10—Rev. D to Rev. E  
Change to General Description Section.........................................1  
Change to Operating Temperature Range Parameter, Table 5..10  
Change to Figure 4 ..........................................................................11  
Change to Figure 5 ..........................................................................13  
Added Exposed Pad Notation to Outline Dimensions ..............42  
3/03—Rev. 0 to Rev. A  
Upgraded for AD9430-210 ..............................................Universal  
Changes to FEATURES ................................................................. 1  
Changes to PRODUCT HIGHLIGHTS ...................................... 1  
Changes to SPECIFICATIONS ..................................................... 2  
Changes to Figure 2 ........................................................................ 5  
Changes to ORDERING GUIDE .................................................. 6  
Change to PIN FUNCTION DESCRIPTIONS .......................... 7  
Edits to Output Propagation Delay section. .............................. 10  
Added TPCs 5–8, 10–12, 14, 16, 18, 20, 22, 27, 31–32, 34 ...... 12  
Changes to TPCs............................................. 17, 19, 26, 35–36, 38  
Added text to ENCODE INPUT section ................................... 18  
Added DS INPUTS section ..........................................................19  
Change to Table I ..........................................................................19  
Changes to LVDS Outputs section.............................................. 20  
Changes to Voltage Reference section.........................................20  
Replaced Figure 12......................................................................... 20  
Change to Troubleshooting section .............................................22  
Updated OUTLINE DIMENSIONS.............................................27  
8/05—Rev. C to Rev. D  
Change to IVREF Spec Units ...............................................................4  
Changes to Minimum ENOB Specification...................................6  
Added Footnote for Pin 33 in LVDS Mode ...................................7  
Change to LVDS Output Section ..................................................27  
Added New Evaluation Board, CMOS Mode Section................32  
Updated Outline Dimensions........................................................42  
11/04—Rev. B to Rev. C  
Changes to Specifications ................................................................4  
Changes to Figure 60 .................................................................... 31  
Changes to LVDS PCB BOM ....................................................... 35  
Changes to Figure 68 (Evaluation Board—LVDS Mode) ......... 36  
Updated Outline Dimensions ...................................................... 40  
7/03—Rev. A to Rev. B  
Changed order of Figure 1 and Figure 2 ...................................... 5  
Updated TPC 13 .............................................................................14  
Changes to LVDS OUTPUTS section..........................................20  
5/02—Revision 0: Initial Version  
Rev. E | Page 3 of 44  
AD9430  
DC SPECIFICATIONS  
AVDD = 3.3 V, DRVDD = 3.3 V, TMIN = –40°C, TMAX = +85°C, fIN = –0.5 dBFS, internal reference, full scale = 1.536 V, LVDS output mode,  
unless otherwise noted.  
Table 1.  
AD9430-170  
AD9430-210  
Typ  
Test  
Level Min  
Parameter  
Temp  
Typ  
Max  
Min  
Max  
Unit  
RESOLUTION  
12  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Gain Error  
Full  
VI  
I
I
I
VI  
I
VI  
Guaranteed  
Guaranteed  
25°C  
25°C  
25°C  
Full  
25°C  
Full  
–3  
–5  
–1  
–1  
–1.5  
–2.25  
+3  
+5  
+1  
+1.5  
+1.5  
+2.25  
–3  
–5  
–1  
–1  
–1.75  
–2.5  
+3  
+5  
+1  
+1.5  
+1.75  
+2.5  
mV  
% FS  
LSB  
LSB  
LSB  
LSB  
Differential Nonlinearity (DNL)  
ꢀ.3  
ꢀ.3  
ꢀ.5  
ꢀ.5  
ꢀ.3  
ꢀ.3  
ꢀ.3  
ꢀ.3  
Integral Nonlinearity (INL)  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Reference Out (VREF)  
REFERENCE  
Full  
Full  
Full  
V
V
V
58  
ꢀ.ꢀ2  
+ꢀ.12/–ꢀ.24  
58  
ꢀ.ꢀ2  
+ꢀ.12/–ꢀ.24  
μV/°C  
%/°C  
mV/°C  
Reference Out (VREF)  
Output Current1  
IVREF Input Current2  
ISENSE Input Current2  
ANALOG INPUTS (VIN+, VIN–)3  
25°C  
25°C  
25°C  
25°C  
I
IV  
I
1.15  
1.235  
1.6  
1.3  
3.ꢀ  
2ꢀ  
1.15  
1.235  
1.6  
1.3  
3.ꢀ  
2ꢀ  
V
mA  
μA  
mA  
I
5.ꢀ  
5.ꢀ  
Differential Input Voltage Range  
(S5 = GND)  
Differential Input Voltage Range  
(S5 = AVDD)  
Full  
Full  
V
V
1.536  
ꢀ.766  
1.536  
ꢀ.766  
V
V
Input Common-Mode Voltage  
Input Resistance  
Input Capacitance  
POWER SUPPLY (LVDS Mode)  
AVDD  
Full  
Full  
25°C  
VI  
VI  
V
2.65  
2.2  
2.8  
3
5
2.9  
3.8  
2.65  
2.2  
2.8  
3
5
2.9  
3.8  
V
kΩ  
pF  
Full  
Full  
IV  
IV  
3.1  
3.ꢀ  
3.3  
3.3  
3.6  
3.6  
3.2  
3.ꢀ  
3.3  
3.3  
3.6  
3.6  
V
V
DRVDD  
Supply Currents  
IANALOG (AVDD = 3.3 V)4  
IDIGITAL (DRVDD = 3.3 V)4  
Power Dissipation4  
Power Supply Rejection  
Full  
Full  
Full  
25°C  
VI  
VI  
VI  
V
335  
55  
1.29  
–7.5  
372  
62  
1.43  
39ꢀ  
55  
1.5  
45ꢀ  
62  
1.7  
mA  
mA  
W
–7.5  
mV/V  
Rev. E | Page 4 of 44  
 
 
 
AD9430  
AD9430-170  
Typ  
AD9430-210  
Typ  
Test  
Level Min  
Parameter  
Temp  
Max  
Min  
Max  
Unit  
POWER SUPPLY (CMOS Mode)  
AVDD  
DRVDD  
Full  
Full  
IV  
IV  
3.1  
3.ꢀ  
3.3  
3.3  
3.6  
3.6  
3.2  
3.ꢀ  
3.3  
3.3  
3.6  
3.6  
V
V
Supply Currents  
IAVDD (AVDD = 3.3 V)5  
IDRVDD (DRVDD = 3.3 V)5  
Power Dissipation5  
Power Supply Rejection  
Full  
Full  
Full  
25°C  
IV  
IV  
IV  
V
335  
24  
1.1  
372  
3ꢀ  
39ꢀ  
3ꢀ  
1.3  
45ꢀ  
3ꢀ  
mA  
mA  
W
–7.5  
–7.5  
mV/V  
1 Internal reference mode; SENSE = Floats.  
2 External reference mode; SENSE = DRVDD, VREF driven by external 1.23 V reference.  
3 S5 (Pin 1) = GND. See the Analog Input section. S5 = GND in all dc and ac tests, unless otherwise noted.  
4 IAVDD and IDRVDD are measured with an analog input of 1ꢀ.3 MHz, –ꢀ.5 dBFS, sine wave, rated ENCODE rate, and in LVDS output mode. See Typical Performance  
Characteristics and Application Notes sections for IDRVDD. Power consumption is measured with a dc input at rated ENCODE rate in LVDS output mode.  
5 IAVDD and IDRVDD are measured with an analog input of 1ꢀ.3 MHz, –ꢀ.5 dBFS, sine wave, rated ENCODE rate, and in CMOS output mode. See Typical Performance  
Characteristics and Application Notes sections for IDRVDD. Power consumption is measured with a dc input at rated ENCODE rate in CMOS output mode.  
Rev. E | Page 5 of 44  
 
AD9430  
AC SPECIFICATIONS  
AVDD = 3.3 V, DRVDD = 3.3 V, TMIN = –40°C, TMAX = +85°C, fIN = –0.5 dBFS, internal reference, full scale = 1.536 V, LVDS output mode,  
unless otherwise noted.1  
Table 2.  
AD9430-170  
AD9430-210  
Parameter  
Temp  
Test Level  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
SNR  
Analog Input @ –ꢀ.5 dBFS  
1ꢀ MHz  
7ꢀ MHz  
1ꢀꢀ MHz  
24ꢀ MHz  
25°C  
25°C  
25°C  
25°C  
I
I
V
V
63.5  
63  
65  
65  
65  
61  
62.5  
62.5  
64.5  
64.5  
64.5  
61  
dB  
dB  
dB  
dB  
SINAD  
Analog Input @ –ꢀ.5 dBFS  
1ꢀ MHz  
7ꢀ MHz  
1ꢀꢀ MHz  
24ꢀ MHz  
25°C  
25°C  
25°C  
25°C  
I
I
V
V
63.5  
63  
65  
65  
65  
6ꢀ  
62.5  
62.5  
64.5  
64.5  
64.5  
6ꢀ  
dB  
dB  
dB  
dB  
EFFECTIVE NUMBER OF BITS (ENOB)  
1ꢀ MHz  
7ꢀ MHz  
1ꢀꢀ MHz  
24ꢀ MHz  
25°C  
25°C  
25°C  
25°C  
I
I
V
V
1ꢀ.3  
1ꢀ.3  
1ꢀ.6  
1ꢀ.6  
1ꢀ.6  
9.8  
1ꢀ.2  
1ꢀ.2  
1ꢀ.5  
1ꢀ.5  
1ꢀ.5  
9.8  
Bits  
Bits  
Bits  
Bits  
WORST HARMONIC (2nd or 3rd)  
Analog Input @ –ꢀ.5 dBFS, 1ꢀ MHz  
1ꢀ MHz  
7ꢀ MHz  
1ꢀꢀ MHz  
24ꢀ MHz  
25°C  
25°C  
25°C  
25°C  
I
I
V
V
–85  
–85  
–77  
–63  
–75  
–75  
–84  
–84  
–77  
–63  
–74  
–74  
dBc  
dBc  
dBc  
dBc  
WORST HARMONIC (4th or Higher)  
Analog Input @ –ꢀ.5 dBFS, 1ꢀ MHz  
1ꢀ MHz  
7ꢀ MHz  
1ꢀꢀ MHz  
24ꢀ MHz  
25°C  
25°C  
25°C  
25°C  
I
I
V
V
–87  
–87  
–77  
–63  
–78  
–78  
–87  
–87  
–77  
–63  
–77  
–77  
dBc  
dBc  
dBc  
dBc  
TWO-TONE IMD2  
D
F1, F2 @ −7 dBFS  
25°C  
25°C  
V
V
–75  
7ꢀꢀ  
–75  
7ꢀꢀ  
dBc  
ANALOG INPUT BANDWIDTH  
MHz  
1 All ac specifications tested by differentially driving CLK+ and CLK−.  
2 F1 = 28.3 MHz, F2 = 29.3 MHz.  
Rev. E | Page 6 of 44  
 
AD9430  
DIGITAL SPECIFICATIONS  
AVDD = 3.3 V, DRVDD = 3.3 V, TMIN = –40°C, TMAX = +85°C, unless otherwise noted.  
Table 3.  
Test  
AD9430-170  
Typ  
AD9430-210  
Typ  
Parameter  
Temp  
Level  
Min  
Max  
Min  
Max  
Unit  
ENCODE AND DS INPUTS  
(CLK+, CLK–, DS+, DS–)1  
Differential Input Voltage2  
Common-Mode Voltage3  
Input Resistance  
Full  
Full  
Full  
25°C  
IV  
VI  
VI  
V
ꢀ.2  
1.375  
3.2  
ꢀ.2  
1.375  
3.2  
V
V
kΩ  
pF  
1.5  
5.5  
4
1.575  
6.5  
1.5  
5.5  
4
1.575  
6.5  
Input Capacitance  
LOGIC INPUTS (S1, S2, S4, S5)  
Logic 1 Voltage  
Logic ꢀ Voltage  
Logic 1 Input Current  
Logic ꢀ Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
25°C  
25°C  
IV  
IV  
VI  
VI  
V
2.ꢀ  
2.ꢀ  
V
V
μA  
μA  
kΩ  
pF  
ꢀ.8  
19ꢀ  
1ꢀ  
ꢀ.8  
19ꢀ  
1ꢀ  
3ꢀ  
4
3ꢀ  
4
Input Capacitance  
V
LOGIC OUTPUTS (CMOS Mode)  
Logic 1 Voltage4  
Full  
Full  
IV  
IV  
DRVDD  
–ꢀ.ꢀ5  
DRVDD  
–ꢀ.ꢀ5  
V
V
Logic ꢀ Voltage4  
ꢀ.ꢀ5  
ꢀ.ꢀ5  
LOGIC OUTPUTS (LVDS Mode)4, 5  
VOD Differential Output Voltage  
VOS Output Offset Voltage  
Output Coding  
Full  
Full  
VI  
VI  
247  
1.125  
454  
1.375  
247  
1.125  
454  
1.375  
mV  
V
Twos complement or binary  
Twos complement or binary  
1 ENCODE (Clock) and DS inputs identical on the chip. See the Equivalent Circuits section.  
2 All ac specifications tested by driving CLK+ and CLK– differentially, |(CLK+) – (CLK–)| > 2ꢀꢀ mV.  
3 ENCODE (Clock) inputs’ common-mode can be externally set, such that ꢀ.9 V < (CLK+ or CLK−) < 2.6 V.  
4 Digital output logic levels: DRVDD = 3.3 V, CLOAD = 5 pF.  
5 LVDS RTERM = 1ꢀꢀ Ω, LVDS output current set resistor (RSET) = 3.74 kΩ (1% tolerance).  
Rev. E | Page 7 of 44  
 
 
AD9430  
SWITCHING SPECIFICATIONS  
AVDD = 3.3 V, DRVDD = 3.3 V, TMIN = –40°C, TMAX = +85°C, unless otherwise noted.  
Table 4.  
Test  
Level  
VI  
AD9430-170  
AD9430-210  
Parameter (Conditions)  
Maximum Conversion Rate1  
Minimum Conversion Rate1  
CLK+ Pulse Width High (tEH)1  
Temp  
Full  
Full  
Full  
Full  
Full  
Full  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
MSPS  
MSPS  
ns  
17ꢀ  
21ꢀ  
V
4ꢀ  
4ꢀ  
IV  
2
12.5  
12.5  
2
12.5  
12.5  
CLK+ Pulse Width Low (tEL)1  
IV  
2
2
ns  
2
DS Input Setup Time (tSDS  
)
IV  
IV  
–ꢀ.5  
1.75  
–ꢀ.5  
1.75  
ns  
ns  
2
DS Input Hold Time (tHDS  
OUTPUT (CMOS Mode)  
Valid Time (tV)  
)
Full  
Full  
25°C  
25°C  
Full  
Full  
Full  
Full  
IV  
IV  
V
2
2
ns  
ns  
ns  
ns  
ns  
ns  
Cycles  
Cycles  
Propagation Delay (tPD)  
3.8  
1
5
3.8  
1
5
Rise Time (tR) (2ꢀ% to 8ꢀ%)  
Fall Time (tF) (2ꢀ% to 8ꢀ%)  
DCO Propagation Delay (tCPD  
V
1
1
)
)
IV  
IV  
IV  
IV  
3.8  
5
+ꢀ.5  
3.8  
5
+ꢀ.5  
Data to DCO Skew (tPD to tCPD  
–ꢀ.5  
2.ꢀ  
–ꢀ.5  
2.ꢀ  
Interleaved Mode (A, B Latency)  
Parallel Mode (A, B Latency)  
OUTPUT (LVDS Mode)  
14, 14  
15, 14  
14, 14  
15, 14  
Valid Time (tV)  
Full  
Full  
25°C  
25°C  
Full  
VI  
VI  
V
ns  
ns  
ns  
ns  
ns  
ns  
Cycles  
ns  
Propagation Delay (tPD)  
Rise Time (tR) (2ꢀ% to 8ꢀ%)  
Fall Time (tF) (2ꢀ% to 8ꢀ%)  
DCO Propagation Delay (tCPD  
Data to DCO Skew (tPD – tCPD  
3.2  
ꢀ.5  
ꢀ.5  
2.7  
ꢀ.5  
14  
4.3  
3.2  
ꢀ.5  
ꢀ.5  
2.7  
ꢀ.5  
14  
4.3  
V
)
)
VI  
IV  
IV  
V
1.8  
ꢀ.2  
3.8  
ꢀ.8  
1.8  
ꢀ.2  
3.8  
ꢀ.8  
Full  
Full  
Latency  
APERTURE DELAY (tA)  
25°C  
25°C  
25°C  
1.2  
ꢀ.25  
1.2  
ꢀ.25  
APERTURE UNCERTAINTY (Jitter, tJ)  
V
ps rms  
Cycles  
OUT OF RANGE RECOVERY TIME (CMOS and LVDS)  
V
1
1
1 All ac specifications tested by differentially driving CLK+ and CLK−.  
2 DS inputs used in CMOS mode only.  
Rev. E | Page 8 of 44  
 
 
 
 
AD9430  
TIMING DIAGRAMS  
CLK+  
CLK–  
DS+  
DS–  
tSDS  
tHDS  
tPD  
tV  
14 CYCLES  
INVALID  
INTERLEAVED DATA OUT  
STATIC  
PORT A  
DA11–DA0  
INVALID  
N
N+2  
PORT B  
DB11–DB0  
STATIC  
INVALID  
N+1  
N+3  
PARALLEL DATA OUT  
STATIC  
PORT A  
DA11–DA0  
INVALID  
INVALID  
INVALID  
INVALID  
N
N+2  
N+3  
PORT B  
DB11–DB0  
STATIC  
STATIC  
N+1  
tCPD  
DCO–  
DCO+  
Figure 2. CMOS Timing Diagram  
N–1  
N
N+1  
A
IN  
tEL  
tEH  
1/f  
S
CLK+  
CLK–  
tPD  
N–14  
N
N+1  
N–13  
DATA OUT  
14 CYCLES  
DCO+  
DCO–  
tCPD  
Figure 3. LVDS Timing Diagram  
Rev. E | Page 9 of 44  
 
 
AD9430  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational section  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
AVDD, DRVDD  
4 V  
Analog Inputs  
Digital Inputs  
REFIN Inputs  
−ꢀ.5 V to AVDD + ꢀ.5 V  
−ꢀ.5 V to DRVDD + ꢀ.5 V  
–ꢀ.5 V to AVDD + ꢀ.5 V  
2ꢀ mA  
−4ꢀ°C to +85°C  
−65°C to +15ꢀ°C  
15ꢀ°C  
Digital Output Current  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Maximum Case Temperature  
EXPLANATION OF TEST LEVELS  
Table 6.  
Level  
Description  
15ꢀ°C  
25°C/W, 32°C/W  
1
I
1ꢀꢀ% production tested.  
θJA  
II  
1ꢀꢀ% production tested at 25°C and sample tested at  
specified temperatures.  
Sample tested only.  
1 Typical θJA = 32°C/W (heat slug not soldered); typical θJA = 25°C/W (heat slug  
soldered) for multilayer board in still air with solid ground plane.  
III  
IV  
Parameter is guaranteed by design and  
characterization testing.  
V
Parameter is a typical value only.  
VI  
1ꢀꢀ% production tested at 25°C; guaranteed by  
design and characterization testing for industrial  
temperature range; 1ꢀꢀ% production tested at  
temperature extremes for military devices.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4ꢀꢀꢀ V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. E | Page 1ꢀ of 44  
 
 
AD9430  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
75  
74  
73  
72  
DRVDD  
DRGND  
DA4  
1
S5  
PIN 1  
2
DNC  
3
S4  
DA3  
4
AGND  
71 DA2  
5
S2  
70 DA1  
6
S1  
69 DA0  
7
DNC  
68 DNC  
67 DRGND  
8
AVDD  
9
AGND  
AD9430  
DNC  
66  
65  
64  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
SENSE  
VREF  
AGND  
AGND  
AVDD  
AVDD  
AGND  
AGND  
AVDD  
AVDD  
AGND  
VIN+  
CMOS PINOUT  
TOP VIEW  
(Not to Scale)  
DNC  
DCO+  
63 DCO–  
62 DRVDD  
61 DRGND  
60 OR_B  
59 DB11  
58 DB10  
57 DB9  
56  
55  
54  
53  
52  
51  
DB8  
DB7  
DRVDD  
DRGND  
DB6  
VIN–  
AGND  
AVDD  
AGND  
DB5  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
NOTES  
1. THE AD9430 HAS A CONDUCTIVE HEAT SLUG TO HELP DISSIPATE HEAT AND ENSURE RELIABLE OPERATION OF  
THE DEVICE OVER THE FULL INDUSTRIAL TEMPERATURE RANGE. THE SLUG IS EXPOSED ON THE BOTTOM OF  
THE PACKAGE AND ELECTRICALLY CONNECTED TO CHIP GROUND. IT IS RECOMMENDED THAT NO PCB SIGNAL  
TRACES OR VIAS BE LOCATED UNDER THE PACKAGE THAT COULD COME IN CONTACT WITH THE CONDUCTIVE  
SLUG. ATTACHING THE SLUG TO A GROUND PLANE WILL REDUCE THE JUNCTION TEMPERATURE OF THE  
DEVICE WHICH MAY BE BENEFICIAL IN HIGH TEMPERATURE ENVIRONMENTS.  
Figure 4. CMOS Dual-Mode Pin Configuration  
Table 7. CMOS Mode Pin Function Descriptions  
Pin Number  
Mnemonic Description  
1
S5  
Full-Scale Adjust Pin. AVDD sets fS = 0.768 V p-p differential,  
GND sets fS = 1.536 V p-p differential.  
2, 7, 42, 43, 65, 66, 68  
3
4, 9, 12, 13, 16, 17, 20, 23, 25, 26, 30, 31, 35, 38, 41, 86,  
87, 91, 92, 93, 96, 97, 100  
DNC  
S4  
AGND1  
Do Not Connect.  
Interleaved, Parallel Select Pin. High = interleaved.  
Analog Ground.  
5
6
S2  
S1  
Output Mode Select. Low = dual-port CMOS, high = LVDS.  
Data Format Select. Low = binary, high = twos complement for  
both CMOS and LVDS modes.  
8, 14, 15, 18, 19, 24, 27, 28, 29, 34, 39, 40, 88, 89, 90, 94,  
95, 98, 99  
AVDD  
3.3 V Analog Supply.  
10  
11  
21  
22  
32  
33  
SENSE  
VREF  
VIN+  
VIN–  
DS+  
Reference Mode Select Pin. Float for internal reference operation.  
1.235 V Reference I/O—Function Dependent on SENSE.  
Analog Input—True.  
Analog Input—Complement.  
Data Sync (Input)—True. Tie low if not used.  
Data Sync (Input)—Complement. Tie high if not used.  
DS–2  
Rev. E | Page 11 of 44  
 
 
AD9430  
Pin Number  
Mnemonic Description  
36  
37  
44  
45  
CLK+  
CLK–  
DB0  
DB1  
DB2  
DRVDD  
DRGND1  
DB3  
DB4  
DB5  
DB6  
DB7  
DB8  
DB9  
DB10  
DB11  
OR_B  
DCO–  
DCO+  
DA0  
Clock Input—True.  
Clock Input—Complement.  
B Port Output Data Bit (LSB).  
B Port Output Data Bit.  
B Port Output Data Bit.  
3.3 V Digital Output Supply (3.0 V to 3.6 V).  
Digital Output Ground.  
B Port Output Data Bit.  
B Port Output Data Bit.  
B Port Output Data Bit.  
B Port Output Data Bit.  
B Port Output Data Bit.  
B Port Output Data Bit.  
B Port Output Data Bit.  
B Port Output Data Bit.  
B Port Output Data Bit (MSB).  
B Port Overrange.  
Data Clock Output—Complement.  
Data Clock Output—True.  
A Port Output Data Bit (LSB).  
A Port Output Data Bit.  
A Port Output Data Bit.  
A Port Output Data Bit.  
A Port Output Data Bit.  
A Port Output Data Bit.  
A Port Output Data Bit.  
A Port Output Data Bit.  
A Port Output Data Bit.  
A Port Output Data Bit.  
A Port Output Data Bit.  
A Port Output Data Bit (MSB).  
A Port Overrange.  
46  
47, 54, 62, 75, 83  
48, 53, 61, 67, 74, 82  
49  
50  
51  
52  
55  
56  
57  
58  
59  
60  
63  
64  
69  
70  
71  
72  
73  
76  
77  
78  
79  
80  
81  
84  
85  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
DA8  
DA9  
DA10  
DA11  
OR_A  
1 AGND and DRGND should be tied together to a common ground plane.  
2 DS Complement (DS−); can be tied to AVDD (as recommended) or left floating with no ill effects.  
Rev. E | Page 12 of 44  
AD9430  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
75  
74  
73  
72  
71  
70  
DRVDD  
DRGND  
D8+  
1
S5  
DNC  
PIN 1  
2
3
S4  
D8–  
4
AGND  
S2  
D7+  
5
D7–  
6
S1  
69 D6+  
7
LVDSBIAS  
AVDD  
AGND  
SENSE  
VREF  
AGND  
AGND  
AVDD  
AVDD  
AGND  
AGND  
AVDD  
AVDD  
AGND  
VIN+  
68 D6–  
8
67 DRGND  
66 D5+  
9
AD9430  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
LVDS PINOUT  
TOP VIEW  
(Not to Scale)  
D5–  
65  
64  
DCO+  
63 DCO–  
62 DRVDD  
61 DRGND  
60 D4+  
59 D4–  
58 D3+  
57 D3–  
56 D2+  
55  
54  
53  
52  
51  
D2Ð  
DRVDD  
DRGND  
D1+  
VIN–  
AGND  
AVDD  
AGND  
D1–  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
NOTES  
1. THE AD9430 HAS A CONDUCTIVE HEAT SLUG TO HELP DISSIPATE HEAT AND ENSURE RELIABLE OPERATION OF  
THE DEVICE OVER THE FULL INDUSTRIAL TEMPERATURE RANGE. THE SLUG IS EXPOSED ON THE BOTTOM OF  
THE PACKAGE AND ELECTRICALLY CONNECTED TO CHIP GROUND. IT IS RECOMMENDED THAT NO PCB SIGNAL  
TRACES OR VIAS BE LOCATED UNDER THE PACKAGE THAT COULD COME IN CONTACT WITH THE CONDUCTIVE  
SLUG. ATTACHING THE SLUG TO A GROUND PLANE WILL REDUCE THE JUNCTION TEMPERATURE OF THE  
DEVICE WHICH MAY BE BENEFICIAL IN HIGH TEMPERATURE ENVIRONMENTS.  
Figure 5. LVDS Mode Pin Configuration  
Table 8. LVDS Mode Pin Function Descriptions  
Pin Number  
Mnemonic Description  
1
S5  
Full-Scale Adjust Pin. AVDD sets fS = 0.768 V p-p differential,  
GND sets fS = 1.536 V p-p differential.  
Do Not Connect.  
Control Pin for CMOS Mode. Tie low when operating in LVDS  
mode.  
2, 42 to 46  
3
DNC  
S4  
4, 9, 12, 13, 16, 17, 20, 23, 25, 26, 30, 31, 35, 38, 41, 86, 87, 91,  
92, 93, 96, 97, 100  
AGND1  
Analog Ground.  
5
6
7
S2  
S1  
LVDSBIAS  
Output Mode Select. GND = dual-port CMOS; AVDD = LVDS.  
Data Format Select. GND = binary, AVDD = twos complement.  
Set Pin for LVDS Output Current. Place 3.74 kW resistor  
terminated to ground.  
8, 14, 15, 18, 19, 24, 27, 28, 29, 33, 34, 39, 40, 88, 89, 90, 94, 95,  
98, 99  
10  
AVDD2  
SENSE  
3.3 V Analog Supply.  
Reference Mode Select Pin. Float for internal reference  
operation.  
11  
21  
VREF  
VIN+  
1.235 V Reference I/O—Function Dependent on SENSE.  
Analog Input—True.  
Rev. E | Page 13 of 44  
 
AD9430  
Pin Number  
Mnemonic Description  
22  
32  
36  
37  
VIN–  
GND  
CLK+  
CLK–  
DRVDD  
DRGND1  
D0–  
D0+  
D1–  
D1+  
D2–  
Analog Input—Complement.  
Data Sync (Input)—Not Used in LVDS Mode. Tie to GND.  
Clock Input—True (LVPECL Levels).  
Clock Input—Complement (LVPECL Levels).  
3.3 V Digital Output Supply (3.0 V to 3.6 V).  
Digital Output Ground.  
D0 Complement Output Bit (LSB).  
D0 True Output Bit (LSB).  
D1 Complement Output Bit.  
D1 True Output Bit.  
D2 Complement Output Bit.  
D2 True Output Bit.  
D3 Complement Output Bit.  
D3 True Output Bit.  
D4 Complement Output Bit.  
D4 True Output Bit.  
Data Clock Output—Complement.  
Data Clock Output—True.  
D5 Complement Output Bit.  
D5 True Output Bit.  
D6 Complement Output Bit.  
D6 True Output Bit.  
D7 Complement Output Bit.  
D7 True Output Bit.  
D8 Complement Output Bit.  
D8 True Output Bit.  
D9 Complement Output Bit.  
D9 True Output Bit.  
D10 Complement Output Bit.  
D10 True Output Bit.  
D11 Complement Output Bit.  
D11 True Output Bit.  
Overrange Complement Output Bit.  
Overrange True Output Bit.  
47, 54, 62, 75, 83  
48, 53, 61, 67, 74, 82  
49  
50  
51  
52  
55  
56  
57  
58  
59  
60  
63  
64  
65  
66  
68  
69  
70  
71  
72  
73  
76  
77  
78  
79  
80  
81  
84  
85  
D2+  
D3–  
D3+  
D4–  
D4+  
DCO–  
DCO+  
D5–  
D5+  
D6–  
D6+  
D7–  
D7+  
D8–  
D8+  
D9–  
D9+  
D10–  
D10+  
D11–  
D11+  
OR–  
OR+  
1 AGND and DRGND should be tied together to a common ground plane.  
2 Pin 33 can be tied to AVDD (as recommended) or left floating with no ill effects  
Rev. E | Page 14 of 44  
AD9430  
EQUIVALENT CIRCUITS  
FULL  
SCALE  
K
AVDD  
S5 = 0 —> K = 1.24  
S5 = 1 —> K = 0.62  
0.1μF  
VREF  
12kΩ  
12kΩ  
10kΩ  
+
CLK–  
OR  
DS–  
CLK+  
OR  
DS+  
A1  
1V  
150Ω  
150Ω  
200  
Ω
10kΩ  
SENSE  
1kΩ  
DISABLE  
A1  
VDD  
Figure 6. ENCODE and DS Input  
Figure 9. VREF, SENSE I/O  
AVDD  
VIN–  
DRVDD  
3.5kΩ  
3.5k  
Ω
DX  
VIN+  
20kΩ  
20kΩ  
Figure 7. Analog Inputs  
Figure 10. Data Outputs (CMOS Mode)  
DRVDD  
VDD  
V
V
DX–  
V
DX+  
V
S1, S2,  
S4, S5  
30k  
Ω
Figure 8. S1 to S5 Inputs  
Figure 11. Data Outputs (LVDS Mode)  
Rev. E | Page 15 of 44  
 
 
AD9430  
TYPICAL PERFORMANCE CHARACTERISTICS  
Charts at 170 MSPS, 210 MSPS for –170, –210 grades, respectively. AVDD, DRVDD = 3.3 V, T = 25°C, AIN differential drive, full  
scale = 1.536 V, internal reference unless otherwise noted.  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
SNR = 62.99dBFS  
SINAD = 61.45dBFS  
H2 = –66.8dBc  
H3 = –82.5dBc  
SFDR = 66.1dBc  
SNR = 65.2dB  
SINAD = 65.1dB  
H2 = –88.8dBc  
H3 = –88.1dBc  
SFDR = 87dBc  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
10  
20  
30  
40  
MHz  
50  
60  
70  
80 85  
0
10  
20  
30  
40  
MHz  
50  
60  
70  
80 85  
Figure 12. FFT: fs = 170 MSPS, AIN = 10.3 MHz @ −0.5 dBFS, LVDS Mode  
Figure 15. FFT: fs = 170 MSPS, AIN = 10.3 MHz @ –0.5 dBFS,  
Single-Ended Input, Full Scale = 0.76 V, LVDS Mode  
0
0
SNR = 63.6dB  
SINAD = 62.9dB  
H2 = –82.5dBc  
H3 = –78.6dBc  
SFDR = 77.7dBc  
SNR = 65.1dB  
SINAD = 64.9dB  
FUND = –0.50dBFS  
H2 = –88.6dBc  
H3 = –94.6dBc  
SFDR = 85.9dBc  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
10  
20  
30  
40  
MHz  
50  
60  
70  
80 85  
0
15  
30  
45  
60  
75  
90  
105  
MHz  
Figure 13. FFT: fs = 170 MSPS, AIN = 65 MHz @ –0.5 dBFS, LVDS Mode  
Figure 16. FFT: fs = 210 MSPS, AIN = 10.3 MHZ @ –0.5 dBFS, LVDS Mode  
0
0
SNR = 63.1dB  
SINAD = 62.8dB  
H2 = –81.1dBc  
H3 = –76dBc  
SNR = 64.93dB  
SINAD = 64.85dB  
FUND = –0.44dBFS  
H2 = –92.1dBc  
H3 = –90.1dBc  
SFDR = 75.6dBc  
–10  
–10  
–20  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
SFDR = –76dBc  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
10  
20  
30  
40  
MHz  
50  
60  
70  
80 85  
0
15  
30  
45  
60  
75  
90  
105  
MHz  
Figure 17. FFT: fs = 210 MSPS, AIN = 65 MHz @ –0.5 dBFS, CMOS Mode  
Figure 14. FFT: fs = 170 MSPS, AIN = 65 MHz @ –0.5 dBFS, CMOS Mode  
Rev. E | Page 16 of 44  
 
AD9430  
0
–10  
–20  
0
–10  
–20  
–30  
–40  
SNR = 63.5dB  
SINAD = 62.6dB  
H2 = –79dBc  
H3 = –76.1dBc  
SFDR = 75.2dBc  
SNR = 63.3dB  
SINAD = 63.1dB  
H2 = –80.38dBc  
H3 = –81.8dBc  
SFDR = 80.8dBc  
–30  
–40  
–50  
–60  
–70  
–50  
–60  
–70  
–80  
–80  
–90  
–90  
–100  
–100  
0
15  
30  
45  
60  
75  
90  
105  
0
15  
30  
45  
60  
75  
90  
105  
MHz  
MHz  
Figure 18. FFT: fs = 210 MSPS, AIN = 65 MHz @ –0.5 dBFS, LVDS Mode  
Figure 21. FFT: fs = 213 MSP, AIN = 100 MHz @ –0.5 dBFS, LVDS Mode  
85  
80  
85  
80  
75  
70  
65  
SFDR  
75  
70  
65  
SNR  
SNR  
60  
55  
60  
SINAD  
55  
FULL SCALE = 1.5  
SINAD  
FULL SCALE = 0.75  
50  
50  
45  
40  
45  
40  
0
50  
100  
150  
200  
(MHz)  
250  
300  
350  
400  
0
50  
100  
150  
200  
A (MHz)  
IN  
250  
300  
350  
400  
A
IN  
Figure 19. SNR, SINAD, and SFDR vs. AIN Frequency, fS = 210 MSPS,  
AIN @ –0.5 dBFS, LVDS Mode  
Figure 22. SNR and SINAD vs. AIN Frequency, fs = 210 MSPS,  
AIN @ –0.5 dBFS, LVDS Mode, Full Scale = 0.76 V  
100  
100  
THIRD  
90  
90  
80  
70  
60  
50  
40  
THIRD  
SECOND  
80  
SFDR  
SECOND  
SFDR  
70  
60  
50  
40  
0
50  
100  
150  
200  
(MHz)  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
A
A
(MHz)  
IN  
IN  
Figure 23. Harmonic Distortion (2nd and 3rd) and  
SFDR vs. AIN Frequency, fs = 170 MSPS, CMOS Mode  
Figure 20. Harmonic Distortion (2nd and 3rd  
and SFDR vs. AIN Frequency  
)
Rev. E | Page 17 of 44  
AD9430  
70  
68  
66  
64  
62  
60  
58  
56  
54  
52  
0
–30  
–170 SNR  
–210 SNR  
–60  
SFDR = 63dBc  
–210 SINAD  
–170 SINAD  
–90  
50  
0
–120  
50  
100  
150  
200  
(MHz)  
250  
300  
350  
400  
0
10  
20  
30  
40  
50  
MHz  
60  
70  
80  
90 100  
A
IN  
Figure 24. SNR and SINAD vs. AIN Frequency, fs = 170 MSPS/210 MSPS,  
AIN @ –0.5 dBFS, LVDS Mode  
Figure 27. Two-Tone Intermodulation Distortion (59 MHz and 60 MHz),  
LVDS Mode, fs = 210 MSPS  
95  
90  
85  
85  
80  
75  
SFDR  
SFDR  
70  
80  
65  
75  
70  
65  
SNR  
60  
55  
SINAD  
SINAD  
50  
60  
45  
40  
55  
50  
0
50  
100  
150  
200  
(MHz)  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
MHz  
A
IN  
Figure 28. SINAD and SFDR vs. Clock Rate  
(AIN = 10.3 MHz @ –0.5 dBFS, LVDS Mode), –170 Grade  
Figure 25. SNR and SINAD, SFDR vs. AIN Frequency,  
fs = 210 MSPS, AIN @ –0.5 dBFS, CMOS Mode  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
SFDR = 75dBc  
SFDR  
SNR  
SINAD  
0
50  
100  
150  
200  
250  
0
10  
20  
30  
40  
MHz  
50  
60  
70  
80 85  
MHz  
Figure 26. Two-Tone Intermodulation Distortion  
(28.3 MHz and 29.3 MHz, LVDS Mode, fs = 170 MSPS)  
Figure 29. SNR and SINAD, SFDR vs. Clock Rate  
(AIN = 10.3 MHz, @ –0.5 dBFS), LVDS Mode, –210 Grade  
Rev. E | Page 18 of 44  
AD9430  
80  
75  
70  
65  
60  
55  
50  
400  
350  
300  
250  
200  
150  
100  
50  
80  
60  
40  
20  
0
ANALOG SUPPLY  
CURRENT CMOS  
MODE  
SFDR  
ANALOG SUPPLY  
CURRENT LVDS  
MODE  
OUTPUT SUPPLY  
CURRENT LVDS  
MODE  
SNR  
SINAD  
OUTPUT SUPPLY  
CURRENT CMOS  
MODE  
0
100  
20  
30  
40  
50  
60  
70  
80  
120  
140  
160  
180  
200  
220  
ENCODE POSITIVE DUTY CYCLE (%)  
ENCODE (MSPS)  
Figure 30. IAVDD and IDRVDD vs. Clock Rate (AIN = 10.3 MHz @ –0.5 dBFS)  
170 MSPS Grade, CLOAD = 5 pF  
Figure 33. SNR, SINAD, and SFDR vs. ENCODE Pulse Width High,  
(AIN = 10.3 MHz @ –0.5 dBFS, 210 MSPS, LVDS)  
450  
400  
350  
300  
250  
200  
150  
100  
50  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.4  
ANALOG SUPPLY  
CURRENT LVDS MODE  
1.2  
R
= 13Ω TYP  
O
ANALOG SUPPLY  
CURRENT CMOS MODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
OUTPUT SUPPLY  
CURRENT LVDS MODE  
OUTPUT SUPPLY  
CURRENT CMOS MODE  
0
100  
120  
140  
160  
180  
200  
220  
240  
0
1
2
3
4
5
6
7
8
ENCODE (MSPS)  
I
(mA)  
LOAD  
Figure 34. VREFOUT vs. ILOAD  
Figure 31. IAVDD and IDRVDD vs. Clock Rate  
(AIN = 10.3 MHz @ –0.5 dBFS), 210 MSPS Grade, CLOAD = 5 pF  
85  
2.0  
1.5  
80  
75  
70  
65  
60  
55  
50  
SFDR  
1.0  
0.5  
% GAIN ERROR  
USING EXT REF  
0
SNR  
–0.5  
–1.0  
–1.5  
–2.0  
SINAD  
10  
20  
30  
40  
50  
60  
70  
80  
90  
–50  
–30  
–10  
10  
30  
50  
70  
90 95  
ENCODE POSITIVE DUTY CYCLE (%)  
TEMPERATURE (°C)  
Figure 35. Full-Scale Gain Error vs. Temperature  
(AIN = 10.3 MHz @ –0.5 dBFS, 170 MSPS/210 MSPS, LVDS)  
Figure 32. SINAD and SFDR vs. Clock Pulse Width High  
(AIN = 10.3 MHz @ –0.5 dBFS, 170 MSPS, LVDS)  
Rev. E | Page 19 of 44  
AD9430  
1.250  
1.00  
0.75  
0.50  
0.25  
0
1.245  
1.240  
1.235  
–0.25  
–0.50  
–0.75  
–1.00  
1.230  
1.225  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
0
500  
1000 1500 2000 2500 3000  
CODE  
3500 4000  
AVDD (V)  
Figure 36. VREF Output Voltage vs. AVDD  
Figure 39. Typical INL Plot (AIN = 10.3 MHz @ –0.5 dBFS, 170 MSPS, LVDS)  
95  
90  
85  
80  
75  
70  
65  
1.00  
0.75  
0.50  
0.25  
0
THIRD  
SECOND  
SFDR  
–0.25  
–0.50  
–0.75  
–1.00  
SNR  
SINAD  
70 90  
60  
–50  
–30  
–10  
10  
30  
50  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
TEMPERATURE (°C)  
CODE  
Figure 40. Typical DNL Plot (AIN = 10.3 MHz @ –0.5 dBFS)  
Figure 37. SNR, SINAD, and SFDR vs. Temperature  
(AIN = 10.3 MHz @ –0.5 dBFS, 170 MSPS)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
AVDD = 3.6  
AVDD = 3.3  
SFDR –dBFS  
AVDD = 3.135  
SFDR –dBc  
80dB  
REFERENCE LINE  
AVDD = 3.0  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
–45  
–25  
–5  
15  
35  
55  
75  
ANALOG INPUT LEVEL (dBFS)  
TEMPERATURE (°C)  
Figure 41. SFDR vs. AIN Input Level ,  
AIN @ 10.3 MHz, 170 MSPS, LVDS Mode  
Figure 38. SINAD vs. Temperature, AVDD  
(AIN = 70 MHz @ –0.5 dB, 210 MSPS, LVDS Mode)  
Rev. E | Page 2ꢀ of 44  
AD9430  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–20  
SFDR dBc  
LVDS MODE  
FULL SCALE = 1.5  
–40  
SFDR dBc  
CMOS MODE  
FULL SCALE = 1.5  
19.2  
–60  
–80  
80dB REFERENCE LINE  
–100  
0
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
19.2  
38.4  
MHz  
47.6  
Figure 42. SFDR vs. AIN Input Level, AIN @ 10.3 MHz, 210 MSPS,  
LVDS/CMOS Modes  
Figure 45. W-CDMA Four Channels Centered at 38.4 MHz,  
fs = 153.6 MHz, LVDS Mode  
90  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
SFDR  
SNR  
80  
70  
SFDR dBc  
LVDS MODE  
FULL SCALE = 1.5  
60  
50  
40  
30  
20  
10  
0
SINAD  
SFDR dBc  
LVDS MODE  
FULL SCALE = 0.75  
80dB REFERENCE LINE  
0
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
0.5  
1.0  
1.5  
2.0  
2.5  
FULL-SCALE RANGE (V)  
Figure 46. SNR, SINAD, and SFDR vs. Full-Scale Range, S5 = 0,  
Full-Scale Range Varied by Adjusting VREF, 170 MSPS  
Figure 43. SFDR vs. AIN Input Level, AIN @ 10.3 MHz, 210 MSPS, LVDS Mode,  
Full Scale = 0.76 V/1.536 V  
4.5  
0
NPR = 56.95dB  
ENCODE = 170MSPS  
–20  
NOTCH @ 19MHz  
–40  
4.0  
–60  
–80  
3.5  
TPD  
–100  
–120  
–140  
3.0  
TCPD  
2.5  
2.65  
21.25  
MHz  
42.5  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
Figure 47. Propagation Delay vs. Temperature, LVDS Mode,  
170 MSPS/210 MSPS  
Figure 44. Noise Power Ratio Plot  
Rev. E | Page 21 of 44  
AD9430  
4.5  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
V
OS  
TCPD (CLOCKOUT RISING)  
4.0  
3.5  
3.0  
TPDF (DATA FALLING)  
V
OD  
TPDR (DATA RISING)  
2.5  
–40  
–20  
0
20  
40  
60  
80  
100  
0
2
4
6
8
10  
12  
14  
TEMPERATURE (°C)  
RSET (kΩ)  
Figure 48. Propagation Delay vs. Temperature,  
CMOS Mode, 170 MSPS/210 MSPS  
Figure 49. LVDS Output Swing, Common-Mode Voltage vs. RSET,  
Placed at LVDSBIAS, 170 MSPS/210 MSPS  
Rev. E | Page 22 of 44  
AD9430  
TERMINOLOGY  
Analog Bandwidth  
Full-Scale Input Power  
Expressed in dBm. Computed using the following equation:  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
2
V
FULL SCALE rms  
ZINPUT  
0.001  
PowerFULL SCALE = 10 log  
Aperture Delay  
The delay between the 50% point of the rising edge of the  
ENCODE command and the instant at which the analog input  
is sampled.  
Gain Error  
The difference between the measured and ideal full-scale input  
voltage range of the ADC.  
Aperture Uncertainty (Jitter)  
The sample-to-sample variation in aperture delay.  
Harmonic Distortion, Second  
The ratio of the rms signal amplitude to the rms value of the  
second harmonic component, reported in dBc.  
Crosstalk  
Coupling onto one channel being driven by a low level  
(–40 dBFS) signal when the adjacent interfering channel is  
driven by a full-scale signal.  
Harmonic Distortion, Third  
The ratio of the rms signal amplitude to the rms value of the  
third harmonic component, reported in dBc.  
Differential Analog Input Resistance, Differential Analog  
Input Capacitance, and Differential Analog Input Impedance  
The real and complex impedances measured at each analog  
input port. The resistance is measured statically and the  
capacitance and differential input impedances are measured  
with a network analyzer.  
Integral Nonlinearity  
The deviation of the transfer function from a reference line  
measured in fractions of 1 LSB using a best straight line  
determined by a least square curve fit.  
Minimum Conversion Rate  
Differential Analog Input Voltage Range  
The ENCODE rate at which the SNR of the lowest analog  
signal frequency drops by no more than 3 dB below the  
guaranteed limit.  
The peak-to-peak differential voltage that must be applied to  
the converter to generate a full-scale response. Peak differential  
voltage is computed by observing the voltage on a single pin  
and subtracting the voltage from the other pin, which is  
180° out of phase. Peak-to-peak differential is computed by  
rotating the input phase 180° and again taking the peak  
measurement. The difference is then computed between both  
peak measurements.  
Maximum Conversion Rate  
The ENCODE rate at which parametric testing is performed.  
Output Propagation Delay  
The delay between a differential crossing of CLK+ and CLK– and  
the time when all output data bits are within valid logic levels.  
Differential Nonlinearity  
The deviation of any code width from an ideal 1 LSB step.  
Noise (for Any Range Within the ADC)  
Calculated as follows:  
Effective Number of Bits (ENOB)  
Calculated from the measured SNR based on the equation  
FS  
SNRdBc SignaldBFS  
dBM  
VNOISE  
= Z ×0.001×10  
10  
SNRMEASURED 1.76dB  
ENOB =  
6.02  
where:  
Z is the input impedance.  
ENCODE Pulse Width/Duty Cycle  
FS is the full scale of the device for the frequency in question.  
SNR is the value of the particular input level.  
Signal is the signal level within the ADC, reported in dB below  
full scale. This value includes input levels both thermal and  
quantization noise.  
Pulse width high is the minimum amount of time the ENCODE  
pulse (clock pulse) should be left in a Logic 1 state to achieve  
rated performance; pulse width low is the minimum time the  
ENCODE pulse should be left in a low state. See the timing  
implications of changing tEH in the Encode Input section. At  
a given clock rate, these specifications define an acceptable  
ENCODE duty cycle.  
Rev. E | Page 23 of 44  
 
AD9430  
Two-Tone SFDR  
Power Supply Rejection Ratio  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component. The peak spurious component  
may or may not be an IMD product. Reported in dBc (degrades  
as signal level is lowered) or in dBFS (always related back to  
converter full scale).  
The ratio of a change in input offset voltage to a change in  
power supply voltage.  
Signal-to-Noise and Distortion (SINAD)  
The ratio of the rms signal amplitude (set 1 dB below full scale)  
to the rms value of the sum of all other spectral components,  
including harmonics but excluding dc.  
Worst Other Spur  
The ratio of the rms signal amplitude to the rms value of the  
worst spurious component (excluding the second and third  
harmonic) reported in dBc.  
Signal-to-Noise Ratio (Without Harmonics)  
The ratio of the rms signal amplitude (set at 1 dB below full  
scale) to the rms value of the sum of all other spectral  
components, excluding the first five harmonics and dc.  
Transient Response Time  
The time it takes for the ADC to reacquire the analog input  
after a transient from 10% above negative full scale to  
10% below positive full scale.  
Spurious-Free Dynamic Range (SFDR)  
The ratio of the rms signal amplitude to the rms value of the  
peak spurious spectral component. The peak spurious  
component may or may not be a harmonic. Reported in dBc  
(degrades as signal level is lowered) or dBFS (always related  
back to converter full scale).  
Out-of-Range Recovery Time  
The time it takes for the ADC to reacquire the analog input  
after a transient from 10% above positive full scale to 10% above  
negative full scale, or from 10% below negative full scale to  
10% below positive full scale.  
Two-Tone Intermodulation Distortion Rejection  
The ratio of the rms value of either input tone to the rms  
value of the worst third-order intermodulation product  
reported in dBc.  
;
Rev. E | Page 24 of 44  
AD9430  
APPLICATION NOTES  
THEORY OF OPERATION  
The AD9430 architecture is optimized for high speed and ease  
of use. The analog inputs drive an integrated high bandwidth  
track-and-hold circuit that samples the signal prior to  
quantization by the 12-bit core. For ease of use, the part  
includes an on-board reference and input logic that accepts  
TTL, CMOS, or LVPECL levels. The digital output logic levels  
are user selectable as standard 3 V CMOS or LVDS (ANSI-644  
compatible) via Pin S2.  
with it that needs to be considered in applications where the  
clock rate can change dynamically, requiring a wait time of  
1.5 μs to 5 μs after a dynamic clock frequency increase before  
valid data is available. This circuit is always on and cannot be  
disabled by the user.  
The clock inputs are internally biased to 1.5 V (nominal) and  
support either differential or single-ended signals. For best  
dynamic performance, a differential signal is recommended. An  
MC100LVEL16 performs well in the circuit to drive the clock  
inputs, as illustrated in Figure 50. (For trace lengths >2 inches, a  
standard LVPECL termination is recommended rather than the  
simple pull-down as shown.) Note that for this low voltage  
PECL device, the ac coupling is optional.  
ENCODE INPUT  
Any high speed ADC is extremely sensitive to the quality of the  
sampling clock provided by the user. A track-and-hold circuit is  
essentially a mixer, and any noise, distortion, or timing jitter on  
the clock is combined with the desired signal at the A/D output.  
For that reason, considerable care has been taken in the design  
of the clock inputs of the AD9430, and the user is advised to  
give careful thought to the clock source.  
AD9430  
0.1μF  
CLK+  
PECL  
GATE  
CLK–  
The AD9430 has an internal clock duty cycle stabilization  
circuit that locks to the rising edge of CLK+ and optimizes  
timing internally. This allows for a wide range of input duty  
cycles at the input without degrading performance. Jitter in  
the rising edge of the input is still of paramount concern and  
is not reduced by the internal stabilization circuit. The duty  
cycle control loop does not function for clock rates less than  
30 MHz nominally. The loop has a time constant associated  
0.1μF  
510Ω  
510Ω  
Figure 50. Driving Clock Inputs with LVEL16  
In interleaved mode, output data on Port A is offset from output  
data changes on Port B by one-half output clock cycle, as shown  
in Figure 51.  
INTERLEAVED MODE  
PARALLEL MODE  
Figure 51.  
Table 9. Output Select Coding  
S11  
S21  
S41  
(I/P Select)  
S51  
(Data Format Select)  
(LVDS/CMOS Mode Select)2  
(Full-Scale Select)3  
Mode  
1
X
X
X
X
X
X
X
1
X
X
X
X
1
X
X
X
X
X
X
X
X
1
Twos complement  
Offset binary  
Dual-mode CMOS interleaved  
Dual-mode CMOS parallel  
LVDS mode  
Full scale = ꢀ.768 V  
Full scale = 1.536 V  
1 X = don’t care.  
2 S4 used in CMOS mode only (S2 = ꢀ). S1 to S5 all have 3ꢀ kΩ resistive pull-downs on chip.  
3 S5 full-scale adjust (see the Analog Input section).  
Rev. E | Page 25 of 44  
 
 
 
 
 
 
AD9430  
DS INPUTS (DS+, DS–)  
ANALOG INPUT  
In CMOS output mode, the data sync inputs (DS+, DS–) can be  
used in applications that require a given sample to appear at a  
specific output port (A or B) relative to a given external timing  
signal. The DS inputs can also be used to synchronize two or  
more ADCs in a system to maintain phasing between Port A  
and Port B on separate ADCs (in effect, synchronizing multiple  
DCO outputs). When DS+ is held high (DS– low), the ADC  
data outputs and clock do not switch and are held static.  
Synchronization is accomplished by the assertion (falling edge)  
of DS+ within the timing constraints tSDS and tHDS, relative to a  
clock rising edge. (On initial synchronization, tHDS is not  
The analog input to the AD9430 is a differential buffer. For  
best dynamic performance, impedances at VIN+ and VIN  
should match. The analog input is optimized to provide  
superior wideband performance and requires that the analog  
inputs be driven differentially. SNR and SINAD performance  
degrades significantly if the analog input is driven with a single-  
ended signal.  
A wideband transformer such as the Mini-Circuit® ADT1-1WT  
can provide the differential analog inputs for applications that  
require a single-ended-to-differential conversion. Both analog  
inputs are self-biased by an on-chip resistor divider to a  
nominal 2.8 V. (See the Equivalent Circuits section.)  
relevant.) If DS+ falls within the required setup time (tSDS  
)
before a given clock rising edge, N, the analog value at that  
point in time is digitized and available at Port A, 14 cycles later  
in interleaved mode.  
Special care was taken in the design of the analog input section  
of the AD9430 to prevent damage and corruption of data when  
the input is overdriven. The nominal differential input range is  
approximately 1.5 V p-p ~ (768 mV × 2). Note that the best  
SNR performance is achieved with S5 = 0 (full scale = 1.5).  
The very next sample, N + 1, is sampled by the next rising clock  
edge and available at Port B, 14 cycles after that clock edge. In  
dual-parallel mode, Port A has a 15-cycle latency and Port B  
has a 14-cycle latency, but data is available at the same time.  
Driving the DS inputs of each ADC by the same sync signal  
accomplishes this. An easy way to accomplish synchronization  
is by a one-time sync at power-on reset. Note that when  
running the AD9430 in LVDS mode, set DS+ to ground and  
DS– to 3.3 V, as the DS inputs are relevant only in CMOS  
output mode, simplifying the design for some applications as  
well as affording superior SNR/SINAD performance at higher  
encode/analog frequencies.  
S5 = GND  
VIN+  
768mV  
2.8V  
2.8V  
VIN–  
CMOS OUTPUTS  
DIGITALOUT = ALL 1s  
DIGITALOUT = ALL 0s  
The off-chip drivers on the chip can be configured to provide  
CMOS-compatible output levels via Pin S2. The CMOS digital  
outputs (S2 = 0) are TTL/CMOS compatible for lower power  
consumption. The outputs are biased from a separate supply  
(DRVDD), allowing easy interface to external logic. The outputs  
are CMOS devices that swing from ground to DRVDD (with no  
dc load). It is recommended to minimize the capacitive load the  
ADC drives by keeping the output traces short (<1 inch, for a  
total CLOAD < 5 pF). When operating in CMOS mode, it is also  
recommended to place low value (20 Ω) series damping  
resistors on the data lines to reduce switching transient effects  
on performance.  
Figure 52. Differential Analog Input Range  
S5 = AVDD  
VIN+  
768mV 2.8V  
2.8V  
VIN– = 2.8V  
Figure 53. Single-Ended Analog Input Range  
Rev. E | Page 26 of 44  
 
AD9430  
LVDS OUTPUTS  
FULL  
SCALE  
K
The off-chip drivers on the chip can be configured to provide  
LVDS-compatible output levels via Pin S2. LVDS outputs are  
available when S2 = VDD and a 3.74 kΩ RSET resistor is placed  
at Pin 7 (LVDSBIAS) to ground. The RSET resistor current is  
ratioed on-chip, setting the output current at each output equal  
to a nominal 3.5 mA (11 × IRSET). A 100 Ω differential  
termination resistor placed at the LVDS receiver inputs results  
in a nominal 350 mV swing at the receiver. LVDS mode  
facilitates interfacing with LVDS receivers in custom ASICs and  
FPGAs that have LVDS capability for superior switching  
performance in noisy environments. Single point-to-point net  
topologies are recommended with a 100 Ω termination resistor  
as close to the receiver as possible. It is recommended to keep  
the trace length three to four inches maximum and to keep  
differential output trace lengths as equal as possible.  
S5 = 0 > K = 1.24  
S5 = 1 > K = 0.62  
0.1μF  
VREF  
+
A1  
1V  
+
EXTERNAL 1.23V  
REFERENCE  
200Ω  
SENSE  
+
1kΩ  
3.3V  
DISABLE  
A1  
V
DD  
Figure 54. Using an External Reference  
NOISE POWER RATIO TESTING (NPR)  
NPR is a test that is commonly used to characterize the return  
path of cable systems where the signals are typically QAM  
signals with a noise-like frequency spectrum. NPR performance  
of the AD9430 was characterized in the lab yielding an effective  
NPR = 56.9 dB at an analog input of 19 MHz. This agrees with  
a theoretical maximum NPR of 57.1 dB for an 11-bit ADC at  
13.6 dB backoff. The rms noise power of the signal inside the  
notch is compared with the rms noise level outside the notch  
using an FFT. Sufficiently long record lengths to guarantee a  
sufficient number of samples inside the notch are a  
CLOCK OUTPUTS (DCO+, DCO–)  
The input ENCODE is divided by two (in CMOS mode) and  
available off chip at DCO+ and DCO–. These clocks can  
facilitate latching off chip, providing a low skew clocking  
solution (see Figure 2). The on-chip clock buffers should not  
drive more than 5 pF of capacitance to limit switching transient  
effects on performance. Note that the output clocks are CMOS  
levels when CMOS mode is selected (S2 = 0) and are LVDS  
levels when in LVDS mode (S2 = VDD), requiring a 100 Ω  
differential termination at receiver in LVDS mode. The output  
clock in LVDS mode switches at the ENCODE rate.  
requirement, as well as a high order band-stop filter that  
provides the required notch depth for testing.  
VOLTAGE REFERENCE  
A stable and accurate 1.23 V voltage reference is built into the  
AD9430 (VREF). The analog input full-scale range is linearly  
proportional to the voltage at VREF. Note that an external  
reference can be used by connecting the SENSE pin to VDD  
(disabling internal reference) and driving VREF with the  
external reference source. No appreciable degradation in  
performance occurs when VREF is adjusted 5%. A 0.1 μF  
capacitor to ground is recommended at the VREF pin in  
internal and external reference applications. Float the SENSE  
pin for internal reference operation.  
Rev. E | Page 27 of 44  
 
AD9430  
EVALUATION BOARD, CMOS MODE  
GAIN  
The AD9430 evaluation board offers an easy way to test the  
AD9430 in CMOS mode. It requires a clock source, an analog  
input signal, and a 3.3 V power supply. The clock source is  
buffered on the board to provide the clocks for the ADC,  
latches, and data ready signals. The digital outputs and output  
clocks are available at two 40-pin connectors, P3 and P23. The  
PCB interfaces directly with ADI standard dual-channel data  
capture board (HSC-ADC-EVAL-DC) which, together with  
ADI ADC Analyzer software, allows for quick ADC evaluation.  
The board has several different modes of operation and is  
shipped in the following configurations:  
Full scale is set at E17, E18, and E19. Connecting E17 to E18  
sets S5 low, full scale = 1.5 V differential; connecting E17 to E19  
sets S5 high, full scale = 0.75 V differential.  
ENCODE  
The ENCODE clock is terminated to ground through 50 ꢀ at  
SMB Connector J5. The input is ac coupled to a high speed  
differential receiver (LVEL16) that provides the required  
low jitter, fast edge rates needed for optimum performance.  
J5 input should be >0.5 V p-p. Power to the EL16 is set at  
Jumper E47. Connecting E47 to E45 powers the buffer from  
AVDD; connecting E47 to E46 powers the buffer from  
VCLK/V_XTAL.  
Offset binary  
Internal voltage reference  
CMOS parallel timing  
Full-scale adjust = low  
VOLTAGE REFERENCE  
The AD9430 has an internal 1.23 V voltage reference. The ADC  
uses the internal reference as the default when jumpers E24 to  
E27 and E25 to E26 are left open. The full scale can be increased  
by placing optional Resistor R3. The required value varies with  
the process and needs to be tuned for the specific application.  
Full scale can similarly be reduced by placing R4; tuning is  
required here as well. An external reference can be used by  
shorting the SENSE pin to 3.3 V (place Jumper E26 to E25).  
The E27 to E24 jumper connects the ADC VREF pin to the  
EXT_VREF pin at the power connector.  
POWER CONNECTOR  
Power is supplied to the board via a detachable 12-lead power  
strip (three 4-pin blocks). AVDD, DRVDD, and VDL are the  
minimum required power connections.  
Table 10. Power Connector, CMOS Mode  
AVDD 3.3 V  
DRVDD 3.3 V  
VDL 3.3 V  
EXT_VREF  
VCLK/V_XTAL  
VAMP  
Analog supply for ADC (35ꢀ mA)  
Output supply for ADC (28 mA)  
Supply for support logic and DAC (35ꢀ mA)  
Optional external reference input  
Supply for clock buffer/optional CRYSTAL  
Supply for optional amp  
DATA FORMAT SELECT  
Data format select sets the output data format of the ADC.  
Setting DFS (E1 to E2) low sets the output format to be offset  
binary; setting DFS high (E1 to E3) sets the output to twos  
complement.  
ANALOG INPUTS  
The evaluation board accepts a 1.3 V p-p analog input signal  
centered at ground at SMB connector J4. This signal is  
terminated to ground through 50 Ω by R16. The input can be  
alternatively terminated at the transformer T1 secondary by  
R13 and R14. T1 is a wideband RF transformer providing the  
single-ended-to-differential conversion, allowing the ADC to be  
driven differentially and minimizing even-order harmonics.  
An optional second transformer, T2, can be placed following  
T1 if desired. This provides some performance advantage  
(~1 dB to 2 dB) for high analog input frequencies (>100 MHz).  
If T2 is placed, two shorting traces at the pads need to be cut.  
The analog signal is low-pass filtered by R41, C12 and R42, and  
C13 at the ADC input.  
I/P TIMING SELECT  
Output timing is set at E11, E12 and E13. E12 to E11 sets S4  
low for parallel output timing mode. E11 to E13 sets S4 high  
for interleaved timing mode.  
TIMING CONTROLS  
Flexibility in latch clocking and output timing is accomplished  
by allowing for clock inversion at the timing controls section of  
the PCB. Each buffered clock is buffered by an XOR and can be  
inverted by moving the appropriate jumper for that clock.  
Rev. E | Page 28 of 44  
 
AD9430  
OPTIONAL AMPLIFIER  
CMOS DATA OUTPUTS  
The evaluation board as shipped uses a wideband RF  
transformer in its analog path. A user can modify the board to  
use the AD8351 op amp for ac- or dc-coupled applications  
(see Figure 59 and Figure 60). Figure 60 shows the AD8351 in  
an ac-coupled topology, while Figure 57 shows the AD8351 in  
a dc-coupled application. Optimum performance is obtained  
with the AD8351 ac coupled.  
The ADC CMOS digital outputs are latched on the board by  
four LVT574s; the latch outputs are available at the two 40-pin  
connectors at Pin 11 through Pin 33 on P23 (Channel A) and  
Pin 11 through Pin 33 on P3 (Channel B). The latch output  
clocks (data ready) are available at Pin 37 on P23 (Channel A)  
and Pin 37 on P3 (Channel B). The data-ready clocks can be  
inverted at the timing controls section if needed.  
R
F
: 4.6ns  
C1 FREQ  
84.65608MHz  
INHI  
100nF  
25  
OPHI  
R1  
50  
AIN+  
SINGLE-  
ENDED  
50  
5pF  
R
G
AD9430  
AIN–  
AD8351  
DIGITAL  
OUT  
25  
OPLO  
VOCM  
100nF  
SOURCE  
INLO  
100nF  
2.8V  
25  
1
2
Figure 57. Using the AD8351 on the AD9430 PCB  
CH1  
2.00V  
CH2  
2.00V M 5.00ns  
CH2  
Figure 55. Data Output and Clock @ 80-Pin Connector  
CRYSTAL OSCILLATOR  
An optional crystal oscillator can be placed on the board to  
serve as a clock source for the PCB. Power to the oscillator is  
through the VCLK pin at the power connector (also called  
VCLK/V_XTAL). If an oscillator is used, ensure proper  
termination for best results. The board has been tested with a  
Valpey Fisher VF561 and a Vectron JN00158-163.84. Test  
results for the VF561 are shown in Figure 56.  
0
ENCODE 163.84MHz  
ANALOG 65.02MHz  
SNR 63.93dB  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
SINAD 63.87dB  
FUND –0.45dBFS  
2ND –85.62dBc  
3RD –91.31dBc  
4TH –90.54dBc  
5TH –90.56dBc  
6TH –91.12dBc  
THD –82.21dBc  
SFDR 83.93dBc  
SAMPLES 8k  
NOISEFLR –100.44dBFS  
WORSTSP –83.93dBc  
0
20  
40  
60  
80  
MHz  
Figure 56. FFT—Using VF561 Crystal as Clock Source  
Rev. E | Page 29 of 44  
 
 
 
AD9430  
TROUBLESHOOTING  
If the board does not seem to be working correctly, try the  
following:  
The AD9430 evaluation board is provided as a design  
example for customers of Analog Devices, Inc. ADI makes  
no warranties, express, statutory, or implied, regarding  
merchantability or fitness for a particular purpose.  
Verify power at IC pins.  
Check that all jumpers are in the correct position for the  
desired mode of operation.  
Verify that VREF is at 1.23 V.  
Run the clock and analog inputs at low speeds (10 MSPS/  
1 MHz) and monitor latch and ADC for toggling.  
3.3V  
3.3V  
3.3V  
+
+
+
AVDD GND DRVDDGND  
VDL GND  
SIGNAL  
ANALOG  
J4  
GENERATOR  
BAND-PASS  
FILTER  
REFIN  
DATA  
CAPTURE  
AND  
AD9430 EVALUATION BOARD  
PROCESSING  
10MHz  
REFOUT  
CLOCK  
J5  
SIGNAL  
GENERATOR  
Figure 58. Evaluation Board Connections  
Rev. E | Page 3ꢀ of 44  
 
AD9430  
Table 11. CMOS PCB Evaluation Board Bill of Material  
No. Quantity Reference Designator Device  
Package  
Value  
Comments  
1
47  
C1, C3–C11, C15–C44,  
C47, C48, C58–C62  
Capacitor  
ꢀ4ꢀ2  
ꢀ.1 μF  
C11, C18, C3ꢀ, C33,  
C34, C39, C4ꢀ, C48  
Not placed  
2
3
4
1
1
29  
C2  
C12  
Capacitor  
Capacitor  
Capacitor  
ꢀ4ꢀ2  
ꢀ4ꢀ2  
ꢀ4ꢀ2  
1ꢀ pF  
2ꢀ pF  
ꢀ.ꢀ1 μF  
Not placed  
Not placed  
All .ꢀ1uF caps not  
placed  
C13, C14, C45, C46, C5ꢀ–C57,  
C68-C84  
5
6
6
8
C49, C63–C67  
Capacitor  
3-pin  
header/jumper  
CAPL  
1ꢀ μF  
(E3, E1, E2),( E19, E17, E18),  
(E13, E11, E12),( E46, E47, E45),  
(E35, E33, E34),( E32, E3ꢀ, E31),  
(E29, E23, E28),( E22, E16, E21)  
7
1
E26, E25, E27, E24  
4-pin  
header/jumper  
8
9
1ꢀ  
4
2
3
J1, J2, J4, J5  
P3, P231  
P4, P21, P22  
SMA  
Connector  
4-pin power  
connector  
4-pin power  
connector  
SMA  
Post  
J2 not placed  
Z5.531.3425.ꢀ  
25.6ꢀ2.5453.ꢀ  
Wieland  
Wieland  
11  
3
P4, P21, P22  
Detachable  
connector  
12  
13  
14  
15  
16  
4
3
8
2
17  
R1, R5, R16, R27  
R2, R3, R4  
R6–R8, R1ꢀ, R33–R36  
R9, R11  
R12, R15, R21–R26, R28–R31, R37,  
R38, R43, R46, R47  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
ꢀ4ꢀ2  
ꢀ4ꢀ2  
ꢀ6ꢀ3  
ꢀ4ꢀ2  
ꢀ4ꢀ2  
5ꢀ Ω  
3.8K Ω  
1ꢀꢀ Ω  
ꢀ Ω  
User selected  
R1 not placed  
R3, R4 not placed  
R34 not placed  
All 17 not placed  
17  
18  
6
2
R13, R14, R41, R42, R44, R45  
Resistor  
Resistor  
ꢀ4ꢀ2  
ꢀ4ꢀ2  
25 Ω  
R13, R14, R44, R45 not  
placed  
R17, R18  
51ꢀ Ω  
19  
2ꢀ  
2
2
R19, R2ꢀ  
R39, R4ꢀ  
Resistor  
Resistor  
ꢀ4ꢀ2  
ꢀ4ꢀ2  
15ꢀ Ω  
1 kΩ  
21  
8
RZ1, RZ2, RZ3, RZ4, RZ5, RZ6, RZ7,  
RZ8  
Resistor pack 22ꢀ Ω SO16RES  
742C163221JTR  
User selected  
Mini-Circuits  
ADT1–1WT  
CTS  
22  
23  
1
2
L1  
T1,T4  
Inductor  
ꢀ6ꢀ3  
Not placed  
T4 not placed  
Transformer  
CD542  
24  
2
T2,T3  
Optional Macom  
Transformer  
SM-22  
ETC1–1–13  
Not placed  
25  
26  
1
1
U1  
U2  
AD943ꢀBSV (−21ꢀ)  
MC1ꢀꢀLVEL16D  
TQFP1ꢀꢀ  
SO8NB  
ADC  
Clock buffer  
27  
28  
29  
1
4
1
U3  
VCX86  
LVT574  
JNꢀꢀ158  
SO14NB  
SO2ꢀ  
XOR  
U4, U5, U6, U7  
U8  
Optional XTAL  
Amp  
Not placed  
3ꢀ  
1
U9  
AD8351  
1 P3 and P23 are implemented as one physical 8ꢀ-pin connector, the SAMTEC TSW-14ꢀ-ꢀ8-L-D-RA.  
Rev. E | Page 31 of 44  
AD9430  
7 6  
7 7  
7 8  
7 9  
8 0  
8 1  
8 2  
8 3  
8 4  
8 5  
8 6  
8 7  
8 8  
8 9  
9 0  
9 1  
9 2  
9 3  
9 4  
9 5  
9 6  
9 7  
9 8  
9 9  
1 0 0  
5 0  
4 9  
4 8  
4 7  
4 6  
4 5  
4 4  
4 3  
4 2  
4 1  
4 0  
3 9  
3 8  
3 7  
3 6  
3 5  
3 4  
3 3  
3 2  
3 1  
3 0  
2 9  
2 8  
2 7  
2 6  
D
D
G N  
D V D D R  
D
G N  
D D D R V  
G N  
D
D
C
C
C
D
D
D
C
C
D
D
C
C
D
G N  
G N  
V C  
V C  
V C  
G N  
G N  
G N  
V C  
V C  
G N  
G N  
V C  
V C  
G N  
C V C  
C
D
V C  
G N  
C
– E N  
D
C
G N  
V C  
D
D
C
C
C
D
G N  
G N  
V C  
V C  
V C  
G N  
4
T M P I C A 4 0  
T M P I C A 0  
4
T M P I C A 0  
P 2 2  
P 4  
P 2 1  
Figure 59. Evaluation Board Schematic—CMOS  
Rev. E | Page 32 of 44  
 
AD9430  
VCC  
+
C23  
0.1μF  
C22  
0.1μF  
C25  
0.1μF  
C24  
0.1μF  
C20  
0.1μF  
C27  
0.1μF  
C26  
0.1μF  
C29  
0.1μF  
C28  
0.1μF  
C31  
0.1μF  
C32  
0.1μF  
C64  
10μF  
C16  
0.1μF  
C17  
0.1μF  
C19  
0.1μF  
C35  
0.1μF  
C21  
0.1μF  
C38  
0.1μF  
GND  
VCC  
C68  
0.01μF  
C69  
0.01μF  
C70  
0.01μF  
C71  
0.01μF  
C72  
0.01μF  
C73  
0.01μF  
C74  
0.01μF  
C75  
0.01μF  
C76  
0.01μF  
C77  
0.01μF  
C78  
0.01μF  
C79  
0.01μF  
C80  
0.01μF  
C81  
0.01μF  
C82  
0.01μF  
C83  
0.01μF  
C84  
0.01μF  
GND  
VCLK  
GND  
VAMP  
GND  
VDL  
VREF  
+
+
+
+
C67  
10μF  
C46  
0.01μF  
C50  
0.01μF  
C51  
0.01μF  
C52  
0.01μF  
C45  
0.01μF  
C44  
0.1μF  
C42  
0.1μF  
C41  
0.1μF  
C15  
0.1μF  
C37  
0.1μF  
C66  
10μF  
C14  
0.01μF  
C49  
10μF  
C48  
0.1μF  
C63  
10μF  
GND  
GND  
DRVDD  
+
C61  
C65  
C62  
C60  
C59  
C58  
C53  
C54  
C55  
C56  
C57  
0.1μF  
10μF  
0.1μF  
0.1μF  
0.1μF  
0.1μF  
0.01μF  
0.01μF  
0.01μF  
0.01μF  
0.01μF  
GND  
R26  
R28  
1kΩ  
1kΩ  
PLACE R30 OR R31  
(POWER DOWN)  
OPTIN  
GND  
VAMP  
TO USE VF561C CRYSTAL  
GND  
C18  
0.1μF  
GND VAMP  
L1  
X
C30  
0.1μF  
R37  
25Ω  
L IS OPTIONAL  
GND  
10  
VCLK  
R31  
1kΩ  
R30  
1kΩ  
R15  
100Ω  
VOCM  
VPOS  
OPHI  
PWDN  
JN00158  
1
2
R21  
100Ω  
C39  
0.1μF  
RGP1  
INHI  
9
8
7
R46  
25Ω  
6
1
2
VAMP  
GND  
RGP1  
E/D  
NC  
VCC  
VCLK  
3
4
5
4
AMPINB  
AMPIN  
OUTPUTB  
OUTPUT  
P1  
INLO  
OPLO  
3
GND  
R38  
100Ω  
GND  
GND  
R22  
100Ω  
R43  
25Ω  
R29  
0Ω  
R47  
25Ω  
C11  
0.1μF  
C40  
0.1μF  
5
6
RGP2  
COMM  
U8  
AD8351  
U9  
GND  
VCLK  
RGP1  
R12  
25Ω  
R25  
1.2kΩ  
R23  
100Ω  
OPIN  
P2  
T2  
T3  
GND  
ETC1-1-13  
ETC1-1-13  
R24  
100Ω  
15  
15  
GND  
2
2
34  
34  
GND  
GND  
PR SEC  
PR SEC  
OPINB  
INX  
Figure 60. Evaluation Board Schematic—CMOS (continued)  
Rev. E | Page 33 of 44  
 
AD9430  
Figure 61. PCB Top-Side Silkscreen  
Figure 63. PCB Ground Layer  
Figure 62. PCB Top-Side Copper  
Figure 64. PCB Split Power Plane  
Rev. E | Page 34 of 44  
AD9430  
Figure 65. PCB Bottom-Side Copper  
Figure 66. PCB Bottom-Side Silkscreen  
Rev. E | Page 35 of 44  
AD9430  
EVALUATION BOARD, LVDS MODE  
The AD9430 evaluation board offers an easy way to test the  
AD9430 in LVDS mode. (The board is also compatible with the  
AD9411.) It requires a clock source, an analog input signal, and  
a 3.3 V power supply. The clock source is buffered on the board  
to provide the clocks for the ADC, latches, and a data-ready  
signal. The digital outputs and output clocks are available at a  
40-pin connector, P23. The board has several different modes of  
operation and is shipped in the following configurations:  
GAIN  
Full scale is set at E17 to E19, E17 to E18 sets S5 low, full scale =  
1.5 V differential; E17 to E19 sets S5 high, full scale = 0.75 V  
differential. Best performance is obtained at 1.5 V full scale.  
CLOCK  
The CLOCK input is terminated to ground through a 50 Ω  
resistor at SMB connector J5. The input is ac coupled to a high  
speed differential receiver (LVEL16) that provides the required  
low jitter, fast edge rates needed for optimum performance.  
J5 input should be >0.5 V p-p. Power to the LVEL16 is set at  
Jumper E47. E47 to E45 powers the buffer from AVDD; E47 to  
E46 powers the buffer from VCLK/V_XTAL (not in Table 11).  
Offset binary  
Internal voltage reference  
Full-scale adjust = low  
Note that the AD9430 LVDS evaluation board does not  
interface directly with the standard Analog Devices dual-  
channel data capture board (HSC-ADC-EVAL-DC). An LVDS-  
to-CMOS translation board is required and is available from  
Analog Devices. (No translation board is required for the  
AD9430 CMOS evaluation board.)  
VOLTAGE REFERENCE  
The AD9430 has an internal 1.23 V voltage reference. The ADC  
uses the internal reference as the default when jumpers E24 to  
E27 and E25 to E26 are left open. The full scale can be increased  
by placing optional resistor R3. The required value varies with  
the process and needs to be tuned for the specific application.  
Full scale can similarly be reduced by placing R4; tuning is  
required here as well. An external reference can be used by  
shorting the SENSE pin to 3.3 V (place jumper E26 to E25).  
Jumper E27 to E24 connects the ADC VREF pin to the  
EXT_VREF pin at the power connector.  
POWER CONNECTOR  
Power is supplied to the board via a detachable 8-lead power  
strip (two 4-pin blocks). In Table 12, VCC, DRVDD, and VDL  
are the minimum required power connections, and the  
LVEL16 clock buffer can be powered from VCC or VDL at  
the E47 jumper.  
Table 12. Power Connector, LVDS Mode  
DATA FORMAT SELECT  
VCC 3.3 V  
DRVDD 3.3 V  
VDL 3.3 V  
Analog supply for ADC (35ꢀ mA)  
Output supply for ADC (5ꢀ mA)  
Supply for support logic  
Data format select (DFS) sets the output data format of the ADC.  
Setting DFS low (E1 to E2) sets the output format to be offset  
binary; setting DFS high (E1 to E3) sets the output to twos  
complement.  
EXT_VREF  
Optional external reference input  
DATA OUTPUTS  
ANALOG INPUTS  
The ADC LVDS digital outputs are routed directly to the  
connector at the card edge. Resistor pads have been placed at  
the output connector to allow for termination if the connector  
receiving logic does not have the required differential  
termination for the data bits and DCO. Each output trace pair  
should be terminated differentially at the far end of the line  
with a single 100 ꢀ resistor.  
The evaluation board accepts a 1.3 V p-p analog input signal  
centered at ground at SMB Connector J4. This signal is  
terminated to ground through 50 Ω by R16. The input can be  
alternatively terminated at the T1 transformer secondary by  
R13 and R14. T1 is a wideband RF transformer providing the  
single-ended-to-differential conversion, allowing the ADC to  
be driven differentially and minimizing even-order harmonics.  
An optional second transformer, T2, can be placed following T1  
if desired. This provides some performance advantage  
(~1 to 2 dB) for high analog input frequencies (>100 MHz). If  
T2 is placed, two shorting traces at the pads need to be cut. The  
analog signal can be low-pass filtered by R41, C12 and R42, and  
C13 at the ADC input. A wideband differential amplifier  
(AD8351) can be configured on the PCB for dc-coupled  
applications. Remove C6, C15, and C30 to prevent transformer  
loading of the amp. See Figure 67, Figure 68, and Figure 69 for  
more information.  
CRYSTAL OSCILLATOR  
An optional crystal oscillator can be placed on the board to  
serve as a clock source for the PCB. Power to the oscillator is  
through the VDL pin at the power connector. If an oscillator is  
used, ensure proper termination for best results. The board has  
been tested with a Valpey Fisher VF561 and a Vectron JN00158-  
163.84.  
Rev. E | Page 36 of 44  
 
 
AD9430  
Table 13. LVDS PCB Evaluation Board Bill of Material  
No. Quantity Reference Designator Device  
Package  
Value  
Comment  
1
33  
C1, C4–C11, C15–C17, C19–C32,  
C35, C36, C58–C62  
Capacitors  
ꢀ6ꢀ3  
ꢀ.1 μF  
C3, C18, C39, C4ꢀ not  
placed  
C3, C18, C39, C4ꢀ  
2
4
C33, C34, C37, C38  
Capacitor  
ꢀ4ꢀ2  
ꢀ.1 μF  
C33, C34, C37, C38 not  
placed  
3
4
5
6
7
4
1
2
2
2
C63–C66  
C2  
C12, C13  
J4, J5  
Capacitor  
Capacitor  
Capacitor  
Jacks  
Power connectors  
Top  
Power connectors  
Posts  
4ꢀ-pin right-angle  
connector  
TAJD CAPL  
ꢀ6ꢀ3  
ꢀ6ꢀ3  
1ꢀ uF  
1ꢀ pF  
2ꢀ pF  
C2 not placed  
C12, C13 not placed  
SMB  
P21, P22  
25.6ꢀ2.5453.ꢀ  
Wieland  
Z5.531.3425.ꢀ  
Wieland  
Digi-Key  
S2131-2ꢀ-ND  
ꢀ4ꢀ2  
8
2
P21, P22  
9
1
P23  
1ꢀ  
16  
R1, R6–R12, R15, R31–R37  
Resistor  
1ꢀꢀ Ω  
R1, R6–R12, R15, R31–37  
Not placed  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1
3
2
2
2
2
2
2
6
R2  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
ꢀ6ꢀ3  
ꢀ6ꢀ3  
ꢀ6ꢀ3  
ꢀ6ꢀ3  
ꢀ6ꢀ3  
ꢀ6ꢀ3  
ꢀ6ꢀ3  
ꢀ6ꢀ3  
ꢀ6ꢀ3  
3.8 kΩ  
5ꢀ Ω  
51ꢀ Ω  
15ꢀ Ω  
1 kΩ  
25 Ω  
3.8 kΩ  
25 Ω  
R5, R16, R27  
R17, R18  
R19, R2ꢀ  
R29, R3ꢀ  
R41, R42  
R3, R4  
R13, R14  
R22, R23, R24, R25, R26, R28  
R13, R14 not placed  
R22, R23, R24, R25, R26,  
R28 not placed  
1ꢀꢀ Ω  
2ꢀ  
4
R39, R4ꢀ, R45, R47  
Resistor  
ꢀ4ꢀ2  
25 Ω  
R39, R4ꢀ, R45, R47  
not placed  
21  
22  
23  
24  
25  
2
1
3
2
1
R43, R44  
R46  
R38, R48, R49  
R5ꢀ, R51  
T1  
T2  
Resistor  
Resistor  
Resistor  
Resistor  
ꢀ4ꢀ2  
ꢀ4ꢀ2  
ꢀ4ꢀ2  
ꢀ4ꢀ2  
Mini-Circuits  
ADT1-1WT  
AD8351  
JNꢀꢀ158 or  
VF561  
1ꢀ kΩ  
1.2 kΩ  
25 Ω  
R43, R44 not placed  
R46 not placed  
R38, R48, R49 not placed  
R5ꢀ, R51 not placed  
T2 not placed  
1 kΩ  
RF transformer  
26  
27  
1
1
U2  
U9  
RF amp  
Optional crystal  
oscillator  
28  
29  
1
1
U1  
U3  
AD943ꢀ  
MC1ꢀꢀLVEL16  
TQFP-1ꢀꢀ  
SO8NB  
Rev. E | Page 37 of 44  
AD9430  
7 6  
7 7  
7 8  
7 9  
8 0  
8 1  
8 2  
5 0  
4 9  
4 8  
4 7  
4 6  
4 5  
4 4  
4 3  
4 2  
4 1  
4 0  
3 9  
3 8  
3 7  
3 6  
3 5  
3 4  
3 3  
G N D  
D R V D D  
G N D  
D R V D D 8 3  
8 4  
8 5  
G N D  
8 6  
8 7  
8 8  
8 9  
9 0  
9 1  
9 2  
9 3  
G N D  
G N D  
V C C  
V C C  
V C C  
G N D  
G N D  
G N D  
V C C  
V C C  
G N D  
G N D  
V C C  
V C C  
G N D  
V C C  
V C C  
G N D  
~ E N C  
G N D  
V C C  
9 4  
9 5  
3 2  
3 1  
G N D  
G N D  
V C C  
V C C  
V C C  
G N D  
9 6  
9 7  
9 8  
9 9  
3 0  
2 9  
2 8  
2 7  
2 6  
1 0 0  
C 1 R O 4 P T M  
P 2 1  
C 1 R O 4 P T M  
P 2 2  
Figure 67. Evaluation Board Schematic—LVDS  
Rev. E | Page 38 of 44  
 
AD9430  
VCC  
GND  
+
C64  
10μF  
C23  
0.1μF  
C22  
0.1μF  
C25  
0.1μF  
C24  
0.1μF  
C27  
0.1μF  
C26  
0.1μF  
C29  
0.1μF  
C28  
0.1μF  
C31  
0.1μF  
C16  
0.1μF  
C17  
0.1μF  
C32  
0.1μF  
C35  
0.1μF  
C19  
0.1μF  
C21  
0.1μF  
C20  
0.1μF  
VDL  
DRVDD  
VREF  
+
C66  
10μF  
+
C63  
10μF  
+
C65  
10μF  
C61  
0.1μF  
C62  
0.1μF  
C18  
0.1μF  
C60  
0.1μF  
C59  
0.1μF  
C58  
0.1μF  
GND  
GND  
GND  
TO USE VF561 CRYSTAL  
GND  
VDL  
R28  
100Ω  
JN00158  
R23  
100Ω  
1
2
3
E/D  
VCC  
6
5
4
VDL  
NC  
OUTPUTB  
OUTPUT  
P4  
R22  
100Ω  
GND  
GND  
R25  
100Ω  
U9  
GND  
VDL  
R24  
100Ω  
P5  
R26  
100Ω  
GND  
Figure 68. Evaluation Board Schematic—LVDS (continued)  
R51  
1kΩ  
R50  
1kΩ  
VDL  
GND  
VDL  
POWER DOWN  
USE R43 OR R44  
C38  
0.1μF  
C37  
0.1μF  
VDL  
GND  
GND  
GND  
R43  
10kΩ  
R44  
10kΩ  
U2  
AD8351  
R47  
25Ω  
GND  
R38  
1
2
3
4
5
PWUP  
VOCM 10  
C39  
0Ω  
C33  
R49  
25Ω  
R39  
RGP1  
INHI  
VPOS  
OPHI  
9
8
7
6
0.1μF  
0.1μF  
25Ω  
AMPINB  
AMPIN  
INLO  
OPLO  
C40  
0.1μF  
C34  
0.1μF  
R40  
25Ω  
R48  
25Ω  
AMP IN  
AMP  
GND  
RPG2  
COMM  
R45  
25Ω  
R46  
1.2kΩ  
Figure 69. Evaluation Board Schematic—LVDS (continued)  
Rev. E | Page 39 of 44  
 
 
AD9430  
F
Figure 70. PCB Top-Side Silkscreen—LVDS  
Figure 72. PCB Ground Layer—LVDS  
Figure 71. PCB Top-Side Copper—LVDS  
Figure 73. PCB Split Power Plane—LVDS  
Rev. E | Page 4ꢀ of 44  
AD9430  
Figure 74. PCB Bottom-Side Copper—LVDS  
Figure 75. PCB Bottom-Side Silkscreen—LVDS  
Rev. E | Page 41 of 44  
AD9430  
OUTLINE DIMENSIONS  
16.00 BSC SQ  
1.20  
0.75  
0.60  
0.45  
MAX  
14.00 BSC SQ  
100  
1
76  
75  
76  
100  
75  
1
SEATING  
PLANE  
PIN 1  
BOTTOM VIEW  
(PINS UP)  
TOP VIEW  
(PINS DOWN)  
CONDUCTIVE  
HEAT SINK  
51  
51  
25  
25  
26  
50  
50  
26  
0.20  
0.09  
1.05  
1.00  
0.95  
6.50  
NOM  
7°  
3.5°  
0°  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.15  
0.05  
COPLANARITY  
0.08  
0.27  
0.22  
0.17  
0.50 BSC  
SECTION OF THIS DATA SHEET.  
COMPLIANT TO JEDEC STANDARDS MS-026-AED-HD  
Figure 76.100-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]  
(SV-100-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
AD943ꢀBSV-17ꢀ  
AD943ꢀBSVZ-17ꢀ  
AD943ꢀBSV-21ꢀ  
AD943ꢀBSVZ-21ꢀ  
Temperature Range  
−4ꢀ°C to +85°C  
−4ꢀ°C to +85°C  
−4ꢀ°C to +85°C  
−4ꢀ°C to +85°C  
Package Description  
Package Option  
SV-1ꢀꢀ-1  
SV-1ꢀꢀ-1  
SV-1ꢀꢀ-1  
SV-1ꢀꢀ-1  
1ꢀꢀ-Lead Thin Quad Flat Package, Exposed Pad (TQFP_EP)  
1ꢀꢀ-Lead Thin Quad Flat Package, Exposed Pad (TQFP_EP)  
1ꢀꢀ-Lead Thin Quad Flat Package, Exposed Pad (TQFP_EP)  
1ꢀꢀ-Lead Thin Quad Flat Package, Exposed Pad (TQFP_EP)  
1 Z = RoHS Compliant Part.  
Rev. E | Page 42 of 44  
 
AD9430  
NOTES  
Rev. E | Page 43 of 44  
AD9430  
NOTES  
©2005–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02607-0-9/10(E)  
Rev. E | Page 44 of 44  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

相关型号:

AD9432

12-Bit, 80 MSPS/105 MSPS A/D Converter
ADI

AD9432/PCB

12-Bit, 80 MSPS/105 MSPS A/D Converter
ADI

AD9432BSQ-105

12-Bit, 80 MSPS/105 MSPS A/D Converter
ADI

AD9432BSQ-80

12-Bit, 80 MSPS/105 MSPS A/D Converter
ADI

AD9432BSQZ-80

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BST-100

IC 1-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP52, PLASTIC, LQFP-52, Analog to Digital Converter
ADI

AD9432BST-105

12-Bit, 80 MSPS/105 MSPS A/D Converter
ADI

AD9432BST-80

12-Bit, 80 MSPS/105 MSPS A/D Converter
ADI

AD9432BSTZ-105

1-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP52, ROHS COMPLIANT, MS-026BCC, LQFP-52
ROCHESTER

AD9432BSTZ-105

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BSTZ-1051

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BSTZ-80

1-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP52, ROHS COMPLIANT, MS-026BCC, LQFP-52
ROCHESTER